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Abstract
Pursuing a study concerning the evaluation of Beam Shape Coeffi -

cients (BSCs) of Laguerre-Gauss beams, after having dealt with the case
of beams freely propagating, the present paper establishes finite series
expressions to evaluate the BSCs of Laguerre-Gauss beams focused by a
lens, which have the known advantage of speeding up computations with
respect to the use of numerical quadrature techniques and which may
deal with the limitations of localized approximations in the case of beams
exhibiting topological charges and/or axicon angles.

Keywords: Generalized Lorenz-Mie theories; Extended Boundary Con-
dition Method; structured beams; T-matrix; beam shape coeffi cients; finite se-
ries; Laguerre-Gauss beams.

1 Introduction.

When dealing with T-matrix methods for the scattering of light and other
electromagnetic radiation by particles, such as analytical Generalized Lorenz-
Mie Theories (GLMTs) for particles having a suffi cient degree of symmetry
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to allow for the use of a method of separation of variables [1], [2], [3], or semi-
analytical Extended Boundary Condition Method (EBCM) for arbitrary shaped
particles [4], [5], in particular in the case of structured beams as reviewed in [6],
electromagnetic fields may be expanded over a set of vector wave functions [7].
In spherical coordinates, expansions are carried out over a set of Vector Spherical
Wave Functions (VSWFs) and expansion coeffi cients are expressed in terms of
coeffi cients known as Beam Shape Coeffi cients (BSCs) usually denoted as gmn,TM
and gmn,TE (TM: Transverse Magnetic; TE: Transverse Electric).
The original method to evaluate the BSCs of electromagnetic beams is by

using quadratures, e.g. [8]. In the case of Laguerre-Gauss beams, either freely
propagating or focused by a lens, there is little chance to analytically solve
the quadratures to obtain closed form expressions. Hence, quadratures to the
evaluation of BSCs of Laguerre-Gauss beams have to be carried out numerically,
which is a time-consuming process. To circumvent this diffi culty, we may think
of using a localized approximation (with several variants) which may speed up
the computations by several orders of magnitude as reviewed in [9], see also [10]
for an up-dated terminology, and [11], [12] for complements. Unfortunately, it
has recently been demonstrated that any existing localized approximation has
a limited domain of validity when dealing with helical beams, i.e. having a
topological charge [13], as is the case for Laguerre-Gauss beams whether they
are freely propagating [14], [15] or focused by a lens [16].
In the case of Laguerre-Gauss beams focused by a lens, there is another

limitation due to the fact that field expressions contain axicon angles which are
not involved in the case of Laguerre-Gauss beams freely propagating. The fact
that the occurrence of axicon angles implies a limited domain of validity of any
existing localized approximation has been well documented in a series of papers,
namely [17], [18], [19], [20], [21].
The arsenal of methods to evaluate BSCs however contains another tech-

nique to speed up the evaluation of BSCs, namely the use of finite series which
is a rigorous analytical method [22], [23]. Up to recently, finite series expressions
were known only in the case of Gaussian beams, and the method has been given
up due to the success encountered by the use of localized approximations. In
2009, one of us [24] wrote that the finite series technique seemingly now pos-
sessed only a historical interest. Indeed, after the original papers [22], [23], the
use of finite series has been rather scarce and, as far as we know, limited to three
papers, two in an acoustical context [25], [26], and one in an electromagnetic
context [27].
The time-consuming character of numerical evaluations when using the quadra-

ture method, and the limitations of localized approximations in the case of
beams exhibiting axicon angles and/or a topological charge, generated a re-
newal of interest in the use of finite series to the evaluation of BSCs. The case
of Laguerre-Gauss beams freely propagating, exhibiting a topological charge
(but without any axicon angle), has been considered in two papers, namely
[28] establishing the finite series expressions required to numerically implement
the method and [15] dealing with a numerical comparison of three remodel-
ing methods (quadratures, localized approximations, finite series) in the case of
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paraxial Laguerre-Gauss beams freely propagating (which do not exactly sat-
isfy Maxwell’s equations due to their paraxial character). It was concluded that,
notwithstanding a disadvantage of the finite series method, namely its lack of
flexibility insofar as it requires a fairly heavy analytical work before numerical
implementation, it is to be favoured with respect to the other methods.
This last result implies that, after having examined the case of Laguerre-

Gauss beams freely propagating, it is worthwhile to deal with the case of
Laguerre-Gauss beams focused by a lens. The present paper is therefore devoted
to the building of finite series expressions in the case of Laguerre-Gauss beams
focused by a lens which, in contrast with the case of beams freely propagating,
exhibit both a topological charge and axicon angles.
Up to now, we have expressed our motivation to the study of the finite se-

ries method to evaluate the BSCs of Laguerre-Gauss beams. This motivation is
reinforced by the many applications of such beams, in particular due to the fact
that they possess a helical wavefront allowing for the transfer of angular momen-
tum to an illuminated object, e.g. Padgett and Allen [29] who discussed orbital
angular momentum associated with helical wavefronts and applications, Garbin
et al. [30] who experimentally and numerically studied the scattering of highly
focused Laguerre-Gauss beams by dielectric and metal spheres, O’Holleran et al.
[31] who provided a 3D view of optical vortices associated with Laguerre-Gauss
modes, Friese et al. [32] who studied the transfer of optical angular momentum
to trapped absorbing particles, a study relevant to the field of optical infor-
mation. Laguerre-Gauss beams were discussed as well in the framework of a
review devoted to optical tweezers by Molloy and Padgett [33]. Other applica-
tions concerned quantum information and the entanglement of the polarization
of a single photon with its orbital angular momentum by Nagali et al. [34],
entanglement again but involving many orthogonal quantum states rather than
only two states by Mair et al. [35], object identification by measuring the joint
orbital angular momentum spectrum of two-photon states by Uribe-Patarroyo
et al. [36], optical traps to study vortices in Bose-Einstein condensates by Tem-
pere et al. [37], optical communication systems in atmospheric turbulence by
Malik et al. [38], use of vortex masks to observe dim exoplanets by Foo et al.
[39], to provide a few examples without pretending to exhaustiveness.
The paper is organized as follows. Section 2 establishes the field expressions

under a formulation which is tailored to the use of the finite series method.
Section 3 recalls a background concerning the method to be used to establish
finite series expressions. Section 4 deals with TM-BSCs and Section 5 deals with
TE—BSCs. Handling finite series expressions requires to deal with recurrence
equations which are examined in Section 6. Section 7 is a conclusion. The
reader who would like to omit the details could simply use Eqs.96, 102, 131, 140
for TM-BSCs and Eqs.165, 176, 200, 207 for TE-BSCs.

3



2 Field expressions of Laguerre-Gauss beams fo-
cused by a lens.

Expressions for Laguerre-Gauss beams focused by a lens are available from
Van de Nes et al. [40], see also van de Nes and Török [41] and Török and Munro
[42]. In the present paper, we rely on [40] who expressed the field components
in terms of cylindrical coordinates (ρ, ϕ, z) using a time-dependence of the
form exp(−iωt) which is opposite to the one usually chosen in GLMT (we shall
have later to deal with this issue). The field expressions are claimed to be for
nonparaxial beams exactly satisfying Maxwell’s equations, e.g. [40], page 682,
line 6 after Eq.(16).

2.1 Electric field.

The electric field may be written in terms of cylindrical coordinates as [40],
[41]:

E =
1

2
Epl,0(α, β) +

1

4
Epl,−2(α+ iβ, iα− β) +

1

4
Epl,2(α− iβ,−iα− β) (1)

in which:

Epl,j(α, β) =

kNA∫
0

Epl,j(η)ei(l+j)ϕ+ikzz{(αx+ βy)Jl+j(ηρ) (2)

+
η

2kz
z[(iα− β)e−iϕJl+j−1(ηρ)

−(iα+ β)eiϕJl+j+1(ηρ)]}dη

with:

Epl,j(η) =
η√
kkz

[1 + (1− |j|)kz
k

]upla(η)Llp[b(η)] exp[−c(η)] (3)

and:

a(η) = (η
kS
k
Rf )|l| (4)
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b(η) = η2
k2S
k2
R2f (5)

c(η) = η2
k2S
2k2

R2f (6)

upl = (−1)pkS

√
p!

π(p+ |l|)! (7)

kz =
√
k2 − η2 (8)

In the quadrature of Eq.2, Van de Nes et al. [40] denoted the variable
of integration as kr having the meaning of a radial wavenumber. Insofar as it
is actually a dummy variable, we preferred to denote it as η. The latin symbols
x, y and z denote unit vectors along the Cartesian axis. The greek symbols α
and β denote states of polarization, along x and y respectively. Jn(.) are Bessel
functions of the first kind and Llp(.) are generalized Laguerre polynomials defined
as follows [43], [44]:

Lνµ(x) =
1

µ!

µ∑
i=0

µ!

i!

(
ν + µ
µ− i

)
(−x)i (9)

in which () denotes a binomial coeffi cient. The "usual" Laguerre polyno-
mials Lµ(x) are L0µ(x). The associated Laguerre polynomials can be evaluated
recursively from the first two polynomials as follows:

Ll0(x) = 1 (10)

Ll1(x) = 1 + l − x (11)

Llp(x) = (Ap −
x

p
)Llp−1(x)−BpLlp−2(x) (12)

in which:

Ap =
2p− 1 + l

p
(13)
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Bp =
p− 1 + l

p
(14)

Furthermore, according to the authors kS is given by
√
k/z0, in which

z0 is the Rayleigh range. This Rayleigh range may be written as z0 = kw20/2,
e.g. page 2 of [45] to be compared with Eq.(4.38), page 102, of Gouesbet and
Gréhan [3]. Introducing the beam shape factor s = 1/(kw0), also called the
confinement factor, e.g. [3], we obtain kS =

√
2/w0. Finally, Rf is the focal

length and NA is the numerical aperture of the imaging system.
To proceed further, we now need Cartesian components. Introducing:

Elp(η) =
η

2
√
kkz

upla(η)Llp[b(η)] exp[−c(η)]eilϕeikzz (15)

the Cartesian components are found to read as:

Ex =

kNA∫
0

Elp(η)[α(1 +
kz
k

)Jl(ηρ) +
α+ iβ

2
(1− kz

k
)e−2iϕJl−2(ηρ) (16)

+
α− iβ

2
(1− kz

k
)e2iϕJl+2(ηρ)]dη

Ey =

kNA∫
0

Elp(η)[β(1 +
kz
k

)Jl(ηρ) +
iα− β

2
(1− kz

k
)e−2iϕJl−2(ηρ) (17)

+
−iα− β

2
(1− kz

k
)e2iϕJl+2(ηρ)]dη

Ez =

kNA∫
0

Elp(η)
η

k
[(iα− β)e−iϕJl−1(ηρ)− (iα+ β)eiϕJl+1(ηρ)]dη (18)

We now express these results in spherical coordinates (r, θ, ϕ). For this,
we introduce the fact that:

kS
k

=

√
2

kw0
=
√

2s (19)
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so that we now have:

a(η) = (η
kS
k
Rf )|l| = (

√
2ηsRf )|l| (20)

b(η) = η2
k2S
k2
R2f = 2η2s2R2f (21)

c(η) = η2
k2S
2k2

R2f = η2s2R2f (22)

Let us note that Eq.3 for Epl,j(η) used in [40] is different from the one
used in Eq.(3) of [41].The ratio of Epl,j(η) of Eq.3 over the one of Eq.(3) of [41]
is found to be equal to il−1Rf/

√
1 + δ0l and can be absorbed in E0. Then, to

get rid of irrelevant constants, we introduce an electric strength E0 according
to:

E0 =
1√
2k

(−1)p

√
p!

π(p+ |l|)!ks(
√

2sRf )|l| (23)

and recall, for further use, that H0/E0 =
√
ε/µ. We then obtain the electric

field components in terms of spherical coordinates according to:

Elp(η) = E0
η|l|+1√√
k2 − η2

Llp[b(η)] exp[−c(η)]eilϕei
√
k2−η2r cos θ (24)

Ex =

kNA∫
0

Elp(η)[α(1 +

√
k2 − η2
k

)Jl(ηr sin θ) (25)

+
α+ iβ

2
(1−

√
k2 − η2
k

)e−2iϕJl−2(ηr sin θ)

+
α− iβ

2
(1−

√
k2 − η2
k

)e2iϕJl+2(ηr sin θ)]dη
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Ey =

kNA∫
0

Elp(η)[β(1 +

√
k2 − η2
k

)Jl(ηr sin θ) (26)

+
iα− β

2
(1−

√
k2 − η2
k

)e−2iϕJl−2(ηr sin θ)

+
−iα− β

2
(1−

√
k2 − η2
k

)e2iϕJl+2(ηr sin θ)]dη

Ez =

kNA∫
0

Elp(η)
η

k
[(iα−β)e−iϕJl−1(ηr sin θ)−(iα+β)eiϕJl+1(ηr sin θ)]dη (27)

2.2 Magnetic field.

Similarly, the magnetic field is expressed as:

H =
1

2
Hpl,0(α, β) +

1

4
Hpl,−2(α+ iβ, iα− β) +

1

4
Hpl,2(α− iβ,−iα− β) (28)

in which:

Hpl,j(α, β) =

√
ε

µ

kNA∫
0

Epl,j(η)

2kkz
ei(l+j)ϕ+ikzz (29)

{(−βx+ αy)(2k2 − η2)Jl+j(ηρ)

+
η2

2
[(x+iy)(iα− β)e−2iϕJl+j−2(ηρ)

−(x− iy)(iα+ β)e2iϕJl+j+2(ηρ)]

−ηkzz[(α+ iβ)Jl+j−1e
−iϕ(ηρ) + (α− iβ)eiϕJl+j+1(ηρ)]}dη

in which we used the same notations than for the electric field, including
Eq.3 for Epl,j(η). Let us also introduce :

H l
p(η) =

η|l|+1

k
√

2(k2 − η2)3/4
Llp[b(η)] exp[−c(η)] (30)
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From Eqs.28 and 29 we then establish :

[Hpl,0(α, β)]x =

kNA∫
0

H0H
l
p(η)eilϕei

√
k2−η2z(1 +

√
k2 − η2
k

) (31)

{−β(2k2 − η2)Jl(ηρ)

+
η2

2
[(iα− β)e−2iϕJl−2(ηρ)− (iα+ β)e2iϕJl+2(ηρ)]}dη

[Hpl,−2(α, β)]x =

kNA∫
0

H0H
l
p(η)eilϕei

√
k2−η2z(1−

√
k2 − η2
k

) (32)

{−β(2k2 − η2)e−2iϕJl−2(ηρ)

+
η2

2
[(iα− β)e−4iϕJl−4(ηρ)− (iα+ β)Jl(ηρ)]}dη

[Hpl,2(α, β)]x =

kNA∫
0

H0H
l
p(η)eilϕei

√
k2−η2z(1−

√
k2 − η2
k

) (33)

{−β(2k2 − η2)e2iϕJl+2(ηρ)

+
η2

2
[(iα− β)Jl(ηρ)− (iα+ β)e4iϕJl+4(ηρ)]}dη

from which we obtain [Hpl,−2(α + iβ, iα − β)]x, [Hpl,2(α − iβ,−iα − β)]x
and, eventually:

Hx =

kNA∫
0

H0H
l
p(η)eilϕei

√
k2−η2z (34)

{1

2
Jl(ηρ)β[−(1 +

√
k2 − η2
k

)(2k2 − η2) + (1−
√
k2 − η2
k

)η2]

+
1

4
e−2iϕJl−2(ηρ)(iα− β)[η2(1 +

√
k2 − η2
k

)− (1−
√
k2 − η2
k

)(2k2 − η2)]

−1

4
e2iϕJl+2(ηρ)(iα+ β)[η2(1 +

√
k2 − η2
k

)− (1−
√
k2 − η2
k

)(2k2 − η2)]}dη
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For the y-component, we first write:

[Hpl,0(α, β)]y =

kNA∫
0

H0H
l
p(η)eilϕei

√
k2−η2z(1 +

√
k2 − η2
k

) (35)

{α(2k2 − η2)Jl(ηρ)

+
iη2

2
[(iα− β)e−2iϕJl−2(ηρ) + (iα+ β)e2iϕJl+2(ηρ)]}dη

[Hpl,−2(α, β)]y =

kNA∫
0

H0H
l
p(η)eilϕei

√
k2−η2z(1−

√
k2 − η2
k

) (36)

{α(2k2 − η2)e−2iϕJl−2(ηρ)

+
iη2

2
[(iα− β)e−4iϕJl−4(ηρ) + (iα+ β)Jl(ηρ)]}dη

[Hpl,2(α, β)]y =

kNA∫
0

H0H
l
p(η)eilϕei

√
k2−η2z(1−

√
k2 − η2
k

) (37)

{α(2k2 − η2)e2iϕJl+2(ηρ)

+
iη2

2
[(iα− β)Jl(ηρ) + (iα+ β)e4iϕJl+4(ηρ)]}dη

from which we obtain [Hpl,−2(α + iβ, iα − β)]y, [Hpl,2(α − iβ,−iα − β)]y
and, eventually:

Hy =

kNA∫
0

H0H
l
p(η)eilϕei

√
k2−η2z (38)

{1

2
Jl(ηρ)α[(1 +

√
k2 − η2
k

)(2k2 − η2)− (1−
√
k2 − η2
k

)η2]

+
i

4
e−2iϕJl−2(ηρ)(iα− β)[η2(1 +

√
k2 − η2
k

)− (1−
√
k2 − η2
k

)(2k2 − η2)]

+
i

4
e2iϕJl+2(ηρ)(iα+ β)[η2(1 +

√
k2 − η2
k

)− (1−
√
k2 − η2
k

)(2k2 − η2)]}dη

10



Finally, for the z-component:

[Hpl,0(α, β)]z =

kNA∫
0

H0
η|l|+1

k
√

2
Llp[b(η)] exp[−c(η)]eilϕei

√
k2−η2z −1√√

k2 − z2
(39)

(1 +

√
k2 − η2
k

)η[(α+ iβ)e−iϕJl−1(ηρ) + (α− iβ)eiϕJl+1(ηρ)]}dη

[Hpl,−2(α, β)]z =

kNA∫
0

H0
η|l|+1

k
√

2
Llp[b(η)] exp[−c(η)]eilϕei

√
k2−η2z −1√√

k2 − z2
(40)

(1−
√
k2 − η2
k

)η[(α+ iβ)e−3iϕJl−3(ηρ) + (α− iβ)e−iϕJl−1(ηρ)]}dη

[Hpl,2(α, β)]z =

kNA∫
0

H0
η|l|+1

k
√

2
Llp[b(η)] exp[−c(η)]eilϕei

√
k2−η2z −1√√

k2 − z2
(41)

(1−
√
k2 − η2
k

)η[(α+ iβ)eiϕJl+1(ηρ) + (α− iβ)e3iϕJl+3(ηρ)]}dη

from which we obtain [Hpl,−2(α + iβ, iα − β)]z, [Hpl,2(α − iβ,−iα − β)]z
and:

Hz =

kNA∫
0

H0
η|l|+2

k
√

2
Llp[b(η)] exp[−c(η)]eilϕei

√
k2−η2z −1√√

k2 − z2
(42)

1

2
{(1 +

√
k2 − η2
k

)[(α+ iβ)e−iϕJl−1(ηρ) + (α− iβ)eiϕJl+1(ηρ)]

+(1−
√
k2 − η2
k

)[(α+ iβ)e−iϕJl−1(ηρ) + (α− iβ)eiϕJl+1(ηρ)]}dη

which simplifies to:

Hz =

kNA∫
0

H0
η|l|+2

k
√

2
Llp[b(η)] exp[−c(η)]eilϕei

√
k2−η2z −1√√

k2 − z2
(43)

[(α+ iβ)e−iϕJl−1(ηρ) + (α− iβ)eiϕJl+1(ηρ)]dη
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3 Neumann expansion theorem (NET) and NET-
procedure.

In this section, we express the Neumann expansion theorem (NET-theorem)
and the NET-procedure to be used to derive the finite series expressions to the
evaluations of BSCs.

3.1 Neumann Expansion Theorem (NET).

Although the way to use the NET, relying on Neumann or Bessel function
expansions, has already been published in the literature, e.g. [3], pp. 121-124,
[28], and references therein, it is concisely reproduced here for the convenience
of the reader. It starts with a result published by Watson [46], pp. 524-525. Let
us consider an equation of the form:

x1/2g(x) =

∞∑
n=0

cnJn+1/2(x) (44)

in which Jn+1/2(.) are classical half-order Bessel functions (with x not to
be confused with the Cartesian coordinate) and g(x) is a function (not to be
confused with a BSC, which also uses the symbol g). The Maclaurin expansion
of the function g(x) reads as:

g(x) =

∞∑
n=0

bnx
n (45)

Then the NET states that the coeffi cients cn are given by:

cn = (n+
1

2
)

≤n/2∑
m=0

2
1
2+n−2m

Γ( 12 + n−m)

m!
bn−2m (46)

in which Γ is the celebrated Gamma function satisfying Γ(n) = (n− 1)! and
Γ(z+1) = zΓ(z). We then have two ways of expressing the coeffi cients cn, either
from the Bessel function expansion of Eq.44 or from the Maclaurin expansion
of Eq.45, using Eq.46. Equating the two resulting expressions will allow one to
establish finite series expressions for the BSCs. This is done using what may be
called the NET-procedure.
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3.2 The NET-procedure.

Before explaining the NET-procedure, we have to introduce what we call
the P- and N-conventions, "P" standing for "Positive" and "N" standing for
"Negative". The P-convention and the N-convention assume that we deal with
a time-dependence of the form exp(iωt) and exp(−iωt), respectively. The letters
P and N may be used between parentheses to specify which convention is to be
used. For instance the electromagnetic fields derived in Section 2 may then be
more explicitly denoted as E(N) and H(N). Conversely, the NET-procedure
described in the present subsection relies on the use of the P-convention which
is the usual convention used in GLMT.

The procedure then starts with the expressions of the radial electric Er
and magnetic Hr field components in spherical coordinates (r, θ, ϕ) which may
be expressed as, e.g. Eqs.(3.10) and (3.19) of [3]:

(
Er(P )
Hr(P )

)
=

(
E0(P )
H0(P )

) ∞∑
n=1

+n∑
m=−n

(47)

cpwn

(
gmn,TM (P )

gmn,TE(P )

)
n(n+ 1)

r
Ψ(1)
n (kr)P |m|n (cos θ) exp(imϕ)

in which E0, H0 are field strengths, gmn,TM (P ) and gmn,TE(P ) are the BSCs to
be evaluated within the framework of the NET-procedure, k is the wavenumber,
Ψ
(1)
n (.) denote the first-order spherical Bessel functions also denoted as jn(.), and

P
|m|
n (.) are associated Legendre functions defined by using Hobson’s notation
[47]. Furthermore cpwn (with pw standing for "plane wave") denotes expansion
coeffi cients which appear in the Bromwich formulation of the classical Lorenz-
Mie theory [48] according to:

cpwn =
(−i)n
ik

2n+ 1

n(n+ 1)
(48)

Afterward, we discard the ϕ-dependency by using the orthogonality relation:

∫ 2π

0

exp[i(m−m′)ϕ]dϕ = 2πδmm′ (49)

to obtain:

13



∫ 2π

0

(
Er(P )
Hr(P )

)
exp(−imϕ)dϕ (50)

= 2π

(
E0(P )
H0(P )

) ∞∑
n=|m|

cpwn

(
gmn,TM (P )

gmn,TE(P )

)
n(n+ 1)

r
Ψ(1)
n (kr)P |m|n (cos θ)

in which we took account of the fact that P |m|n = 0 if n < |m|. The next
step is to discard the θ-dependency as well. This may be done in two ways. The
first way is to specify θ = π/2 in Eq.50 and to invoke the following relations for
associated Legendre functions [47]:

Pmn (0) = (−1)
n+m
2

(n+m− 1)!!

2
n−m
2 (n−m2 )!

, (n−m) even (51)

Pmn (0) = 0, (n−m) odd (52)

in which:

n!! = 1.3.5...n
(−1)!! = 1

}
(53)

to be completed with, for a better-looking expression:

n!! =
2
n+1
2

√
π

Γ(
n

2
+ 1) (54)

Furthermore, we have [46], [49]:

Ψ(1)
n (kr) =

√
π

2kr
Jn+ 1

2
(kr) (55)

Eq.50 may then be rewritten as:

(kr)1/2
∫ 2π

0

r

(
Er(θ = π/2, P )
Hr(θ = π/2, P )

)
exp(−imϕ)dϕ (56)

= π
√

2π

(
E0(P )
H0(P )

) ∞∑
n=|m|,(n−m) even

cpwn n(n+ 1)

(
gmn,TM (P )

gmn,TE(P )

)
P |m|n (0)Jn+1/2(kr)
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Later on, this equation, specified for the Laguerre-Gauss beams under
study, will be given the form of Eq.44 and will allow one to express the BSCs
using finite series expressions, with however the restriction that we must have
(n−m) even. For (n−m) odd, Eq.50 is differentiated with respect to cos θ, in
order to take advantage of the relations:

[
dPmn (cos θ)

d cos θ
]cos θ=0 = 0, (n−m) even (57)

[
dPmn (cos θ)

d cos θ
]cos θ=0 = (−1)

n+m−1
2

(n+m)!!

2
n−m−1

2 (n−m−12 )!
, (n−m) odd (58)

Then, instead of Eq.56, we obtain:

(kr)1/2
∫ 2π

0

r[
∂

∂ cos θ

(
Er(P )
Hr(P )

)
]θ=π/2 exp(−imϕ)dϕ (59)

= π
√

2π

(
E0(P )
H0(P )

) ∞∑
n=|m|,(n−m) odd

cpwn n(n+ 1)

(
gmn,TM (P )

gmn,TE(P )

)
[
dP
|m|
n (cos θ)

d cos θ
]cos θ=0Jn+1/2(kr)

which will later be given the form of Eq.44 and will allow one to obtain finite
series expressions for the BSCs of Laguerre-Gauss beams for (n−m) odd.

3.3 Relationships between P- and N-conventions.

In the sequel, instead of using Eq.47, we found convenient to use:

(
Er(N)
Hr(N)

)
=

(
E0(N)
H0(N)

) ∞∑
n=1

+n∑
m=−n

(60)

cpwn

(
gmn,TM (N)

gmn,TE(N)

)
n(n+ 1)

r
Ψ(1)
n (kr)P |m|n (cos θ) exp(imϕ)

But we have [11]:

Xr(N) = Xr(P )∗, X = E or H (61)
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Inserting Eq.61 into Eq.60, taking the complex conjugate from the re-
sult, changing m to (−m), substracting from Eq.47, and using Eq.48, we obtain:

(
gmn,TM (P )

gmn,TE(P )

)
= (−1)n+1

(
g−m∗n,TM (N)

g−m∗n,TE(N)

)
(62)

As a remark, let us immediately note that we shall find, in the present
paper, that BSCs with the N-convention will be different from 0 only for m =
l + 1 and m = l − 1. Eq.62 then implies that BSCs with the P-convention will
be different from 0 only for m = −l−1 and m = −l+1. This is indeed what we
observed using quadratures and localized approximations with the P-convention,
see Eqs.(47)-(48) and Table 2 in [50].

4 TransverseMagnetic Beam Shape Coeffi cients.

4.1 (n-m) even.

We start from Eq.56 specified for the electric field and rewritten using the
N-convention:

(kr)1/2
∫ 2π

0

rEr(θ = π/2, N) exp(−imϕ)dϕ (63)

= π
√

2πE0(N)

∞∑
n=|m|,(n−m) even

cpwn n(n+ 1)gmn,TM (N)P |m|n (0)Jn+1/2(kr)

From Eqs.16 and 17, we readily establish expressions for Ex(θ = π/2, N)
and Ey(θ = π/2, N) and, converting cos. and sin. to exponentials, we find:

Er(θ = π/2, N) = E0(N)[(F lp)1e
i(l+1)ϕ + (F lp)−1e

i(l−1)ϕ] (64)

in which:

(F lp)1 =
α− iβ

2

kNA∫
0

F lp(η)[(1 +

√
k2 − η2
k

)Jl(ηr) + (1−
√
k2 − η2
k

)Jl+2(ηr)]dη

(65)
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(F lp)−1 =
α+ iβ

2

kNA∫
0

F lp(η)[(1 +

√
k2 − η2
k

)Jl(ηr) + (1−
√
k2 − η2
k

)Jl−2(ηr)]dη

(66)

with:

F lp(η) =
η|l|+1√√
k2 − η2

Llp[b(η)] exp[−c(η)] (67)

We then insert Eq.64 into Eq.63, use Eq.48 and rearrange to obtain:

i(kr)1/2kr

π
√

2π

∫ 2π

0

[(F lp)1e
i(l+1)ϕ + (F lp)−1e

i(l−1)ϕ]e−imϕdϕ (68)

=

∞∑
n=|m|,(n−m) even

(−i)n(2n+ 1)gmn,TM (N)P |m|n (0)Jn+1/2(kr)

To get rid of the integral over ϕ in Eq.68, we then use the orthogonality
relation of Eq.49, and introduce x = kr to obtain:

i

√
2

π
x1/2x[(F lp)1δm,l+1 + (F lp)−1δm,l−1] (69)

=

∞∑
n=|m|,(n−m) even

(−i)n(2n+ 1)gmn,TM (N)P |m|n (0)Jn+1/2(x)

We now have to distinguish three cases, as follows.

First case : m = l + 1, l ≥ 0

Eq.69 becomes (introducing an extra-subscript "p" for further conve-
nience) :

x1/2[g(x)]p =

∞∑
n=l+1,(n−l) odd

(−i)n(2n+ 1)[gl+1n,TM (N)]pP
l+1
n (0)Jn+1/2(x) (70)
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in which we recall that l is an index for the Laguerre-Gauss function in Eq.3
and:

[g(x)]p = i

√
2

π
x(F lp)1 (71)

Hence :

cn = (−i)n(2n+ 1)[gl+1n,TM (N)]pP
l+1
n (0), n ≥ l + 1, n− l odd (72)

cn = 0 otherwise (73)

For the sequel, we shall use Eqs.10-12 and [43]:

Jn(x) =

∞∑
s=0

(−1)s

s!(n+ s)!

xn+2s

2n+2s
(74)

We are now going to evaluate the coeffi cients bn, starting with p = 0, 1
which shall initialize recurrence relations. For p = 0, we have from Eqs.71, 67,
65 and 10:

[g(x)]0 = i

√
2

π
x(F l0)1 (75)

in which :

(F l0)1 =
α− iβ

2

kNA∫
0

η|l|+1√√
k2 − η2

exp[−c(η)][(1+

√
k2 − η2
k

)Jl(
ηx

k
)+(1−

√
k2 − η2
k

)Jl+2(
ηx

k
)]dη

(76)

Eq.75 contains the quantities xJl(ηx/k) and xJl+2(ηx/k) that we are
now considering. From 74, we have :
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xJl(ηx/k) =

∞∑
s=0

(−1)s

s!(l + s)!
(
η

k
)l+2s

1

2l+2s
xl+2s+1 (77)

=
∑
n=l+1

(−1)(n−l−1)/2

(n−l−12 )!(l + n−l−1
2 )!

(
η

k
)n−1

1

2n−1
xn

=
∑
n=0

ε(n; 0, 1, ..., l)
(−1)(n−l−1)/2

(n−l−12 )!(l + n−l−1
2 )!

(
η

k
)n−1

1

2n−1
xn

We conveniently introduce the notation :

Fun =
(−1)

n−u
2

(n−u2 )!(u+ n−u
2 )!

=
(−1)n−u2

(n−u2 )!(n+u2 )!
(78)

Hence, we have :

xJl(ηx/k) =

∞∑
n=0

ε(n; 0, 1, ..., l)F ln−1(
η

k
)n−1

1

2n−1
xn (79)

Similarly, we establish :

xJl+2(ηx/k) =

∞∑
n=0

ε(n; 0, 1, ..., l + 2)F l+2n−1(
η

k
)n−1

1

2n−1
xn (80)

and, for further use :

xJl−2(ηx/k) =

∞∑
n=0

ε(n; 0, 1, ..., l − 2)F l−2n−1(
η

k
)n−1

1

2n−1
xn (81)

Inserting Eqs.79 and 80 into Eqs.75-76, we obtain :

[g(x)]0 = i

√
2

π

α− iβ
2

∞∑
n=0

1

2n−1
[ε(n; 0, 1, ..., l)F ln−1A

n
l0 (82)

+ε(n; 0, 1, ..., l + 2)F l+2n−1B
n
l0]x

n
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in which :

Anlp =

kNA∫
0

η|l|+1√√
k2 − η2

exp[−c(η)][(1 +

√
k2 − η2
k

)(
η

k
)n−1dη, p = 0 (83)

Bnlp =

kNA∫
0

η|l|+1√√
k2 − η2

exp[−c(η)][(1−
√
k2 − η2
k

)(
η

k
)n−1dη, p = 0 (84)

Hence :

[bn]0 = i

√
2

π

α− iβ
2n

[ε(n; 0, 1, ..., l)F ln−1A
n
l0 (85)

+ε(n; 0, 1, ..., l + 2)F l+2n−1B
n
l0]

For p = 1, the procedure is similar. To begin with, we have :

[g(x)]1 = i

√
2

π
x(F l1)1 (86)

in which :

(F l1)1 =
α− iβ

2

kNA∫
0

η|l|+1√√
k2 − η2

Ll1[b(η)] exp[−c(η)][(1+

√
k2 − η2
k

)Jl(
ηx

k
)+(1−

√
k2 − η2
k

)Jl+2(
ηx

k
)]dη

(87)

Then, using Eq.11 instead of Eq.10 :

[g(x)]1 = (l+1)[g(x)]0−i
√

2

π

α− iβ
2

∞∑
n=0

1

2n−1
[ε(n; 0, 1, ..., l)F ln−1A

n
l1+ε(n; 0, 1, ..., l+2)F l+2n−1B

n
l1]x

n

(88)
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in which :

Anlp =

kNA∫
0

η|l|+1√√
k2 − η2

b(η)Llp−1[b(η)] exp[−c(η)][(1+

√
k2 − η2
k

)(
η

k
)n−1dη, p ≥ 1

(89)

Bnlp =

kNA∫
0

η|l|+1√√
k2 − η2

b(η)Llp−1[b(η)] exp[−c(η)][(1−
√
k2 − η2
k

)(
η

k
)n−1dη, p ≥ 1

(90)

Hence, recalling Eq.82, we obtain :

[bn]1 = i

√
2

π

α− iβ
2n

{ε(n; 0, 1, ..., l)F ln−1[(l + 1)Anl0 −Anl1] (91)

+ε(n; 0, 1, ..., l + 2)F l+2n−1[(l + 1)Bnl0 −Bnl1]}

For the general case, starting from :

[g(x)]p = i

√
2

π
x(F lp)1 (92)

and using Eq.12, we arrive to a fairly obvious generalization of Eq.88 reading
as, for p > 1 :

[g(x)]p =
2p− 1 + l

p
[g(x)]p−1 −

p− 1 + l

p
[g(x)]p−2 (93)

− i
p

√
2

π

α− iβ
2

∞∑
n=0

1

2n−1
[ε(n; 0, 1, ..., l)F ln−1A

n
lp + ε(n; 0, 1, ..., l + 2)F l+2n−1B

n
lp]x

n

Hence :

[bn]p =
2p− 1 + l

p
[bn]p−1 −

p− 1 + l

p
[bn]p−2 (94)

− i
p

√
2

π

α− iβ
2n

[ε(n; 0, 1, ..., l)F ln−1A
n
lp + ε(n; 0, 1, ..., l + 2)F l+2n−1B

n
lp]
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Knowing the bn’s, we know the bn−2m’s and have a new expression for
the cn’s, namely :

cn = (n+
1

2
)

≤n/2∑
m=0

2
1
2+n−2m

Γ( 12 + n−m)

m!
[bn−2m]p (95)

Then, using Eqs.72, 95, 51, and rearranging, we have:

[gl+1n,TM (N)]p = in
√
π

2l+2
(−1)

n+l+1
2

(n−l−12 )!

Γ(n+l2 + 1)

≤n/2∑
m=0

2
1
2+n−2m

Γ( 12 + n−m)

m!
[bn−2m]p

(96)

Second case : m = l − 1, l > 0

Instead of Eqs.70 and 71, we now have :

x1/2[g(x)]p =

∞∑
n=l−1,(n−l) odd

(−i)n(2n+ 1)[gl−1n,TM ]pP
l−1
n (0)Jn+1/2(x) (97)

in which :

[g(x)]p = i

√
2

π
x(F lp)−1 (98)

Comparing (F lp)1 and (F lp)−1, see Eqs.65 and 66, we see that, from the
previous case, we have to change (α− iβ) to (α+ iβ), and xJl+2(x) to xJl−2(x),
i.e. we have to use Eq.81 instead of Eq.80. We also have to change (l + 1) to
(l − 1). Hence, Eqs.85, 91 and 94 are changed to :

[bn]0 = i

√
2

π

α+ iβ

2n
[ε(n; 0, 1, ..., l)F ln−1A

n
l0 (99)

+ε(n; 0, 1, ..., l − 2)F l−2n−1B
n
l0]

[bn]1 = i

√
2

π

α+ iβ

2n
{ε(n; 0, 1, ..., l)F ln−1[(l + 1)Anl0 −Anl1] (100)

+ε(n; 0, 1, ..., l − 2)F l−2n−1[(l + 1)Bnl0 −Bnl1]}
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[bn]p =
2p− 1 + l

p
[bn]p−1 −

p− 1 + l

p
[bn]p−2 (101)

− i
p

√
2

π

α+ iβ

2n
[ε(n; 0, 1, ..., l)F ln−1A

n
lp + ε(n; 0, 1, ..., l − 2)F l−2n−1B

n
lp]

Then, proceeding as in the first case, we obtain:

[gl−1n,TM (N)]p = in
√
π

2l
(−1)

n+l−1
2

(n−l+12 )!

Γ(n+l2 )

≤n/2∑
m=0

2
1
2+n−2m

Γ( 12 + n−m)

m!
[bn−2m]p

(102)

Third case : m = l − 1, l = 0.

This case corresponds to m = −1. From the fact that the formulation
involves P |m|n rather than Pmn , this case identifies with the first case for m = 1,
that is to say with the first case for l = 0. The result for the present third case
is then obtained by forcing l = 0 in the r.h.s. of Eq.96 leading to:

[g−1n,TM (N)]p = in
√
π

4
(−1)

n+1
2

(n−12 )!

Γ(n2 + 1)

≤n/2∑
m=0

2
1
2+n−2m

Γ( 12 + n−m)

m!
[bn−2m]p

(103)

Note however that the corresponding recurrence equation Eq.101 is not
valid for l = 0 (and incidently for l = 1) as well due to the ineffi cient definition
of the expression ε(n; 0, 1, ..., l − 2)F l−2n−1 involved in it. This diffi culty may be
overcome by rederiving the corresponding results using however the relation
J−n(x) = (−1)nJn(x). The cases l = 0 and 1 are therefore to be viewed as
special cases which would deserve a particular study which is postponed to
future work. These remarks are valid as well for three other "third cases"
described below.

4.2 (n-m) odd.

For the case (n−m) odd, instead of Eq.63, we have to use, from Eq.59:
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(kr)1/2
∫ 2π

0

r[
∂Er(cos θ,N)

∂ cos θ
]θ=π/2 exp(−imϕ)dϕ (104)

= π
√

2πE0(N)

∞∑
n=|m|,(n−m) odd

cpwn n(n+ 1)gmn,TM (N)[
dP
|m|
n (cos θ)

d cos θ
]cos θ=0Jn+1/2(kr)

From results in Section 2, we derive after a bit of standard algebra:

[
∂Er(cos θ)

∂ cos θ
]θ=π/2 = E0[(G

l
p)1e

i(l+1)ϕ + (Glp)−1e
i(l−1)ϕ] (105)

in which :

(Glp)1 =

∫ kNA

0

Glp(η)
iα+ β

2
{r
√
k2 − η2[(1 +

√
k2 − η2
k

)Jl(ηr) (106)

+(1−
√
k2 − η2
k

)Jl+2(ηr)]− 2
η

k
Jl+1(ηr)}dη

(Glp)−1 =

∫ kNA

0

Glp(η)
iα− β

2
{r
√
k2 − η2[(1 +

√
k2 − η2
k

)Jl(ηr) (107)

+(1−
√
k2 − η2
k

)Jl−2(ηr)] + 2
η

k
Jl−1(ηr)}dη

and :

Glp(η) = F lp(η) =
η|l|+1√√
k2 − η2

Llp[b(η)] exp[−c(η)] (108)

Proceeding as in the case (n−m), we then arrive at:

i

√
2

π
x1/2x[(Glp)1δm,l+1 + (Glp)−1δm,l−1] (109)

=

∞∑
n=|m|,(n−m) odd

(−i)n(2n+ 1)gmn,TM [
dP
|m|
n (cos θ)

d cos θ
]θ=π/2Jn+1/2(x)
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As before, we now have to distinguish three cases, as follows:

First case : m = l + 1, l ≥ 0

Eq.109 becomes (introducing an extra-subscript "p") :

x1/2[g(x)]p =

∞∑
n=l+1,(n−l) even

(−i)n(2n+1)[gl+1n,TM ]p[
dP l+1n (cos θ)

d cos θ
]θ=π/2Jn+1/2(x)

(110)

in which :

[g(x)]p = i

√
2

π
x(Glp)1 (111)

Hence :

cn = (−i)n(2n+ 1)[gl+1n,TM ]p[
dP l+1n (cos θ)

d cos θ
]θ=π/2, n ≥ l + 1, n− l even (112)

cn = 0 otherwise (113)

To pursue the calculations for the case (n−m) odd, we shall need:

x2Jl(ηx/k) =

∞∑
s=0

(−1)s

s!(l + s)!
(
η

k
)l+2s

1

2l+2s
xl+2s+2 (114)

=

∞∑
n=l+2

(−1)(n−l−2)/2

(n−l−22 )!(l + n−l−2
2 )!

(
η

k
)n−2

1

2n−2
xn

=

∞∑
n=0

ε(n; 0, 1, ..., l + 1)F ln−2(
η

k
)n−2

1

2n−2
xn

x2Jl+2(ηx/k) =

∞∑
n=0

ε(n; 0, 1, ..., l + 3)F l+2n−2(
η

k
)n−2

1

2n−2
xn (115)

25



xJl+1(ηx/k) =

∞∑
n=0

ε(n; 0, 1, ..., l + 1)F l+1n−1(
η

k
)n−1

1

2n−1
xn (116)

x2Jl−2(ηx/k) =

∞∑
n=0

ε(n; 0, 1, ..., l − 1)F l−2n−2(
η

k
)n−2

1

2n−2
xn (117)

xJl−1(ηx/k) =

∞∑
n=0

ε(n; 0, 1, ..., l − 1)F l−1n−1(
η

k
)n−1

1

2n−1
xn (118)

Proceeding as in the case (n−m) even, we then obtain:

[g(x)]0 = i

√
2

π

iα+ β

2
[

∞∑
n=0

ε(n; 0, 1, ..., l + 1)
F ln−2
2n−2

Cnl0 (119)

+

∞∑
n=0

ε(n; 0, 1, ..., l + 3)
F l+2n−2
2n−2

Dn
l0

−
∞∑
n=0

ε(n; 0, 1, ..., l + 1)
F l+1n−1
2n−2

Enl0]x
n

in which:

Cnl0 =

∫ kNA

0

η|l|+1 exp[−c(η)]

√√
k2 − η2 1

k
(1 +

√
k2 − η2
k

)(
η

k
)n−2dη (120)

Dn
l0 =

∫ kNA

0

η|l|+1 exp[−c(η)]

√√
k2 − η2 1

k
(1−

√
k2 − η2
k

)(
η

k
)n−2dη (121)

Enl0 =

∫ kNA

0

η|l|+1√√
k2 − η2

exp[−c(η)](
η

k
)ndη (122)

leading to:
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[bn]0 = i

√
2

π

iα+ β

2n−1
[ε(n; 0, 1, ..., l + 1)F ln−2C

n
l0 (123)

+ε(n; 0, 1, ..., l + 3)F l+2n−2D
n
l0

−ε(n; 0, 1, ..., l + 1)F l+1n−1E
n
l0]x

n

We also obtain:

[g(x)]1 = (l + 1)[g(x)]0 (124)

−i
√

2

π

iα+ β

2
[

∞∑
n=0

ε(n; 0, 1, ..., l + 1)
F ln−2
2n−2

Cnl1

+

∞∑
n=0

ε(n; 0, 1, ..., l + 3)
F l+2n−2
2n−2

Dn
l1

−
∞∑
n=0

ε(n; 0, 1, ..., l + 1)
F l+1n−1
2n−2

Enl1]x
n

in which we introduced, for p ≥ 1:

Cnlp =

∫ kNA

0

η|l|+1 exp[−c(η)][b(η)Llp−1[b(η)]

√√
k2 − η2 1

k
(1+

√
k2 − η2
k

)(
η

k
)n−2dη

(125)

Dn
lp =

∫ kNA

0

η|l|+1 exp[−c(η)][b(η)Llp−1[b(η)]

√√
k2 − η2 1

k
(1−

√
k2 − η2
k

)(
η

k
)n−2dη

(126)

Enlp =

∫ kNA

0

η|l|+1√√
k2 − η2

[b(η)Llp−1[b(η)] exp[−c(η)](
η

k
)ndη (127)

and:
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[bn]1 = i

√
2

π

iα+ β

2n−1
{ε(n; 0, 1, ..., l + 1)F ln−2[(l + 1)Cnl0 − Cnl1] (128)

+ε(n; 0, 1, ..., l + 3)F l+2n−2[(l + 1)Dn
l0 −Dn

l1]

−ε(n; 0, 1, ..., l + 1)F l+1n−1[(l + 1)Enl0 − Enl1]}

For the general case, we obtain:

[g(x)]p =
2p− 1 + l

p
[g(x)]p−1 −

p− 1 + l

p
[g(x)]p−2 (129)

− i
p

√
2

π

iα+ β

2
[

∞∑
n=0

ε(n; 0, 1, ..., l + 1)
F ln−2
2n−2

Cnlp

+

∞∑
n=0

ε(n; 0, 1, ..., l + 3)
F l+2n−2
2n−2

Dn
lp

−
∞∑
n=0

ε(n; 0, 1, ..., l + 1)
F l+1n−1
2n−2

Enlp]x
n

and:

[bn]p =
2p− 1 + l

p
[bn]p−1 −

p− 1 + l

p
[bn]p−2 (130)

− i
p

√
2

π

iα+ β

2n−1
[ε(n; 0, 1, ..., l + 1)F ln−2C

n
lp

+ε(n; 0, 1, ..., l + 3)F l+2n−2D
n
lp

−ε(n; 0, 1, ..., l + 1)F l+1n−1E
n
lp]

Proceeding again similarly as for the case (n−m) even, and recalling
Eq.58, we then obtain:

[gl+1n,TM ]p =
in
√
π

2l+3
(−1)

n+l
2

Γ(n+l2 + 3
2 )

(
n− l

2
− 1)! (131)

≤n/2∑
m=0

2
1
2+n−2m

Γ( 12 + n−m)

m!
[bn−2m]p,

for n > l + 1, (n− l) even, l > 0
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Second case : m = l − 1, l > 0

Instead of Eqs.110 and 111, we now have :

x1/2[g(x)]p =

∞∑
n=l−1,(n−l) even

(−i)n(2n+1)[gl−1n,TM ]p[
dP l−1n (cos θ)

d cos θ
]θ=π/2Jn+1/2(x)

(132)

in which :

[g(x)]p = i

√
2

π
x(Glp)−1 (133)

i.e. we now use (Glp)−1instead of (Glp)1. Comparing Eqs.106 and 107, we see
that, with respect to the previous case, we have to change (iα+ β) to (iα− β),
Jl+2 to Jl−2 (using Eq.117 instead of Eq.115) and Jl+1 to (−Jl−1) (using Eq.118
instead of Eq.116). Without having to redo the computations, we then obtain:

[g(x)]0 = i

√
2

π

iα− β
2

[

∞∑
n=0

ε(n; 0, 1, ..., l + 1)
F ln−2
2n−2

Cnl0 (134)

+

∞∑
n=0

ε(n; 0, 1, ..., l − 1)
F l−2n−2
2n−2

Dn
l0

+

∞∑
n=0

ε(n; 0, 1, ..., l − 1)
F l−1n−1
2n−2

Enl0]x
n

[bn]0 = i

√
2

π

iα− β
2n−1

[ε(n; 0, 1, ..., l + 1)F ln−2C
n
l0 (135)

+ε(n; 0, 1, ..., l − 1)F l−2n−2D
n
l0

+ε(n; 0, 1, ..., l − 1)F l−1n−1E
n
l0]
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[g(x)]1 = (l + 1)[g(x)]0 (136)

−i
√

2

π

iα− β
2

[

∞∑
n=0

ε(n; 0, 1, ..., l + 1)
F ln−2
2n−2

Cnl1

+

∞∑
n=0

ε(n; 0, 1, ..., l − 1)
F l−2n−2
2n−2

Dn
l1

+

∞∑
n=0

ε(n; 0, 1, ..., l − 1)
F l−1n−1
2n−2

Enl1]x
n

[bn]1 = i

√
2

π

iα− β
2n−1

{ε(n; 0, 1, ..., l + 1)F ln−2[(l + 1)Cnl0 − Cnl1] (137)

+ε(n; 0, 1, ..., l − 1)F l−2n−2[(l + 1)Dn
l0 −Dn

l1]

+ε(n; 0, 1, ..., l − 1)F l−1n−1[(l + 1)Enl0 − Enl1]}

[g(x)]p =
2p− 1 + l

p
[g(x)]p−1 −

p− 1 + l

p
[g(x)]p−2 (138)

− i
p

√
2

π

iα− β
2

[

∞∑
n=0

ε(n; 0, 1, ..., l + 1)
F ln−2
2n−2

Cnlp

+

∞∑
n=0

ε(n; 0, 1, ..., l − 1)
F l−2n−2
2n−2

Dn
lp

+

∞∑
n=0

ε(n; 0, 1, ..., l − 1)
F l−1n−1
2n−2

Enlp]x
n

[bn]p =
2p− 1 + l

p
[bn]p−1 −

p− 1 + l

p
[bn]p−2 (139)

− i
p

√
2

π

iα− β
2n−1

[ε(n; 0, 1, ..., l + 1)F ln−2C
n
lp

+ε(n; 0, 1, ..., l − 1)F l−2n−2D
n
lp

+ε(n; 0, 1, ..., l − 1)F l−1n−1E
n
lp]

and, eventually:
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[gl−1n,TM ]p =
in
√
π

2l+1
(−1)

n+l
2 −1

Γ(n+l2 + 1
2 )

(
n− l

2
)! (140)

≤n/2∑
m=0

2
1
2+n−2m

Γ( 12 + n−m)

m!
[bn−2m]p,

for n > l − 1, (n− l) even, l > 0

Third case : m = l − 1, l = 0

Again, similarly as for the third case of (n-m) even, we simply have to
force l = 0 in the r.h.s of Eq.131 leading to:

[g−1n,TM ]p = in
√
π

8
(−1)

n
2

(n2 − 1)!

Γ(n2 + 3
2 )

≤n/2∑
m=0

2
1
2+n−2m

Γ( 12 + n−m)

m!
[bn−2m]p (141)

5 Transverse Electric Beam Shape Coeffi cients.

Expressions for TE-BSCs are derived similarly as for the TM-BSCs, using
Hr instead of Er, and shall therefore be reported more concisely.

5.1 (n-m) even.

Instead of Eq.63, we now start from:

(kr)1/2
∫ 2π

0

rHr(θ = π/2, N) exp(−imϕ)dϕ (142)

= π
√

2πH0(N)

∞∑
n=|m|,(n−m) even

cpwn n(n+ 1)gmn,TE(N)P |m|n (0)Jn+1/2(kr)

in which, from results in Section 2 and proceeding similarly as for the TM-
BSCs, we derive:
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Hr(θ = π/2, N) = H0(N)[(H l
p)1e

i(l+1)ϕ + (H l
p)−1e

i(l−1)ϕ] (143)

in which :

(H l
p)1 =

iα+ β

4

∫ kNA

0

H l
p(η)[Jl(ηr)A(η)− Jl+2(ηr)B(η)]dη (144)

(H l
p)−1 =

β − iα
4

∫ kNA

0

H l
p(η)[Jl(ηr)A(η)− Jl−2(ηr)B(η)]dη (145)

in which H l
p(η) is given in Eq.30 and:

A(η) = (1−
√
k2 − η2
k

)η2 − (1 +

√
k2 − η2
k

)(2k2 − η2) (146)

B(η) = (1 +

√
k2 − η2
k

)η2 − (1−
√
k2 − η2
k

)(2k2 − η2) (147)

Next, inserting Eq.143 into Eq.142, and dealing with the integration
over ϕ, we obtain:

i

√
2

π
x1/2x[(H l

p)1δm,l+1 + (H l
p)−1δm,l−1] (148)

=

∞∑
n=|m|,(n−m) even

(−i)n(2n+ 1)gmn,TE(N)P |m|n (0)Jn+1/2(x)

We now again consider different cases, using an extra-subscript p for
convenience.

First case : m = l + 1, l ≥ 0.

We have :
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x1/2[g(x)]p =

∞∑
n=l+1,(n−l) odd

(−i)n(2n+ 1)[gl+1n,TE(N)]pP
l+1
n (0)Jn+1/2(x) (149)

in which :

[g(x)]p = i

√
2

π
x(H l

p)1 (150)

Then we have :

cn = (−i)n(2n+ 1)[gl+1n,TE ]pP
l+1
n (0), n ≥ l + 1, (n− l) odd (151)

cn = 0 otherwise (152)

We afterward express the bn-coeffi cients, similarly as for the TM-case,
and establish:

[g(x)]0 =
iβ − α√

π

∞∑
n=0

xn

2n+1
[ε(n; 0, 1, ..., l)F ln−1P

n
l0 (153)

−ε(n; 0, 1, ..., l + 2)F l+2n−1Q
n
l0]

in which :

Pnl0 =

∫ kNA

0

(
η

k
)n

η|l|

(k2 − η2)3/4 exp[−c(η)]A(η)dη (154)

Qnl0 =

∫ kNA

0

(
η

k
)n

η|l|

(k2 − η2)3/4 exp[−c(η)]B(η)dη (155)

and :

[bn]0 =
iβ − α√

π

1

2n+1
[ε(n; 0, 1, ..., l)F ln−1P

n
l0 (156)

−ε(n; 0, 1, ..., l + 2)F l+2n−1Q
n
l0]
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For p = 1, we obtain:

[g(x)]1 = (l + 1)[g(x)]0 (157)

− iβ − α√
π

∞∑
n=0

1

2n+1
[ε(n; 0, 1, ..., l)F ln−1P

n
l1

−ε(n; 0, 1, ..., l + 2)F l+2n−1Q
n
l1]x

n

in which :

Pnl1 =

∫ kNA

0

(
η

k
)n

η|l|

(k2 − η2)3/4 b(η) exp[−c(η)]A(η)dη (158)

Qnl1 =

∫ kNA

0

(
η

k
)n

η|l|

(k2 − η2)3/4 b(η) exp[−c(η)]B(η)dη (159)

Hence :

[bn]1 =
iβ − α√

π

1

2n+1
{ε(n; 0, 1, ..., l)F ln−1[(l + 1)Pnl0 − Pnl1] (160)

−ε(n; 0, 1, ..., l + 2)F l+2n−1[(l + 1)Qnl0 −Qnl1]}

For the general case, we find:

[g(x)]p =
2p− 1 + l

p
[g(x)]p−1 −

p− 1 + l

p
[g(x)]p−2 (161)

− iβ − α
p
√
π

∞∑
n=0

xn

2n+1
[ε(n; 0, 1, ..., l)F ln−1P

n
lp

−ε(n; 0, 1, ..., l + 2)F l+2n−1Q
n
lp]

and :

[bn]p =
2p− 1 + l

p
[bn]p−1 −

p− 1 + l

p
[bn]p−2 (162)

− iβ − α
p
√
π

1

2n+1
[ε(n; 0, 1, ..., l)F ln−1P

n
lp

−ε(n; 0, 1, ..., l + 2)F l+2n−1Q
n
lp]
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in which :

Pnlp =

∫ kNA

0

(
η

k
)n

η|l|

(k2 − η2)3/4 b(η)Llp−1[b(η)] exp[−c(η)]A(η)dη (163)

Qnlp =

∫ kNA

0

(
η

k
)n

η|l|

(k2 − η2)3/4 b(η)Llp−1[b(η)] exp[−c(η)]B(η)dη (164)

These relations are valid for p = 1 as well by virtue of {Llp−1[b(η)]}p=1 =
1. These coeffi cients being established, we then establish:

[gl+1n,TE(N)]p =
in
√
π(−1)

n+l+1
2 (n−l−12 )!

2l+2Γ(n+l2 + 1)

≤n/2∑
m=0

2
1
2+n−2m

Γ( 12 + n−m)

m!
[bn−2m]p

(165)

Second case : m = l − 1, l > 0.

We start from:

x1/2[g(x)]p =

∞∑
n=l−1,(n−l) odd

(−i)n(2n+ 1)[gl−1n,TE ]pP
l−1
n (0)Jn+1/2(x) (166)

in which :

[g(x)]p = i

√
2

π
x(H l

p)−1 (167)

Then we have :

cn = (−i)n(2n+ 1)[gl−1n,TE ]pP
l−1
n (0), n ≥ l − 1, (n− l) odd (168)

cn = 0 otherwise (169)
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Next the bn-coeffi cients are found to be:

[g(x)]0 =
α+ iβ√

π

∞∑
n=0

1

2n+1
[ε(n; 0, 1, ..., l)F ln−1P

n
l0 (170)

−ε(n; 0, 1, ..., l − 2)F l−2n−1Q
n
l0]x

n

[bn]0 =
α+ iβ√

π

1

2n+1
[ε(n; 0, 1, ..., l)F ln−1P

n
l0 (171)

−ε(n; 0, 1, ..., l − 2)F l−2n−1Q
n
l0]

[g(x)]1 = (l + 1)[g(x)]0 (172)

−α+ iβ√
π

∞∑
n=0

1

2n+1
[ε(n; 0, 1, ..., l)F ln−1P

n
l1

−ε(n; 0, 1, ..., l − 2)F l−2n−1Q
n
l1]x

n

[bn]1 =
α+ iβ√

π

1

2n+1
{ε(n; 0, 1, ..., l)F ln−1[(l + 1)Pnl0 − Pnl1] (173)

−ε(n; 0, 1, ..., l − 2)F l−2n−1[(l + 1)Qnl0 −Qnl1]}

[g(x)]p =
2p− 1 + l

p
[g(x)]p−1 −

p− 1 + l

p
[g(x)]p−2 (174)

−α+ iβ

p
√
π

∞∑
n=0

1

2n+1
[ε(n; 0, 1, ..., l)F ln−1P

n
lp

−ε(n; 0, 1, ..., l − 2)F l−2n−1Q
n
lp]x

n

[bn]p =
2p− 1 + l

p
[bn]p−1 −

p− 1 + l

p
[bn]p−2 (175)

−α+ iβ

p
√
π

1

2n+1
[ε(n; 0, 1, ..., l)F ln−1P

n
lp

−ε(n; 0, 1, ..., l − 2)F l−2n−1Q
n
lp]
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And the corresponding BSCs are found to be given by:

[gl−1n,TE(N)]p =
in
√
π(−1)

n+l−1
2 (n−l+12 )!

2lΓ(n+l2 )

≤n/2∑
m=0

2
1
2+n−2m

Γ( 12 + n−m)

m!
[bn−2m]p

(176)

Third case : m = l − 1, l = 0.

Similarly as for previously encountered "third cases", the result for m =
l − 1, l = 0 can be obtained by forcing l = 0 in the r.h.s. of Eq.165, leading to:

[g−1n,TE(N)]p =
in
√
π(−1)

n+1
2 (n−12 )!

4Γ(n2 + 1)

≤n/2∑
m=0

2
1
2+n−2m

Γ( 12 + n−m)

m!
[bn−2m]p

(177)

5.2 (n-m) odd.

We now start from:

(kr)1/2
∫ 2π

0

r[
∂Hr(cos θ,N)

∂ cos θ
]θ=π/2 exp(−imϕ)dϕ (178)

= π
√

2πH0(N)

∞∑
n=|m|,(n−m) odd

cpwn n(n+ 1)gmn,TE(N)[
dP
|m|
n (cos θ)

d cos θ
]cos θ=0Jn+1/2(kr)

in which we evaluate, after a bit of algebra:

[
∂Hr(cos θ,N)

∂ cos θ
]θ=π/2 =

∫ kNA

0

H0(N)
η|l|+1

k
√

2
Llp[b(η)] exp[−c(η)]eilϕ(179)

[eiϕA1 + e−iϕA−1]dη

in which :
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A1 =
ix

4k

iα+ β

(k2 − η2)1/4 [Jl(ηx/k)A(η)−Jl+2(ηx/k)B(η)]− η√
k

(α− iβ)Jl+1(ηx/k)

(180)

A−1 =
ix

4k

β − iα
(k2 − η2)1/4 [Jl(ηx/k)A(η)−Jl−2(ηx/k)B(η)]− η√

k
(α+iβ)Jl−1(ηx/k)

(181)

Eq.179 may conveniently be rewritten as :

[
∂Hr(cos θ)

∂ cos θ
]θ=π/2 = H0[(̃H l

p)1e
i(l+1)ϕ + ˜(H l

p)−1e
i(l−1)ϕ] (182)

in which :

(̃H l
p)i =

∫ kNA

0

H0
η|l|+1

k
√

2
Llp[b(η)] exp[−c(η)]Ai(η)dη (183)

Afterward, we deal with the integration over ϕ and obtain:

i

√
2

π
x1/2x[(̃H l

p)1δm,l+1 + ˜(H l
p)−1δm,l−1] (184)

=

∞∑
n=|m|,(n−m) odd

(−i)n(2n+ 1)gmn,TE [
∂P
|m|
n (cos θ)

∂ cos θ
]θ=π/2Jn+1/2(x)

The reader being now used with the details of the procedure, we shall
be content to provide the results.

First case : m = l + 1, l ≥ 0.

We obtain the functions [g(x)]p and the bn-coeffi cients reading as:

[g(x)]0 =
−(iα+ β)

4k2
√
π

∞∑
n=0

xn

2n−2
[ε(n; 0, 1, ..., l + 1)F ln−2W

n
l0 (185)

−ε(n; 0, 1, ..., l + 3)F l+2n−2X
n
l0]

− (iα+ β)

k3/2
√
π

∞∑
n=0

xn

2n−1
ε(n; 0, 1, ..., l + 1)F l+1n−1Y

n
l0
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in which :

Wn
l0 =

∫ kNA

0

η|l|+1

(k2 − η2)1/4 exp[−c(η)](
η

k
)n−2A(η)dη (186)

Xn
l0 =

∫ kNA

0

η|l|+1

(k2 − η2)1/4 exp[−c(η)](
η

k
)n−2B(η)dη (187)

Y nl0 =

∫ kNA

0

η|l|+2 exp[−c(η)](
η

k
)n−1dη (188)

and:

[bn]0 =
−(iα+ β)

k2
√
π

1

2n
[ε(n; 0, 1, ..., l + 1)F ln−2W

n
l0 (189)

−ε(n; 0, 1, ..., l + 3)F l+2n−2X
n
l0]

− (iα+ β)

k3/2
√
π

1

2n−1
ε(n; 0, 1, ..., l + 1)F l+1n−1Y

n
l0

For p = 1, we obtain:

[g(x)]1 = (l + 1)[g(x)]0 (190)

+(iα+ β)

4k2
√
π

∞∑
n=0

xn

2n−2
[ε(n; 0, 1, ..., l + 1)F ln−2W

n
l1 − ε(n; 0, 1, ..., l + 3)F l+2n−2X

n
l1]

+
(iα+ β)

k3/2
√
π

∞∑
n=0

xn

2n−1
ε(n; 0, 1, ..., l + 1)F l+1n−1Y

n
l1

in which :

Wn
l1 =

∫ kNA

0

η|l|+1

(k2 − η2)1/4 b(η) exp[−c(η)](
η

k
)n−2A(η)dη (191)

Xn
l1 =

∫ kNA

0

η|l|+1

(k2 − η2)1/4 b(η) exp[−c(η)](
η

k
)n−2B(η)dη (192)
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Y nl1 =

∫ kNA

0

η|l|+2b(η) exp[−c(η)](
η

k
)n−1dη (193)

and:

[bn]1 =
−(iα+ β)

k2
√
π

1

2n
{ε(n; 0, 1, ..., l + 1)F ln−2[(l + 1)Wn

l0 −Wn
l1] (194)

−ε(n; 0, 1, ..., l + 3)F l+2n−2[(l + 1)Xn
l0 −Xn

l1]}

− (iα+ β)

k3/2
√
π

1

2n−1
ε(n; 0, 1, ..., l + 1)F l+1n−1[(l + 1)Y nl0 − Y nl1 ]

For the general case, we find:

[g(x)]p =
2p− 1 + l

p
[g(x)]p−1 −

p− 1 + l

p
[g(x)]p−2 (195)

+(iα+ β)

4k2p
√
π

∞∑
n=0

xn

2n−2
[ε(n; 0, 1, ..., l + 1)F ln−2W

n
lp − ε(n; 0, 1, ..., l + 3)F l+2n−2X

n
lp]

+
(iα+ β)

k3/2p
√
π

∞∑
n=0

xn

2n−1
ε(n; 0, 1, ..., l + 1)F l+1n−1Y

n
lp

and :

[bn]p =
2p− 1 + l

p
[bn]p−1 −

p− 1 + l

p
[bn]p−2 (196)

+(iα+ β)

4k2p
√
π

1

2n−2
[ε(n; 0, 1, ..., l + 1)F ln−2W

n
lp − ε(n; 0, 1, ..., l + 3)F l+2n−2X

n
lp]

+
(iα+ β)

k3/2p
√
π

1

2n−1
ε(n; 0, 1, ..., l + 1)F l+1n−1Y

n
lp

in which :

Wn
lp =

∫ kNA

0

η|l|+1

(k2 − η2)1/4 b(η)Llp−1[b(η)] exp[−c(η)](
η

k
)n−2A(η)dη (197)

40



Xn
lp =

∫ kNA

0

η|l|+1

(k2 − η2)1/4 b(η)Llp−1[b(η)] exp[−c(η)](
η

k
)n−2B(η)dη (198)

Y nlp =

∫ kNA

0

η|l|+2b(η)Llp−1[b(η)] exp[−c(η)](
η

k
)n−1dη (199)

These relations are valid for p = 1 as well by virtue of {Llp−1[b(η)]}p=1 =
1. The BSCs then read as:

[gl+1n,TE(N)]p =
in
√
π(−1)

n+l
2 (n−l2 − 1)!

2l+3Γ(n+l2 + 3
2 )

≤n/2∑
m=0

2
1
2+n−2m

Γ( 12 + n−m)

m!
[bn−2m]p

(200)

Second case : m = l − 1, l > 0.

We obtain:

[g(x)]0 =
iα− β
4k2
√
π

∞∑
n=0

xn

2n−2
[ε(n; 0, 1, ..., l + 1)F ln−2W

n
l0 (201)

−ε(n; 0, 1, ..., l − 1)F l−2n−2X
n
l0]

− (iα− β)

k3/2
√
π

∞∑
n=0

xn

2n−1
ε(n; 0, 1, ..., l − 1)F l−1n−1Y

n
l0

in which the integrals W,X, Y are the ones previously given, and:

[bn]0 =
iα− β
4k2
√
π

1n

2n−2
[ε(n; 0, 1, ..., l + 1)F ln−2W

n
l0 (202)

−ε(n; 0, 1, ..., l − 1)F l−2n−2X
n
l0]

− (iα− β)

k3/2
√
π

1n

2n−1
ε(n; 0, 1, ..., l − 1)F l−1n−1Y

n
l0

For p = 1, we obtain:

41



[g(x)]1 = (l + 1)[g(x)]0 (203)

− iα− β)

4k2
√
π

∞∑
n=0

xn

2n−2
[ε(n; 0, 1, ..., l + 1)F ln−2W

n
l1 − ε(n; 0, 1, ..., l − 1)F l−2n−2X

n
l1]

+
(iα− β)

k3/2
√
π

∞∑
n=0

xn

2n−1
ε(n; 0, 1, ..., l − 1)F l−1n−1Y

n
l1

in which the integralsW,X,Y have again already been previously given, and:

[bn]1 =
iα− β
4k2
√
π

1n

2n−2
{ε(n; 0, 1, ..., l + 1)F ln−2[(l + 1)Wn

l0 −Wn
l1] (204)

−ε(n; 0, 1, ..., l − 1)F l−2n−2[(l + 1)Xn
l0 −Xn

l1]}

− (iα− β)

k3/2
√
π

1n

2n−1
ε(n; 0, 1, ..., l − 1)F l−1n−1[(l + 1)Y nl0 − Y nl1 ]

For the general case, we find:

[g(x)]p =
2p− 1 + l

p
[g(x)]p−1 −

p− 1 + l

p
[g(x)]p−2 (205)

− iα− β)

4k2p
√
π

∞∑
n=0

xn

2n−2
[ε(n; 0, 1, ..., l + 1)F ln−2W

n
lp − ε(n; 0, 1, ..., l − 1)F l−2n−2X

n
lp]

+
(iα− β)

k3/2p
√
π

∞∑
n=0

xn

2n−1
ε(n; 0, 1, ..., l − 1)F l−1n−1Y

n
lp

and :

[bn]p =
2p− 1 + l

p
[bn]p−1 −

p− 1 + l

p
[bn]p−2 (206)

− iα− β)

4k2p
√
π

1n

2n−2
[ε(n; 0, 1, ..., l + 1)F ln−2W

n
lp − ε(n; 0, 1, ..., l − 1)F l−2n−2X

n
lp

+
(iα− β)

k3/2p
√
π

1n

2n−1
ε(n; 0, 1, ..., l − 1)F l−1n−1Y

n
lp

in which the integrals W, X, Y have again already been given previously.
These relations are valid for p = 1 as well by virtue of {Llp−1[b(η)]}p=1 = 1.
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The BSCs then are found to read as:

[gl−1n,TE(N)]p =
in
√
π(−1)

n+l
2 −1(n−l2 )!

2l+1Γ(n+l2 + 1
2 )

≤n/2∑
m=0

2
1
2+n−2m

Γ( 12 + n−m)

m!
[bn−2m]p

(207)

Third case, m = l − 1, l = 0.

Again, for this third case, the expressions for the BSCs are obtained by
forcing l = 0 in the r.h.s. of Eq.200:

[g−1n,TE(N)]p =
in
√
π(−1)

n
2 (n2 − 1)!

8Γ(n2 + 3
2 )

≤n/2∑
m=0

2
1
2+n−2m

Γ( 12 + n−m)

m!
[bn−2m]p

(208)

6 Recurrence equations.

In this section, we examine how to deal with the recurrence equations in
which [bn]p is expressed in terms of [bn]p−1 and [bn]p−2. We begin with the case
of TE-BSCs for (n−m) even, m = l+1, l ≥ 0 for which we shall provide details.

6.1 TE-BSCs, (n−m) even, m = l + 1, l ≥ 0.

Eqs.154, 155, 158, 159, 163, 164 lead us to define:

(
ITEe (X(η)

JTEe (X(η

)
=

kNA∫
0

(
η

k
)n

η|l|

(k2 − η2)3/4 exp[−c(η)]

(
A(η)

B(η)

)
X(η)dη (209)

in which A(η) and B(η) are given by Eqs.146-147. From Eqs.154-155, we
have:

Pnl0 = ITEe (1), Qnl0 = JTEe (1) (210)
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and, from Eqs.158-159, 163-164:

Pnlp = ITEe [b(η)Llp−1(b(η))], Qnlp = JTEe [b(η)Llp−1(b(η))], p ≥ 1 (211)

in which we used Ll0(b(η)) = 1. With these notations, Eqs.156, 160 are used
to initiate the recurrence according to:

[bn]0 =
iβ − α√

π

1

2n+1
[ε(n; 0, 1, ..., l)F ln−1I

TE
e (1) (212)

−ε(n; 0, 1, ..., l + 2)F l+2n−1J
TE
e (1)]

[bn]1 =
iβ − α√

π

1

2n+1
[ε(n; 0, 1, ..., l)F ln−1I

TE
e (l + 1− b) (213)

−ε(n; 0, 1, ..., l + 2)F l+2n−1J
TE
e (l + 1− b)]

We now introduce an operator T such as:

[bn]p = TTE(Xp(η)) (214)

in which:

TTE(Xp(η)) =
iβ − α√

π

1

2n+1
[ε(n; 0, 1, ..., l)F ln−1I

TE
e (Xp(η)) (215)

−ε(n; 0, 1, ..., l + 2)F l+2n−1J
TE
e (Xp(η))]

which is valid for p = 0, 1 with:

X0(η) = 1 = Ll0(b(η)) (216)

X1(η) = l + 1− b(η) = Ll1(b(η)) (217)
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in which we must recall Ll0(b(η)) = 1 and Ll1(b(η)) = l+1−b(η)). Assuming
that Eq.214 is valid for p changed to (p − 1) and (p − 2), we afterward readily
show that it is valid ∀p. The recurrence relation Eq.162 then simply becomes:

[bn]p = TTE(Xp(η)) = TTE(ApXp−1(η))−BpXp−2(η))− 1

p
b(η)Llp−1(η)) (218)

so that, instead of having to solve the recurrence relation Eq.162, we have
to solve the simpler reduced recurrence relation:

Xp(η) = ApXp−1(η)−BpXp−2(η)− 1

p
b(η)Llp−1(η) (219)

with initial values given by Eqs.216-217. We shall later return to this equa-
tion.

6.2 Other TE-BSCs.

In all cases that we have to investigate, the same reduced recurrence relation
Eq.219 is obtained. The differences between the different cases are only involved
in modifications of Eqs.214-215. For the TE-BSCs, (n −m) even, m = l − 1,
l > 0, we obtain:

[bn]p = UTE(Xp(η)) (220)

in which:

UTE(Xp(η)) =
α+ iβ√

π

1

2n+1
[ε(n; 0, 1, ..., l)F ln−1I

TE
e (Xp(η)) (221)

−ε(n; 0, 1, ..., l − 2)F l−2n−1J
TE
e (Xp(η))]

For the TE-BSCs, (n−m) odd, m = l + 1, l ≥ 0, we introduce:

(
ITEo (X(η)

JTEo (X(η)

)
=

kNA∫
0

(
η

k
)n−2

η|l|+1

(k2 − η2)1/4 exp[−c(η)]

(
A(η)

B(η)

)
X(η)dη (222)
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KTE
o =

kNA∫
0

(
η

k
)n−1η|l|+2 exp[−c(η)]X(η)dη (223)

and we have:

[bn]p = V TE(Xp(η)) (224)

in which:

V TE(Xp(η)) =
−(iα+ β)

k2
√
π

1

2n
[ε(n; 0, 1, ..., l + 1)F ln−2I

TE
o (Xp(η)) (225)

−ε(n; 0, 1, ..., l + 3)F l+2n−2J
TE
o (Xp(η))]

− iα+ β

k3/2
√
π

1

2n−1
ε(n; 0, 1, ..., l + 1)F l+1n−1K

TE
o (Xp(η))

For the TE-BSCs, (n−m) odd, m = l − 1, l > 0, we have:

[bn]p = WTE(Xp(η)) (226)

in which:

WTE(Xp(η)) =
iα− β
k2
√
π

1

2n
[ε(n; 0, 1, ..., l + 1)F ln−2I

TE
o (Xp(η)) (227)

−ε(n; 0, 1, ..., l − 1)F l−2n−2J
TE
o (Xp(η))]

− iα− β
k3/2
√
π

1

2n−1
ε(n; 0, 1, ..., l − 1)F l−1n−1K

TE
o (Xp(η))

For the TM-BSCs, (n−m) even, m = l + 1, l ≥ 0, we introduce:

(
ITMe (X(η)

JTMe (X(η

)
=

kNA∫
0

(
η

k
)n−1

η|l|+1

(k2 − η2)1/4 exp[−c(η)]

(
C(η)

D(η)

)
X(η)dη (228)

46



in which:

C(η) = 1 +

√
k2 − η2
k

(229)

D(η) = 1−
√
k2 − η2
k

(230)

and we obtain:

[bn]p = TTM (Xp(η)) (231)

in which:

TTM (Xp(η)) = i

√
2

π

α− iβ
2n

[ε(n; 0, 1, ..., l)F ln−1I
TM
e (Xp(η)) (232)

+ε(n; 0, 1, ..., l + 2)F l+2n−1J
TM
e (Xp(η))]

For the TM-BSCs, (n−m) even, m = l − 1, l > 0, we have:

[bn]p = UTM (Xp(η)) (233)

in which:

UTM (Xp(η)) = i

√
2

π

α+ iβ

2n
[ε(n; 0, 1, ..., l)F ln−1I

TM
e (Xp(η)) (234)

+ε(n; 0, 1, ..., l + 2)F l+2n−1J
TM
e (Xp(η))]

For the TM-BSCs, (n−m) odd, m = l + 1, l ≥ 0, we introduce:

(
ITMo (X(η)

JTMo (X(η)

)
=

kNA∫
0

1

k
η|l|+1(

η

k
)n−2(k2 − η2)1/4 exp[−c(η)]

(
C(η)

D(η)

)
X(η)dη

(235)
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KTM
o (X(η)) =

kNA∫
0

η|l|+1

(k2 − η2)1/4 (
η

k
)n exp[−c(η)]X(η)dη (236)

and we obtain:

[bn]p = V TM (Xp(η)) (237)

in which:

V TM (Xp(η)) = i

√
2

π

iα+ β

2n−1
[ε(n; 0, 1, ..., l + 1)F ln−2I

TM
o (Xp(η)) (238)

+ε(n; 0, 1, ..., l + 3)F l+2n−2J
TM
o (Xp(η))

−ε(n; 0, 1, ..., l + 1)F l+1n−1K
TM
o (Xp(η))]

and, finally, for TM-BSCs, (n−m) odd, m = l − 1, l > 0, we have:

[bn]p = WTM (Xp(η)) (239)

in which:

WTM (Xp(η)) = i

√
2

π

iα− β
2n−1

[ε(n; 0, 1, ..., l + 1)F ln−2I
TM
o (Xp(η)) (240)

+ε(n; 0, 1, ..., l − 1)F l−2n−2J
TM
o (Xp(η))

+ε(n; 0, 1, ..., l − 1)F l−1n−1K
TM
o (Xp(η))]

6.3 Solving the reduced recurrence relation.

The reduced recurrence relation involves Laguerre-Gauss polynomials.
To get a still simpler recurrence relation, i.e. not involving any Laguerre-Gauss
polynomials, we set:

Xp(η) =

p∑
µ=0

kµpL
l
µ(b(η)), ∀p (241)
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This is readily shown to be valid for p = 0, 1 with initial values given
by Eqs.216-217, reading as:

k00 = 1, k01 = 0, k11 = 1 (242)

and afterward demonstrated to be valid ∀p by recurrence. Inserting Eq.241
in the reduced recurrence relation Eq.219, we obtain recurrence relations of the
coeffi cients kµp reading as, for p ≥ 2:

kpp = 0 (243)

kp−1p = Apk
p−1
p−1 −

b

p

kµp = Apk
µ
p−1 −Bpk

µ
p−2, µ = 0...(p− 2)

with initial values for p = 0, 1 given by Eq.242. The first two lines of Eq.243
may then be rewritten as:

k00 = k11 = 1, kpp = 0 for p ≥ 2 (244)

k01 = 0, k12 = (A2 −
b

p
), kp−1p = − b

p
for p ≥ 3

We examined whether it would be possible to solve these last equa-
tions for obtain closed form solutions. From this last investigation, it has been
found that the answer is likely to be positive but that the closed form solu-
tions obtained would be very clumsy and ineffi cient. We therefore believe that
Eqs.243-244 are the best which can be done.

7 Conclusion.

After the success encountered when designing finite solutions in the case
of (paraxial) Laguerre-Gauss beams freely propagating [15], [28], it has been
decided to investigate the use of finite series to the evaluations of BSCs in the
case of Laguerre-Gauss beams focused by a lens, in order to overcome the limi-
tations inherent to the use of quadratures (too time-consuming) and of localized
approximations (lack of accuracy in the case of helical beams). The present pa-
per therefore establishes the finite series expressions required to evaluate BSCs
of Laguerre-Gauss beams focused by a lens.
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Let us however note that the present work is devoted to Laguerre-Gauss
beams focused by a lens, with the restriction that we have considered BSCs
in spherical coordinates for parallel illumination, in on-axis situations. For
the sake of completeness, we now serve again comments already introduced in
[28]. and in [15]. BSCs for other kinds of curvilinear systems of coordinates
can afterward be obtained from the BSCs in spherical coordinates by using an
extrinsic method, see [51] for the definition of intrinsic and extrinsic methods,
and the introduction of [52] for a review of extrinsic methods in spheroidal and
cylindrical coordinates. BSCs for oblique illumination may be deduced from
the BSCs for parallel illumination by using rules of transformations of BSCs
under rotation of coordinate systems [53], [54], [55], [56], [57]. BSCs for off-
axis situations can be obtained from the BSCs for on-axis situations by using
translation theorems [58] or by introducing the off-axis expressions of the fields
right at the beginning of the algebraic treatment, as actually done in the case of
Gaussian beams, see [23]. The last procedure however requires an extra-algebraic
work. It is indeed a defect of the finite series technique that each modification of
the field expressions requires an extra-algebraic work before implementation in
computer programs, although it has been stated that the "whole process may
be in principle carried out in an automatic way by using a formal computation
procedure which would furthermore generate FORTRAN sources" ([3], p. 121).
A next paper shall present numerical results, including the comparison be-

tween the three basic methods used to evaluate BSCs of structured beams
(quadratures, localized approximations, finite series). Another prospect must be
mentioned. In the case of Laguerre-Gauss beams freely propagating, the expres-
sions for the electric field and for the magnetic field presented a high degree of
symmetry, so that the TE-BSCs and the TM-BSCs were related by very simple
relations. This is not the case in the present work devoted to Laguerre-Gauss
beams focused by a lens due to a lack of symmetry between the expressions
of the electric and magnetic fields. This suggests that it should be possible to
introduce improved expressions of Laguerre-Gauss beams by a symmetrization
of the fields. Such a symmetrization of fields has already been carried out in the
case of paraxial Gaussian beams described in the Davis framework [59], [60].
As a final remark related to forthcoming numerical computations, and relying
on previous works concerning the calculations of BSCs by using finite series,
particularly concerning Laguerre-Gauss beam freely propagating [15], no con-
cergence problem is expected concerning the numerical implementation of the
expressions derived in the present paper.
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