
HAL Id: hal-02453157
https://hal.science/hal-02453157

Submitted on 23 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Degenerate Scales for Plane Elasticity Problems in
Piecewise Homogeneous Media Under General

Boundary Conditions
Alain Corfdir, Guy Bonnet

To cite this version:
Alain Corfdir, Guy Bonnet. The Degenerate Scales for Plane Elasticity Problems in Piecewise Homo-
geneous Media Under General Boundary Conditions. Journal of Elasticity, 2020, 140 (1), pp.49-77.
�10.1007/s10659-019-09757-5�. �hal-02453157�

https://hal.science/hal-02453157
https://hal.archives-ouvertes.fr


Journal of Elasticity manuscript No.
(will be inserted by the editor)

The degenerate scales for plane elasticity problems in
piecewise homogeneous media under general boundary
conditions

Alain Corfdir · Guy Bonnet

Received: date / Accepted: date

Abstract The degenerate scale issue for 2D-boundary integral equations and
boundary element methods has been already investigated for Laplace equa-
tion, antiplane and plane elasticity, bending plate for Dirichlet boundary con-
dition. Recently, the problems of Robin and mixed boundary conditions and of
piecewise heterogeneous domains have been considered for the case of Laplace
equation. We investigate similar questions for plane elasticity for more general
boundary conditions. For interior problems, it is shown that the degenerate
scales do not depend on the boundary condition. For exterior problems, the
two degenerate scales (homogeneous medium) or two of them (heterogeneous
medium) are tightly linked with the behavior at infinity of the solutions. The
dependence of this behavior on the boundary conditions is investigated. We
give sufficient conditions for the uniqueness of the solution. Numerical appli-
cations are provided and validate the set of theoretical results.
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1 Introduction

When solving some plane problems by boundary integral equations (BIE) (us-
ing the single layer indirect method or the direct method) and by the cor-
responding numerical methods, it appears that a loss of uniqueness of the
solution may happen for some specific scales (which are also called degenerate
scales). This mathematical issue has been discovered since a long time by [29]
and [31] for Laplace equation. A review of the early works can be found in
[8]. For Laplace problem, a necessary and sufficient condition for uniqueness
is that the logarithmic capacity (or transfinite diameter) of the boundary Γ
is different from 1 [11, 26]. As a consequence, a sufficient condition to achieve
uniqueness is max

x,y∈Γ
|x−y| < 1. Yan and Sloane extended some results to smooth

open contours [41]. A review of mathematical properties of boundary integral
operators can be found in [17] as well as results for Lipschitz boundaries. Sev-
eral methods of regularization have been suggested [2]. For a given problem, we
define the factor of homothety applied to the domain that leads to a domain
at degenerate scale as the degenerate scale factor, often denoted by ρ.

Concerning plane elasticity, one of the early contributor is Heise [20, 21].
The investigation has been extended to systems of integral equations with a
logarithmic term in the kernel [24]. The invertibility of a 3×3 matrix has been
suggested as a criterion for invertibility of the single layer elasticity operator
[9–11]. Then, using ideas of [18] which were originally applied to biharmonic
single layer potential, the invertibility has been linked to a 2×2 matrix B [38];
one consequence is that there are two degenerate scales or a double degenerate
scale. A sufficient condition to ensure invertibility is given: the boundary Γ
must be contained within a circular disk of given radius depending of the
Poisson ratio [38]. The closed form values of the degenerate scales have been
found for some cases as a circle [9], an ellipse [4], a segment [38], an approximate
triangle or square [6], a hypocycloid [5]. A more general method is given in [12],
if the outside of the boundary is the image of the outside of the unit circle by a
conformal mapping which is a rational fraction; another method is also given
for some sets of aligned segments and sets of arcs of a circle. Several numerical
methods have been suggested to evaluate numerically the degenerate scales:
the calculus of the eigenvalues of the matrix B [39] [3], by inverting the matrix
U in a normal scale or by solving an augmented problem in any scale. A first
study has been devoted to the anisotropic case which appears to be far much
difficult [40]; we focus here on the isotropic case. An asymptotic property
has been found [37], elliptical coordinates have been introduced to solve some
specific problems [3].

For plane elasticity, the above cited papers have all considered Dirich-
let boundary condition. Recently, the degenerate scale problem for Laplace
equation has been extended to Robin condition [14] and to mixed Dirichlet-
Neumann boundary condition [15]. The degenerate scales for the interior and
the exterior problem are the same for Dirichlet condition and appear to be dif-
ferent for other boundary conditions. The case of a piecewise homogeneous do-
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main for Laplace equation with Dirichlet condition has also been investigated
[16]; the number of degenerate scales is equal to the number of homogeneous
subdomains. However, even for the Dirichlet condition there are differences
between interior and exterior problems. The aim of this paper is to extend
these recent results from Laplace to Lamé equation and to give some sufficient
conditions for the uniqueness of the solution.

Attention must be paid to the choice of the fundamental solution, since the
degenerate scales depend on that choice [38]. In this paper we will consider
the following fundamental solution, e.g., [1, 27, 28]:

U(x,y)(ξ) = Λ

(
−κ ln |r|ξ + (

ξ.r

r.r
)r

)
; (1)

with r = x − y; Λ = 1
8πG(1−ν) ; κ = 3 − 4ν and ξ is the force applied at

the source point. ν and G are the Poisson’s ratio and shear modulus. Using
complex potentials leads naturally to a different choice of the fundamental
solution [32]. For Laplace equation, we consider the standard fundamental
solution U = − 1

2π ln |r| and we denote by ρ0 the associated degenerate scale
factor related to the same boundary.

Among the classes of smoothness of boundaries, the class C2 has often
been considered. For instance in [11], it is proved for a bounded domain with
a C2 boundary, that the Dirichlet, the Neumann and the Robin boundary
value problem have only one solution. The uniqueness is proved by applying
the Betti’s formula to the difference of two solutions. The proof of existence
is given by considering the boundary integral equations (complex equation
in the case of [32]). In [19], the existence and uniqueness is proved for the
mixed Neumann-Dirichlet boundary value problem. The more difficult case of
Lyapunov boundaries has been also considered; Lipschitz boundaries appear to
be very useful in variational approaches, e.g., [28]. Concerning the piecewise
homogeneous problem, we can refer to [27] which deals with the Dirichlet
problem with Lipschitz boundaries.

There is in fact a huge mathematical literature on all these various topics
and we limit ourselves to the particular issue of the degenerate scales. More
specifically, we will assume that the different boundaries are smooth enough
to ensure the existence of solutions and the validity of the Betti relations.

We give now an overview of the framework of our paper. In section 2, we
provide new upper and lower bounds of the degenerate scales for Dirichlet
boundary condition. These bounds depend on the degenerate scale for the
Laplace problem and on κ = 3 − 4ν. These results complete the ones of [12].
The lower bound allows to give a new sufficient condition for invertibility which
is linked to the Laplace problem and the corresponding degenerate scale.

In section 3, a general boundary condition is first defined for a plane elastic
problem: a part with Dirichlet boundary condition, other parts of the boundary
with Neumann condition or Robin condition or a combined Dirichlet-Neumann
condition. Then, it is checked that this very general boundary condition en-
sures the uniqueness of the solution. Finally, the degenerate scales for any kind
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of boundary conditions are found to be the same as for the Dirichlet boundary
condition.

Section 4 begins the study of the exterior problems. A matrix B has been
defined in [38] for the case of Dirichlet boundary and allows to find the de-
generate scales. Combining some ideas of [38] and [25], we build a generalized
matrix B for more general boundary conditions including the case of piece-
wise homogeneous media. Then, this matrix can be used to obtain the intrinsic
degenerate scales for the infinite plane elasticity problem, i.e., the degenerate
scales being not the ones of the homogeneous parts and involving the coupling
between different subdomains.

Section 5 is devoted to the proof of different inequalities regarding the
intrinsic degenerate scale factors. We compare the degenerate scales of prob-
lems where the different boundary conditions are changed on some parts of
the boundary. These comparisons allow to conclude that it is in the Dirichlet
case that the degenerate scale factors are the smallest for a given boundary.
Section 6 investigates the influence of the variation of the Poisson’s ratio on
the intrinsic degenerate scales.

Section 7 proves that the set of degenerate scales of the exterior problem
contains the degenerate scales of the bounded subdomains and the intrinsic
degenerate scales linked to a specific solution of the boundary value problem
(BVP) with a part of the boundary at infinity. These intrinsic degenerate
scales can be found by using the matrix B defined in section 4.

Section 8 displays two sufficient conditions for the uniqueness of the solu-
tion of the BIEs system of the exterior problem. One of them is a generalization
of a condition given in [38] and the second relies on the conclusion of section
2. An approach to characterize the degenerate scales by a new matrix B̃ is
provided in section 9 and numerical applications are given in section 10.

Finally, section 11 summarizes the different results of the paper.

2 Some complements on degenerate scales in elasticity for the
homogeneous case with Dirichlet boundary condition

Numerous results can be found in the literature on degenerate scales in elastic-
ity for the case of Dirichlet boundary conditions. One important aspect is the
ability to bound the degenerate scale factors by using the degenerate scale fac-
tors for Laplace equation with Dirichlet boundary condition, which is largely
documented. In this section, we complete the set of bounds by producing a
new lower bound for the degenerate scales related to elasticity with boundary
conditions. In addition, a new upper bound can be obtained for the smallest
of the degenerate scale factors. It allows us to produce a large overview of the
possible degenerate scales and their relations with the one related to the case
of Laplace equation.
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2.1 A new upper bound for the smallest degenerate scale

We denote by ρi i = 1, 2 the degenerate scale factors that scale the original
problem to a degenerate scale in the case of elasticity with Dirichlet boundary
condition. We assume that ρ2 ≥ ρ1. It has been proved [12] for the fundamental
solution defined in (1) that the following inequality holds:

ρ0e1/κ ≥ ρ2. (2)

where ρ0 is the degenerate scale factor for the Laplace equation and κ = 3−4ν,
ν being the Poisson’s ratio. This bound is sharp since for a segment ρ2 = ρ0e1/κ

[38] . In the same paper [12], it has been proved that ρ20e1/κ ≥ ρ1ρ2. Then we
have ρ20e1/κ ≥ ρ21 since ρ2 ≥ ρ1. We can deduce the following new upper bound
for the smallest degenerate scale factor:

ρ0e1/(2κ) ≥ ρ1. (3)

This bound is sharp since for a circle ρ1 = ρ0e1/(2κ) [4].

2.2 A lower bound for the degenerate scale factors

The problem of finding a lower bound was raised in a recent paper [12], the
set of known theoretical results allowing to suspect the existence of such a
bound. However no proof was presented at that time. We propose here to prove
ρ1 ≥ ρ0. Our argument is based on the combination of two preceding works
with only marginal and easy extensions [35, 36]. So, we will not reproduce here
the rather difficult proofs of these papers but simply indicate the light changes
which are necessary for our purpose.

We first refer to [36]. The proof of the coercivity of the single layer operator
for Laplace operator (theorem 6.23) is given, assuming that diam(Γ ) < 1.
However, the proof uses only its consequence that the logarithmic capacity of
Γ , capΓ is < 1. We now turn to [35]. The lemma 3.1 of this paper gives that
the ellipticity constant of the plane elasticity single layer operator is > 0 if the
ellipticity constant of the Laplace single layer operator is > 0. In other words,
the plane elasticity problem is invertible if the Laplace problem is invertible.
The paper assumes 1/2 > ν > 0 but the proof only needs 1/2 > ν > −1.
We note ρ0 = 1/capΓ the scale factor such that capρ0Γ = 1. Hence, for any
scaling α < ρ0, the Laplace single layer operator is invertible. That means
that α 6= ρi, i = 1, 2 , ρi being the two degenerate scale factors for the plane
elasticity single layer operator. If we assume ρ0 > ρ1 and choose the scaling
α = ρ1 we find that the linear elasticity operator is not invertible and that the
Laplace operator is invertible, which is in contradiction with the result of [35]
and we conclude:

ρ1 ≥ ρ0 . (4)

This bound is sharp since we have the equality ρ1 = ρ0 for a segment [38]
or a finite set of aligned segments [13].
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2.3 Overview of possible values of the couple of degenerate scale factors

Thanks to the preceding results, it is now possible to draw a graph showing the
area of possible degenerate scale factors (ρ1, ρ2) in relation with ρ0, studying
more precisely the case (ρ2 ≥ ρ1) .

From the previously recalled bounds, the couples (κ ln(ρ1/ρ0), κ ln(ρ2/ρ0))
lie within a triangular area (See Fig. 1) bounded by x = 0, x = y and x+y = 1.
The values for arcs of a circle and a curve with 6 cusps have been inserted [13].

Triangular area  of 
eventual values 

Value for a segment or
a set of aligned segments

Segment of eventual 
values for figures with 
axial symmetry  n>2

x=κ ln(ρ1/ρ 0)

0

Hypocycloid
of  order 3 κ=7

1/2

ρ1⩾ρ0

ρ1⩽ρ0e
1 /2 κ

1/2 1

y
=

κ
ln
(ρ
2
/ρ
0)

1

Circle or set arcs
of circle with 
axial symmetry

ρ2⩾ρ0

ρ 2
≥
ρ 1

ρ
1 ρ
2 ⩽

ρ
0
2
e 1/ κ

Arcs of circles κ=7

Arcs of circles 1<κ<7

Hypocycloid
of  order 3 κ=1

ρ2⩽ρ0e
1 /κ

Arcs of circles κ=1

Ellipses

Value for a 
curve with 6 
cusps κ=1

Fig. 1 Triangle containing all the admissible points (κ ln(ρ1(κ)/ρ0), κ ln(ρ2(κ)/ρ0))

It is still an open question to know more about the couples (κ ln(ρ1/ρ0),
κ ln(ρ2/ρ0)) which are possible inside this triangular area. A first answer is
that the points between the two curves for arcs of a circle with κ = 1 and
κ = 7 are possible (green zone of the figure). The existence of points below
that zone is a priori also possible, as show the representative points located
on the first diagonal x = y.
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We consider now the influence of κ for a given boundary. It has been shown
that if κb > κa [12]: (

ρi,b
ρ0

)κb

≥
(
ρi,a
ρ0

)κa

, i = 1, 2. (5)

then we deduce that:

x(κb) = ln

(
ρ1,b
ρ0

)κb

≥ x(κa); (6)

y(κb) = ln

(
ρ2,b
ρ0

)κb

≥ y(κa). (7)

Then if κ increases, the point (x(κ), y(κ)) for a given boundary moves
upwards and rightwards in a quarter plane (see Fig. 2). It means that the
point related to κb lies within the quarter of plane defined by the point related
to κa as seen on that figure.

Quarter plane pf 
possible values of 
(x,y)(κb) when κb>κa) 

Value for a segment or
a set of aligned segments

x=κ ln (ρ1/ρ0)

0

Hypocycloids
of  order 3;1<κ<7

ρ1⩾ρ0

1

y=
κ
ln

(ρ
2
/ρ

0)

1

Circle or set arcs
of circle with 
axial symmetry

ρ2⩾ρ0

ρ
1 ρ
2 ⩽

ρ
0
2
e 1/ κ

Half circles; 1<κ<7

(x,y)(κa)

(x,y)(κb)

The intersection 
of the quarter plane
and of the trianglar 
area is reduced to
one point 
for ellipses

ρ 2
≥
ρ 1

Ellipses

Fig. 2 Effect of the change of κ on the points (κ ln(ρ1(κ)/ρ0), κ ln(ρ2(κ)/ρ0))
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For a boundary with a symmetry axis of order ≥ 3, the points move on the
boundary of the triangle like for hypocycloids of order 3. For half circles, the
curve x(κ), y(κ) is no longer a segment. For ellipses with half axis a and b, we
have κ ln(ρi/ρ0) = (1 −m)/2, (1 + m)/2, with m = (a − b)/(a + b) [6]. Their
representative point is on the upper side of the triangle of eventual values.
For such a point, the intersection of the quarter plane and of the triangle is
reduced to one point: we check geometrically that for ellipses the point (x,y)
depends only on m but does not depend on κ.

3 Degenerate scales for interior problems and various boundary
conditions

3.1 Hypotheses and notations

We consider a piecewise homogeneous connected domain Ω = {∪Ωi, i = 1..n}
(Fig. 3). The outer boundary is denoted by Γ0. The inner boundary of an
eventual hole is denoted by Γn+1.

W

n

W1

W2

Gn

G0

G2

Wn

Gn+1

n21n12
G1

Fig. 3 The interior problem for a piecewise homogeneous medium

We denote by C the elasticity tensor and by ∆∗ the elasticity operator for
an isotropic medium.

We have:

∆∗ =

(
G∆+ (λ+G)∂21 (λ+G)∂1∂2

(λ+G)∂1∂2 G∆+ (λ+G)∂22

)
; (8)

with λ and G the Lamé coefficients.
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For the interior problem with no volume forces, the regularized direct BIE
writes out, e.g., [1]:∫

Γ

(ui(y)− ui(x))T ki (x,y)− ti(y)Uki (x,y)dSy = 0; (9)

where ti are the components of the traction t(y), where Uki are the compo-
nents of the fundamental solution U given by (1) and where T ki (x,y) are the
components of T(x,y), the traction on the boundary point y due to U(x,y).

3.2 The different kinds of conditions on the boundaries

We consider different kinds of boundary conditions which may be different
over different parts of the boundary Γ .

Dirichlet condition The displacement is prescribed u = uD.

Neumann condition The traction is prescribed t = tN .

Robin condition The quantity u + kt is prescribed u + kt = sR. It is required
that k is a definitive positive linear matrix function [11]. It can depend on the
point of the boundary. A slightly more restrictive condition is named ”elastic
support” in [30].

Combined condition We consider the combined Dirichlet-Neumann boundary
condition. We suppose that there is an orthogonal projector P. The projec-
tor can vary along the boundary ΓC . The combined boundary condition is
Pu = uC ; (Id − P)t = tC . This type of problem called ”combined Dirichlet-
Neumann” problem [28] is also called mixed-mixed problem in [30]. An exam-
ple in the half-plane is the indentation by a lubricated punch.

Mixed condition We consider that the boundary Γ0 can be split into a finite
number of simple curves submitted to one type of boundary condition. The
union of the parts submitted to Dirichlet condition is named ΓD and we define
also ΓN , ΓR, ΓC .

The usual mixed Dirichlet-Neumann condition is a special case where Γ =
ΓD ∪ ΓN .

Transmission condition In the case of a piecewise homogeneous problem, a
transmission condition between two adjacent subdomains must be introduced.
This problem has been considered for example in [19]. At the common bound-
ary Γi ∩ Γj of two subdomains Ωi and Ωj , we write: ui = uj and ti + tj = 0.
We will also consider the condition ti + tj = td, where td is prescribed for
some auxiliary problems. When necessary, we write ti,j for the value of ti at
a point of Γi ∩ Γj .
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3.3 Uniqueness of the BVP solution

We assume that there are two solutions of the Boundary value problem (BVP)
(u1,u2). We write the Betti formula, e.g., [33] for all subdomains denoting by
Γ0 the exterior boundary of Ω = ∪ Ωi (see Fig. 3), and we add them:

n∑
i=1

∫
Ωi

(u1 − u2)∆∗i (u1 − u2) = 0

=

n∑
i=1

∫
Γi∩Γ0

(u1 − u2)(ti,01 − ti,02 ) +

n∑
i=1

∫
Γi∩Γn+1

(u1 − u2)(ti,n+1
1 − ti,n+1

2 )

︸ ︷︷ ︸
A1

+

n∑
i=1

n∑
j=1,j 6=i

∫
Γi∩Γj

(u1 − u2)(ti,j1 − ti,j2 )

︸ ︷︷ ︸
A2

−
n∑
i=1

∫
Ωi

(ε1 − ε2)>Ci(ε1 − ε2)

︸ ︷︷ ︸
A3

.

(10)
The left hand side of the equation is null since ∆∗(u2 − u1) = 0.

The integral A1 must be split into integrals on ΓD, ΓN , ΓR, ΓC . For in-
stance, ΓD is the part of Γ0 ∪ Γn+1 submitted to Dirichlet condition.

Integral on ΓD We have (u2 − u1) = 0, hence the integral is null.

Integral on ΓN We have (t2 − t1) = 0, hence the integral is null.

Integral on ΓR We have (u2−u1)(t2−t1) = −(u2−u1)>k(u2−u1) ≤ 0 since
k is definite positive.

Integral on ΓC As P is an orthogonal projector we can write for any couple of
vectors (a,b), ab = P(a)P(b) + (Id−P)(a)(Id−P)(b). Applying this result
to a = u2 − u1, b = t2 − t1, we find that the integrals on ΓC of the terms
P(u2 − u1) and (Id −P)(t2 − t1) are null and so is the integral on ΓC .

From the examination of these 4 cases of boundary conditions, we conclude
that A1 ≤ 0. The integral on Γi ∩ Γj in A2 is the opposite of the integral on
Γj∩Γi due to the transmission conditions, so A2 = 0. As C is positive definite,
we conclude that ε1 − ε2 = 0, then it can be shown, e.g., [33]) that u2 − u1

is a rigid body displacement for a simply connected domain. This constant
is null if the part of the boundary submitted to Dirichlet condition or to
Robin condition has a non null length. For Robin condition (u2−u1)>k(u2−
u1) = 0 and then the constant is also null. The combined Dirichlet-Neumann
case needs a little more attention: if the component of u which is assigned
to zero value is the same for the whole boundary, then a translation in the
orthogonal direction is also possible. We exclude such a case. In the following,
unless otherwise specified, we will assume that this type of generalized mixed
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boundary condition is met. It ensures the uniqueness of the solution of the
interior boundary value problem.

3.4 The system of equations

The degenerate scales are the scales for which the boundary integral equations
(with the boundary and transmission conditions) have not a unique solution.
We have the following equations written for each subdomain Ωi i ∈ {1, .., n}:∫

Γi

(ui(y)− ui(x))T(x,y)− ti(y)U(x,y)dSy = 0,x ∈ Γi. (11)

In the following, we omit dSy when it is not necessary for understanding. We
have also the following boundary conditions:

ui(x) = 0,x ∈ ΓD ∩ Γi ∩ Γj ; (12a)

ti,j(x) = 0,x ∈ ΓN ∩ Γi ∩ Γj ; (12b)

ui(x) + kti,j(x) = 0,x ∈ ΓR ∩ Γi ∩ Γj ; (12c)

P(ui)(x) = 0; (Id −P)ti,j(x) = 0, x ∈ ΓC ∩ Γi ∩ Γj . (12d)

and the transmission conditions:

ui(x) = uj(x),x ∈ Γi ∩ Γj ; (13a)

ti,j(x) + tj,i(x) = 0,x ∈ Γi ∩ Γj . (13b)

3.5 Necessary condition for the loss of uniqueness of the solution

We prove now that the degenerate scale of the global piecewise homogeneous
problem is a degenerate scale of one of the subdomains.

We assume that the global problem is at a degenerate scale with (ui, ti)
the non null solution of the system of BIEs. We assume that none of the
interior subdomains are at a degenerate scale. Then we can solve the local
BVP in each subdomain with the boundary conditions vi = uj on Γi. As the
subdomains are not at a degenerate scale, we conclude that T(vi) = ti. Then
v defined by vi on each Ωi is a solution of a homogeneous problem and is null
due to the uniqueness result (section 3.3), but (ui, ti) is also null. From this
contradiction, we conclude that all the degenerate scales of the global problem
are a degenerate scale of one of the subdomains.

It means that the number of degenerate scales of this piecewise homoge-
neous problem is at most 2n.
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3.6 Sufficient condition for the loss of uniqueness of the solution

Let us prove now that a degenerate scale of a homogeneous subdomain is a
degenerate scale of the global problem.

Reciprocally, we assume now that the Dirichlet problem is at a degenerate
scale for one subdomain, say Ω1 with boundary Γ1. So, there is td 6= 0 such
that:

∫
Γi

td(y)U(x,y) = 0. We consider now the solution of the non homo-
geneous BVP where the conditions are unchanged except those involving Γ1.
For Γ1 ∩ (Γ0 ∪ Γn+1), the boundary conditions are now:

v(x) = 0,x ∈ ΓD ∩ Γ1; (14a)

t(x) = td(x),x ∈ ΓN ∩ Γ1; (14b)

v(x) + kt(x) = ktd(x),x ∈ ΓR ∩ Γ1; (14c)

P(v)(x) = 0; (Id −P)t(x) = (Id −P)td(x), x ∈ ΓC ∩ Γ1; (14d)

and the transmission condition:

t1 + ti = td,x ∈ Γ1 ∪ Γi. (15)

Then (vi,Tvi) if i 6= 1 and (v1,Tv1− t) is a solution of the initial system
of BIEs and boundary and transmission conditions. If v1 is non null, we have
found a non null solution of the initial systems of BIEs. If v1 is null, then Tv1

is null but Tv1 − td 6= 0. So, we have still found a non null solution of the
initial systems of BIEs. We conclude that the global problem is at a degenerate
scale.

Finally, the piecewise homogeneous problem with n subdomains has 2n
degenerate scales and these degenerate scales are the degenerate scales of each
subdomain (some of them can be equal).

The holes do not change the degenerate scales as it has been already proved
for the homogeneous Dirichlet problem [38] and checked directly for an outer
circular boundary [7]. We finally conclude that the degenerate scales for gen-
eralized mixed boundary conditions are the same as for the problem with
Dirichlet condition. These degenerate scales are those of the constituting ho-
mogeneous subdomains.

4 The boundary value problem for exterior domains

We consider a piecewise homogeneous domain where there is only one un-
bounded subdomain Ωn (see Fig. 4). Its boundary is constituted of a simple
curve or several simple curves. The domain ΩR is the part of Ωn included in
the circle CR. We follow the method used in [16] for studying the degenerate
scales related to exterior domains with Laplace equation. It was shown in the
case of Laplace equation that the degenerate scales comprise the degenerate
scales for every bounded subdomain and a specific degenerate scale related to
a specific boundary value problem comprising the infinite subdomain, which
is called the ”intrinsic degenerate scale”. In this section, we define a similar
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boundary value problem for the case of elasticity and show that it defines now
two degenerate scales.

G1

Wn

W

n1n

W1

W2

Gn

G1

G2

CR

WRG

G0

Fig. 4 The exterior problem for a piecewise homogeneous medium

The BIEs, the boundary conditions and the transmission conditions are the
same as for the interior problem except for the BIE related to the unbounded
subdomain Ωn, which writes:

un(x) +

∫
Γn

(un(y)− un(x))T(x,y)− tn(y)U(x,y)dSy = 0,x ∈ Γn. (16)

4.1 Solutions of the boundary value problem with a specific behavior at
infinity

We intend to give a method for the characterization of a degenerate scale in
an infinite elastic domain similar to the one given for Laplace equation by [25].
We recall in the case of Laplace equation that the logarithmic capacity is equal
to 1 or equivalently that the problem is at the degenerate scale if there is a
non null function defined on the outside of the boundary such that ∆u = 0 in
this region, u = 0 on the boundary, its behavior at infinity being such that:

u(r) = − 1

2π
ln |r|ξ + µ+ O(

1

|r|
);

∂u

∂|r|
= − 1

2π

ξ

|r|
+ O(

1

|r|2
);

(17)
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where ξ is given (usually ξ = 1) and where µ is an unknown scalar related
to the degenerate scale factor. For the case of plane elasticity we retain the
following conditions at infinity (see, e.g., [28, 38]):

u(r) = Λ

(
−κ ln |r|ξ + (

ξ.r

r.r
)r− 1

Λ
µ + O(

1

|r|
)

)
; (18a)

σ(r).
r

|r|
=

−1

4π(1− ν)|r|

(
(1− 2ν)ξ + 2(

ξ.r

r.r
)r + O(

1

|r|
)

)
; (18b)

where ξ is a given vector and µ is an unknown constant vector. The coefficient
Λ is given by:

Λ =
1

8πG(1− ν)
; κ = 3− 4ν. (19)

For the Dirichlet problem with prescribed ξ, it has been shown that the
problem is always uniquely solvable for homogeneous media [28].

4.2 Uniqueness of the solution of the boundary value problem

We consider the problem of a piecewise homogeneous exterior problem Fig.
4. In each Ωi the operator ∆∗i is constant. We assume the existence of a
solution with the radiation condition (18). This section aims at checking that
the solution is also unique for the boundary cases considered in this paper (see
section. 3.2).

Assuming that there are two different solution ui, i = 1, 2, satisfying the
radiation condition (18) with the same ξ and null on the boundary Γ0. The
Maxwell-Betti reciprocal theorem writes out on the surface limited by Γ0 and
the circle with radius R:

(n−1)∑
i=1

∫
Ωi

(u2−u1)∆∗i (u2−u1) +

∫
ΩR

(u2−u1)∆∗n(u2−u1) = 0

=−
(n−1)∑
i=1

∫
Ωi

(ε2−ε1)>Ci(ε2−ε1)−
∫
ΩR

(ε2−ε1)>Cn(ε2−ε1)

︸ ︷︷ ︸
J1

+

+

n∑
i=1

∫
Γi∪Γ0

(u2−u1)(t2−t1)

︸ ︷︷ ︸
J2

+

n∑
i=1

n∑
j=1,6=i

∫
Γi∩Γj

(u2−u1)(t2−t1)

︸ ︷︷ ︸
J3

+

+

∫
CR

(u2−u1)(t2−t1)

︸ ︷︷ ︸
J4

.

(20)
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The left hand side of the above equation is null since ui are solutions of the
elastic problem. The term J2 is similar to the term A1 of Eq. (10) and we can
conclude as in section 3.3 that J2 ≤ 0 due to the boundary conditions. The
term J3 is null since the term on Γi ∩Γj is the opposite of the term relative to
Γj ∩Γi as a consequence of the transmission conditions. The integral J4 tends
to zero when R→∞ due to the radiation condition with the same ξ for u1 and
u1. Then, we conclude that J1 ≥ 0. As C is positive definite, we have J1 ≤ 0.
Finally, J1 = 0 and u2−u1 is a rigid body displacement in each Ωi. The rigid
body displacement is the same everywhere due to the transmission condition.
The boundary conditions on Γ finally allow to conclude that u1 = u2 as in
section 3.3.

4.3 Definition and properties of a matrix B characterizing the intrinsic
degenerate scales

4.3.1 Definition

For any vector ξ the preceding problem defines µ. We can write µ = Bξ. It
is clear that function B is linear and necessarily continuous as operating on a
finite dimension space. This matrix will be useful to find the ”intrinsic degener-
ate scales” these ones being different from the degenerate scales corresponding
to the bounded subdomains, as it has been found for Laplace equation [16].

4.3.2 Symmetry

An interesting question is whether B is symmetric or not. This can be proved
by considering the solution ui corresponding to the vector ξi for the same
homogeneous boundary condition on Γ . We write the Betti formula, analogous
to the third Green identity (see, e.g., [33, 34]) on the part of the domain
bounded by CR.

(n−1)∑
i=1

∫
Ωi

(u2∆
∗
iu1 − u1∆

∗
iu2) +

∫
ΩR

(u2∆
∗
nu1 − u1∆

∗
nu2) = 0

=

n∑
i=1

∫
Γi∪Γ0

(u2t1 − u1t2)

︸ ︷︷ ︸
K1

+

n∑
i=1

n∑
j=1,6=i

∫
Γi∩Γj

(u2t1 − u1t2)

︸ ︷︷ ︸
K2

+

+

∫
CR

(u2t1 − u1t2)

︸ ︷︷ ︸
K3

.

(21)
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The term K1 is null due to the boundary conditions on Γ0. The term K2

is null because the contribution of Γi ∩ Γj is the opposite of the contribution
of Γj ∩ Γi. Then, the term K3 is null. Using the radiation conditions, we get:

K3 = (ξ>2 Bξ1 − ξ>1 Bξ2) + O(1/R). (22)

We conclude that B is symmetric and therefore has two real eigenvalues.

4.3.3 Comparison with a former work in the case of Dirichlet boundary
condition

We recall how a symmetric matrix related to the degenerate scale factors has
been introduced in [38] in the case of a homogeneous domain for Dirichlet
boundary condition. The following problem was considered:

For given ξ, find (t,µ) such that :

∫
Γ

t(y)U(x,y) = µ;

∫
Γ

t(y) = ξ.

(23a)

(23b)

This defines a matrix B∗ such that B∗ξ = µ. Considering the function u
defined by

u(x) =

∫
Γ

t(y)U(x,y)− µ. (24)

We see that this function satisfies the radiation condition (18a) and is a
solution of the problem for Dirichlet boundary condition and we deduce that
B∗ = B. The same matrix has been recovered as the result of an optimization
problem in [12], for the same case of Dirichlet boundary condition.

As the matrix B∗ in the case of Dirichlet condition, the eigenvalues of B
allow to evaluate the degenerate scale factors for the elasticity problem.

For an eigenvalue λ, we have an eigenvector ξ, and a solution u and the
radiation condition writes out:

u(r) = Λ

(
−κ ln |r|ξ + (

ξ.r

r.r
)r− λ

Λ
ξ + O(

1

|r|
)

)
. (25)

If we transform Γ in Γρ by using a scaling factor ρ, the solution u becomes
uρ(x) = u(x/ρ). Choosing ρ = eλ/(Λκ) then the radiation condition solution
becomes:

uρ(r) = Λ

(
−κ ln |r|ξ + (

ξ.r

r.r
)r + O(

1

|r|
)

)
. (26)

As for the case of Dirichlet boundary condition, this radiation condition is
obtained in the case of the boundary problem related to a non null solution of
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the heterogeneous domain with the various boundary conditions being null. It
means that the domain is at a degenerate scale, ρ being the degenerate scale
factor. So, we conclude that the eigenvalues of the matrix B allow to find two
degenerate scales (these being possibly identical) linked to the existence of
specific solutions of the boundary value problem. As in [16], we will call them
the intrinsic degenerate scales.

5 Inequalities concerning the intrinsic degenerate scale factors for
different types of boundary conditions

It is of prime importance to understand how the degenerate scale can change
when one compares different kinds of boundary conditions. We show a general
condition written by using matrices B related to different boundary conditions.
Next, the different conditions allowing to conclude on the comparisons of these
matrices are shown.

5.1 A sufficient condition for B2 ≥ B1

We consider the solutions (u1,u2) for the same ξ of two problems with the
same boundary but the types of boundary condition are different. The radia-
tion conditions are given by (18).

We write the Betti formula for (u1 − u2) on ΩR:

∫
ΩR

(u1 − u2)∆∗(u1 − u2) = 0

=

∫
Γ

(u1−u2)(t1−t2)

︸ ︷︷ ︸
I1

+

∫
CR

(u1−u2)(t1−t2)

︸ ︷︷ ︸
I2

−
∫
ΩR

(ε1−ε2)>C(ε1 − ε2)

︸ ︷︷ ︸
I3

.
(27)

The integral I2 → 0 when R → ∞ due to the radiation condition (18).
Then as I3 ≤ 0 we conclude: I1 ≥ 0. We also consider the third Betti formula
applied to ΩR: ∫

ΩR

u1∆
∗u2 − u2∆

∗u1 = 0

=

∫
Γ

u1t2 − u2t1

︸ ︷︷ ︸
I4

+

∫
CR

u1t2 − u2t1

︸ ︷︷ ︸
I5

.
(28)

Taking into account the radiation condition (18), the limit of I5 when
R→∞ is:
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(µ1 − µ2)ξ = ξ>(B1 −B2)ξ. (29)

Then a necessary and sufficient condition for B2 ≥ B1 in the sense of
symmetric matrices [23] is that I4 ≥ 0 for all ξ.

Combining (27) and (28), we get:

I4 = I1 +

∫
Γ

(2u1t2 − u1t1 − u2t2). (30)

So a sufficient condition for I4 ≥ 0 is:

I6 =

∫
Γ

(2u1t2 − u1t1 − u2t2) ≥ 0. (31)

Finally, a sufficient condition for B2 ≥ B1 is:

a12(x) = (2u1t2 − u1t1 − u2t2)(x) ≥ 0, x ∈ Γ. (32)

From (27) we get I1 ≥ 0 due to I2 = 0; I3 ≤ 0. From (28) and (30), we get
I5 = −I4 = −I1 − I6 ≤ −I1 ≤ 0. And we finally conclude:

ξ>B1ξ ≤ ξ>B2ξ (33)

for all values of ξ. We can write B2 ≥ B1 in the sense of symmetric matrices
[23]. Then the ordered eigenvalues (ρ1, ρ2) of the symmetric matrix B2 are
larger than the ones of (the symmetric matrix) B1. It is worthwhile mentioning
that the local condition must be met for every point of the boundary. Now, we
will study how this local condition can be met when the boundary condition
changes at the local point x.

5.2 The sufficient condition on a12 is satisfied locally if the boundary
conditions are locally of the same kind over the boundary

If the boundary conditions are the same for the two problems on one part of
the boundary, the quantity a12 defined by (32) is positive or null at any point
of the considered part of the boundary.

Case of Dirichlet condition Substituting u1 = u2 = 0 in (33), we get a12 = 0.

Case of Neumann condition Substituting t1 = t2 = 0 in (33), we get a12 = 0.

Case of combined condition We assume that the projector P is the same for
the two problems. Then all the terms uitj in a12 can be expanded in the
following way:

uitj = P(ui)P(tj) + (Id −P)(ui)(Id −P)(tj). (34)

As P(ui) = 0 and (Id −P)(tj) = 0, we conclude a12 = 0.
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Case of Robin condition with k1 = k2 We assume that the matrix k is the
same for the two problems. Then we can substitute ui = −kti in a12:

a12 = −2u>1 ku2 + u>1 ku1 + u>2 ku2 = (u1 − u2)>k(u1 − u2) ≥ 0, (35)

since we have assumed that k is positive definite.

Remark If the boundary conditions are the same for the two problems on the
whole boundary, we will conclude that B2 ≥ B1, but, in that case, we can
exchange the two problems and finally conclude B2 = B1.

5.3 Study of different cases which ensure the sufficient condition (32) locally

5.3.1 Comparison between Dirichlet and Neumann boundary condition (BC)

We assume that boundary value problem 1 (BVP1) has Dirichlet boundary
condition on part ΓDN of the boundary when problem 2 (BVP2) has Neumann
condition. Then for x ∈ ΓDN we have u1 = 0; t2 = 0 and a12 = 0 on ΓDN .

5.3.2 Comparison between Dirichlet and combined BC

We assume that BVP1 has Dirichlet boundary condition on the part ΓDC
when BVP2 has combined boundary condition.

For x ∈ ΓDC , we have u1 = 0. Since P(u2) = 0 and (Id −P)(t2) = 0,
we have also u2t2 = P(u2)P(t2) + (Id −P)(u2)(Id −P)(t2) = 0. Then we
conclude a12 = 0 on ΓDC .

5.3.3 Comparison between combined BC and Neumann BC

We assume that BVP1 has a combined boundary condition on the part ΓCN
when BVP2 has Neumann boundary condition. Then on ΓCN , t2 = 0 and
u1t1 = 0, and we conclude a12 = 0 on ΓCN .

5.3.4 Comparison between Dirichlet BC and Robin BC

We assume that BVP1 has a Dirichlet boundary condition on the part ΓDR
when BVP2 has Robin boundary condition. Then on ΓDR, u1 = 0 and u2 =
−kt2. We conclude:

a12(x) = u>2 k2u2 ≥ 0; x ∈ ΓDR. (36)

5.3.5 Comparison between Robin BC and Neumann BC

We assume that BVP1 has a Robin boundary condition on the part ΓRN when
BVP2 has Neumann boundary condition. Then on ΓDR, we have u1 = −k1t1
and t2 = 0. We conclude:

a12(x) = u>1 k1u1 ≥ 0; x ∈ ΓRN . (37)
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5.3.6 Comparison between Robin BC with k1 ≥ k2

We assume that the two problems have the Robin boundary conditions ΓRR
with k1 ≥ k2. We write a12, substituting ti = −kiui and using the symmetry
of k2:

a12 =u>1 k1u1 + u>2 k2u2 − 2u>1 k2u2

=(u1 − u2)>k2(u1 − u2) + u>1 (k1 − k2)u1.
(38)

As k1 ≥ k2 ≥ 0, we conclude a12 ≥ 0 on ΓRR.

5.4 Remarks and conclusion

Using the results of the two preceding subsections allows the comparison of all
cases of piecewise boundary conditions given in Table 1.

Dirichlet Combined Robin Neumann

Dirichlet 0 (a) (c) (a)

Combined 0
0 

if p1=p2
(b) (a)

Robin >0 (b)
>0

if k1>k2
(c)

Neumann 0 0 >0 0

BVP1

BVP2

Table 1 The value of a12 when comparing the local boundary conditions. (a) in these cases
a21 = 0; (b) the sign is a priori unknown; (c) in these cases a21 ≥ 0.

Finally, if the two problems BVP1, BVP2 are such that a12 ≥ 0 holds on
the whole boundary, then we conclude that B2 ≥ B1 and that the degenerate
scales of BVP2 are larger than those of BVP1.

An especially interesting case is the comparison of a problem with Dirichlet
boundary condition and any problem with parts of the boundary submitted
to Neumann, Robin or combined BC: we have always the intrinsic degenerate
scale factors which are larger than for the case with Dirichlet condition on the
whole boundary. These intrinsic degenerate scale factors are also larger than
the inverse of the logarithmic capacity of the boundary. Table 1 allows also
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to conclude that replacing any boundary condition by a Neumann boundary
condition leads to higher values of degenerate scales.

6 Influence of the ratio of the elasticity coefficients on matrix B in
the case of a 2-subdomains problem

We consider a 2-subdomains problem (Fig. 5) and we study the influence on
B of a change of the elasticity constants in one of the subdomains, ν being
unchanged.

n1

W1

W2 G2

G1

CR

WRG

G0

Fig. 5 Cases of two subdomains

As the degenerate scales do not vary if we multiply all the coefficients λi, Gi
by a same constant, we will assume without loss of generality that the elasticity
constants are the same in the unbounded subdomain Ω2. So we compare the
problems a and b which differ only by the elasticity tensor in Ω1: C1a = kC2a.
We can also write: ∆∗1a = k∆∗1b. We consider the solutions (va,vb) of these
two problems for the same ξ in the radiation condition.

We apply the first Green identity to (αva − vb) on Ω1, α being constant.
We get ∫

Ω1

(αva−vb)∆
∗
1a(αva−vb) = 0

=

∫
Γ1∩Γ0

(αva−vb)(αt
1,0
a − kt1,0b )︸ ︷︷ ︸

I0

+

∫
Γ1∩Γ2

(αva−vb)(αt
1,2
a − kt1,2b )︸ ︷︷ ︸

I1

−
∫
Ω1

((αεa−εb)
>C1a(αεa−εb))︸ ︷︷ ︸

I2≤0

.

(39)
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We restrict ourselves to the case of a boundary with parts submitted to
Dirichlet, Neumann and combined Dirichlet-Neumann conditions. We can then
conclude that I0 = 0 and finally I1 ≥ 0. We define Aaa =

∫
Γ1∩Γ2

vat
1,2
a ;

Aab =
∫
Γ1∩Γ2

vat
1,2
b ; Aba =

∫
Γ1∩Γ2

vbt
1,2
a ; Abb =

∫
Γ1∩Γ2

vbt
1,2
b . Hence, the

inequality on I1 can be written:

α2Aaa − αkAab − αAba + kAbb ≥ O. (40)

We apply the second Betti formula on Ω1:∫
Ω1

va∆
∗
1a(vb)− vb∆

∗
1a(va) = 0

=

∫
Γ1∩Γ0

vakt
1,0
b − vbt

1,0
a︸ ︷︷ ︸

I3=0

+

∫
Γ1∩Γ2

kvat
1,2
b − vbt

1,2
a︸ ︷︷ ︸

I4

.
(41)

Under the same assumption as before, I3 = 0 and we conclude:

kAab −Aba = 0. (42)

Writing the first Betti formula on ΩR, we get:∫
ΩR

(va−vb)∆
∗
2(va−vb) = 0

=

∫
Γ2∩Γ0

(va−vb)(t
2,0
a − kt2,0b )︸ ︷︷ ︸

I5

+

∫
Γ2∩Γ1

(va−vb)(t
2,1
a − kt2,1b )︸ ︷︷ ︸

I6

+

∫
CR

(va−vb)(t
2,R
a − kt2,Rb )︸ ︷︷ ︸

I7

−
∫
ΩR

((εa−εb)
>C2(εa−εb))︸ ︷︷ ︸

I8≤0

.

(43)

We have I5 = 0 as there is no part of the boundary submitted to Robin
condition, we have I7 → 0 when R→∞, and we finally conclude:

−Aaa +Aab +Aba −Abb ≥ 0. (44)

Finally, we use the second Betti formula on ΩR:∫
ΩR

va∆
∗
2(vb)− vb∆

∗
2(va) = 0

=

∫
Γ2∩Γ0

vat
2,0
b − vbt

2,0
a︸ ︷︷ ︸

I9=0

+

∫
Γ2∩Γ1

vat
2,1
b − vbt

2,1
a︸ ︷︷ ︸

I10

+

∫
CR

vat
2,R
b − vbt

2,R
a︸ ︷︷ ︸

I11

.

(45)
The asymptotic value of I11 for r →∞ is µa.ξ−µb.ξ =ξ.(Ba−Bb).ξ. Finally
we have:

−Aab +Aba + ξ>(Ba −Bb)ξ = 0. (46)
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Now we choose α =
√
k and we divide (40) by k and we add it to (44). We

get:

(1−
√
k)Aab + (1− 1√

k
)Aba ≥ 0. (47)

Substituting (42) in the above equation we get (1−
√
k)2Aab ≥ 0. Substituting

(42) in (46) we get:

ξ>(Ba −Bb)ξ = (1− k)Aab. (48)

As Aab ≥ 0 and the above equality is true for all ξ we conclude:

Ba ≥ Bb if k < 1; Ba ≤ Bb if k > 1. (49)

A similar result has been shown in [16] for Laplace equation, when one
compares the same infinite subdomain with different conductivities.

7 Characterization of the degenerate scales of the systems of BIEs

Up to now, only the case of the intrinsic degenerate scales has been considered.
We turn now to the consideration of the set of all degenerate scales of the
system of BIEs.

7.1 Necessary condition for the loss of uniqueness

As for the interior problem, we assume that the system of BIEs is at a de-
generate scale, i.e., there is a non null solution with homogeneous boundary
conditions on Γ0. If we assume that none of the bounded subdomains Ωi
1 ≤ i ≤ (n− 1) is at a degenerate scale, then it is possible to build a solution
of the BVP in the union of the bounded subdomains.

We consider now the solution vn in Ωn with Dirichlet condition on Γn
vn = un and a radiation condition defined by ξ =

∫
Γn

tn. Then v satisfies the
following BIE:

vn(x) +

∫
Γn

([vn(y)− vn(x)]T(x,y)− tn(y)U(x,y)) dSy = µ. (50)

The comparison with the BIE satisfied by (un, tn) gives
∫
Γn

(tn− t)U = µ

with
∫
Γn

(tn − t) = 0, then it can be deduced that tn = t (see, e.g., the work

of reference [38]). Therefore, we conclude that there is a solution of the BVP
with the radiation condition such that µ = 0. This solution is 6= 0, otherwise
all ui, ti would be null.

So we can conclude that a necessary condition for the loss of uniqueness
of the BIEs is that one of the bounded subdomains is at a degenerate scale
(for Dirichlet condition) or that there is a non null solution of the BVP with
µ = 0.
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7.2 Sufficient condition for the loss of uniqueness

If there is a non-null solution of the BVP with µ = 0 then we find a solution
of the systems of BIEs.

If a bounded subdomain is at a degenerate scale, say Ω1, we can, as for
the interior problem, change the boundary and transmission condition of this
subdomain and find a solution of a BVP with this modified conditions and
a radiation condition written with ξ = 0. If the solution is such that µ = 0,
then it satisfies the corresponding BIE in Ωn. Then, as for the interior case, we
can find a non null solution of the BIEs relative to the bounded subdomains.
If µ 6= 0, and if the scale is not an intrinsic degenerate scale, we can find ξ′

such that there is a solution u′ with a radiation condition ξ′ and µ′ = −µ.
(See section 4). Then, adding u + u′ we find a solution of the BVP which
satisfies the BIEs relative to all subdomains except Ω1 and all the boundary
and transmission conditions except those relative to Γ1. For this boundary we
replace t1 + t′1 by t1 + t′1 − td, and we have found a non null solution (since
the corresponding radiation condition is with ξ′ 6= 0).

We finally conclude that for the exterior problems with n subdomains,
the set of degenerate scales comprises the 2(n − 1) degenerate scales of the
bounded subdomains and the two intrinsic degenerate scales linked to the non
null solution of a BVP with a specific radiation condition and determined by
the matrix B.

8 Two sufficient conditions for uniqueness of the solution of the
system of BIEs

In a first step, the global problem with its various boundary conditions is
compared with the problem with Dirichlet boundary conditions. In a second
step, a condition of uniqueness can be deduced.

8.1 Comparison of the intrinsic degenerate scale factors of the global problem
with those of a Dirichlet problem on Γn

We compare the problem of the piecewise homogeneous problem with general-
ized mixed boundary condition with the Dirichlet problem on the unbounded
homogeneous subdomain of the first problem. We consider the solution u1 of
the BVP on the whole domain and u2 the solution of the boundary problem
on Ωn with null Dirichlet boundary condition on Γn. The radiation condition
is the same for the two problems with the same ξ.
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We write first the following quantity:

n−1∑
i=1

∫
Ωi

u1∆
∗
iu1 +

∫
ΩR

(u1 − u2)∆∗n(u1 − u2) = 0

=

n−1∑
i=1

∫
Γi∩Γ0

u1t
i,0
1︸ ︷︷ ︸

L1

+

n−1∑
i=1

n−1∑
j=1,j 6=i

∫
Γi∩Γj

u1t
i,j
1

︸ ︷︷ ︸
L2

+

n−1∑
i=1

∫
Γi∩Γn

u1t
i,n
1︸ ︷︷ ︸

L3

+

n∑
i=1

∫
Γi∩Γn

(u1 − u2)(tn,i1 − tn,i2 )

︸ ︷︷ ︸
L4

+

∫
CR

(u1 − u2)(tn,R1 − tn,R2 )

︸ ︷︷ ︸
L5

−
n∑
i=1

∫
Ωi

ε>1 Ciε1

︸ ︷︷ ︸
L6

−
∫
ΩR

(ε1 − ε2)>Cn(ε1 − ε2)

︸ ︷︷ ︸
L7

.

(51)

Due to the boundary conditions applied to u1 on Γ0, we have L1 ≤ 0;
the quantity L6 + L7 is also ≤ 0. Due to the transmission condition, we have
L2 = 0. We must consider now the quantity L3 + L4.

We have: u2 = 0 on Γn, and ti,n = −tn,i. Finally, L3 + L4 reduces to

−
n−1∑
i=1

∫
Γi∩Γn

u1t
n,i
2 which is ≥ 0 as L5 → 0 when R→∞.

We consider now:

∫
ΩR

u1∆
∗
iu2 − u2∆

∗
iu2 = 0 =

n∑
i=1

∫
Γi∩Γn

u1t
n,i
2 − u2t

n,i
1︸ ︷︷ ︸

L8

+

∫
CR

u1t
n,R
2 − u2t

n,R
1︸ ︷︷ ︸

L9

.

(52)

Then we notice that L8 reduces to
n∑
i=1

∫
Γi∩Γn

u1t
n,i
2 ≤ 0. As the limit of L9

when R→∞ is (µ1−µ2)ξ = ξ(B1−B2)ξ (from Eq. (29)), we conclude that
B1 ≥ B2. The couple of intrinsic degenerate scale factors for the problem in
the exterior domain bounded by Γ0 with generalized mixed condition is equal
or larger than those for the exterior domain bounded by Γn with Dirichlet
condition.

This result is similar to the partial result for the 2 concentric circles in the
Laplace problem: the intrinsic degenerate scale factor of the heterogeneous
problem is always larger that the degenerate scale factor for the largest circle
[16]. The general result that we get for elasticity can be straightforwardly
extended to the case of Laplace equation by using the same approach.
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8.2 Sufficient conditions

We can deduce two sufficient conditions for the uniqueness of the solution. A
sufficient condition for the intrinsic degenerate scale factors to be > 1 is that
the two eigenvalues of B2 are > 0.

This is the case if the boundary Γn is included in a circle of radius < e1/2κm

as seen in [38] with κm ≥ κi, i ∈ {1, .., n}. Then all the boundaries Γi, 1 ≤ i ≤ n
are also included in the circle of radius < e1/2κi if κi ≥ κ and the condition is
sufficient to ensure the uniqueness of the solution.

Another sufficient condition is that the logarithmic capacity of Γn is < 1.
According to section 2, we then deduce that the degenerate scale factors as-
sociated with the Dirichlet problem on Γn are > 1. But that is also true for
all the degenerate scales associated to Γi, 1 ≥ i ≥ n− 1 since the logarithmic
capacity of Γi is smaller or equal to the logarithmic capacity of Γn (see for ex-
ample [22]). These two sufficient conditions are also valid for interior problems
if we consider Γ0 instead of Γn.

9 Definition of a matrix B̃

We presented in section 4 a matrix B allowing to recover the intrinsic degen-
erate scale factors. In this section, we introduce a matrix related to the whole
set of degenerate scales for the heterogeneous domain.

We consider the following problem to find ui, ti defined on Γi satisfying
all the boundary and transmission conditions. We modify the initial BIEs
by adding a right member µi and conditions

∫
Γi

ti = ξi. We define µ̃ =

(µ1, ..,µn)> and ξ̃ = (ξ1, .., ξn)>). This system of augmented BIEs provides
a matrix B̃ defined by µ̃ = B̃ξ̃. It is a generalization of the matrix defined in
[38] for finding the degenerate scales of the homogeneous Dirichlet problem.

This matrix is well defined: for given ξ̃, there is at most one solution µ̃.
If there were two solutions their difference u∗i, t∗i would satisfy all the initial
BIEs with

∫
Γi

t∗i = 0. For the exterior problem we add ξ = 0 in the radiation

condition. Then solving the Dirichlet BVP in each Γi, we find v̂i, t̂i which
satisfy the BIEs with

∫
Γi

t̂i = 0. Then we have
∫
Γi

U(t̂i − t∗i) = 0 with∫
Γi

(t̂i − t∗i) = 0. This ensures that t̂i − t∗i = 0 [38]. And then we have found
a global solution of the BVP with the radiation condition ξ = 0 and this
solution is null (section 4.2). So the solution µ̃ is unique. It is easy to see that
the function µ̃ → ξ̃ is linear. So, in order to check that there is a solution for
all ξ̃, it is enough to check that it is true for a basis of the vectors ξ̃.

We consider an orthonormal basis (e1, e2) in the plane and we assume that
all the BIEs are written using this basis. We define the basis for the vectors ξ̃,
the following set of vectors ξ̃i,1, ξ̃i,2 defined as having all its components null
except ξ̃2i−1 = 1 for ξ̃i,1 and ξ̃2i = 1 for ξ̃i,2.

We focus on the exterior problem. The solutions for ξ̃i = 0 if i 6= n and
ξ̃n 6= 0 are defined by a solution of the boundary value problem of section 4.1
and we have µi = 0 if i 6= n.
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We consider now the ξi, i 6= n, linked to the bounded subdomains, for
example ξ̃1,1 = 1 and all other components of vectors ξ̃i = 0. Then, we can
find t1d on Ω1 such that

∫
Γ1

Ut1d = µ1 and
∫
Γ1

t1d = ( 1
0 ). Next, we consider

the global auxiliary boundary u value problem with the conditions (14), (15)
(case of the interior problem). As a consequence, the solution of this problem
satisfies the initial BIEs (without any µi) for i 6= n. If we consider t̃1 = t1−t1d,
and ũi = ui for all i and t̃i = ti if i 6= 1. Then (ũi, t̃i) satisfies all the boundary
conditions and transmission conditions of the initial problem and the initial
BIEs except the one relative to Γ1 which has the right hand term µ1 and
possibly ξn 6= 0 and also the augmented BIEs with ξ̃i = 0, except i = 1 and
i = n. Combining with the solutions with ξn 6= 0 we build a solution with
ξ = 0 if i 6= 1 and µi = 0 for i 6= 1, 6= n. The case of the interior problem
is the same except for the unbounded domain Ωn for which ũ is found as the
solution of a global BVP with ξn in the radiation condition.

The way used to find µ̃ shows that the matrix
[
B̃
]

with the chosen basis
is as follows:

[B̃] =



B11 0 ... ... 0

0 B22 0
...

...
. . .

. . .
. . .

...
0 ... 0 B(n−1)(n−1) 0

Bn1 ... ... Bn(n−1) Bnn

 ; (53)

where
[
Bij

]
is a 2× 2 matrix.

The case of the interior problem is the same except that there are no longer
the two rows corresponding to the unbounded domain Ωn.

It can been checked directly that the 2n eigenvalues of
[
B̃
]

are linked to
the degenerate scale factors of the problem. We assume that α is an eigenvalue
of
[
B̃
]

with eigenvector ξ̃, then there is a solution u, t, µ̃) such that:

−1

2
ui +

∫
Γi

Uti −
∫
Γi

Tiui = µ̃i = αξ̃i with

∫
Γi

ti = ξ̃i. (54)

If we change the scale of the problem by a factor ρ and we use
∫
ρΓi

Uρt
i(y/ρ) =

ρ(
∫
Γi

Uρt
i(y)− Λκ ln ρ

∫
Γi

ti) [38]the BIEs becomes in this new scale:

−1

2
ui(

x

ρ
) +

∫
ρΓi

U(x,y)
tiρ(y/ρ)

ρ
−
∫
ρΓi

Ti(x,y)ui(
y

ρ
) = µ̃i − Λκ ln ρ

∫
Γi

ti.

(55)
If we choose ρ = exp α

Λκ , then µ̃i − Λκ ln ρ
∫
Γi

ti = µ̃i − αξ̃i = 0, and ρ is a

degenerate scale factor. The boundary conditions are satisfied by ui(x
ρ ), t

i

ρ for
the scaled problem with Dirichlet, Neumann or combined Dirichlet-Neumann
boundary conditions. For the Robin condition it is also necessary to scale k:
if u = kt, then, u = (ρk)( 1

ρt).
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10 Numerical applications

10.1 BEM formulation for the mixed problem

The practical applications rest on the discretization of equation (54). The
BEM formulation of this equation can be written for a mixed problem with
homogeneous boundary conditions as:

[UD][tD]− [TN ][uN ] =


µ1

µ2

µ1

µ2

...

 ;

[S][tD] =

[
ξ1
ξ2

]
.

(56a)

(56b)

where [tD] contains the unknown components of nodal tractions on the bound-
ary and [UD] the unknown components of nodal displacements, the interaction
matrices [UD] and [TN ] contain the columns consistent with the unknown nodal
values. [S] is the matrix computed from interpolation functions Ni related to
nodes of ΓD by:

[S] =

[∫
Γ
N1ds 0

∫
Γ
N2ds ...

0
∫
Γ
N1ds 0 ...

]
. (57)

This leads to the linear system written in a matrix form as:

[
UD −TD V1 V2
S 0 0 0

]
tD
uN
µ1

µ2

 =

 0
ξ1
ξ2

 ; (58)

with the notation

V1 =


−1
0
−1
...

 ;V2 =


0
−1
0
...

 . (59)

This matrix has the dimension 2.nD × 2, where nD is the number of nodes
at a Dirichlet boundary condition.

The full system has the dimension (2N + 2) × (2N + 2) for a number N
of nodes. Solving this system with unknown µ1, µ2 for ξ1 = 1, ξ2 = 0 (resp.
ξ1 = 0, ξ2 = 1) gives µ1 = B11, µ2 = B21 (resp. µ1 = B12, µ2 = B22), where
Bij are the components of matrix B̃. Then, the degenerate scales are obtained

from the eigenvalues of B̃, as explained previously.



The degenerate scales for plane elasticity problems under general conditions 29

10.2 BEM formulation of the heterogeneous problem

We consider now the case of a heterogeneous domain, made of an exterior
domain ΩA containing an interior domain ΩB , the two domains being in con-
tact along ΓI . We study Dirichlet boundary conditions applied on the interior
boundary of ΩB as in Fig. 6.

WB
WA

GI

G0

Fig. 6 Notations for BEM formulation of the heterogeneous problem

The BEM system of equations can be written:

[UAI ][tI ]− [TAI ][uI ] =[µA];

[UB |UBI ]
[
tB
−tI

]
− [TBI ][uI ] =[µB ];

[SI ][tI ] =[ξA];

[SB ][tB ]− [SI ][tI ] =[ξB ].

(60a)

(60b)

(60c)

(60d)

As shown previously, the degenerate scales contain the one of ΩB and the
intrinsic degenerate scales. From the previous section, the intrinsic degenerate
scales can be obtained by looking for µA and µB related to the infinite domain
with ξB = 0. In addition, it has been seen that changing the scale involves the
multiplication by the term Λκ of the logarithmic term. Finally, the system of
linear equations can be synthetized into the following matrix form:


0 UAI −TAI VA1 VA2 0 0
UB −UBI −TBI 0 0 VB1 VB2

0 SI 0 0 0 0 0
0 −SI SB 0 0 0 0





tB
tI
uI
µA1

µA2

µB1

µB2


=



0
...
0
ξA1

ξA2

0
0


; (61)
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where the components of vectors VA1, VA2 are given by:

[VA1] = ΛAκA [V1] ; [VA2] = ΛAκA [V2] ; (62)

and similarly for VB1, VB2.

10.3 Numerical results for the mixed boundary condition

10.3.1 Comparison with an analytical result

The exact values of degenerate scale factors in the case of mixed boundary
conditions are not found in the literature.

We present here a case related to a segment of length 2b along axis Ox1. On
the central part of the segment of length 2a, the boundary condition is mixed,
corresponding to the values of u2, t1. On the remaining part, the boundary
condition is of Dirichlet type. For such a configuration, one of the degenerate
scale factors is given exactly by ρ = 2e1/κ/

√
b2 − a2. This is found by con-

sidering an auxiliary problem: the degenerate scales of the set [−b,−a]∪ [a, b]
included in the axis Ox1 for Dirichlet condition. The degenerate scale with the
resultant of the applied forces parallel to Ox1 is given by ρ0e

(1/κ) [13] with
ρ0 = 2/

√
b2 − a2. The corresponding displacement field satisfies the Dirichlet

condition on [−b,−a] ∪ [a, b]; but, due to the symmetry of the problem, Ox1
is a symmetry axis and we conclude also that u2 = 0 and t1 = 0 on [−a, a]. So
we have found one of the degenerate scales of the initial problem.

The numerical test has been effected with a = 1, b = 3, ν = 0.25 and
600 constant elements for the segment [−b, b]. The corresponding theoretical
degenerate scale factor is ρ = 1.1658. The numerical test produces two values
of ρ: ρ1 = 0.6671 and ρ2 = 1.1668. The second value corresponds to the
theoretical value with a relative difference inferior to 10−3. This is a first
validation of the numerical computation.

10.3.2 Case of an exterior problem on a circle with an increasing part at
Neumann boundary condition

One considers the case of an exterior problem for a circle. The boundary condi-
tion is of Dirichlet type on a part and of Neumann type on the remaining part.
The boundary of the circle has been discretized with the Boundary Element
Method by using 500 constant elements.
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Fig. 7 Degenerate scale factors as a function of α, for increasing part at Dirichlet condition
characterized by angle 2α

A first result is that both degenerate scale factors are identical. Figure 7
displays the values of ρ1 = ρ2 as a function of α, the angle characterizing the
part at Dirichlet condition being given by 2α.

Three curves obtained from the degenerate scale factor for Laplace equation
in a similar configuration (obtained from [15]) and from the value of κ are
also given. Indeed, for the case of Dirichlet boundary condition, the following
inequalities hold, as recalled in section 2:


ρi < ρ0e

1/κ;

min(ρ1, ρ2) < ρ0e
1/2κ;

ρi > ρ0.

(63)

It can be seen that the common degenerate scale factor for elasticity is
still comprised between ρ0 and ρ0e

1/κ. However, the second inequality is no
more valid. When the part of the domain at Neumann boundary condition
increases, the degenerate scale factor increases. It tends to infinity for the case
of the full boundary at Neumann condition(α = 0).
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10.3.3 Case of an exterior and heterogeneous problem

We consider the case of a heterogeneous domain made of a first subdomain ΩB
being a ring between radii 2 and 3 and of the infinite domain ΩB outside the
circle of radius R = 3. The discretization of the boundaries has been effected
by using 300 constant elements on each circular boundary.

Fig. 8 Variation of ρe1/2κ as a function of the ratio of elastic moduli, for different values
of the Poisson’s ratio

The degenerate scale factors have been computed for an increasing value of
the ratio k = ΛB/ΛA and for three values of Poisson’s ratio, ν = 0.1, 0.25, 0.4
that are the same for both domains. Both degenerate scale factors are again
identical, ρ1 = ρ2 = ρ.

The results can be shown on Fig. 8 where the value of ρ e1/2κ can be
found as a function of the contrast k. This presentation of the results is due
to the fact that for the homogeneous case with Dirichlet boundary condition
the degenerate scale factors are both given by ρ0 e

−1/2κ. It can be seen that
the value of ρ e1/2κ for all curves is equal to 1/3 when the contrast is null,
which corresponds to the degenerate scale factor ρ0 of the homogeneous ring
for Laplace equation. When there is no contrast ratio, i.e., k = 1, the problem
becomes the one of a homogeneous domain with a hole of radius R = 2 and
all curves recover the degenerate scale factor ρ0 = 1/2 for Laplace equation
related to this homogeneous domain.
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For k between 0 and 1, the three curves are nearly the same, but differ
significantly when k increases.

For very large values of k, the computation shows that the degenerate scale
factor becomes very large, the problem evolving toward the case of Neumann
boundary condition on the outside circle for which the degenerate scale factor
is infinite.

11 Conclusion

The degenerate scales for the homogeneous Dirichlet plane elasticity problem
appear to be less than or equal to the degenerate scale factor for the Laplace
problem with the same boundary (section 2). The degenerate scales for ho-
mogeneous or piecewise homogeneous interior problems with mixed boundary
conditions have been found to be equal to the degenerate scales for the Dirich-
let problem in the case of a homogeneous domain or several homogeneous
subdomains. In section 3, a matrix B has been introduced which gives infor-
mation on the solutions of the global exterior BVP. The degenerate scales for
the exterior problem are the degenerate scales of the bounded subdomains
and the intrinsic degenerate scales linked to the existence of specific solutions
of the global exterior BVP (section 7). The intrinsic degenerate factors ρ1, ρ2
for mixed boundary conditions are larger or equal to the couple of intrinsic
degenerate scale factors for the Dirichlet boundary condition (section 5). A
sufficient condition for uniqueness of the solution (section 8) is that all the
boundaries are included in a disk with a radius smaller than e1/(2κm) or that
the boundary Γn has a logarithmic capacity strictly smaller than 1.

The numerical BEM application for obtaining degenerate scale factors in
the case of mixed boundary conditions or heterogeneous domains has been
presented. It allows the obtaining of the degenerate scale factors through the
computation of the B matrix. Several numerical applications have been pre-
sented and are consistent with the theoretical developments.
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