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Finite series expressions to evaluate the beam shape coe¢ cients of a Laguerre-Gauss beam focused by a lens in an on-axis con…guration.

Gérard Gouesbet 1 and Leonardo André Ambrosio 2 and Luiz Felipe Machado Votto 2 .

to allow for the use of a method of separation of variables [START_REF] Gouesbet | Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation[END_REF], [START_REF] Gouesbet | Combustion measurements[END_REF], [START_REF] Gouesbet | Generalized Lorenz-Mie theories, second edition[END_REF], or semianalytical Extended Boundary Condition Method (EBCM) for arbitrary shaped particles [START_REF] Waterman | Symmetry, unitarity, and geometry in electromagnetic scattering[END_REF], [START_REF] Mishchenko | Scattering, absorption, and emission of light by small particles[END_REF], in particular in the case of structured beams as reviewed in [START_REF] Gouesbet | T-matrix methods for electromagnetic structured beams: A commented reference database for the period 2014-2018[END_REF], electromagnetic …elds may be expanded over a set of vector wave functions [START_REF] Gouesbet | On the electromagnetic scattering of arbitrary shaped beams by arbitrary shaped particles: A review[END_REF].

In spherical coordinates, expansions are carried out over a set of Vector Spherical Wave Functions (VSWFs) and expansion coe¢ cients are expressed in terms of coe¢ cients known as Beam Shape Coe¢ cients (BSCs) usually denoted as g m n;T M and g m n;T E (TM: Transverse Magnetic; TE: Transverse Electric). The original method to evaluate the BSCs of electromagnetic beams is by using quadratures, e.g. [START_REF] Gouesbet | Discussion of two quadrature methods of evaluating beam shape coe¢ cients in generalized Lorenz-Mie theory[END_REF]. In the case of Laguerre-Gauss beams, either freely propagating or focused by a lens, there is little chance to analytically solve the quadratures to obtain closed form expressions. Hence, quadratures to the evaluation of BSCs of Laguerre-Gauss beams have to be carried out numerically, which is a time-consuming process. To circumvent this di¢ culty, we may think of using a localized approximation (with several variants) which may speed up the computations by several orders of magnitude as reviewed in [START_REF] Gouesbet | Generalized Lorenz-Mie theories and description of electromagnetic arbitrary shaped beams: localized approximations and localized beam models, a review[END_REF], see also [START_REF] Gouesbet | Comments on localized and integral localized approximations in spherical coordinates[END_REF] for an up-dated terminology, and [START_REF] Wang | Note on the use of localized beam models for light scattering theories in spherical coordinates[END_REF], [START_REF] Gouesbet | Second modi…ed localized approximation for use in generalized Lorenz-Mie theories and other theories revisited[END_REF] for complements. Unfortunately, it has recently been demonstrated that any existing localized approximation has a limited domain of validity when dealing with helical beams, i.e. having a topological charge [START_REF] Gouesbet | On the validity of the use of a localized approximation for helical beams. I. Formal aspects[END_REF], as is the case for Laguerre-Gauss beams whether they are freely propagating [START_REF] Ambrosio | On the validity of the use of a localized approximation for helical beams. II. Numerical aspects[END_REF], [START_REF] Votto | Evaluation of beam shape coe¢ cients of paraxial Laguerre-Gauss beam freely propagating by using three remodeling methods[END_REF] or focused by a lens [START_REF] Ambrosio | On localized approximations for Laguerre-Gauss beams focused by a lens[END_REF].

In the case of Laguerre-Gauss beams focused by a lens, there is another limitation due to the fact that …eld expressions contain axicon angles which are not involved in the case of Laguerre-Gauss beams freely propagating. The fact that the occurrence of axicon angles implies a limited domain of validity of any existing localized approximation has been well documented in a series of papers, namely [START_REF] Gouesbet | On the validity of localized approximations for Bessel beams: all N-Bessel beams are identically equal to zero[END_REF], [START_REF] Gouesbet | On the validity of localized approximation for an on-axis zeroth-order Bessel beam[END_REF], [START_REF] Ambrosio | On the validity of the integral localized approximation for Bessel beams and associated radiation pressure forces[END_REF], [START_REF] Cha…q | On the validity of the integral localized approximation for on-axis zeroth-order Mathieu beams[END_REF], [START_REF] Ambrosio | Assessing the validity of the localized approximation for discrete superposition of Bessel beams[END_REF].

The arsenal of methods to evaluate BSCs however contains another technique to speed up the evaluation of BSCs, namely the use of …nite series which is a rigorous analytical method [START_REF] Gouesbet | Computations of the g n coe¢cients in the generalized Lorenz-Mie theory using three di¤erent methods[END_REF], [START_REF] Gouesbet | Expressions to compute the coe¢ cients g m n in the generalized Lorenz-Mie theory, using …nite series[END_REF]. Up to recently, …nite series expressions were known only in the case of Gaussian beams, and the method has been given up due to the success encountered by the use of localized approximations. In 2009, one of us [START_REF] Gouesbet | Generalized Lorenz-Mie theories, the third decade: A perspective[END_REF] wrote that the …nite series technique seemingly now possessed only a historical interest. Indeed, after the original papers [START_REF] Gouesbet | Computations of the g n coe¢cients in the generalized Lorenz-Mie theory using three di¤erent methods[END_REF], [START_REF] Gouesbet | Expressions to compute the coe¢ cients g m n in the generalized Lorenz-Mie theory, using …nite series[END_REF], the use of …nite series has been rather scarce and, as far as we know, limited to three papers, two in an acoustical context [START_REF] Zhang | Finite series expansion of a Gaussian beam for the acoustic radiation force calculation of cylindrical particles in water[END_REF], [START_REF] Jiang | Acoustic radiation force on a sphere in a progressive and standing zero-order quasi-Bessel-Gauss beam[END_REF], and one in an electromagnetic context [START_REF] Bi | The generalized Lorenz-Mie scattering theory and algorithm of Gaussian beam[END_REF].

The time-consuming character of numerical evaluations when using the quadrature method, and the limitations of localized approximations in the case of beams exhibiting axicon angles and/or a topological charge, generated a renewal of interest in the use of …nite series to the evaluation of BSCs. The case of Laguerre-Gauss beams freely propagating, exhibiting a topological charge (but without any axicon angle), has been considered in two papers, namely [START_REF] Gouesbet | Finite series expressions to evaluate the beam shape coe¢ cients of a Laguerre-Gauss beam freely propagating[END_REF] establishing the …nite series expressions required to numerically implement the method and [START_REF] Votto | Evaluation of beam shape coe¢ cients of paraxial Laguerre-Gauss beam freely propagating by using three remodeling methods[END_REF] dealing with a numerical comparison of three remodeling methods (quadratures, localized approximations, …nite series) in the case of paraxial Laguerre-Gauss beams freely propagating (which do not exactly satisfy Maxwell's equations due to their paraxial character). It was concluded that, notwithstanding a disadvantage of the …nite series method, namely its lack of ‡exibility insofar as it requires a fairly heavy analytical work before numerical implementation, it is to be favoured with respect to the other methods.

This last result implies that, after having examined the case of Laguerre-Gauss beams freely propagating, it is worthwhile to deal with the case of Laguerre-Gauss beams focused by a lens. The present paper is therefore devoted to the building of …nite series expressions in the case of Laguerre-Gauss beams focused by a lens which, in contrast with the case of beams freely propagating, exhibit both a topological charge and axicon angles.

Up to now, we have expressed our motivation to the study of the …nite series method to evaluate the BSCs of Laguerre-Gauss beams. This motivation is reinforced by the many applications of such beams, in particular due to the fact that they possess a helical wavefront allowing for the transfer of angular momentum to an illuminated object, e.g. Padgett and Allen [START_REF] Padgett | Light with a twist in its tail[END_REF] who discussed orbital angular momentum associated with helical wavefronts and applications, Garbin et al. [START_REF] Garbin | Mie scattering distinguishes the topologic charge of an optical vortex : a homage to Gustav Mie[END_REF] who experimentally and numerically studied the scattering of highly focused Laguerre-Gauss beams by dielectric and metal spheres, O'Holleran et al. [START_REF] O'holleran | Illustrations of optical vortices in three dimensions[END_REF] who provided a 3D view of optical vortices associated with Laguerre-Gauss modes, Friese et al. [START_REF] Friese | Optical angular-momentum transfer to trapped absorbing particles[END_REF] who studied the transfer of optical angular momentum to trapped absorbing particles, a study relevant to the …eld of optical information. Laguerre-Gauss beams were discussed as well in the framework of a review devoted to optical tweezers by Molloy and Padgett [START_REF] Molloy | Lights, action: optical tweezers[END_REF]. Other applications concerned quantum information and the entanglement of the polarization of a single photon with its orbital angular momentum by Nagali et al. [START_REF] Nagali | Quantum information transfer from spin to orbital angular momentum of photons[END_REF], entanglement again but involving many orthogonal quantum states rather than only two states by Mair et al. [START_REF] Mair | Entanglement of orbital angular momentum states of photons[END_REF], object identi…cation by measuring the joint orbital angular momentum spectrum of two-photon states by Uribe-Patarroyo et al. [START_REF] Uribe-Patarroyo | Object identi…cation using correlated orbital angular momentum states[END_REF], optical traps to study vortices in Bose-Einstein condensates by Tempere et al. [START_REF] Tempere | Vortices in Bose-Einstein condensates con…ned in a multiply connected Laguerre-Gaussian optical trap[END_REF], optical communication systems in atmospheric turbulence by Malik et al. [START_REF] Malik | In ‡uence of atmospheric turbulence on optical communications using orbital angular momentum for encoding[END_REF], use of vortex masks to observe dim exoplanets by Foo et al. [START_REF] Foo | Optical vortex corona graphs[END_REF], to provide a few examples without pretending to exhaustiveness.

The paper is organized as follows. Section 2 establishes the …eld expressions under a formulation which is tailored to the use of the …nite series method. Section 3 recalls a background concerning the method to be used to establish …nite series expressions. Section 4 deals with TM-BSCs and Section 5 deals with TE-BSCs. Handling …nite series expressions requires to deal with recurrence equations which are examined in Section 6. Section 7 is a conclusion. The reader who would like to omit the details could simply use Eqs.96, 102, 131, 140 for TM-BSCs and Eqs.165, 176, 200, 207 for TE-BSCs.

2 Field expressions of Laguerre-Gauss beams focused by a lens.

Expressions for Laguerre-Gauss beams focused by a lens are available from Van de Nes et al. [START_REF] Van De Nes | On the conservation of fundamental optical quantities in non-paraxial imaging systems[END_REF], see also van de Nes and Török [START_REF] Van De Nes | Rigorous analysis of spheres in Gauss-Laguerre beams[END_REF] and Török and Munro [START_REF] Török | The use of Gauss-Laguerre vector beams in STED microscopy[END_REF]. In the present paper, we rely on [START_REF] Van De Nes | On the conservation of fundamental optical quantities in non-paraxial imaging systems[END_REF] who expressed the …eld components in terms of cylindrical coordinates ( , ', z) using a time-dependence of the form exp( i!t) which is opposite to the one usually chosen in GLMT (we shall have later to deal with this issue). The …eld expressions are claimed to be for nonparaxial beams exactly satisfying Maxwell's equations, e.g. [START_REF] Van De Nes | On the conservation of fundamental optical quantities in non-paraxial imaging systems[END_REF], page 682, line 6 after Eq.( 16).

2.1

Electric …eld.

The electric …eld may be written in terms of cylindrical coordinates as [START_REF] Van De Nes | On the conservation of fundamental optical quantities in non-paraxial imaging systems[END_REF], [START_REF] Van De Nes | Rigorous analysis of spheres in Gauss-Laguerre beams[END_REF]:

E = 1 2 E pl;0 ( ; ) + 1 4 E pl; 2 ( + i ; i ) + 1 4 E pl;2 ( i ; i ) (1) 
in which:

E pl;j ( ; ) = kN A Z 0 E pl;j ( )e i(l+j)'+ikzz f( x + y)J l+j ( ) (2) 
+ 2k z z[(i )e i' J l+j 1 ( ) (i + )e i' J l+j+1 ( )]gd
with:

E pl;j ( ) = p kk z [1 + (1 jjj) k z k ]u pl a( )L l p [b( )] exp[ c( )] (3) 
and:

a( ) = ( k S k R f ) jlj (4) b( ) = 2 k 2 S k 2 R 2 f (5) c( ) = 2 k 2 S 2k 2 R 2 f ( 6 
)
u pl = ( 1) p k S s p! (p + jlj)! (7) 
k z = p k 2 2 (8) 
In the quadrature of Eq.2, Van de Nes et al. [START_REF] Van De Nes | On the conservation of fundamental optical quantities in non-paraxial imaging systems[END_REF] denoted the variable of integration as k r having the meaning of a radial wavenumber. Insofar as it is actually a dummy variable, we preferred to denote it as . The latin symbols x, y and z denote unit vectors along the Cartesian axis. The greek symbols and denote states of polarization, along x and y respectively. J n (:) are Bessel functions of the …rst kind and L l p (:) are generalized Laguerre polynomials de…ned as follows [START_REF] Arfken | Mathematical methods for physicists[END_REF], [START_REF] Abramowitz | Handbook of mathematical functions[END_REF]:

L (x) = 1 ! X i=0 ! i! + i ( x) i (9) 
in which () denotes a binomial coe¢ cient. The "usual" Laguerre polynomials L (x) are L 0 (x): The associated Laguerre polynomials can be evaluated recursively from the …rst two polynomials as follows:

L l 0 (x) = 1 (10) 
L l 1 (x) = 1 + l x (11) 
L l p (x) = (A p x p )L l p 1 (x) B p L l p 2 (x) (12) 
in which:

A p = 2p 1 + l p (13) 
B p = p 1 + l p (14) 
Furthermore, according to the authors k S is given by p k=z 0 , in which z 0 is the Rayleigh range. This Rayleigh range may be written as z 0 = kw 2 0 =2, e.g. page 2 of [START_REF] Jiang | Scattering of a focused Laguerre-Gaussian beam by a spheroidal particle[END_REF] to be compared with Eq.(4.38), page 102, of Gouesbet and Gréhan [START_REF] Gouesbet | Generalized Lorenz-Mie theories, second edition[END_REF]. Introducing the beam shape factor s = 1=(kw 0 ), also called the con…nement factor, e.g. [START_REF] Gouesbet | Generalized Lorenz-Mie theories, second edition[END_REF], we obtain k S = p 2=w 0 . Finally, R f is the focal length and N A is the numerical aperture of the imaging system.

To proceed further, we now need Cartesian components. Introducing:

E l p ( ) = 2 p kk z u pl a( )L l p [b( )] exp[ c( )]e il' e ikzz (15) 
the Cartesian components are found to read as:

E x = kN A Z 0 E l p ( )[ (1 + k z k )J l ( ) + + i 2 (1 k z k )e 2i' J l 2 ( ) (16) 
+ i 2 (1 k z k )e 2i' J l+2 ( )]d E y = kN A Z 0 E l p ( )[ (1 + k z k )J l ( ) + i 2 (1 k z k )e 2i' J l 2 ( ) (17) 
+ i 2 (1 k z k )e 2i' J l+2 ( )]d E z = kN A Z 0 E l p ( ) k [(i )e i' J l 1 ( ) (i + )e i' J l+1 ( )]d (18) 
We now express these results in spherical coordinates (r; ; '). For this, we introduce the fact that:

k S k = p 2 kw 0 = p 2s (19) 
so that we now have:

a( ) = ( k S k R f ) jlj = ( p 2 sR f ) jlj (20) b( ) = 2 k 2 S k 2 R 2 f = 2 2 s 2 R 2 f (21) c( ) = 2 k 2 S 2k 2 R 2 f = 2 s 2 R 2 f ( 22 
)
Let us note that Eq.3 for E pl;j ( ) used in [START_REF] Van De Nes | On the conservation of fundamental optical quantities in non-paraxial imaging systems[END_REF] is di¤erent from the one used in Eq.( 3) of [START_REF] Van De Nes | Rigorous analysis of spheres in Gauss-Laguerre beams[END_REF].The ratio of E pl;j ( ) of Eq.3 over the one of Eq.( 3) of [START_REF] Van De Nes | Rigorous analysis of spheres in Gauss-Laguerre beams[END_REF] is found to be equal to i l 1 R f = p 1 + 0l and can be absorbed in E 0 . Then, to get rid of irrelevant constants, we introduce an electric strength E 0 according to:

E 0 = 1 p 2k ( 1) p s p! (p + jlj)! ks( p 2sR f ) jlj (23) 
and recall, for further use, that H 0 =E 0 = p "= . We then obtain the electric …eld components in terms of spherical coordinates according to:

E l p ( ) = E 0 jlj+1 q p k 2 2 L l p [b( )] exp[ c( )]e il' e i p k 2 2 r cos (24) 
E x = kN A Z 0 E l p ( )[ (1 + p k 2 2 k )J l ( r sin ) (25) 
+ + i 2 (1 p k 2 2 k )e 2i' J l 2 ( r sin ) + i 2 (1 p k 2 2 k )e 2i' J l+2 ( r sin )]d E y = kN A Z 0 E l p ( )[ (1 + p k 2 2 k )J l ( r sin ) (26) 
+ i 2 (1 p k 2 2 k )e 2i' J l 2 ( r sin ) + i 2 (1 p k 2 2 k )e 2i' J l+2 ( r sin )]d E z = kN A Z 0 E l p ( ) k [(i )e i' J l 1 ( r sin ) (i + )e i' J l+1 ( r sin )]d (27)
2.2 Magnetic …eld.

Similarly, the magnetic …eld is expressed as:

H = 1 2 H pl;0 ( ; ) + 1 4 H pl; 2 ( + i ; i ) + 1 4 H pl;2 ( i ; i ) (28) 
in which:

H pl;j ( ; ) = r " kN A Z 0 E pl;j ( ) 2kk z e i(l+j)'+ikzz (29) 
f( x + y)(2k 2 2 )J l+j ( ) + 2 2 [(x+iy)(i )e 2i' J l+j 2 ( ) (x iy)(i + )e 2i' J l+j+2 ( )] k z z[( + i )J l+j 1 e i' ( ) + ( i )e i' J l+j+1 ( )]gd
in which we used the same notations than for the electric …eld, including Eq.3 for E pl;j ( ). Let us also introduce :

H l p ( ) = jlj+1 k p 2(k 2 2 ) 3=4 L l p [b( )] exp[ c( )] (30) 
From Eqs.28 and 29 we then establish :

[H pl;0 ( ; )] x = kN A Z 0 H 0 H l p ( )e il' e i p k 2 2 z (1 + p k 2 2 k ) (31) 
f (2k 2 2 )J l ( ) + 2 2 [(i )e 2i' J l 2 ( ) (i + )e 2i' J l+2 ( )]gd [H pl; 2 ( ; )] x = kN A Z 0 H 0 H l p ( )e il' e i p k 2 2 z (1 p k 2 2 k ) (32) 
f (2k 2 
2 )e 2i' J l 2 ( )

+ 2 2 [(i )e 4i' J l 4 ( ) (i + )J l ( )]gd [H pl;2 ( ; )] x = kN A Z 0 H 0 H l p ( )e il' e i p k 2 2 z (1 p k 2 2 k ) (33) 
f (2k 2 
2 )e 2i' J l+2 ( ) 

+ 2 2 [(i )J l ( ) (i + )e 4i' J
H x = kN A Z 0 H 0 H l p ( )e il' e i p k 2 2 z (34) f 1 2 J l ( ) [ (1 + p k 2 2 k )(2k 2 2 ) + (1 p k 2 2 k ) 2 ] + 1 4 e 2i' J l 2 ( )(i )[ 2 (1 + p k 2 2 k ) (1 p k 2 2 k )(2k 2 2 )] 1 4 e 2i' J l+2 ( )(i + )[ 2 (1 + p k 2 2 k ) (1 p k 2 2 k )(2k 2 
2 )]gd

For the y-component, we …rst write:

[H pl;0 ( ; )] y = kN A Z 0 H 0 H l p ( )e il' e i p k 2 2 z (1 + p k 2 2 k ) (35) 
f (2k 2 2 )J l ( ) + i 2 2 [(i )e 2i' J l 2 ( ) + (i + )e 2i' J l+2 ( )]gd [H pl; 2 ( ; )] y = kN A Z 0 H 0 H l p ( )e il' e i p k 2 2 z (1 p k 2 2 k ) (36) 
f (2k 2 
2 )e 2i' J l 2 ( )

+ i 2 2 [(i )e 4i' J l 4 ( ) + (i + )J l ( )]gd [H pl;2 ( ; )] y = kN A Z 0 H 0 H l p ( )e il' e i p k 2 2 z (1 p k 2 2 k ) (37) 
f (2k 2 
2 )e 2i' J l+2 ( ) 

+ i 2 2 [(i )J l ( ) + (i + )e 4i' J
H y = kN A Z 0 H 0 H l p ( )e il' e i p k 2 2 z (38) f 1 2 J l ( ) [(1 + p k 2 2 k )(2k 2 2 ) (1 p k 2 2 k ) 2 ] + i 4 e 2i' J l 2 ( )(i )[ 2 (1 + p k 2 2 k ) (1 p k 2 2 k )(2k 2 2 )] + i 4 e 2i' J l+2 ( )(i + )[ 2 (1 + p k 2 2 k ) (1 p k 2 2 k )(2k 2 
2 )]gd

Finally, for the z-component:

[H pl;0 ( ; )] z = kN A Z 0 H 0 jlj+1 k p 2 L l p [b( )] exp[ c( )]e il' e i p k 2 2 z 1 p p k 2 z 2 (39) 
(1 + p k 2 2 k ) [( + i )e i' J l 1 ( ) + ( i )e i' J l+1 ( )]gd [H pl; 2 ( ; )] z = kN A Z 0 H 0 jlj+1 k p 2 L l p [b( )] exp[ c( )]e il' e i p k 2 2 z 1 p p k 2 z 2 (40) 
(1

p k 2 2 k ) [( + i )e 3i' J l 3 ( ) + ( i )e i' J l 1 ( )]gd [H pl;2 ( ; )] z = kN A Z 0 H 0 jlj+1 k p 2 L l p [b( )] exp[ c( )]e il' e i p k 2 2 z 1 p p k 2 z 2 (41) 
(1 

p k 2 2 k ) [( + i )e i' J l+1 ( ) + ( i )e 3i' J l+3 ( )]
H z = kN A Z 0 H 0 jlj+2 k p 2 L l p [b( )] exp[ c( )]e il' e i p k 2 2 z 1 p p k 2 z 2 (42) 
1 2 f(1 + p k 2 2 k )[( + i )e i' J l 1 ( ) + ( i )e i' J l+1 ( )] +(1 p k 2 2 k )[( + i )e i' J l 1 ( ) + ( i )e i' J l+1 ( )]gd
which simpli…es to:

H z = kN A Z 0 H 0 jlj+2 k p 2 L l p [b( )] exp[ c( )]e il' e i p k 2 2 z 1 p p k 2 z 2 (43) 
[( + i )e i' J l 1 ( ) + ( i )e i' J l+1 ( )]d
3 Neumann expansion theorem (NET) and NETprocedure.

In this section, we express the Neumann expansion theorem (NET-theorem) and the NET-procedure to be used to derive the …nite series expressions to the evaluations of BSCs.

Neumann Expansion Theorem (NET).

Although the way to use the NET, relying on Neumann or Bessel function expansions, has already been published in the literature, e.g. [START_REF] Gouesbet | Generalized Lorenz-Mie theories, second edition[END_REF], pp. 121-124, [START_REF] Gouesbet | Finite series expressions to evaluate the beam shape coe¢ cients of a Laguerre-Gauss beam freely propagating[END_REF], and references therein, it is concisely reproduced here for the convenience of the reader. It starts with a result published by Watson [START_REF] Watson | A treatise of the theory of Bessel functions[END_REF], pp. 524-525. Let us consider an equation of the form:

x 1=2 g(x) = 1 X n=0 c n J n+1=2 (x) (44) 
in which J n+1=2 (:) are classical half-order Bessel functions (with x not to be confused with the Cartesian coordinate) and g(x) is a function (not to be confused with a BSC, which also uses the symbol g). The Maclaurin expansion of the function g(x) reads as:

g(x) = 1 X n=0 b n x n (45) 
Then the NET states that the coe¢ cients c n are given by:

c n = (n + 1 2 ) n=2 X m=0 2 1 2 +n 2m ( 1 2 + n m) m! b n 2m ( 46 
)
in which is the celebrated Gamma function satisfying (n) = (n 1)! and (z +1) = z (z). We then have two ways of expressing the coe¢ cients c n , either from the Bessel function expansion of Eq.44 or from the Maclaurin expansion of Eq.45, using Eq.46. Equating the two resulting expressions will allow one to establish …nite series expressions for the BSCs. This is done using what may be called the NET-procedure.

3.2

The NET-procedure.

Before explaining the NET-procedure, we have to introduce what we call the P-and N-conventions, "P" standing for "Positive" and "N" standing for "Negative". The P-convention and the N-convention assume that we deal with a time-dependence of the form exp(i!t) and exp( i!t), respectively. The letters P and N may be used between parentheses to specify which convention is to be used. For instance the electromagnetic …elds derived in Section 2 may then be more explicitly denoted as E(N ) and H(N ). Conversely, the NET-procedure described in the present subsection relies on the use of the P-convention which is the usual convention used in GLMT.

The procedure then starts with the expressions of the radial electric E r and magnetic H r …eld components in spherical coordinates (r, , ') which may be expressed as, e.g. Eqs.(3.10) and (3.19) of [START_REF] Gouesbet | Generalized Lorenz-Mie theories, second edition[END_REF]:

E r (P ) H r (P ) = E 0 (P ) H 0 (P ) 1 X n=1 +n X m= n (47) 
c pw n g m n;T M (P ) g m n;T E (P ) n(n + 1) r (1) 
n (kr)P jmj n (cos ) exp(im')

in which E 0 , H 0 are …eld strengths, g m n;T M (P ) and g m n;T E (P ) are the BSCs to be evaluated within the framework of the NET-procedure, k is the wavenumber,

n (:) denote the …rst-order spherical Bessel functions also denoted as j n (:), and P jmj n (:) are associated Legendre functions de…ned by using Hobson's notation [START_REF] Robin | Fonctions sphériques de Legendre et fonctions sphéroidales[END_REF]. Furthermore c pw n (with pw standing for "plane wave") denotes expansion coe¢ cients which appear in the Bromwich formulation of the classical Lorenz-Mie theory [START_REF] Gouesbet | Sur la généralisation de la théorie de Lorenz-Mie[END_REF] according to:

c pw n = ( i) n ik 2n + 1 n(n + 1) (48) 
Afterward, we discard the '-dependency by using the orthogonality relation:

Z 2 0 exp[i(m m 0 )']d' = 2 mm 0 (49) 
to obtain:

Z 2 0 E r (P ) H r (P ) exp( im')d' (50) 
= 2 E 0 (P ) H 0 (P )

1 X n=jmj c pw n g m n;T M (P ) g m n;T E (P ) n(n + 1) r (1) 
n (kr)P jmj n (cos )

in which we took account of the fact that P jmj n = 0 if n < jmj. The next step is to discard the -dependency as well. This may be done in two ways. The …rst way is to specify = =2 in Eq.50 and to invoke the following relations for associated Legendre functions [START_REF] Robin | Fonctions sphériques de Legendre et fonctions sphéroidales[END_REF]:

P m n (0) = ( 1) n+m 2 (n + m 1)!! 2 n m 2 ( n m 2 )!
, (n m) even ( 51)

P m n (0) = 0, (n m) odd (52) 
in which:

n!! = 1:3:5:::n ( 1)!! = 1 (53) 
to be completed with, for a better-looking expression:

n!! = 2 n+1 2 p ( n 2 + 1) (54) 
Furthermore, we have [START_REF] Watson | A treatise of the theory of Bessel functions[END_REF], [START_REF] Stratton | Electromagnetic theory[END_REF]:

(1)

n (kr) = r 2kr J n+ 1 2 (kr) (55) 
Eq.50 may then be rewritten as:

(kr) 1=2 Z 2 0 r E r ( = =2; P ) H r ( = =2; P ) exp( im')d' (56) = p 2 E 0 (P ) H 0 (P ) 1 X n=jmj;(n m) even c pw n n(n + 1)
g m n;T M (P ) g m n;T E (P )

P jmj n (0)J n+1=2 (kr)
Later on, this equation, speci…ed for the Laguerre-Gauss beams under study, will be given the form of Eq.44 and will allow one to express the BSCs using …nite series expressions, with however the restriction that we must have (n m) even. For (n m) odd, Eq.50 is di¤erentiated with respect to cos , in order to take advantage of the relations:

[ dP m n (cos ) d cos ] cos =0 = 0, (n m) even (57) 
[ dP m n (cos ) d cos ] cos =0 = ( 1) n+m 1 2 (n + m)!! 2 n m 1 2 ( n m 1 2 )! , (n m) odd (58) 
Then, instead of Eq.56, we obtain:

(kr) 1=2 Z 2 0 r[ @ @ cos E r (P ) H r (P ) ] = =2 exp( im')d' (59) 
= p 2 E 0 (P ) H 0 (P ) 1 X n=jmj;(n m) o dd c pw n n(n + 1) g m n;T M (P ) g m n;T E (P ) [ dP jmj n (cos ) d cos ] cos =0 J n+1=2 (kr)
which will later be given the form of Eq.44 and will allow one to obtain …nite series expressions for the BSCs of Laguerre-Gauss beams for (n m) odd.

3.3

Relationships between P-and N-conventions.

In the sequel, instead of using Eq.47, we found convenient to use:

E r (N ) H r (N ) = E 0 (N ) H 0 (N ) 1 X n=1 +n X m= n (60) c pw n g m n;T M (N ) g m n;T E (N ) n(n + 1) r (1) 
n (kr)P jmj n (cos ) exp(im')

But we have [START_REF] Wang | Note on the use of localized beam models for light scattering theories in spherical coordinates[END_REF]:

X r (N ) = X r (P ) , X = E or H (61) 
Inserting Eq.61 into Eq.60, taking the complex conjugate from the result, changing m to ( m), substracting from Eq.47, and using Eq.48, we obtain:

g m n;T M (P ) g m n;T E (P ) = ( 1) n+1 g m n;T M (N ) g m n;T E (N ) (62) 
As a remark, let us immediately note that we shall …nd, in the present paper, that BSCs with the N-convention will be di¤erent from 0 only for m = l + 1 and m = l 1. Eq.62 then implies that BSCs with the P-convention will be di¤erent from 0 only for m = l 1 and m = l + 1. This is indeed what we observed using quadratures and localized approximations with the P-convention, see Eqs.( 47)-( 48) and Table 2 in [START_REF] Ambrosio | On localized approximations for Laguerre-Gauss beams focused by a lens[END_REF].

4 Transverse Magnetic Beam Shape Coe¢ cients.

4.1

(n-m) even.

We start from Eq.56 speci…ed for the electric …eld and rewritten using the N-convention:

(kr) 1=2 Z 2 0 rE r ( = =2; N ) exp( im')d' (63) = p 2 E 0 (N ) 1 X n=jmj;(n m) even c pw n n(n + 1)g m n;T M (N )P jmj n (0)J n+1=2 (kr)
From Eqs.16 and 17, we readily establish expressions for E x ( = =2; N ) and E y ( = =2; N ) and, converting cos. and sin. to exponentials, we …nd:

E r ( = =2; N ) = E 0 (N )[(F l p ) 1 e i(l+1)' + (F l p ) 1 e i(l 1)' ] (64) 
in which:

(F l p ) 1 = i 2 kN A Z 0 F l p ( )[(1 + p k 2 2 k )J l ( r) + (1 p k 2 2 k )J l+2 ( r)]d (65) 
(F l p ) 1 = + i 2 kN A Z 0 F l p ( )[(1 + p k 2 2 k )J l ( r) + (1 p k 2 2 k )J l 2 ( r)]d (66) 
with:

F l p ( ) = jlj+1 q p k 2 2 L l p [b( )] exp[ c( )] (67) 
We then insert Eq.64 into Eq.63, use Eq.48 and rearrange to obtain:

i(kr) 1=2 kr p 2 Z 2 0 [(F l p ) 1 e i(l+1)' + (F l p ) 1 e i(l 1)' ]e im' d' (68) = 1 X n=jmj;(n m) even ( i) n (2n + 1)g m n;T M (N )P jmj n (0)J n+1=2 (kr)
To get rid of the integral over ' in Eq.68, we then use the orthogonality relation of Eq.49, and introduce x = kr to obtain:

i r 2 x 1=2 x[(F l p ) 1 m;l+1 + (F l p ) 1 m;l 1 ] (69) = 1 X n=jmj;(n m) even ( i) n (2n + 1)g m n;T M (N )P jmj n (0)J n+1=2 (x)
We now have to distinguish three cases, as follows.

First case : m = l + 1, l 0

Eq.69 becomes (introducing an extra-subscript "p" for further convenience) :

x 1=2 [g(x)] p = 1 X n=l+1;(n l) o dd ( i) n (2n + 1)[g l+1 n;T M (N )] p P l+1 n (0)J n+1=2 (x) (70)
in which we recall that l is an index for the Laguerre-Gauss function in Eq.3 and:

[g(x)] p = i r 2 x(F l p ) 1 (71) 
Hence :

c n = ( i) n (2n + 1)[g l+1 n;T M (N )] p P l+1 n (0), n l + 1, n l odd ( 72 
)
c n = 0 otherwise (73)
For the sequel, we shall use Eqs. 10-12 and [43]:

J n (x) = 1 X s=0 ( 1) s s!(n + s)! x n+2s 2 n+2s (74) 
We are now going to evaluate the coe¢ cients b n , starting with p = 0; 1 which shall initialize recurrence relations. For p = 0, we have from Eqs.71, 67, 65 and 10:

[g(x)] 0 = i r 2 x(F l 0 ) 1 (75) 
in which :

(F l 0 ) 1 = i 2 kN A Z 0 jlj+1 q p k 2 2 exp[ c( )][(1+ p k 2 2 k )J l ( x k )+(1 p k 2 2 k )J l+2 ( x k )]d (76) 
Eq.75 contains the quantities xJ l ( x=k) and xJ l+2 ( x=k) that we are now considering. From 74, we have :

xJ l ( x=k) = 1 X s=0 ( 1) s s!(l + s)! ( k ) l+2s 1 2 l+2s x l+2s+1 (77) = X n=l+1 ( 1) (n l 1)=2 ( n l 1 2 )!(l + n l 1 2 )! ( k ) n 1 1 2 n 1 x n = X n=0 "(n; 0; 1; :::; l) ( 1) (n l 1)=2 ( n l 1 2 )!(l + n l 1 2 )! ( k ) n 1 1 2 n 1 x n
We conveniently introduce the notation :

F u n = ( 1) 
n u 2

( n u 2 )!(u + n u 2 )! = ( 1) n u 2 ( n u 2 )!( n+u 2 )! (78) 
Hence, we have :

xJ l ( x=k) = 1 X n=0 "(n; 0; 1; :::; l)F l n 1 ( k ) n 1 1 2 n 1 x n (79) 
Similarly, we establish :

xJ l+2 ( x=k) = 1 X n=0 "(n; 0; 1; :::; l + 2)F l+2 n 1 ( k ) n 1 1 2 n 1 x n (80) 
and, for further use :

xJ l 2 ( x=k) = 1 X n=0 "(n; 0; 1; :::; l 2)F l 2 n 1 ( k ) n 1 1 2 n 1 x n (81) 
Inserting Eqs.79 and 80 into Eqs.75-76, we obtain :

[g(x)] 0 = i r 2 i 2 1 X n=0 1 2 n 1 ["(n; 0; 1; :::; l)F l n 1 A n l0 (82) 
+"(n; 0; 1; :::

; l + 2)F l+2 n 1 B n l0 ]x n
in which :

A n lp = kN A Z 0 jlj+1 q p k 2 2 exp[ c( )][(1 + p k 2 2 k )( k ) n 1 d , p = 0 (83) B n lp = kN A Z 0 jlj+1 q p k 2 2 exp[ c( )][(1 p k 2 2 k )( k ) n 1 d , p = 0 (84) 
Hence :

[b n ] 0 = i r 2 i 2 n ["(n; 0; 1; :::; l)F l n 1 A n l0 (85) 
+"(n; 0; 1; ::

:; l + 2)F l+2 n 1 B n l0 ]
For p = 1, the procedure is similar. To begin with, we have :

[g(x)] 1 = i r 2 x(F l 1 ) 1 ( 86 
)
in which :

(F l 1 ) 1 = i 2 kN A Z 0 jlj+1 q p k 2 2 L l 1 [b( )] exp[ c( )][(1+ p k 2 2 k )J l ( x k )+(1 p k 2 2 k )J l+2 ( x k )]d (87) 
Then, using Eq.11 instead of Eq.10 :

[g(x)] 1 = (l+1)[g(x)] 0 i r 2 i 2 1 X n=0 1 2 n 1 ["(n; 0; 1; :::; l)F l n 1 A n l1 +"(n; 0; 1; :::; l+2)F l+2 n 1 B n l1 ]x n (88) 
in which :

A n lp = kN A Z 0 jlj+1 q p k 2 2 b( )L l p 1 [b( )] exp[ c( )][(1+ p k 2 2 k )( k ) n 1 d , p 1 (89) 
B n lp = kN A Z 0 jlj+1 q p k 2 2 b( )L l p 1 [b( )] exp[ c( )][(1 p k 2 2 k )( k ) n 1 d , p 1 (90) 
Hence, recalling Eq.82, we obtain :

[b n ] 1 = i r 2 i 2 n f"(n; 0; 1; :::; l)F l n 1 [(l + 1)A n l0 A n l1 ] (91) 
+"(n; 0; 1; ::

:; l + 2)F l+2 n 1 [(l + 1)B n l0 B n l1 ]g
For the general case, starting from :

[g(x)] p = i r 2 x(F l p ) 1 (92) 
and using Eq.12, we arrive to a fairly obvious generalization of Eq.88 reading as, for p > 1 :

[g(x)] p = 2p 1 + l p [g(x)] p 1 p 1 + l p [g(x)] p 2 (93) i p r 2 i 2 1 X n=0 1 2 n 1 ["(n; 0; 1; :::; l)F l n 1 A n lp + "(n; 0; 1; :::; l + 2)F l+2 n 1 B n lp ]x n
Hence :

[b n ] p = 2p 1 + l p [b n ] p 1 p 1 + l p [b n ] p 2 (94) 
i p r 2 i 2 n ["(n; 0; 1; :::; l)F l n 1 A n lp + "(n; 0; 1; ::

:; l + 2)F l+2 n 1 B n lp ]
Knowing the b n 's, we know the b n 2m 's and have a new expression for the c n 's, namely :

c n = (n + 1 2 ) n=2 X m=0 2 1 2 +n 2m ( 1 2 + n m) m! [b n 2m ] p (95) 
Then, using Eqs.72, 95, 51, and rearranging, we have:

[g l+1 n;T M (N )] p = i n p 2 l+2 ( 1) n+l+1 2 ( n l 1 2 )! ( n+l 2 + 1) n=2 X m=0 2 1 2 +n 2m ( 1 2 + n m) m! [b n 2m ] p (96) 
Second case : m = l 1, l > 0 Instead of Eqs.70 and 71, we now have :

x 1=2 [g(x)] p = 1 X n=l 1;(n l) o dd ( i) n (2n + 1)[g l 1 n;T M ] p P l 1 n (0)J n+1=2 (x) (97) 
in which :

[g(x)] p = i r 2 x(F l p ) 1 (98) 
Comparing (F l p ) 1 and (F l p ) 1 , see Eqs.65 and 66, we see that, from the previous case, we have to change ( i ) to ( + i ), and xJ l+2 (x) to xJ l 2 (x), i.e. we have to use Eq.81 instead of Eq.80. We also have to change (l + 1) to (l 1): Hence, Eqs.85, 91 and 94 are changed to :

[b n ] 0 = i r 2 + i 2 n ["(n; 0; 1; :::; l)F l n 1 A n l0 (99) 
+"(n; 0; 1; :::

; l 2)F l 2 n 1 B n l0 ] [b n ] 1 = i r 2 + i 2 n f"(n; 0; 1; :::; l)F l n 1 [(l + 1)A n l0 A n l1 ] (100) 
+"(n; 0; 1; :::

; l 2)F l 2 n 1 [(l + 1)B n l0 B n l1 ]g [b n ] p = 2p 1 + l p [b n ] p 1 p 1 + l p [b n ] p 2 (101) i p r 2 + i 2 n
["(n; 0; 1; :::; l)F l n 1 A n lp + "(n; 0; 1; :::

; l 2)F l 2 n 1 B n lp ]
Then, proceeding as in the …rst case, we obtain:

[g l 1 n;T M (N )] p = i n p 2 l ( 1) n+l 1 2 ( n l+1 2 )! ( n+l 2 ) n=2 X m=0 2 1 2 +n 2m ( 1 2 + n m) m! [b n 2m ] p (102) 
Third case : m = l 1, l = 0:

This case corresponds to m = 1. From the fact that the formulation involves P jmj n rather than P m n , this case identi…es with the …rst case for m = 1; that is to say with the …rst case for l = 0: The result for the present third case is then obtained by forcing l = 0 in the r.h.s. of Eq.96 leading to:

[g 1 n;T M (N )] p = i n p 4 ( 1) n+1 2 ( n 1 2 )! ( n 2 + 1) n=2 X m=0 2 1 2 +n 2m ( 1 2 + n m) m! [b n 2m ] p (103) 
Note however that the corresponding recurrence equation Eq.101 is not valid for l = 0 (and incidently for l = 1) as well due to the ine¢ cient de…nition of the expression "(n; 0; 1; :::; l 2)F l 2 n 1 involved in it. This di¢ culty may be overcome by rederiving the corresponding results using however the relation J n (x) = ( 1) n J n (x). The cases l = 0 and 1 are therefore to be viewed as special cases which would deserve a particular study which is postponed to future work. These remarks are valid as well for three other "third cases" described below.

4.2

(n-m) odd.

For the case (n m) odd, instead of Eq.63, we have to use, from Eq.59:

(kr) 1=2 Z 2 0 r[ @E r (cos ; N ) @ cos ] = =2 exp( im')d' (104) = p 2 E 0 (N ) 1 X n=jmj;(n m) o dd c pw n n(n + 1)g m n;T M (N )[ dP jmj n (cos ) d cos ] cos =0 J n+1=2 (kr)
From results in Section 2, we derive after a bit of standard algebra:

[ @E r (cos ) @ cos ] = =2 = E 0 [(G l p ) 1 e i(l+1)' + (G l p ) 1 e i(l 1)' ] (105) 
in which :

(G l p ) 1 = Z kN A 0 G l p ( ) i + 2 fr p k 2 2 [(1 + p k 2 2 k )J l ( r) (106) +(1 p k 2 2 k )J l+2 ( r)] 2 k J l+1 ( r)gd (G l p ) 1 = Z kN A 0 G l p ( ) i 2 fr p k 2 2 [(1 + p k 2 2 k )J l ( r) (107) +(1 p k 2 2 k )J l 2 ( r)] + 2 k J l 1 ( r)gd
and :

G l p ( ) = F l p ( ) = jlj+1 q p k 2 2 L l p [b( )] exp[ c( )] (108) 
Proceeding as in the case (n m), we then arrive at:

i r 2 x 1=2 x[(G l p ) 1 m;l+1 + (G l p ) 1 m;l 1 ] (109) = 1 X n=jmj;(n m) o dd ( i) n (2n + 1)g m n;T M [ dP jmj n (cos ) d cos ] = =2 J n+1=2 (x)
As before, we now have to distinguish three cases, as follows:

First case : m = l + 1, l 0

Eq.109 becomes (introducing an extra-subscript "p") :

x 1=2 [g(x)] p = 1 X n=l+1;(n l) even ( i) n (2n+1)[g l+1 n;T M ] p [ dP l+1 n (cos ) d cos ] = =2 J n+1=2 (x) (110) 
in which :

[g(x)] p = i r 2 x(G l p ) 1 (111) 
Hence :

c n = ( i) n (2n + 1)[g l+1 n;T M ] p [ dP l+1 n (cos ) d cos ] = =2 , n l + 1, n l even (112) c n = 0 otherwise (113)
To pursue the calculations for the case (n m) odd, we shall need:

x 2 J l ( x=k) = 1 X s=0 ( 1) s s!(l + s)! ( k ) l+2s 1 2 l+2s x l+2s+2 (114) = 1 X n=l+2 ( 1) (n l 2)=2 ( n l 2 2 )!(l + n l 2 2 )! ( k ) n 2 1 2 n 2 x n = 1 X n=0 "(n; 0; 1; :::; l + 1)F l n 2 ( k ) n 2 1 2 n 2 x n x 2 J l+2 ( x=k) = 1 X n=0 "(n; 0; 1; :::; l + 3)F l+2 n 2 ( k ) n 2 1 2 n 2 x n (115) xJ l+1 ( x=k) = 1 X n=0
"(n; 0; 1; :::; l + 1)F l+1 n 1 ( k

) n 1 1 2 n 1 x n (116) x 2 J l 2 ( x=k) = 1 X n=0 "(n; 0; 1; :::; l 1)F l 2 n 2 ( k ) n 2 2 n 2 x n (117) xJ l 1 ( x=k) = 1 X n=0 "(n; 0; 1; :::; l 1)F l 1 n 1 ( k ) n 1 1 2 n 1 x n (118)
Proceeding as in the case (n m) even, we then obtain:

[g(x)] 0 = i r 2 i + 2 [ 1 X n=0
"(n; 0; 1; :::; l + 1)

F l n 2 n C n l0 (119) + 1 X n=0 "(n; 0; 1; :::; l + 3) F l+2 n 2 2 n 2 D n l0 1 X n=0
"(n; 0; 1; :::; l + 1)

F l+1 n 1 2 n 2 E n l0 ]x n
in which:

C n l0 = Z kN A 0 jlj+1 exp[ c( )] q p k 2 2 1 k (1 + p k 2 2 k )( k ) n 2 d (120) D n l0 = Z kN A 0 jlj+1 exp[ c( )] q p k 2 2 1 k (1 p k 2 2 k )( k ) n 2 d (121) E n l0 = Z kN A 0 jlj+1 q p k 2 2 exp[ c( )]( k ) n d (122) 
leading to:

[b n ] 0 = i r 2 i + 2 n 1 ["(n; 0; 1; :::; l + 1)F l n 2 C n l0 (123) 
+"(n; 0; 1; :::; l + 3)F l+2 n 2 D n l0 "(n; 0; 1; :::

; l + 1)F l+1 n 1 E n l0 ]x n
We also obtain:

[g(x)] 1 = (l + 1)[g(x)] 0 (124) i r 2 i + 2 [ 1 X n=0
"(n; 0; 1; :::; l + 1)

F l n 2 2 n 2 C n l1 + 1 X n=0 "(n; 0; 1; :::; l + 3) F l+2 n 2 2 n 2 D n l1 1 X n=0
"(n; 0; 1; :::; l + 1)

F l+1 n 1 2 n 2 E n l1 ]x n
in which we introduced, for p 1:

C n lp = Z kN A 0 jlj+1 exp[ c( )][b( )L l p 1 [b( )] q p k 2 2 1 k (1+ p k 2 2 k )( k ) n 2 d (125) D n lp = Z kN A 0 jlj+1 exp[ c( )][b( )L l p 1 [b( )] q p k 2 2 1 k (1 p k 2 2 k )( k ) n 2 d (126) E n lp = Z kN A 0 jlj+1 q p k 2 2 [b( )L l p 1 [b( )] exp[ c( )]( k ) n d (127)
and:

[b n ] 1 = i r 2 i + 2 n 1 f"(n; 0; 1; :::; l + 1)F l n 2 [(l + 1)C n l0 C n l1 ] (128) 
+"(n; 0; 1; :::

; l + 3)F l+2 n 2 [(l + 1)D n l0 D n l1 ] "(n; 0; 1; :::; l + 1)F l+1 n 1 [(l + 1)E n l0 E n l1 ]g
For the general case, we obtain:

[g(x)] p = 2p 1 + l p [g(x)] p 1 p 1 + l p [g(x)] p 2 (129) i p r 2 i + 2 [ 1 X n=0
"(n; 0; 1; :::; l + 1)

F l n 2 2 n 2 C n lp + 1 X n=0
"(n; 0; 1; :::; l + 3)

F l+2 n 2 2 n 2 D n lp 1 X n=0
"(n; 0; 1; :::; l + 1)

F l+1 n 1 2 n 2 E n lp ]x n
and: 

[b n ] p = 2p 1 + l p [b n ] p 1 p 1 + l p [b n ] p 2 ( 
:; l + 1)F l+1 n 1 E n lp ]
Proceeding again similarly as for the case (n m) even, and recalling Eq.58, we then obtain:

[g l+1 n;T M ] p = i n p 2 l+3
( 1)

n+l 2 ( n+l 2 + 3 2 ) ( n l 2 1)! (131) n=2 X m=0 2 1 2 +n 2m ( 1 2 + n m) m! [b n 2m ] p , for n > l + 1; (n l) even, l > 0 Second case : m = l 1, l > 0
Instead of Eqs.110 and 111, we now have :

x 1=2 [g(x)] p = 1 X n=l 1;(n l) even ( i) n (2n+1)[g l 1 n;T M ] p [ dP l 1 n (cos ) d cos ] = =2 J n+1=2 (x) (132) 
in which :

[g(x)] p = i r 2 x(G l p ) 1 (133) 
i.e. we now use (G l p ) 1 instead of (G l p ) 1 . Comparing Eqs.106 and 107, we see that, with respect to the previous case, we have to change (i + ) to (i ), J l+2 to J l 2 (using Eq.117 instead of Eq.115) and J l+1 to ( J l 1 ) (using Eq.118 instead of Eq.116). Without having to redo the computations, we then obtain:

[g(x)] 0 = i r 2 i 2 [ 1 X n=0
"(n; 0; 1; :::; l + 1)

F l n 2 2 n 2 C n l0 (134) + 1 X n=0
"(n; 0; 1; :::; l 1)

F l 2 n 2 2 n 2 D n l0 + 1 X n=0
"(n; 0; 1; :::; l 1)

F l 1 n 1 2 n 2 E n l0 ]x n [b n ] 0 = i r 2 i 2 n 1 ["(n; 0; 1; :::; l + 1)F l n 2 C n l0 (135) 
+"(n; 0; 1; :::; l 1)F l 2 n 2 D n l0 +"(n; 0; 1; :::; l 1)

F l 1 n 1 E n l0 ] [g(x)] 1 = (l + 1)[g(x)] 0 (136) i r 2 i 2 [ 1 X n=0
"(n; 0; 1; :::; l + 1)

F l n 2 2 n 2 C n l1 + 1 X n=0
"(n; 0; 1; :::; l 1)

F l 2 n 2 2 n 2 D n l1 + 1 X n=0
"(n; 0; 1; :::; l 1)

F l 1 n 1 2 n 2 E n l1 ]x n [b n ] 1 = i r 2 i 2 n 1 f"(n; 0; 1; :::; l + 1)F l n 2 [(l + 1)C n l0 C n l1 ] (137) 
+"(n; 0; 1; :::; l 1)

F l 2 n 2 [(l + 1)D n l0 D n l1 ] +"(n; 0; 1; :::; l 1)F l 1 n 1 [(l + 1)E n l0 E n l1 ]g [g(x)] p = 2p 1 + l p [g(x)] p 1 p 1 + l p [g(x)] p 2 (138) i p r 2 i 2 [ 1 X n=0
"(n; 0; 1; :::; l + 1)

F l n 2 2 n 2 C n lp + 1 X n=0
"(n; 0; 1; :::; l 1)

F l 2 n 2 2 n 2 D n lp + 1 X n=0
"(n; 0; 1; :::; l 1) 

F l 1 n 1 2 n 2 E n lp ]x n [b n ] p = 2p 1 + l p [b n ] p 1 p 1 + l p [b n ] p 2 (139) i p r 2 i 2 n
:; l 1)F l 1 n 1 E n lp ]
and, eventually:

[g l 1 n;T M ] p = i n p 2 l+1
( 1)

n+l 2 1 ( n+l 2 + 1 2 ) ( n l 2 )! (140) n=2 X m=0 2 1 2 +n 2m ( 1 2 + n m) m! [b n 2m ] p , for n > l 1; (n l) even, l > 0 Third case : m = l 1, l = 0
Again, similarly as for the third case of (n-m) even, we simply have to force l = 0 in the r.h.s of Eq.131 leading to:

[g 1 n;T M ] p = i n p 8 ( 1) 
n 2

( n 2 1)! ( n 2 + 3 2 ) n=2 X m=0 2 1 2 +n 2m ( 1 2 + n m) m! [b n 2m ] p (141)
5 Transverse Electric Beam Shape Coe¢ cients.

Expressions for TE-BSCs are derived similarly as for the TM-BSCs, using H r instead of E r , and shall therefore be reported more concisely.

5.1

(n-m) even.

Instead of Eq.63, we now start from:

(kr) 1=2 Z 2 0 rH r ( = =2; N ) exp( im')d' (142) = p 2 H 0 (N ) 1 X n=jmj;(n m) even c pw n n(n + 1)g m n;T E (N )P jmj n (0)J n+1=2 (kr)
in which, from results in Section 2 and proceeding similarly as for the TM-BSCs, we derive:

H r ( = =2; N ) = H 0 (N )[(H l p ) 1 e i(l+1)' + (H l p ) 1 e i(l 1)' ] (143) 
in which :

(H l p ) 1 = i + 4 Z kN A 0 H l p ( )[J l ( r)A( ) J l+2 ( r)B( )]d (144) 
(H l p ) 1 = i 4 Z kN A 0 H l p ( )[J l ( r)A( ) J l 2 ( r)B( )]d (145) 
in which H l p ( ) is given in Eq.30 and:

A( ) = (1 p k 2 2 k ) 2 (1 + p k 2 2 k )(2k 2 2 ) (146) 
B( ) = (1 + p k 2 2 k ) 2 (1 p k 2 2 k )(2k 2 2 ) (147) 
Next, inserting Eq.143 into Eq.142, and dealing with the integration over ', we obtain:

i r 2 x 1=2 x[(H l p ) 1 m;l+1 + (H l p ) 1 m;l 1 ] (148) = 1 X n=jmj;(n m) even ( i) n (2n + 1)g m n;T E (N )P jmj n (0)J n+1=2 (x)
We now again consider di¤erent cases, using an extra-subscript p for convenience.

First case : m = l + 1; l 0.

We have :

x 1=2 [g(x)] p = 1 X n=l+1;(n l) o dd ( i) n (2n + 1)[g l+1 n;T E (N )] p P l+1 n (0)J n+1=2 (x) (149) 
in which :

[g(x)] p = i r 2 x(H l p ) 1 (150) 
Then we have :

c n = ( i) n (2n + 1)[g l+1 n;T E ] p P l+1 n (0), n l + 1, (n l) odd (151) 
c n = 0 otherwise (152) 
We afterward express the b n -coe¢ cients, similarly as for the TM-case, and establish:

[g(x)] 0 = i p 1 X n=0
x n 2 n+1 ["(n; 0; 1; :::; l)F l n 1 P n l0 (153) "(n; 0; 1; ::

:; l + 2)F l+2 n 1 Q n l0 ]
in which :

P n l0 = Z kN A 0 ( k ) n jlj (k 2 2 ) 3=4 exp[ c( )]A( )d (154) 
Q n l0 = Z kN A 0 ( k ) n jlj (k 2 2 ) 3=4 exp[ c( )]B( )d (155) 
and :

[b n ] 0 = i p 1 2 n+1 ["(n; 0; 1; :::; l)F l n 1 P n l0 (156) 
"(n; 0; 1; ::

:; l + 2)F l+2 n 1 Q n l0 ]
For p = 1, we obtain:

[g(x)] 1 = (l + 1)[g(x)] 0 (157) i p 1 X n=0 1 2 n+1
["(n; 0; 1; :::; l)F l n 1 P n l1 "(n; 0; 1; ::

:; l + 2)F l+2 n 1 Q n l1 ]x n
in which :

P n l1 = Z kN A 0 ( k ) n jlj (k 2 2 ) 3=4 b( ) exp[ c( )]A( )d (158) 
Q n l1 = Z kN A 0 ( k ) n jlj (k 2 2 ) 3=4 b( ) exp[ c( )]B( )d (159) 
Hence :

[b n ] 1 = i p 1 2 n+1 f"(n; 0; 1; :::; l)F l n 1 [(l + 1)P n l0 P n l1 ] (160) 
"(n; 0; 1; ::

:; l + 2)F l+2 n 1 [(l + 1)Q n l0 Q n l1 ]g
For the general case, we …nd:

[g(x)] p = 2p 1 + l p [g(x)] p 1 p 1 + l p [g(x)] p 2 (161) i p p 1 X n=0
x n 2 n+1 ["(n; 0; 1; :::; l)F l n 1 P n lp "(n; 0; 1; ::

:; l + 2)F l+2 n 1 Q n lp ]
and :

[b n ] p = 2p 1 + l p [b n ] p 1 p 1 + l p [b n ] p 2 (162) 
i p p 1 2 n+1 ["(n; 0; 1; :::; l)F l n 1 P n lp "(n; 0; 1; ::

:; l + 2)F l+2 n 1 Q n lp ]
in which :

P n lp = Z kN A 0 ( k ) n jlj (k 2 2 ) 3=4 b( )L l p 1 [b( )] exp[ c( )]A( )d (163) 
Q n lp = Z kN A 0 ( k ) n jlj (k 2 2 ) 3=4 b( )L l p 1 [b( )] exp[ c( )]B( )d (164) 
These relations are valid for p = 1 as well by virtue of fL l p 1 [b( )]g p=1 = 1. These coe¢ cients being established, we then establish:

[g l+1 n;T E (N )] p = i n p ( 1) n+l+1 2 
( n l 1 2 )! 2 l+2 ( n+l 2 + 1) n=2 X m=0 2 1 2 +n 2m ( 1 2 + n m) m! [b n 2m ] p (165) 
Second case : m = l 1; l > 0.

We start from:

x 1=2 [g(x)] p = 1 X n=l 1;(n l) o dd ( i) n (2n + 1)[g l 1 n;T E ] p P l 1 n (0)J n+1=2 (x) (166) 
in which :

[g(x)] p = i r 2 x(H l p ) 1 (167) 
Then we have :

c n = ( i) n (2n + 1)[g l 1 n;T E ] p P l 1 n (0), n l 1, (n l) odd (168) 
c n = 0 otherwise (169)
Next the b n -coe¢ cients are found to be:

[g(x)] 0 = + i p 1 X n=0 1 2 n+1 ["(n; 0; 1; :::; l)F l n 1 P n l0 (170) 
"(n; 0; 1; :::

; l 2)F l 2 n 1 Q n l0 ]x n [b n ] 0 = + i p 1 2 n+1 ["(n; 0; 1; :::; l)F l n 1 P n l0 (171) 
"(n; 0; 1; :::

; l 2)F l 2 n 1 Q n l0 ] [g(x)] 1 = (l + 1)[g(x)] 0 (172) 
+ i p 1 X n=0 1 2 n+1 ["(n; 0; 1; :::; l)F l n 1 P n l1 "(n; 0; 1; :::; l 2)F l 2 n 1 Q n l1 ]x n [b n ] 1 = + i p 1 2 n+1 f"(n; 0; 1; :::; l)F l n 1 [(l + 1)P n l0 P n l1 ] (173) 
"(n; 0; 1; :::

; l 2)F l 2 n 1 [(l + 1)Q n l0 Q n l1 ]g [g(x)] p = 2p 1 + l p [g(x)] p 1 p 1 + l p [g(x)] p 2 (174) 
+ i p p 1 X n=0 1 2 n+1 ["(n; 0; 1; :::; l)F l n 1 P n lp "(n; 0; 1; :::; l 2)F l 2 n 1 Q n lp ]x n [b n ] p = 2p 1 + l p [b n ] p 1 p 1 + l p [b n ] p 2 (175) 
+ i p p 1 2 n+1 ["(n; 0; 1; :::; l)F l n 1 P n lp "(n; 0; 1; :::

; l 2)F l 2 n 1 Q n lp ]
And the corresponding BSCs are found to be given by:

[g l 1 n;T E (N )] p = i n p ( 1) 
n+l 1 2

( n l+1 2 )! 2 l ( n+l 2 ) n=2 X m=0 2 1 2 +n 2m ( 1 2 + n m) m! [b n 2m ] p (176) 
Third case : m = l 1, l = 0.

Similarly as for previously encountered "third cases", the result for m = l 1, l = 0 can be obtained by forcing l = 0 in the r.h.s. of Eq.165, leading to:

[g 1 n;T E (N )] p = i n p ( 1) n+1 2 ( n 1 2 )! 4 ( n 2 + 1) n=2 X m=0 2 1 2 +n 2m ( 1 2 + n m) m! [b n 2m ] p (177) 5.2 
(n-m) odd.

We now start from:

(kr) 1=2 Z 2 0 r[ @H r (cos ; N ) @ cos ] = =2 exp( im')d' (178) = p 2 H 0 (N ) 1 X n=jmj;(n m) o dd c pw n n(n + 1)g m n;T E (N )[ dP jmj n (cos ) d cos ] cos =0 J n+1=2 (kr)
in which we evaluate, after a bit of algebra:

[ @H r (cos ; N ) @ cos ] = =2 = Z kN A 0 H 0 (N ) jlj+1 k p 2 L l p [b( )] exp[ c( )]e il' (179) 
[e i' A 1 + e i' A 1 ]d in which :

A 1 = ix 4k i + (k 2 2 ) 1=4 [J l ( x=k)A( ) J l+2 ( x=k)B( )] p k ( i )J l+1 ( x=k) (180) 
A 1 = ix 4k i (k 2 2 ) 1=4 [J l ( x=k)A( ) J l 2 ( x=k)B( )] p k ( +i )J l 1 ( x=k) (181) 
Eq.179 may conveniently be rewritten as :

[ @H r (cos ) @ cos ] = =2 = H 0 [ (H l p ) 1 e i(l+1)' + ( H l p ) 1 e i(l 1)' ] (182) 
in which :

(H l p ) i = Z kN A 0 H 0 jlj+1 k p 2 L l p [b( )] exp[ c( )]A i ( )d (183) 
Afterward, we deal with the integration over ' and obtain:

i r 2 x 1=2 x[ (H l p ) 1 m;l+1 + ( H l p ) 1 m;l 1 ] (184) = 1 X n=jmj;(n m) o dd ( i) n (2n + 1)g m n;T E [ @P jmj n (cos ) @ cos ] = =2 J n+1=2 (x)
The reader being now used with the details of the procedure, we shall be content to provide the results.

First case : m = l + 1; l 0.

We obtain the functions [g(x)] p and the b n -coe¢ cients reading as:

[g(x)] 0 = (i + ) 4k 2 p 1 X n=0
x n 2 n 2 ["(n; 0; 1; :::

; l + 1)F l n 2 W n l0 (185) 
"(n; 0; 1; :::

; l + 3)F l+2 n 2 X n l0 ] (i + ) k 3=2 p 1 X n=0
x n 2 n 1 "(n; 0; 1; :::; l + 1)F l+1 n 1 Y n l0 in which :

W n l0 = Z kN A 0 jlj+1 (k 2 2 ) 1=4 exp[ c( )]( k ) n 2 A( )d (186) 
X n l0 = Z kN A 0 jlj+1 (k 2 2 ) 1=4 exp[ c( )]( k ) n 2 B( )d (187) 
Y n l0 = Z kN A 0 jlj+2 exp[ c( )]( k ) n 1 d (188) 
and:

[b n ] 0 = (i + ) k 2 p 1 2 n ["(n; 0; 1; :::; l + 1)F l n 2 W n l0 (189) 
"(n; 0; 1; :::

; l + 3)F l+2 n 2 X n l0 ] (i + ) k 3=2 p 1 2 n 1 "(n; 0; 1; :::; l + 1)F l+1 n 1 Y n l0
For p = 1, we obtain:

[g(x)] 1 = (l + 1)[g(x)] 0 (190) 
+(i + ) 4k 2 p 1 X n=0
x n 2 n 2 ["(n; 0; 1; :::; l + 1)F l n 2 W n l1 "(n; 0; 1; :::

; l + 3)F l+2 n 2 X n l1 ] + (i + ) k 3=2 p 1 X n=0
x n 2 n 1 "(n; 0; 1; :::; l + 1)F l+1 n 1 Y n l1 in which :

W n l1 = Z kN A 0 jlj+1 (k 2 2 ) 1=4 b( ) exp[ c( )]( k ) n 2 A( )d (191) 
X n l1 = Z kN A 0 jlj+1 (k 2 2 ) 1=4 b( ) exp[ c( )]( k ) n 2 B( )d (192) 
Y n l1 = Z kN A 0 jlj+2 b( ) exp[ c( )]( k ) n 1 d (193) 
and:

[b n ] 1 = (i + ) k 2 p 1 2 n f"(n; 0; 1; :::; l + 1)F l n 2 [(l + 1)W n l0 W n l1 ] (194) 
"(n; 0; 1; :::

; l + 3)F l+2 n 2 [(l + 1)X n l0 X n l1 ]g (i + ) k 3=2 p 1 2 n 1 "(n; 0; 1; :::; l + 1)F l+1 n 1 [(l + 1)Y n l0 Y n l1 ]
For the general case, we …nd:

[g(x)] p = 2p 1 + l p [g(x)] p 1 p 1 + l p [g(x)] p 2 (195) 
+(i + ) 4k 2 p p 1 X n=0
x n 2 n 2 ["(n; 0; 1; :::; l + 1)F l n 2 W n lp "(n; 0; 1; :::

; l + 3)F l+2 n 2 X n lp ] + (i + ) k 3=2 p p 1 X n=0
x n 2 n 1 "(n; 0; 1; :::; l + 1)F l+1 n 1 Y n lp and :

[b n ] p = 2p 1 + l p [b n ] p 1 p 1 + l p [b n ] p 2 (196) 
+(i + ) 4k 2 p p 1 2 n 2 ["(n; 0; 1; :::; l + 1)F l n 2 W n lp "(n; 0; 1; :::

; l + 3)F l+2 n 2 X n lp ] + (i + ) k 3=2 p p 1 2 n 1 "(n; 0; 1; :::; l + 1)F l+1 n 1 Y n lp
in which :

W n lp = Z kN A 0 jlj+1 (k 2 2 ) 1=4 b( )L l p 1 [b( )] exp[ c( )]( k ) n 2 A( )d (197) 
X n lp = Z kN A 0 jlj+1 (k 2 2 ) 1=4 b( )L l p 1 [b( )] exp[ c( )]( k ) n 2 B( )d (198) 
Y n lp = Z kN A 0 jlj+2 b( )L l p 1 [b( )] exp[ c( )]( k ) n 1 d (199) 
These relations are valid for p = 1 as well by virtue of fL l p 1 [b( )]g p=1 = 1. The BSCs then read as:

[g l+1 n;T E (N )] p = i n p ( 1) n+l 2 ( n l 2 1)! 2 l+3 ( n+l 2 + 3 2 ) n=2 X m=0 2 1 2 +n 2m ( 1 2 + n m) m! [b n 2m ] p (200) 
Second case : m = l 1; l > 0.

We obtain:

[g(x)] 0 = i 4k 2 p 1 X n=0
x n 2 n 2 ["(n; 0; 1; :::; l + 1)F l n 2 W n l0 (201) "(n; 0; 1; ::

:; l 1)F l 2 n 2 X n l0 ] (i ) k 3=2 p 1 X n=0
x n 2 n 1 "(n; 0; 1; :::; l 1)F l 1 n 1 Y n l0 in which the integrals W; X; Y are the ones previously given, and:

[b n ] 0 = i 4k 2 p 1 n 2 n 2 ["(n; 0; 1; :::; l + 1)F l n 2 W n l0 (202) 
"(n; 0; 1; ::

:; l 1)F l 2 n 2 X n l0 ] (i ) k 3=2 p 1 n 2 n 1 "(n; 0; 1; :::; l 1)F l 1 n 1 Y n l0
For p = 1, we obtain:

[g(x)] 1 = (l + 1)[g(x)] 0 (203) i ) 4k 2 p 1 X n=0
x n 2 n 2 ["(n; 0; 1; :::; l + 1)F l n 2 W n l1 "(n; 0; 1; ::

:; l 1)F l 2 n 2 X n l1 ] + (i ) k 3=2 p 1 X n=0 x n 2 n 1 "(n; 0; 1; :::; l 1)F l 1 n 1 Y n l1
in which the integrals W,X,Y have again already been previously given, and:

[b n ] 1 = i 4k 2 p 1 n 2 n 2 f"(n; 0; 1; :::; l + 1)F l n 2 [(l + 1)W n l0 W n l1 ] (204) 
"(n; 0; 1; ::

:; l 1)F l 2 n 2 [(l + 1)X n l0 X n l1 ]g (i ) k 3=2 p 1 n 2 n 1 "(n; 0; 1; :::; l 1)F l 1 n 1 [(l + 1)Y n l0 Y n l1 ]
For the general case, we …nd:

[g(x)] p = 2p 1 + l p [g(x)] p 1 p 1 + l p [g(x)] p 2 (205) i ) 4k 2 p p 1 X n=0
x n 2 n 2 ["(n; 0; 1; :::; l + 1)F l n 2 W n lp "(n; 0; 1; ::

:; l 1)F l 2 n 2 X n lp ] + (i ) k 3=2 p p 1 X n=0
x n 2 n 1 "(n; 0; 1; :::; l 1)F l 1 n 1 Y n lp and :

[b n ] p = 2p 1 + l p [b n ] p 1 p 1 + l p [b n ] p 2 (206) i ) 4k 2 p p 1 n 2 n 2 ["(n; 0; 1; :::; l + 1)F l n 2 W n lp "(n; 0; 1; :::; l 1)F l 2 n 2 X n lp + (i ) k 3=2 p p 1 n 2 n 1 "(n; 0; 1; :::; l 1)F l 1 n 1 Y n lp
in which the integrals W, X, Y have again already been given previously. These relations are valid for p = 1 as well by virtue of fL l p 1 [b( )]g p=1 = 1.

and, from Eqs.158-159, 163-164:

P n lp = I T E e [b( )L l p 1 (b( ))], Q n lp = J T E e [b( )L l p 1 (b( ))], p 1 (211) 
in which we used L l 0 (b( )) = 1. With these notations, Eqs.156, 160 are used to initiate the recurrence according to:

[b n ] 0 = i p 1 2 n+1 ["(n; 0; 1; :::; l)F l n 1 I T E e (1) (212) 
"(n; 0; 1; :::

; l + 2)F l+2 n 1 J T E e (1)] [b n ] 1 = i p 1 2 n+1 ["(n; 0; 1; :::; l)F l n 1 I T E e (l + 1 b) (213) 
"(n; 0; 1; :::

; l + 2)F l+2 n 1 J T E e (l + 1 b)]
We now introduce an operator T such as:

[b n ] p = T T E (X p ( )) (214) 
in which:

T T E (X p ( )) = i p 1 2 n+1 ["(n; 0; 1; :::; l)F l n 1 I T E e (X p ( )) (215) 
"(n; 0; 1; :::

; l + 2)F l+2 n 1 J T E e (X p ( ))]
which is valid for p = 0, 1 with:

X 0 ( ) = 1 = L l 0 (b( )) (216) X 1 ( ) = l + 1 b( ) = L l 1 (b( )) (217) 
in which we must recall L l 0 (b( )) = 1 and L l 1 (b( )) = l + 1 b( )). Assuming that Eq.214 is valid for p changed to (p 1) and (p 2), we afterward readily show that it is valid 8p. The recurrence relation Eq.162 then simply becomes:

[b n ] p = T T E (X p ( )) = T T E (A p X p 1 ( )) B p X p 2 ( )) 1 p b( )L l p 1 ( )) (218)
so that, instead of having to solve the recurrence relation Eq.162, we have to solve the simpler reduced recurrence relation:

X p ( ) = A p X p 1 ( ) B p X p 2 ( ) 1 p b( )L l p 1 ( ) (219) 
with initial values given by Eqs.216-217. We shall later return to this equation.

6.2

Other TE-BSCs.

In all cases that we have to investigate, the same reduced recurrence relation Eq.219 is obtained. The di¤erences between the di¤erent cases are only involved in modi…cations of Eqs.214-215. For the TE-BSCs, (n m) even, m = l 1, l > 0, we obtain:

[b n ] p = U T E (X p ( )) (220) 
in which:

U T E (X p ( )) = + i p 1 2 n+1 ["(n; 0; 1; :::; l)F l n 1 I T E e (X p ( )) (221) 
"(n; 0; 1; :::

; l 2)F l 2 n 1 J T E e (X p ( ))]
For the TE-BSCs, (n m) odd, m = l + 1, l 0, we introduce:

I T E o (X( ) J T E o (X( ) = kN A Z 0 ( k ) n 2 jlj+1 (k 2 2 ) 1=4 exp[ c( )] A( ) B( ) X( )d (222) 
K T E o = kN A Z 0 ( k ) n 1 jlj+2 exp[ c( )]X( )d (223) 
and we have:

[b n ] p = V T E (X p ( )) (224) 
in which:

V T E (X p ( )) = (i + ) k 2 p 1 2 n ["(n; 0; 1; :::; l + 1)F l n 2 I T E o (X p ( )) (225) 
"(n; 0; 1; :::

; l + 3)F l+2 n 2 J T E o (X p ( ))] i + k 3=2 p 1 2 n 1 "(n; 0; 1; :::; l + 1)F l+1 n 1 K T E o (X p ( ))
For the TE-BSCs, (n m) odd, m = l 1, l > 0, we have:

[b n ] p = W T E (X p ( )) (226) 
in which:

W T E (X p ( )) = i k 2 p 1 2 n ["(n; 0; 1; :::; l + 1)F l n 2 I T E o (X p ( )) (227) 
"(n; 0; 1; ::

:; l 1)F l 2 n 2 J T E o (X p ( ))] i k 3=2 p 1 2 n 1 "(n; 0; 1; :::; l 1)F l 1 n 1 K T E o (X p ( ))
For the TM-BSCs, (n m) even, m = l + 1, l 0, we introduce:

I T M e (X( ) J T M e (X( = kN A Z 0 ( k ) n 1 jlj+1 (k 2 2 ) 1=4 exp[ c( )] C( ) D( ) X( )d (228) 
in which:

C( ) = 1 + p k 2 2 k (229) D( ) = 1 p k 2 2 k (230) 
and we obtain:

[b n ] p = T T M (X p ( )) (231) 
in which: For the TM-BSCs, (n m) odd, m = l + 1, l 0, we introduce: and we obtain:

T T M (X p ( )) = i
I T M o (X( ) J T M o (X( ) = kN A Z 0 1 k jlj+1 ( k ) n 2 (k 2 2 ) 1=4 exp[ c( )] C( ) D( ) X( )d (235) 
[b n ] p = V T M (X p ( )) (237) 
in which: 

V T M (X p ( )) = i

6.3

Solving the reduced recurrence relation.

The reduced recurrence relation involves Laguerre-Gauss polynomials. To get a still simpler recurrence relation, i.e. not involving any Laguerre-Gauss polynomials, we set:

X p ( ) = p X =0 k p L l (b( )), 8p (241) 
Let us however note that the present work is devoted to Laguerre-Gauss beams focused by a lens, with the restriction that we have considered BSCs in spherical coordinates for parallel illumination, in on-axis situations. For the sake of completeness, we now serve again comments already introduced in [START_REF] Gouesbet | Finite series expressions to evaluate the beam shape coe¢ cients of a Laguerre-Gauss beam freely propagating[END_REF]. and in [START_REF] Votto | Evaluation of beam shape coe¢ cients of paraxial Laguerre-Gauss beam freely propagating by using three remodeling methods[END_REF]. BSCs for other kinds of curvilinear systems of coordinates can afterward be obtained from the BSCs in spherical coordinates by using an extrinsic method, see [START_REF] Gouesbet | List of problems for future research in generalized Lorenz-Mie theories and related topics, review and prospectus; commemorative invited paper, for the 50th anniversary of "Applied Optics[END_REF] for the de…nition of intrinsic and extrinsic methods, and the introduction of [START_REF] Han | Intrinsic method for the evaluation of beam shape coe¢ cients in spheroidal coordinates for oblique illumination[END_REF] for a review of extrinsic methods in spheroidal and cylindrical coordinates. BSCs for oblique illumination may be deduced from the BSCs for parallel illumination by using rules of transformations of BSCs under rotation of coordinate systems [START_REF] Gouesbet | Transformations of spherical beam shape coe¢ cients in generalized Lorenz-Mie theories through rotations of coordinate system. I. General formulation[END_REF], [START_REF] Wang | Transformations of spherical beam shape coe¢ cients in generalized Lorenz-Mie theories through rotations of coordinate system. II. Axisymmetric beams[END_REF], [START_REF] Gouesbet | Transformations of spherical beam shape coe¢ cients in generalized Lorenz-Mie theories through rotations of coordinate system. III. Special values of Euler angles[END_REF], [START_REF] Gouesbet | Transformations of spherical beam shape coe¢ cients in generalized Lorenz-Mie theories through rotations of coordinate system[END_REF], [START_REF] Gouesbet | Transformations of spherical beam shape coe¢ cients in generalized Lorenz-Mie theories through rotations of coordinate system. V. Localized beam models[END_REF]. BSCs for o¤axis situations can be obtained from the BSCs for on-axis situations by using translation theorems [START_REF] Doicu | Computation of the beam-shape-coe¢ cients in the generalized Lorenz-Mie theory by using the translational addition theorem for spherical vector wave functions[END_REF] or by introducing the o¤-axis expressions of the …elds right at the beginning of the algebraic treatment, as actually done in the case of Gaussian beams, see [START_REF] Gouesbet | Expressions to compute the coe¢ cients g m n in the generalized Lorenz-Mie theory, using …nite series[END_REF]. The last procedure however requires an extra-algebraic work. It is indeed a defect of the …nite series technique that each modi…cation of the …eld expressions requires an extra-algebraic work before implementation in computer programs, although it has been stated that the "whole process may be in principle carried out in an automatic way by using a formal computation procedure which would furthermore generate FORTRAN sources" ([3], p. 121).

A next paper shall present numerical results, including the comparison between the three basic methods used to evaluate BSCs of structured beams (quadratures, localized approximations, …nite series). Another prospect must be mentioned. In the case of Laguerre-Gauss beams freely propagating, the expressions for the electric …eld and for the magnetic …eld presented a high degree of symmetry, so that the TE-BSCs and the TM-BSCs were related by very simple relations. This is not the case in the present work devoted to Laguerre-Gauss beams focused by a lens due to a lack of symmetry between the expressions of the electric and magnetic …elds. This suggests that it should be possible to introduce improved expressions of Laguerre-Gauss beams by a symmetrization of the …elds. Such a symmetrization of …elds has already been carried out in the case of paraxial Gaussian beams described in the Davis framework [START_REF] Lock | Rigorous justi…cation of the localized approximation to the beam shape coe¢ cients in generalized Lorenz-Mie. I. On-axis beams[END_REF], [START_REF] Gouesbet | Rigorous justi…cation of the localized approximation to the beam shape coe¢ cients in generalized Lorenz-Mie theory. II. O¤-axis beams[END_REF]. As a …nal remark related to forthcoming numerical computations, and relying on previous works concerning the calculations of BSCs by using …nite series, particularly concerning Laguerre-Gauss beam freely propagating [START_REF] Votto | Evaluation of beam shape coe¢ cients of paraxial Laguerre-Gauss beam freely propagating by using three remodeling methods[END_REF], no concergence problem is expected concerning the numerical implementation of the expressions derived in the present paper. 
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The BSCs then are found to read as:

Third case, m = l 1; l = 0:

Again, for this third case, the expressions for the BSCs are obtained by forcing l = 0 in the r.h.s. of Eq.200:

6 Recurrence equations.

In this section, we examine how to deal with the recurrence equations in which [b n ] p is expressed in terms of [b n ] p 1 and [b n ] p 2 . We begin with the case of TE-BSCs for (n m) even, m = l + 1; l 0 for which we shall provide details.

6.1

TE-BSCs, (n m) even, m = l + 1; l 0:

Eqs.154, 155, 158, 159, 163, 164 lead us to de…ne:

in which A( ) and B( ) are given by Eqs.146-147. From Eqs.154-155, we have:

This is readily shown to be valid for p = 0, 1 with initial values given by Eqs.216-217, reading as:

and afterward demonstrated to be valid 8p by recurrence. Inserting Eq.241 in the reduced recurrence relation Eq.219, we obtain recurrence relations of the coe¢ cients k p reading as, for p 2:

with initial values for p = 0; 1 given by Eq.242. The …rst two lines of Eq.243 may then be rewritten as:

We examined whether it would be possible to solve these last equations for obtain closed form solutions. From this last investigation, it has been found that the answer is likely to be positive but that the closed form solutions obtained would be very clumsy and ine¢ cient. We therefore believe that Eqs.243-244 are the best which can be done.

Conclusion.

After the success encountered when designing …nite solutions in the case of (paraxial) Laguerre-Gauss beams freely propagating [START_REF] Votto | Evaluation of beam shape coe¢ cients of paraxial Laguerre-Gauss beam freely propagating by using three remodeling methods[END_REF], [START_REF] Gouesbet | Finite series expressions to evaluate the beam shape coe¢ cients of a Laguerre-Gauss beam freely propagating[END_REF], it has been decided to investigate the use of …nite series to the evaluations of BSCs in the case of Laguerre-Gauss beams focused by a lens, in order to overcome the limitations inherent to the use of quadratures (too time-consuming) and of localized approximations (lack of accuracy in the case of helical beams). The present paper therefore establishes the …nite series expressions required to evaluate BSCs of Laguerre-Gauss beams focused by a lens.