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Abstract

When dealing with light scattering theories such as the T-matrix meth-
ods for structured laser beams, e.g. Generalized Lorenz-Mie Theory (GLMT)
or the Extended Boundary Condition Method (EBCM), EM fields are
expanded over a set of Vector Spherical Wave Functions (VSWFs) in-
volving spherical Bessel functions, with expansion coeffi cients expressed
in terms of Beam Shape Coeffi cients (BSCs). Although spherical Bessel
functions are orthogonal over the range (−∞,+∞), the GLMT may be
expressed using a non-orthogonal set of spherical Bessel functions defined
over (0,+∞), allowing one to generate an infinite number of quadratures
for evaluating the BSCs. This paper points out the difference between
orthogonal and non-orthogonal spherical Bessel functions, establishes the
infinite number of quadratures and discusses its properties.

Keywords : Generalized Lorenz-Mie Theory; Extended Boundary Con-
dition Method; T-matrix; Beam Shape Coeffi cients; Vector Spherical Wave
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1 Introduction.

The description of electromagnetic structured beams may be carried out in
terms of expansions over Vector Spherical Wave Functions (VSWFs), e.g. in
the framework of light scattering theories such as Generalized Lorenz-Mie The-
ory (GLMT) [1], [2], [3] or the Extended Boundary Condition Method (EBCM)
[4], [5] for structured beams [6]. In these frameworks, expansion coeffi cients over
the VSWFs can be expressed in terms of sub-coeffi cients known as Beam Shape
Coeffi cients (BSCs) usually denoted as gmn,TM and gmn,TE (TM: Transverse Mag-
netic; TE: Transverse Electric) although, originally, BSCs were introduced in
the framework of the Bromwich formalism [7]. VSWFs involve spherical Bessel
functions which are orthogonal over (−∞,+∞). However, the GLMT may be
expressed in terms of a non-orthogonal set of spherical Bessel functions defined
over the range (0,∞) instead of being defined over the range (−∞,+∞). We
examine the implications of the use of a non-orthogonal set of spherical Bessel
functions, in particular the fact that BSCs may be evaluated in an infinite num-
ber of ways under the form of an infinite number of quadratures, and discuss
whether these different ways are equivalent or not. We shall restrict our discus-
sion to the TM-BSCs gmn,TM insofar as the case of TE-BSCs would be treated
similarly.

2 Non-orthogonality of spherical Bessel functions
over (0,+∞) and their consequences.

In the Bromwich formulation, the TM-BSCs gmn,TM allow one to express the
radial component Er of the electric field according to, e.g. Eq.(3.10) in [3]:

Er = E0

∞∑
n=1

+n∑
m=−n

cpwn gmn,TM
n(n+ 1)

r
Ψ(1)
n (kr)P |m|n (cos θ) exp(imϕ) (1)

in which P |m|n are associated Legendre functions defined according to Hob-
son’s notation, which is also used by Arfken and Weber [8] with an extra-
prefactor (−1)m introduced, Ψ

(1)
n (kr) are spherical Bessel functions of the first

kind also denoted as jn(kr), and cpwn , with pw standing for "plane wave" are
plane wave coeffi cients which occur in the Bromwich formulation of the usual
Lorenz-Mie theory [9] and which do not need to be specified in the present
paper.
The usual way to isolate the BSCs is as follows. First, use the orthogonality

relation for exponentials to get rid of the azimuthal angle ϕ:
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2π∫
0

exp[i(m−m′)ϕ]dϕ = 2πδmm′ (2)

Afterward, use the orthogonality relation for the associated Legendre
functions Pmn (cos θ) to get rid of the polar angle θ:

π∫
0

Pmn (cos θ)Pml (cos θ) sin θdθ =
2

2n+ 1

(n+m)!

(n−m)!
δnl (3)

To take advantage of Eqs.2 and 3, Eq.1 is successively multiplied by
integral operators

∫ 2π
0

(.) exp(−im′ϕ)dϕ and
∫ π
0

(.)P
|m|
n′ sin θdθ to obtain:

gmn,TM =
1

E0c
pw
n

2n+ 1

4πn(n+ 1)

(n− |m|)!
(n+ |m|)!

r

Ψ
(1)
n (kr)

(4)

π∫
0

2π∫
0

ErP
|m|
n (cos θ) exp(−imϕ) sin θdθdθdϕ

It is to be noted that Eq.4 contains an r-dependent term r/Ψ
(1)
n (kr).

This does not prevent the BSCs from being complex numbers, as they should,
because the integrals in Eq.4 are proportional to an inverse factor Ψ

(1)
n (kr)/r,

e.g. [10] for the case of a plane wave propagating along the z-axis, [11], [12]
for oblique propagation and [13] for any beam perfectly satisfying Maxwell’s
equations. Furthermore, the double quadrature expression of Eq.4 pertains to
what has been call the F1-formulation in [14]. It must also be noted that this
F1-formulation does not need any orthogonality property of spherical Bessel
functions, and works independently of whether the spherical Bessel functions
are orthogonal or not. This is because the only integrals which have to be used
in the F1-formulation are the ones over θ and ϕ.

Another way to obtain expressions of BSCs, known as the F2-formulation
[14] is by using triple quadratures instead of using double quadratures. For this,
we shall use [15], p. 412:

∞∫
0

Ψ(1)
n (kr)Ψ

(1)
n′ (kr)d(kr) =

π

2(2n+ 1)
for n = n′ (5)
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in which the integration interval is from 0 to ∞, which is natural since this
is the range of the radial variable r. Then, rearranging Eq.4 in an obvious way
and applying the operator

∫∞
0

(.)Ψ
(1)
n′ (kr)d(kr), we obtain:

gmn,TM =
(2n+ 1)2

2π2n(n+ 1)cpwn

(n− |m|)!
(n+ |m|! (6)

π∫
0

2π∫
0

∞∫
0

Er

E0
rΨ(1)

n (kr)P |m|n (cos θ) exp(−imϕ) sin θdθdϕd(kr)

Eqs.4 and 6 are strictly equivalent when the field descriptions exactly
satisfy Maxwell’s equations, and provide two different ways to evaluate the
BSCs. The first way (double quadratures) does not explicitly eliminate the
spherical Bessel functions and therefore does not need to specify whether they
constitute a set of orthogonal functions or not. Conversely, the second set ex-
plicitly eliminates the spherical Bessel functions. These functions are orthogonal
over the range (−∞,+∞), according to [8], p. 732:

∞∫
−∞

Ψ(1)
n (kr)Ψ

(1)
n′ (kr)d(kr) =

π

2n+ 1
δnn′ (7)

However, Eq.5 is defined over (0,+∞) instead of over (−∞,+∞) and is
therefore restricted to a non-orthogonal set of spherical Bessel functions. Eq.5
is then to be completed by [15], p. 412:

∞∫
0

Ψ(1)
n (kr)Ψ

(1)
n′ (kr)d(kr) =

sin[(n− n′)π/2
n(n+ 1)− n′(n′ + 1)

for n 6= n′ (8)

The fact that the spherical Bessel functions Ψ
(1)
n (x) are not orthogonal over

the interval (0,+∞) is reminiscent of contravariant and covariant components
in tensor calculus. For instance, let us consider a point P in an Euclidean plane
spanned by two linear non-orthogonal axes x and y crossing with an angle
γ 6= 0 at point O. We may then introduce a vector V =

−−→
OP using an intrinsic

notation. The vector V may then receive two different index representations,
named the contravariant and the covariant representations. In the contravari-
ant representation, V is projected onto the axes parallel to them, then defining
a contravariant vector V i = (x‖, y‖)

+ in which x‖ and y‖ are the contravari-
ant components of the contravariant vector V i, and the cross (+) denotes a
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transpose. Conversely, in the covariant representation, V is projected onto the
axes perpendicularly to them, then defining a covariant vector Vi = (x⊥, y⊥) in
which x⊥ and y⊥ are the covariant components of the covariant vector Vi. But,
because the axes x and y are not orthogonal, we have (x‖, y‖) 6= (x⊥, y⊥).
Similarly, in the F2-formulation, the BSCs may be viewed as components

over a set of basis functions involving non-orthogonal spherical Bessel functions.
The analogy with contravariant and covariant vectors, although very loose, was
a motivation that led us to a careful examination of uniqueness properties of
the BSCs in the framework of the F2-formulation.
Then, let us multiply both sides of Eq.1 by r and apply:

∫ ∞
0

.Ψ
(1)

n′
(kr)dkr (9)

to obtain, after using Eq.8, for n 6= n′ :

∫ ∞
0

rErΨ
(1)

n′
(kr)dkr = E0

∞∑
n=1

+n∑
m=−n

cpwn gmn,TM
n(n+ 1) sin[(n− n′)π/2]

n(n+ 1)− n′(n′ + 1)
P |m|n (cos θ)eimϕ

(10)

Next, we use Eq.2, to obtain, after a change of m′ to m:

1

2π

∫ ∞
0

∫ 2π

0

rErΨ
(1)
n′ (kr)e−imϕdkrdϕ = E0

∞∑
n=1

cpwn gmn,TM
n(n+ 1) sin[(n− n′)π/2]

n(n+ 1)− n′(n′ + 1)
P |m|n (cos θ)

(11)

Next, we use Eq.3 and, after a change l 7→ n, and rearranging, we obtain
for n 6= n′:

gmn,TM sin[(n− n
′
)π/2] =

1

4πE0c
pw
n

n(n+ 1)− n′(n′ + 1)

n(n+ 1)
(2n+ 1)

(n− |m|)!
(n+ |m|)! (12)∫ ∞

0

∫ π

0

∫ 2π

0

rErΨ
(1)
n′ (kr)P |m|n (cos θ) sin θe−imϕdkrdθdϕ

If (n − n′) is even, i.e. (n − n′) = 2k, then sin[(n − n′)π/2] = 0, and
Eq.12 implies:
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∫ ∞
0

∫ π

0

∫ 2π

0

rErΨ
(1)
n′ (kr)P |m|n (cos θ) sin θe−imϕdkrdθdϕ = 0 for (n−n′) even, n 6= n′

(13)

Inserting the expression of Eq.1 into the l.h.s. of Eq.13, and using Eq.8
for (n − n′) even, n 6= n′, allows one to check the validity of Eq.13 whenever
the function Er(r, θ, ϕ) represents the radial component of an EM field. But, if
(n − n′) is odd, i.e. (n − n′) = 2k + 1, then sin[(n − n′)π/2] = ±1, and Eq.12
leads to:

[gmn,TM ]n 6=n′ =
1

4πE0c
pw
n

n(n+ 1)− n′(n′ + 1)

n(n+ 1) sin[(n− n′)π/2]
(2n+ 1)

(n− |m|)!
(n+ |m|)! (14)∫ ∞

0

∫ π

0

∫ 2π

0

rErΨ
(1)
n′ (kr)P |m|n (cos θ) sin θe−imϕdkrdθdϕ for (n− n′) odd

for a given value of n and with n′ 6= n being arbitrary, for (n−n′) odd. Thus
we appear to have an infinite number of ways to compute BSCs, depending on
the value chosen for n′, as expected from the above-mentioned analogy. With
the idea that the F1- and F2-formulations are actually equivalent, and that the
set of BSCs is unique, we now have to compare the different sets of BSCs that
we obtain, either from Eq.4 or from Eq.14, (n−n′) odd. To do this, we rewrite
Eq.14 as:

[gmn,TM ]n 6=n′ =
1

4πE0c
pw
n

n(n+ 1)− n′(n′ + 1)

n(n+ 1) sin[(n− n′)π/2]
(2n+ 1)

(n− |m|)!
(n+ |m|)! (15)∫ ∞

0

rΨ
(1)
n′ (kr)d(kr){

∫ π

0

∫ 2π

0

ErP
|m|
n (cos θ) sin θe−imϕdθdϕ} for (n− n′) odd

The {.}-term may however be taken from Eq.4 to obtain:

[gmn,TM ]n 6=n′ =
n(n+ 1)− n′(n′ + 1)

sin[(n− n′)π/2]
gmn,TM

∞∫
0

Ψ
(1)
n′ (kr)Ψ(1)

n (kr)d(kr) (16)

which by virtue of Eq.8 implies:

[gmn,TM ]n 6=n′ = gmn,TM (17)
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independently of the value of n′ (n− n′ odd).

TE-BSCs would be treated similarly allowing one to similarly obtain:

[gmn,TE ]n 6=n′ = gmn,TE (18)

therefore assuring the uniqueness of BSCs.
Strictly speaking, the uniqueness of BSCs has here been demonstrated

in the framework of quadrature formulations. The result obtained could have
been however expected insofar as the uniqueness of BSCs may be shown to be
valid whatever the method used. The demonstration goes on as follows. Let us
assume that Eq.1 is valid as well for an alternative set of BSCs gmn,TM according
to:

Er = E0

∞∑
n=1

+n∑
m=−n

cpwn gmn,TM
n(n+ 1)

r
Ψ(1)
n (kr)P |m|n (cos θ) exp(imϕ) (19)

Hence, by subtraction:

0 = E0

∞∑
n=1

+n∑
m=−n

cpwn [gmn,TM − gmn,TM ]
n(n+ 1)

r
Ψ(1)
n (kr)P |m|n (cos θ) exp(imϕ)

(20)

Next, applying Eqs.2 and 3 to Eq.20 to successively get rid of the ex-
ponentials and of the associated Legendre functions, we obtain:

0 = [gmn,TM − gmn,TM ]Ψ(1)
n (kr) (21)

which exhibits the particular role played by the spherical Bessel functions
and implies:

gmn,TM = gmn,TM (22)

with a similar demonstration for the TE-coeffi cicients.
As a final remark, let us note that the present work complements our

understanding of the description of structured beams in terms of BSCs, but have
no implication concerning the numerical effi ciency of the theory. Indeed, in any
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case, triple quadratures of the form of Eq.14 will be more time-consuming than
the double quadratures of the form of Eq.4. Let us also take the opportunity of
this remark to recall that even the double quadratures of Eq.4 are numerically
too time-consuming to constitute an effi cient way of evaluating the BSCs, ex-
cept when they can be analytically solved to obtain closed-form solutions, e.g.
for zeroth-order Bessel beams [16], higher-order Bessel beams [17], and super-
positions of Bessel beams, either for "frozen waves" [18], [19], [20], [21], or for
Mathieu beams which are expressed as well as superpositions of Bessel beams
[22].

Otherwise, the arsenal of methods usable to evaluate BSCs also con-
tains localized approximations (with several variants) which may speed up the
computations by several orders of magnitude, e.g. [23] to be complemented by
[24], [25], [26], and finite series which, after having been forgotten for several
decades, has been recently used again due to the limitations encountered when
dealing with localized approximations in the case of beams exhibiting axicon
angles and/or topological charges, e.g. [27], [28], [29], and references therein. It
is also possible to use an angular spectrum decomposition into elementary plane
waves either (i) by computing the scattering response of each plane wave and
summing up all the responses over the plane waves present in the decomposi-
tion, a process which requires the use of GLMT for each tilted plane wave, e.g.
[30] or (ii) evaluating the BSCs of each plane wave and summing up to obtain
the BSCs of the whole beam, before entering GLMT computations,e.g. without
pretending to exhaustiveness [31], [32], [33], [34], [35], [36], [37], [38], [39] and
[40] for a variant relying on the use of a Whittaker integral formalism. See also
[41] for the relationship between BSCs and plane wave spectra.

3 Conclusion.

BSCs in GLMT may be derived by using a non-orthogonal subset of spheri-
cal Bessel functions. Motivated by an analogy concerning the difference between
contravariant and covariant vectors, we noted that there appears to exist an
infinite number of different quadratures to evaluate the BSCs. We have demon-
strated that the BSCs obtained by the different ways of evaluating them are
identical, so that the decomposition of Er over VSWFs is indeed unique, as
expected, and demonstrated in a general framework. As a by-product, we have
established a new equation, namely Eq.13.
More generally, the present paper complements our understanding of the

structure of the GLMT in the sense that the fact that we may use a non-
orthogonal version of spherical Bessel functions by restricting the range of defi-
nition of the spherical Bessel functions to (0,+∞) has not been explicitly noted
previously, nor has it been perceived that it implies the existence of an infinite
number of quadratures to evaluate the BSCs.
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