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When dealing with light scattering theories such as the T-matrix methods for structured laser beams, e.g. Generalized Lorenz-Mie Theory (GLMT) or the Extended Boundary Condition Method (EBCM), EM …elds are expanded over a set of Vector Spherical Wave Functions (VSWFs) involving spherical Bessel functions, with expansion coe¢ cients expressed in terms of Beam Shape Coe¢ cients (BSCs). Although spherical Bessel functions are orthogonal over the range ( 1; +1), the GLMT may be expressed using a non-orthogonal set of spherical Bessel functions de…ned over (0; +1), allowing one to generate an in…nite number of quadratures for evaluating the BSCs. This paper points out the di¤erence between orthogonal and non-orthogonal spherical Bessel functions, establishes the in…nite number of quadratures and discusses its properties.

1 Introduction.

The description of electromagnetic structured beams may be carried out in terms of expansions over Vector Spherical Wave Functions (VSWFs), e.g. in the framework of light scattering theories such as Generalized Lorenz-Mie Theory (GLMT) [START_REF] Gouesbet | Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation[END_REF], [START_REF] Gouesbet | Combustion measurements[END_REF], [START_REF] Gouesbet | Generalized Lorenz-Mie theories, second edition[END_REF] or the Extended Boundary Condition Method (EBCM) [START_REF] Waterman | Symmetry, unitarity, and geometry in electromagnetic scattering[END_REF], [START_REF] Mishchenko | Scattering, absorption, and emission of light by small particles[END_REF] for structured beams [START_REF] Gouesbet | T-matrix methods for electromagnetic structured beams: A commented reference database for the period 2014-2018[END_REF]. In these frameworks, expansion coe¢ cients over the VSWFs can be expressed in terms of sub-coe¢ cients known as Beam Shape Coe¢ cients (BSCs) usually denoted as g m n;T M and g m n;T E (TM: Transverse Magnetic; TE: Transverse Electric) although, originally, BSCs were introduced in the framework of the Bromwich formalism [START_REF] Gouesbet | T-matrix formulation and generalized Lorenz-Mie theories in spherical coordinates[END_REF]. VSWFs involve spherical Bessel functions which are orthogonal over ( 1; +1). However, the GLMT may be expressed in terms of a non-orthogonal set of spherical Bessel functions de…ned over the range (0; 1) instead of being de…ned over the range ( 1; +1). We examine the implications of the use of a non-orthogonal set of spherical Bessel functions, in particular the fact that BSCs may be evaluated in an in…nite number of ways under the form of an in…nite number of quadratures, and discuss whether these di¤erent ways are equivalent or not. We shall restrict our discussion to the TM-BSCs g m n;T M insofar as the case of TE-BSCs would be treated similarly.

2 Non-orthogonality of spherical Bessel functions over (0; +1) and their consequences.

In the Bromwich formulation, the TM-BSCs g m n;T M allow one to express the radial component E r of the electric …eld according to, e.g. Eq.(3.10) in [START_REF] Gouesbet | Generalized Lorenz-Mie theories, second edition[END_REF]:

E r = E 0 1 X n=1 +n X m= n c pw n g m n;T M n(n + 1) r (1) 
n (kr)P jmj n (cos ) exp(im') [START_REF] Gouesbet | Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation[END_REF] in which P jmj n are associated Legendre functions de…ned according to Hobson's notation, which is also used by Arfken and Weber [START_REF] Arfken | Mathematical methods for physicists[END_REF] with an extraprefactor ( 1) m introduced,

n (kr) are spherical Bessel functions of the …rst kind also denoted as j n (kr), and c pw n , with pw standing for "plane wave" are plane wave coe¢ cients which occur in the Bromwich formulation of the usual Lorenz-Mie theory [START_REF] Gouesbet | Sur la généralisation de la théorie de Lorenz-Mie[END_REF] and which do not need to be speci…ed in the present paper.

The usual way to isolate the BSCs is as follows. First, use the orthogonality relation for exponentials to get rid of the azimuthal angle ':

2 Z 0 exp[i(m m 0 )']d' = 2 mm 0 (2)
Afterward, use the orthogonality relation for the associated Legendre functions P m n (cos ) to get rid of the polar angle :

Z 0 P m n (cos )P m l (cos ) sin d = 2 2n + 1 (n + m)! (n m)! nl (3)
To take advantage of Eqs.2 and 3, Eq.1 is successively multiplied by integral operators R 2 0 (:) exp( im 0 ')d' and R 0 (:)P jmj n 0 sin d to obtain:

g m n;T M = 1 E 0 c pw n 2n + 1 4 n(n + 1) (n jmj)! (n + jmj)! r (1) n (kr) (4) 
Z 0 2 Z 0 E r P jmj n (cos ) exp( im') sin d d d'
It is to be noted that Eq.4 contains an r-dependent term r=

n (kr). This does not prevent the BSCs from being complex numbers, as they should, because the integrals in Eq.4 are proportional to an inverse factor [START_REF] Gouesbet | Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation[END_REF] n (kr)=r, e.g. [START_REF] Lock | Contribution of high-order rainbows to the scattering of a Gaussian laser beam by a spherical particle[END_REF] for the case of a plane wave propagating along the z-axis, [START_REF] Neves | Exact partial wave expansion of optical beams with respect to an arbitrary origin[END_REF], [START_REF] Neves | Analytical results for a Bessel function times Legendre polynomials class integrals[END_REF] for oblique propagation and [START_REF] Moreira | Expansion of arbitrary electromagnetic …elds in terms of vector spherical wave functions[END_REF] for any beam perfectly satisfying Maxwell's equations. Furthermore, the double quadrature expression of Eq.4 pertains to what has been call the F1-formulation in [START_REF] Gouesbet | Discussion of two quadrature methods of evaluating beam shape coe¢ cients in generalized Lorenz-Mie theory[END_REF]. It must also be noted that this F1-formulation does not need any orthogonality property of spherical Bessel functions, and works independently of whether the spherical Bessel functions are orthogonal or not. This is because the only integrals which have to be used in the F1-formulation are the ones over and '.

Another way to obtain expressions of BSCs, known as the F2-formulation [START_REF] Gouesbet | Discussion of two quadrature methods of evaluating beam shape coe¢ cients in generalized Lorenz-Mie theory[END_REF] is by using triple quadratures instead of using double quadratures. For this, we shall use [START_REF] Arfken | Mathematical methods for physicists[END_REF], p. 412:

1 Z 0 (1) n (kr) (1) n 0 (kr)d(kr) = 2(2n + 1)
for n = n 0 (5) in which the integration interval is from 0 to 1, which is natural since this is the range of the radial variable r. Then, rearranging Eq.4 in an obvious way and applying the operator R 1 0 (:)

n 0 (kr)d(kr), we obtain:

g m n;T M = (2n + 1) 2 2 2 n(n + 1)c pw n (n jmj)! (n + jmj! (6) Z 0 2 Z 0 1 Z 0 Er E 0 r (1) n (kr)P jmj n (cos ) exp( im') sin d d'd(kr)
Eqs.4 and 6 are strictly equivalent when the …eld descriptions exactly satisfy Maxwell's equations, and provide two di¤erent ways to evaluate the BSCs. The …rst way (double quadratures) does not explicitly eliminate the spherical Bessel functions and therefore does not need to specify whether they constitute a set of orthogonal functions or not. Conversely, the second set explicitly eliminates the spherical Bessel functions. These functions are orthogonal over the range ( 1; +1), according to [START_REF] Arfken | Mathematical methods for physicists[END_REF], p. 732:

1 Z 1 (1) n (kr) (1) 
n 0 (kr)d(kr) = 2n + 1 nn 0 (7) However, Eq.5 is de…ned over (0; +1) instead of over ( 1; +1) and is therefore restricted to a non-orthogonal set of spherical Bessel functions. Eq.5 is then to be completed by [START_REF] Arfken | Mathematical methods for physicists[END_REF], p. 412:

1 Z 0 (1) n (kr) (1) n 0 (kr)d(kr) = sin[(n n 0 ) =2 n(n + 1) n 0 (n 0 + 1) for n 6 = n 0 (8) 
The fact that the spherical Bessel functions

n (x) are not orthogonal over the interval (0; +1) is reminiscent of contravariant and covariant components in tensor calculus. For instance, let us consider a point P in an Euclidean plane spanned by two linear non-orthogonal axes x and y crossing with an angle 6 = 0 at point O. We may then introduce a vector V = ! OP using an intrinsic notation. The vector V may then receive two di¤erent index representations, named the contravariant and the covariant representations. In the contravariant representation, V is projected onto the axes parallel to them, then de…ning a contravariant vector V i = (x k ; y k ) + in which x k and y k are the contravariant components of the contravariant vector V i , and the cross (+) denotes a transpose: Conversely, in the covariant representation, V is projected onto the axes perpendicularly to them, then de…ning a covariant vector V i = (x ? ; y ? ) in which x ? and y ? are the covariant components of the covariant vector V i . But, because the axes x and y are not orthogonal, we have (x k ; y k ) 6 = (x ? ; y ? ):

Similarly, in the F2-formulation, the BSCs may be viewed as components over a set of basis functions involving non-orthogonal spherical Bessel functions. The analogy with contravariant and covariant vectors, although very loose, was a motivation that led us to a careful examination of uniqueness properties of the BSCs in the framework of the F2-formulation.

Then, let us multiply both sides of Eq.1 by r and apply:

Z 1 0 : (1) 
n 0 (kr)dkr

to obtain, after using Eq.8, for n 6 = n 0 :

Z 1 0 rE r (1) 
n 0 (kr)dkr = E 0 1 X n=1 +n X m= n c pw n g m n;T M n(n + 1) sin[(n n 0 ) =2] n(n + 1) n 0 (n 0 + 1) P jmj n (cos )e im' (10) 
Next, we use Eq.2, to obtain, after a change of m 0 to m:

1 2 Z 1 0 Z 2 0 rE r (1) 
n 0 (kr)e im' dkrd' = E 0 1 X n=1 c pw n g m n;T M n(n + 1) sin[(n n 0 ) =2] n(n + 1) n 0 (n 0 + 1) P jmj n (cos ) (11) 
Next, we use Eq.3 and, after a change l 7 ! n, and rearranging, we obtain for n 6 = n 0 :

g m n;T M sin[(n n 0 ) =2] = 1 4 E 0 c pw n n(n + 1) n 0 (n 0 + 1) n(n + 1) (2n + 1) (n jmj)! (n + jmj)! (12) Z 1 0 Z 0 Z 2 0 rE r (1)
n 0 (kr)P jmj n (cos ) sin e im' dkrd d'

If (n n 0 ) is even, i.e. (n n 0 ) = 2k, then sin[(n n 0 ) =2] = 0; and
Eq.12 implies:

Z 1 0 Z 0 Z 2 0 rE r (1) 
n 0 (kr)P jmj n (cos ) sin e im' dkrd d' = 0 for (n n 0 ) even, n 6 = n 0 (13)

Inserting the expression of Eq.1 into the l.h.s. of Eq.13, and using Eq.8 for (n n 0 ) even, n 6 = n 0 , allows one to check the validity of Eq.13 whenever the function E r (r; ; ') represents the radial component of an EM …eld. But, if (n n 0 ) is odd, i.e. (n n 0 ) = 2k + 1, then sin[(n n 0 ) =2] = 1, and Eq.12 leads to:

[g m n;T M ] n6 =n 0 = 1 4 E 0 c pw n n(n + 1) n 0 (n 0 + 1) n(n + 1) sin[(n n 0 ) =2] (2n + 1) (n jmj)! (n + jmj)! (14) Z 1 0 Z 0 Z 2 0 rE r (1)
n 0 (kr)P jmj n (cos ) sin e im' dkrd d' for (n n 0 ) odd for a given value of n and with n 0 6 = n being arbitrary, for (n n 0 ) odd. Thus we appear to have an in…nite number of ways to compute BSCs, depending on the value chosen for n 0 , as expected from the above-mentioned analogy. With the idea that the F1-and F2-formulations are actually equivalent, and that the set of BSCs is unique, we now have to compare the di¤erent sets of BSCs that we obtain, either from Eq.4 or from Eq.14, (n n 0 ) odd. To do this, we rewrite Eq.14 as:

[g m n;T M ] n6 =n 0 = 1 4 E 0 c pw n n(n + 1) n 0 (n 0 + 1) n(n + 1) sin[(n n 0 ) =2] (2n + 1) (n jmj)! (n + jmj)! (15) Z 1 0 r (1) n 0 (kr)d(kr)f Z 0 Z 2 0 E r P jmj n (cos ) sin e im' d d'g for (n n 0 ) odd
The f:g-term may however be taken from Eq.4 to obtain:

[g m n;T M ] n6 =n 0 = n(n + 1) n 0 (n 0 + 1) sin[(n n 0 ) =2] g m n;T M 1 Z 0 (1)
n 0 (kr) (1) n (kr)d(kr) [START_REF] Lock | Angular spectrum and localized model of Davis-type beam[END_REF] which by virtue of Eq.8 implies:

[g m n;T M ] n6 =n 0 = g m n;T M (17) 
independently of the value of n 0 (n n 0 odd).

TE-BSCs would be treated similarly allowing one to similarly obtain:

[g m n;T E ] n6 =n 0 = g m n;T E (18) 
therefore assuring the uniqueness of BSCs. Strictly speaking, the uniqueness of BSCs has here been demonstrated in the framework of quadrature formulations. The result obtained could have been however expected insofar as the uniqueness of BSCs may be shown to be valid whatever the method used. The demonstration goes on as follows. Let us assume that Eq.1 is valid as well for an alternative set of BSCs g m n;T M according to:

E r = E 0 1 X n=1 +n X m= n c pw n g m n;T M n(n + 1) r (1) 
n (kr)P jmj n (cos ) exp(im')

Hence, by subtraction:

0 = E 0 1 X n=1 +n X m= n c pw n [g m n;T M g m n;T M ] n(n + 1) r (1) 
n (kr)P jmj n (cos ) exp(im')

Next, applying Eqs.2 and 3 to Eq.20 to successively get rid of the exponentials and of the associated Legendre functions, we obtain:

0 = [g m n;T M g m n;T M ] (1) n (kr) (21) 
which exhibits the particular role played by the spherical Bessel functions and implies:

g m n;T M = g m n;T M (22) 
with a similar demonstration for the TE-coe¢ cicients. As a …nal remark, let us note that the present work complements our understanding of the description of structured beams in terms of BSCs, but have no implication concerning the numerical e¢ ciency of the theory. Indeed, in any case, triple quadratures of the form of Eq.14 will be more time-consuming than the double quadratures of the form of Eq.4. Let us also take the opportunity of this remark to recall that even the double quadratures of Eq.4 are numerically too time-consuming to constitute an e¢ cient way of evaluating the BSCs, except when they can be analytically solved to obtain closed-form solutions, e.g. for zeroth-order Bessel beams [START_REF] Lock | Angular spectrum and localized model of Davis-type beam[END_REF], higher-order Bessel beams [START_REF] Wang | Multipole expansion of circularly Bessel beams of arbitrary order for scattering calculations[END_REF], and superpositions of Bessel beams, either for "frozen waves" [START_REF] Ambrosio | Circularly symmetric frozen waves: Vector approach for light scattering calculations[END_REF], [START_REF] Ambrosio | Discrete vector frozen waves in generalized Lorenz-Mie theory: linear, azimuthal and radial polarization[END_REF], [START_REF] Ambrosio | Zeroth-order continuous vector frozen waves for light scattering: exact multipole expansion in the generalized Lorenz-Mie theory[END_REF], [START_REF] André | Millimeter-structured nondi¤racting surface beams[END_REF], or for Mathieu beams which are expressed as well as superpositions of Bessel beams [START_REF] Cha…q | On the validity of the integral localized approximation for on-axis zeroth-order Mathieu beams[END_REF].

Otherwise, the arsenal of methods usable to evaluate BSCs also contains localized approximations (with several variants) which may speed up the computations by several orders of magnitude, e.g. [START_REF] Gouesbet | Generalized Lorenz-Mie theories and description of electromagnetic arbitrary shaped beams: localized approximations and localized beam models, a review[END_REF] to be complemented by [START_REF] Gouesbet | Comments on localized and integral localized approximations in spherical coordinates[END_REF], [START_REF] Wang | Note on the of localized beam models for light scattering theories in spherical coordinates[END_REF], [START_REF] Gouesbet | Second modi…ed localized approximation for use in generalized Lorenz-Mie theories and other theories revisited[END_REF], and …nite series which, after having been forgotten for several decades, has been recently used again due to the limitations encountered when dealing with localized approximations in the case of beams exhibiting axicon angles and/or topological charges, e.g. [START_REF] Gouesbet | Finite series expressions to evaluate the beam shape coe¢ cients of a Laguerre-Gauss beam freely propagating[END_REF], [START_REF] Votto | Evaluation of beam shape coe¢ cients of paraxial Laguerre-Gauss beam freely propagating by using three remodeling methods[END_REF], [START_REF] Gouesbet | Finite series expressions to evaluate the beam shape coe¢ cients of a Laguerre-Gauss beam focused by a lens in an on-axis con…guration[END_REF], and references therein. It is also possible to use an angular spectrum decomposition into elementary plane waves either (i) by computing the scattering response of each plane wave and summing up all the responses over the plane waves present in the decomposition, a process which requires the use of GLMT for each tilted plane wave, e.g. [START_REF] Gouesbet | Transformations of spherical beam shape coe¢ cients in generalized Lorenz-Mie theories through rotations of coordinate system[END_REF] or (ii) evaluating the BSCs of each plane wave and summing up to obtain the BSCs of the whole beam, before entering GLMT computations,e.g. without pretending to exhaustiveness [START_REF] Doicu | Plane wave spectrum of electromagnetic beams[END_REF], [START_REF] Moore | Mie scattering of high numerical aperture …elds[END_REF], [START_REF] Mitri | Resonance scattering of a dielectric sphere illuminated by electromagnetic Bessel non-di¤racting (vortex) beams with arbitrary incidence and selective polarization[END_REF], [START_REF] Mitri | Optical pulling force on a magneto-dielectric Rayleigh sphere in Bessel tractor polarized beams[END_REF], [START_REF] Yang | Direction reversal of the optical spin torque on a Rayleigh absorptive sphere in vector Bessel polarized beams[END_REF], [START_REF] Mitri | Optical tractor Bessel polarized beams[END_REF], [START_REF] Chrissoulidis | Wave-amplitude synthesis applied to Gaussian beam scattering by an o¤-axis sphere[END_REF], [START_REF] Gong | Scattering of a vector Bessel vortex beam by a charged sphere[END_REF], [START_REF] Wen | Scattering of a vector Bessel-Gaussian beam by a sphere[END_REF] and [START_REF] Cha…q | On the beam shape coe¢ cients of fundamental nondi¤racting beam[END_REF] for a variant relying on the use of a Whittaker integral formalism. See also [START_REF] Gouesbet | On the description of electromagnetic arbitrary shaped beams: The relationship between beam shape coe¢ cients and plane wave spectra[END_REF] for the relationship between BSCs and plane wave spectra.

Conclusion.

BSCs in GLMT may be derived by using a non-orthogonal subset of spherical Bessel functions. Motivated by an analogy concerning the di¤erence between contravariant and covariant vectors, we noted that there appears to exist an in…nite number of di¤erent quadratures to evaluate the BSCs. We have demonstrated that the BSCs obtained by the di¤erent ways of evaluating them are identical, so that the decomposition of E r over VSWFs is indeed unique, as expected, and demonstrated in a general framework. As a by-product, we have established a new equation, namely Eq.13.

More generally, the present paper complements our understanding of the structure of the GLMT in the sense that the fact that we may use a nonorthogonal version of spherical Bessel functions by restricting the range of de…nition of the spherical Bessel functions to (0; +1) has not been explicitly noted previously, nor has it been perceived that it implies the existence of an in…nite number of quadratures to evaluate the BSCs. 
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