
HAL Id: hal-02453122
https://hal.science/hal-02453122

Submitted on 23 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Refinement Based Method for Developing Distributed
Protocols

Paulius Stankaitis, Alexei Iliasov, Yamine Aït-Ameur, Tsutomou Kobayashi,
Fuyuki Ishikawa, Alexander Romanowski

To cite this version:
Paulius Stankaitis, Alexei Iliasov, Yamine Aït-Ameur, Tsutomou Kobayashi, Fuyuki Ishikawa, et al.. A
Refinement Based Method for Developing Distributed Protocols. 19th IEEE International Symposium
on High Assurance Systems Engineering (HASE 2019), Jan 2019, Hangzhou, China. pp.90-97. �hal-
02453122�

https://hal.science/hal-02453122
https://hal.archives-ouvertes.fr

Official URL
DOI : https://doi.org/10.1109/HASE.2019.00023

Any correspondence concerning this service should be sent

to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in:
http://oatao.univ-toulouse.fr/24886

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

To cite this version: Stankaitis, Paulius and Iliasov, Alexei

and Ait Ameur, Yamine and Kobayashi, Tsutomou and Ishikawa,

Fuyuki and Romanowski, Alexander A Refinement Based Method

for Developing Distributed Protocols. (2019) In: 19th IEEE

International Symposium on High Assurance Systems

Engineering (HASE 2019), 3 January 2019 - 5 January 2019

(Hangzhou, China).

Abstract—This paper presents a methodology for modelling
and verification of high-assurance distributed protocols. In the
paper we describe two main technical contributions needed for
the development method: communication modelling patterns and
a refinement strategy. The applicability of the proposed method is
demonstrated by developing a new distributed resource allocation
protocol. We also discuss the necessity of integrating other tools
such as stochastic model checkers for enabling verification of
wider range of protocol properties.

I. INTRODUCTION

Developing distributed systems is an intricate process,

which requires rigorous methods due to concurrent nature

of the distributed systems. Formal methods - mathematical

model driven techniques - provide a systematic approach

for developing complex systems. They offer an approach to

specify systems precisely via mathematically defined syntax

and semantics as well as formally validate them by using

semi-automatic or automatic verification tools. In particular

formal notations such as Event-B [1] are thought to be well

suited for development and verification of various protocols.

The stepwise and proof driven development provided by such

methods is attractive to developers and can significantly reduce

the modelling and verification effort.

The overall aim of our research is to reduce complexity of

applying formal methods for developing high-assurance dis-

tributed protocols. The proposed development methodology is

based on a stepwise refinement and mathematical proof - two

techniques which we believe can reduce modelling effort and

provide a higher system assurance degree. Nonetheless, the

effectiveness of these techniques significantly correlates with

developers experience and an adequate tool support. Thus,

to overcome these issues our research focuses on developing

a method for automatically constructing model refinement

chains from high-level distributed protocol specifications and

integrating a better tool support for animation and verification

of the model. In this paper we discuss the current main

elements developed to facilitate this approach: communication

modelling patterns and a generic refinement strategy. The

paper also presents how these patterns can be applied by

developing a new distributed resource allocation protocol. We

also discuss the endured verification challenges and results

from using additional verification techniques.

Related work. There have been several studies which aimed

to develop a general way of modelling and verification of

distributed protocols. But, not many methods were based

on the refinement, we discuss ones that utilized the step

wise development. In Iliasov et al. [6] authors presented a

modelling technique based to bridge the gap between Event-

B formal model and the software protocol implementation.

Their approach proposes to introduce an environment into

the model and to further decompose communication events

to separately model sending and receiving a message. The

paper [8] proposed an integrated method based on Event-B and

BIP [9] modelling languages for development of distributed

systems. Their approach helps for a developer to interactively

refine an abstract centralised system model with an assistance

of domain languages and available plug-ins, and generate BIP

model code. In the work by Hawblitzel et al. [10] authors

developed a methodology to model and verify a non-trivial

distributed systems (including implementations). Their method

relies on proving refinement relation between different layers

(e.g. design level and implementation) with a well known

techniques such as TLA+ and state-of-the-art SMT solvers.

r0 r1 r2 r3

dl0 0 0 0 0

1 1 1 1

dl1 2 2 2 2 dl2

dl3 3 3 3 3

4 4 4 4 dl4

5 5 5 5

Fig. 1: An example virtual distributed lane data structure with

5 agents and 4 resources. Each dln only belongs to a single

agent. Multiple distributed lanes can have the same index, but

they cannot overlap (e.g. dl1 and dl2).

A refinement based method for developing

distributed protocols

Paulius Stankaitis∗, Alexei Iliasov∗, Yamine Aı̈t-Ameur†, Tsutomu Kobayashi‡,

Fuyuki Ishikawa‡ and Alexander Romanovsky∗

∗Newcastle University, Newcastle upon Tyne, United Kingdom
†INPT-ENSEEIHT, 2 Rue Charles Camichel, Toulouse, France

‡National Institute of Informatics, Tokyo, Japan
Corresponding author: p.stankaitis@newcastle.ac.uk

In Section II we introduce the problem of a distributed re-

source allocation and propose a two stage distributed protocol

for solving it. The following section describes our proposed

development methodology in more detail including the back-

ground information on the Event-B specification language,

ProB model checker [7] and PRISM model checker [5]. Sec-

tion IV describes developed modelling patterns and refinement

strategy to facilitate our development approach. In Section V

we discuss how modelling patterns, refinement strategy and

external tools were used to prove the distributed resource

allocation protocol. The last section contains a conclusion and

overviews the future work.

II. OVERVIEW OF THE PROTOCOL

The objective of the protocol is to enable safe distributed

atomic reservation of a collection of resources. For instance

any two distinct agents A0 and A1 may require any resource

collections r0 and r1, where r0, r1 ⊆ R. The protocol must

guarantee that each agent gets all or nothing - partial request

satisfaction is not permitted - and ensure that every agent

request will be eventually satisfied as long as certain degener-

ated situations are avoided. A resource itself has an attributed

memory, where requests can be stored together with a read

pointer rp(rk), and a promise pointer pp(rk) - the largest

promised index in the rk request pool. In our system setting a

resource is only allowed to exchange messages with agents and

agents only with resources. Even though, we do not consider

degenerate or malicious situations (messages cannot be altered

or lost) requests can arrive at resources in any order. Permitting

situations where requests can arrive in any order can cause

situations where different requests are blocking each other and

cause the system to deadlock.

In order to prevent a system deadlock and ensure progress

we offer a two stage solution. The principal mechanism

of solution we offer is distributed lane - a virtual data

structure, which is only present at a conceptual level. To

be more specific, a distributed lane is a uniform (single

index) horizontal slice through request pools where a request

pool is a resources request memory (vertical structure). A

unique distributed lane can only belong to a single agent. An

example of virtual distributed lane data structure is shown in

Fig. 1. To lock (form a lane) resources, an agent has to go

through a number of steps. The agents distributed protocol

side can be split into two stages.

Stage 1 In this stage an agent attempts to negotiate a dis-

tributed lane by first sending request messages to resources

of interest (objective). Once a resource receives a request

message it replies with the current promised pointer value.

An agent must wait to receive all reply messages before the

decision is made. If all received promised pointer indexes

are the same, an agent will create a distributed lane by

sending write message. Otherwise, an agent will attempt to

negotiate a distributed lane again by sending a special request

message, which contains a desired value - lines 7–10 in

Algorithm 1. The negotiation process continues until a lane

is negotiated. Because of a probabilistic renegotiation nature

we demonstrate in Section V that an agent will eventually

negotiate a distributed lane.

ALGORITHM 1 Agent communication algorithm

1: while sent requests[An] 6= objective[An] do

2: request(An)→ rk Sending message from An to rk.

3: end

4: wait until received replies[An] = objective[An]
5: if |replies[An]| 6= 1 All replied indexes are not the same.

6: then while |replies[An]| 6= 1 do

7: m = max(replies(An)) + 1

8: while sent srequests[An] 6= objective[An] do

9: srequest(An,m)→ rk
10: end

11: while sent write[An] 6= objective[An] do

12: write(An,m)→ rk
13: end The end of stage 1 of the protocol.

14: wait until received pready[An] = objective[An]
15: while sent lock[An] 6= objective[An] do

16: lock(An)→ rk
17: end

18: wait until received response[An] = objective[An]
19: if deny ∈ responses[An] then Exists a deny message.

20: forall rk ∈ received response(responses[An]⊳− ready)
21: release(An)→ rk
22: end

23: repeat from line 13

24: else consume resources

25: while sent releases[An] 6= objective[An] do

26: release(An)→ rk
27: end

Stage 2 This stage begins when an agent negotiates its

distributed lane and was mainly introduced when subtle unsafe

scenarios were discovered by animating the initial model.

After sending write messages, an agent must wait until it

receives all pready messages. Once all messages have been

received, an agent will try to lock resources by sending

lock messages. If between sending pready and receiving lock

messages a resource has not received other lock sooner, that

resource will send a response(ready) message. Once an agent

receives all response messages it will make another decision.

If all an agent received all response(ready) messages, that

agent can proceed an consume resources. If at least one of the

messages was response(ready) that agent will send release

messages to resources, which sent response(ready) and will

repeat the process by again waiting for pready all messages.

The resource in this protocol only replies to the agents

messages, therefore its communication can be described with

switch-case pseudocode (see Algorithm 2). Updating resource

read pointers is perhaps the most interesting element in this

algorithm part. In contrary to the promised pointer, the read

pointer rpt(r) is always set to the minimum value of the

request pool. This is necessary as an agent might negotiate

a distributed lane with lower index than others, but its write

messages are delayed (or even lost) so the protocol would

halt. Allowing agents with higher distributed lane indexes,

but sooner write message arriving to consume resources

introduces fault-tolerance into the protocol. Important to

note that a resource removes distributed lanes once a release

message has been received so the read pointer value would

change.

ALGORITHM 2 Resource communication algorithm

1: switch received message do

2: case request(An)

3: reply(pptk, rk)→ An

4: ppt(rk)
′ = ppt(rk) + 1

5: case srequest(An, n)

6: reply(max(pptk, n) + 1, rk)→ An

7: ppt(rk)
′ = max(pptk, n) + 1

8: case write(An, n)

9: if free(rk) ∧ n = min(req pool(rk)) then

10: pready(rk)→ An

11: rpt(rk)
′ = n

12: case lock(An)

13: if free(rk) then

14: response(ready, rk)→ An

15: lock(rk,An)
16: else response(deny, rk)→ An

17: case release(An)

18: req pool(rk) = req pool(rk)− req(An)
19: if Am · dist lane(Am) = min(req pool(rk)) then

20: unlock(rk)
21: pready(rk)→ Am

22: rpt(rk)
′ = min(req pool(rk))

III. INTEGRATED METHODOLOGY

This section overviews the proposed stepwise refinement

and proof based development methodology of distributed

protocols. We also discuss how this methodology was used to

model and verify the distributed resource allocation protocol.

Indeed, the stepwise refinement modelling approach would

allow to manage a high distributed protocol modelling com-

plexity by model abstraction and decomposition. The stepwise

model development approach can also significantly reduce the

mathematical proving effort which we regard as essential for

ensuring safety of high-assurance systems. In our research we

work towards an automatic refinement chain generation from

high-level distributed protocol specification. In this paper we

present key elements of the method: generic communication

modelling patterns and the refinement strategy for modelling

various distributed protocols. Our methodology also proposes

to integrate other available tools for animating and model

checking the distributed protocol model.

The cornerstone of the proposed methodology is a well

known modelling framework - Event-B/Rodin. The Event-B

method is a proof-based modelling language which facilitates

a gradual system design through the stepwise refinement. The

developer incrementally adds more detail in the proceeding

refinement steps by including new information or proving

properties. Properties are manually inserted as invariants and

must be preserved by all state transitions (invariant preser-

vation rule). The method we propose would automatically

generate a distributed protocol model refinement chain from

a high-level specification notation. For that we developed

Event-B communication modelling patterns and a refinement

strategy presented in the following section with an example.

The generated Event-B model would then have multiple uses

due to a number of useful plug-ins developed for the Rodin

Platform including ProB animator and model checker.

In developing the distributed resource allocation protocol

we extensively used the ProB model checker and its animator

for an early development stage validation. The ProB model

checker together with built-in constraint solver enables an

iterative model exploration for possible correctness violations

or deadlocks. These tools allowed to discover subtle deadlock

scenarios and hence modify protocol specifications before

mathematically proving the model. Once the model developer

has sufficient confidence about the model correctness, it must

be proved by defining safety invariants and proving them.

The paper contains one of the correctness proofs completed

for distributed resource allocation protocol. However, not all

properties are easy to define, in particular, for a distributed

protocol verification.

In our example the distributed resource allocation protocol

had a stochastic nature. Probabilistic or liveness properties

are hard to formalise and prove in the Event-B method.

Therefore, it was decided to prove progress of the protocol

by redeveloping part of the model in the PRISM model

checker. The PRISM model checker is a well established

symbolic model checking tool, which allows to model and

analyse probabilistic systems. Several types of stochastic input

models are supported but predominately discrete-time Markov

chains (DTMC), continuous-time Markov chains (CTMC) and

Markov decision processes (DTMC) are used. The tool has

also functionality for result visualisation which was used to

observe protocols performance as the number of agents and

resources were increased. In general, we believe that our

methodology should include probabilistic reasoning, as some

properties cannot be easily formalised by invariants.

Other uses of the generated distributed protocol Event-B

model are still being discussed but a software code generation

or documentation are of interest. In the following section, we

present Event-B communication modelling patterns and the

refinement strategy. Then we demonstrate few examples how

these patterns were used for developing distributed resource

allocation protocol.

IV. MODELLING PATTERNS AND REFINEMENT PLAN

This section mainly describes the developed modelling

patterns and their application for modelling the resource

allocation protocol. But first, we define a modelling strategy,

or in other words refinement plan, which generally could be

used as a modelling strategy for any distributed protocol.

A. Refinement strategy

The model development approach we propose is a rather

standard and starts with the abstract model which formally

specifies the objective of the protocol. In fact distributed

aspects of the system are ignored at this model level and

the abstract model considers a centralised configuration. The

abstract resource allocation protocol model was captured by

two machines - m 0 and m 1. The former model essentially

summarises the high-level objective of the protocol which is

agents safely capturing and releasing collection of resources

(objectives). This abstract model contains individual events

for capturing and releasing objectives. The next refinement

step introduces resources into the model and decomposes two

previously introduced events according to the loop pattern

defined in the Subsection IV-C.

The following group of refinement steps introduce more

details about the model by primarily modelling communi-

cation aspects. For protocol modelling we propose to use

backward unfolding style where the next refinement step

introduces preceding protocol step. The abstract models were

firstly refined with stage 2 segment of the protocol. In the

refinement, m 2, we introduced lock, response and release

messages and associated events into the model. In this step

we also demonstrated that the protocol stage 2 ensures safe

distributed resource reservation by proving an invariant. The

invariant states that no two agents will be both at resource

consuming stage if both requested intersecting collections

of resources. The following refinement, m 3, is the bridge

between protocol stages stage 1 and stage 2 and introduces

two new messages write and pready into the model. In the final

refinement step - m 4 - we model stage 1 of the distributed

protocol which is responsible for creating distributed lanes.

Remaining messages request, reply, srequest and associated

events are introduced together with the distributed lane data

structure. In this refinement we prove that distributed lanes are

correctly formed - the proof is explained in Section V.

The refinement plan could be further extended if distributed

protocol developer considers its software implementation. In

Iliasov et al. [6] - authors presented a modelling technique

to bridge the gap between Event-B formal model and the

software protocol implementation. Their approach proposes

to introduce an environment into the model and to further

decompose communication events to separately model send-

ing and receiving a message. In the following subsections

we present how this refinement strategy is modelled with

communication patterns and few examples from the resource

allocation protocol model.

B. Message context patterns

The Event-B model is made of two key components -

machines and contexts which respectively describe dynamic

and static parts of the system. The context contains modeller

declared constants and associated axioms which can be made

visible in machines. In our generic modelling approach we

can distinguish two groups of contexts. The first group of

contexts (context abstract) axiomatically define all objects

present in the model - carrier set OBJ. For example, objects in

the resource allocation protocol are agents and resources, in

other protocols they are often called, for example, processes

or cohorts. An object is often required to go through a number

of protocol steps to achieve its goal. In the context abstract

we also define an enumerated set OBJ STATUS which would

define all program counter values an object can have.

context abstract

SETS

OBJ,OBJ STATUS

CONSTANTS

STATUS1, STATUS2 . . . STATUSn possible object status

AXIOMS

partition(OBJ STATUS, {STATUS1}, . . . {STATUSn})

The second group of contexts are communication related

and are used to define various messages types. Each message

type (e.g. request) in the protocol is defined in a separate

context file. In fact latter contexts can be generalised as a

pattern and instantiated for the specific message type. To define

the context pattern let’s first define a generic message set -

MSG. In this context we introduce three constant functions

for: message source, message destination and (optionally) a

message value. Depending on the message type, the source of

the message in the distributed resource allocation protocol can

be both an agent and a resource. Therefore, in our message

pattern we can abstract all communicating objects including

agents and resources to a general source - SRC.

Likewise for the message destination constant function form

we give a general destination type - DST. In the distributed

protocol can messages carry a value (e.g. reply contains

promised pointer) so the last generic type we define is VAL and

associated constant function (msgv) necessary for extracting

value from the message. All constant message functions are

surjective (։) functions meaning they are total in domain

and range. Lastly, each message type contexts contains an

axiom which states that there always exists a suitable message

between any agent and resource.

context message type

SETS

MSG

CONSTANTS

msgs,msgd,msgv

AXIOMS

axm1 msgs ∈ MSG։ SRC message source

axm2 msgd ∈ MSG։ DST message destination

axm3 msgv ∈ MSG։ VAL message value

axm4 ∀s, d, v · s ∈ SRC ∧ d ∈ DST ∧ v ∈ VAL ⇒

(∃m ·msgs(m) = s ∧msgd(m) = d ∧msgv(m) = v)

C. Communication event patterns

In order to generalise a distributed protocol modelling

process we derived communication event and variable patterns

which are presented below. The first step in introducing

a new message into a machine is extending that machine

with a message associated context (e.g. context request). The

following step is creating a three letter variable msg of type

inv1 to represent that messages channel. However, as messages

are added and removed from the channel msg we require a

second generic local variable of type inv2 to locally store what

messages have been sent.

inv1 msg ⊆ MSG global message channel

inv2 msgo ∈ OBJ→ P(MSG) sent msg messages

After introducing message variables, one needs to create

events in the model which send that message. From mod-

elling various distributed protocols we identified two message

sending event patterns. The most widely encountered commu-

nication situation is responding to received message - reply

event type. We define a reply event pattern (object reply MSG)

where the main principle of this event is to take a message

from one channel and create a response message in the

different channel. In this pattern we use constant message

functions defined in the context files to select the source

and destination of the new message. The reply event pattern

has two event parameters - messages ms1 and ms2 where

messages types must be defined according to the protocol.

The first guard (grd1) of this event states that a message

ms1 must have been sent, or in other words, already an

element of that channel. Guards grd1..4 select an appropriate

reply message ms2 by using constant functions defined in the

message contexts. They state that a new messages destination

is the source of received message and that the source of the

new message is a destination of received message. The actions

of this event create a new message by adding it to the channel

variable, remove responded message and save sent receipt

locally. Additional guards would be added according to the

distributed protocol specifications.

object reply MSG

any

ms1,ms2

when

grd1 ms1 ∈ msg1 received message

grd2 ms2 ∈ MSG2 \msg2 create a new message

grd3 msg2d(ms2) = msg1s(ms1)

grd4 msg2s(ms2) = msg1d(ms1)

then

act1 msg2 := msg2 ∪ {ms2} send new message

act2 msg1 := msg1 \ {ms1} remove message

act3 msgo2(msg2s(ms2)) := msgo2(msg2s(ms2)) \ {ms2}

end

Another type of message sending event we can define is

an initiating message sending (object initiating MSG). The

principle of this event is create a new message once the

program counter of an object changes to the specific status.

This event pattern only has one event parameter ms1 message

which must be not sent yet (grd1). The second guard states

that the program counter (pctn) of the source message must be

at some STATUS defined in the abstract context. The actions

of the event add a new message to the message channel msg1
and save message receipt locally.

object initiating MSG

any

ms1

when

grd1 ms1 ∈ MSG1 \msg1 create a new message

grd2 pctn(msg1s(ms1)) = STATUS program counter at

then specific value

act1 msg1 := msg1 ∪ {ms1} send new message

act2 msgo1(msg1s(ms1)) := msgo1(msg1s(ms1)) \ {ms1}

end

D. Loop modelling pattern

In a distributed protocol an object is often required to send

multiple messages or repeat the process numerous times. For

such scenarios we created a two event loop pattern which

would often be combined with message sending patterns to

model burst message sending. The first event in this pattern

is the loop body event (object STATUS b) and body events

have b name extensions. The STATUS and object in the event

name would be also modified to correspond to a specific

event. The loop is triggered, firstly, if agents program counter

status is at certain value. The remaining guards are used

to selected an appropriate message or further constrain the

event. In case of the sending multiple reply messages, guard

select guards, would be instantiated with predicates grd1..4
from object reply MSG pattern.

object STATUS b

any

ob

when

grd1 pctn(ob) = STATUS

grd2..n select guards guards for selecting message

then

act1 send message

act2 remove message∗

end

Another event in this pattern is a loop completion event

and events have c name extension. As name suggests this

event detects when the iterative process has been completed.

The loop completed guard would be typically predicated on

locally saved message receipt variable msgo. The action of

this event simply updates objects program counter to the next

value.

object STATUS c

any

ob

when

grd1 pctn(ob) = STATUS program counter status

grd2 loop completed guard loop is completed

then

act1 pctn(ob) := NEXT STATUS

end

V. DISTRIBUTED PROTOCOL DEVELOPMENT

In this section we present only few examples on how the

presented communication and loop modelling patterns were

used in developing the distributed resource allocation protocol.

Even though, the concrete (final) refinement step contained 23

events and a similar number of variables, only 3 events did

not fit any pattern or were special cases.

A. Abstract distributed resource allocation protocol model

The distributed resource allocation protocol development

approach follows a standard Event-B modelling approach

where the abstract model summarises the protocol with a

centralised view of the system. In short the objective of the

distributed protocol is to enable safe resource locking which

we abstract as agents capturing and releasing collections of

resources - objectives. The abstract model was split in two

machines where the first machine simply models agents cap-

turing and releasing objectives. In the extension of the initial

abstract model we introduced resources into the model and

decomposing two previously introduced events agent capture

and agent release.

agent consume b

any

rs, ag event parameters : agent and resource

when

grd1 ag ∈ dom(capt)

grd2 rs ∈ objr(objt(ag)) resource within the objective

grd3 rs 6∈ union(ran(capt)) not yet consumed resource

grd4 pct0(ag) := CONSUME

then

act1 capt(ag) := capt(ag) ∪ {rs} capture new resource

end

In this refinement step agents attempt to capture multiple

resources in order to fulfil an objective where objective is a

collection of resources. We started modelling by introducing

new variables for storing captured resources capt and storing

agents objective objt. Resources which belong to the objective

can be extracted by applying an objective to the constant

function objr which was defined in the abstract context. For

the iterative capturing and releasing events we applied the loop

pattern as depicted below in the model excerpt. The loop body

event agent consume b is enabled if agents program counter

is at the CONSUME state. Furthermore, the resource must be

within agent’s objective (grd2) and not captured by any agent

(grd3). The action of this event (act) simply stores a new

resource rs to that agent in the capt variable.

agent consume c

any

ag

when

grd1 capt(ag) = objr(objt(ag)) completed its objective

grd2 pct0(ag) = CONSUME

then

act1 pct0(ag) := RELEASE update program counter

end

The loop completion event agent consume c would be

triggered as soon as the objective has been fulfilled and

program counter would be updated to new state - RELEASE.

Similarly in this refinement we transform agent release event

according to the pattern presented. To show correctness of the

extended model we prove an invariant, which states that no

agents can have the same resource captured still this system

is not deadlock free.

B. Protocol communication modelling with patterns

The abstract model is refined according to the proposed

development method by introducing communication aspects

of the protocol. The method also suggest to use a backward

protocol unfolding modelling style. Therefore, the abstract

model was refined by introducing stage 2 of the protocol first

which is responsible for locking resources once a distributed

lane has been negotiated. The following paragraphs explain

how communication pattern were used to add lock message

into the model.

To begin with, the machine m 2 is extended with the

message type context context message lock which defines

constant functions of the message. Then, we create variables

lck (inv1) and lcke (inv2) which will represent a commu-

nication message channel and a memory where sent lock

message receipts are locally stored. In this protocol it was

more convenient to locally save where message have been

sent rather than messages itself.

inv1 lck ⊆ LCK lock message channel

inv2 lcke ∈ AGT→ P(RES) locally stored messages

To model lock message sending we apply a loop together

with initiating message modelling patterns to create two new

events agent lock b and agent lock c. In the protocol lock

message is of the reply type, however, since preceding protocol

messages are modelled in the next refinement lock message is

an initiating message at this stage but in the next refinement is

modified to a reply type. The actions of the loop body event

send a new lck message firstly if the program counter of an

agent is at LOCK phase. Secondly, the new message must not

have been sent already grd1,2 and destination of the message

(resoure) is within agent’s objective grd3.

agent lock b

any

lc

when

grd1 lc ∈ LCK \ lck

grd2 lckd(lc) 6∈ lcke(lcks(lc))messages not sent yet

grd3 lckd(lc) ∈ objr(objt(lcks(lc))) within the objective

grd4 pct2(lcks(lc)) = LOCK

then

act1 lck := lck ∪ {lc} send new message

act2 lcke(lcks(lc)) := lcke(lcks(lc)) ∪ lckd(lc)

end

The loop completion event, agent lock c, detects the end

of the loop and updates the program counter. For the lock

message sending event - an agent must detect when all

messages have been sent or in other words the objective has

been fulfilled (grd1). The action of this event simply updates

the program counter to the next state.

agent lock c

any

ag

when

grd1 lcke(ag) = objr(objt(ag)) all lock messages sent

grd2 pct2(ag) = LOCK

then

act1 pct2(ag) := CONFIRMC update program counter

end

VI. DISTRIBUTED PROTOCOL VERIFICATION

Formally specifying a system is not sufficient to guarantee a

high safety and correctness confidence degree. In the proposed

methodology we regard mathematical proofs as essential for

ensuring high system assurance. Therefore, our development

method relies on adding and proving properties (invariants) in

the Event-B model. The literature review and our experience

in developing various distributed protocols however show that

formalising sufficient properties in many cases might be too

challenging, thus, a wider validation tool support is crucial.

Three different verification techniques were used in devel-

oping the resource allocation protocol. From the beginning it

was decided to use ProB model checker, which is available as

a Rodin Platform plug-in, to validate early protocol designs

before formalising and proving properties. To use ProB model

checker we had to develop additional message contexts, since

ProB built-in constraint solver could not compute bounded

sets according to the defined axioms. On the other hand,

ProB tool accepts Event-B model as an input, so it was not

necessary to manually translate the model. In result, the model

checker helped to discover subtle protocol deadlock scenarios

which could be replayed on the built-in model animator. The

model checker allowed to discover and significantly modify

the protocol in early design stages without formalising and

proving complicated properties. The state explosion was still

a big issue even for checking protocol with few agents and

resources would take several hours. The following subsections

discuss one of the main completed proofs and the use of

probabilistic model checker tool for proving protocol stage 1

termination.

A. Correctness of forming distributed lanes

In order to ensure a safe and deadlock free distributed

resource reservation we developed a solution based on notion

of distributed lane. In the final model refinement step, we

had to prove that the system is deadlock free. To prove

that distributed system never deadlocks one could write an

invariant which asks to prove that there is always at least one

event enabled. However, this results in a very complicated

proof so instead we reformulated the problem into a simpler

one but for that the final model had to be extended with

additional only proof related variables.

The cross blocking deadlock occurs when request messages

of multiple agents which are interested in common resources

are delayed. Indeed, this scenario is not possible for a simple

non-distributed queue model since unique request has only a

single slot in the queue. By unifying agents requests indexes

over distributed resources, distributed lane solution essentially

creates a virtual localised queues. In other words, agents which

requested common resources and negotiated a distributed lane,

can be virtually collapsed into a single non-compact queue like

data structure. Thus, one only needs to prove that distributed

lanes are correctly formed.

invpro ∀r, n1, n2 · r ∈ R ∧ n1, n2 ∈ dom(hiswr(r)) ∧

∧ n1 < n2 ⇒ hiswr(r)(n1) < hiswr(r)(n2)

Due to limited space we only state that a distributed lane

will be correctly formed if resource always replies with unique

value ppt(rk) value. For the proof we created a new history

variable which stores chronological values of the promise

pointer. Every time a promise pointer is updated in the

model the history variable stores that value and increments

its write value. The invariant now can be expressed (inv pro)

on the history variable which states that for any resource the

recorded promised pointer values increases as history variable

write pointer increases. In the model two proofs obligations

(ignoring well-defined verification conditions) were generated

and proved interactively.

B. Argument for renegotiation termination

The progress of the protocol relies on agents ability to

negotiate a distribute lane. As negotiating a distributed lane is a

probabilistic process in our protocol we need to demonstrate

that a desired state will be eventually reached. The proba-

bilistic reasoning in Event-B is extremely complicated and

therefore the decision was made to demonstrate negotiation

termination outside the Rodin platform. For that purpose we

use a well-known symbolic probabilistic model checker -

PRISM. In PRISM modelling framework the model is con-

structed of individual modules which contain local variables

and commands. In generic model we used the functionality of

modules to captures resources and agents with an individual

module. The modularisation allowed us to capture agents

concurrency and model extreme scenarios where some agents

could be much faster in sending messages than others.

To model the distributed lane renegotiation we developed a

generic stage 1 phase model which would be instantiated to

model specific scenarios - defined by a number of agents and

resources, and also what resources agent would like to capture.

The generic model itself could be partitioned into three major

parts: global variable declaration, resource modules and agent

modules. The two types of global variables in generic model

are both associated with agents. One variable is used to store

an promised pointer index the agent receives from the resource

as well as to store a special request value which is sent if

distributed lane is not negotiated. The second variable, agents

state variable, was introduced to disable an agent once a

distributed lane was negotiated and in turn affect the tran-

sition probabilities. Each resource has an attributed resource

module which contains local variable and a command. The

local variable we need for resource modules is the promised

pointer variable (ppt). The module also only requires a single

command to represent request and reply message exchanges.

Lastly, each agent also has an associated agent module which

models part of the agents algorithm, where all reply messages

have been received and now a decisions must be made whether

to renegotiate or create a distributed lane. Having designed the

generic model we developed a simple program which would

create random instantiated PRISM models and simulate them

until either all distributed lanes were negotiated or a time-out

was reached. The experiment was repeated for a number of

scenarios and results were plotted for analysis. A number of

steps taken to terminate was plotted against the number of

resources and agents in that scenario.

VII. CONCLUSIONS AND FUTURE WORK

In this work we described a refinement and proof based

methodology for developing high assurance distributed proto-

cols. To facilitate the method we rely on a firmly established

formal modelling framework which provides a refinement

based development and a number of useful tools. Commu-

nication modelling patterns and a generic refinement strategy

presented in this paper are essential towards our main research

objective of automatically generating refinement chains from

high-level protocol descriptions. These technical contributions

were mainly defined by developing a variety of distributed

protocols including the distributed resource allocation protocol

presented here.

In the paper we also discuss the verification challenges of

the distributed protocol. Available plug-ins, particularly, the

ProB model checker and its Rodin animation plug-in was

extremely useful in discovering subtle deadlock scenarios.

Still, due to complex protocol behavior a state-space problem

was clear as a single exhaustive model checking run would

take hours (even for small scenarios). Still, an alternative

option to complete proofs at early development phase

was not an appealing choice. As some of early deadlock

scenarios discovered were intricate and unlikely captured by

an invariant or else proving strong invariant would have been

even more time consuming. Demonstrating the termination

of the distributed lane negotiation was also decided to be

completed outside the Event-B environment as existing

probability theory support such as [7] would likely have not

been sufficient. Even the discussed proof was not completed

systematically and it was necessary to further abstract the

problem and add additional variables into the model. The

main focus of the future work is development of a high-level

protocol specification language which would be translated

into a Event-B refinement chain.

Acknowledgements. This work is supported by an iCASE

studentship (EPSRC and Siemens Rail Automation).

REFERENCES

[1] J.-R. Abrial. The B-book: Assigning Programs to Meanings. Cambridge
University Press, New York, NY, USA, 1996.

[2] J.-R. Abrial. Modeling in Event-B: System and Software Engineering.
Cambridge University Press, New York, NY, USA, 2013.

[3] R.-J. Back. Refinement calculus, part ii: Parallel and reactive programs.
In Proceedings on Stepwise Refinement of Distributed Systems: Models,
Formalisms, Correctness, REX workshop, pp. 67–93, New York, NY,
USA, 1990. Springer-Verlag New York, Inc.

[4] M. Leuschel and M. Butler. Prob: A model checker for b. In: FME 2003:
Formal Methods, pp. 855–874, Berlin, Heidelberg, 2003. Springer Berlin
Heidelberg.

[5] A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker. Prism: A

tool for automatic verification of probabilistic systems. In: Tools and
Algorithms for the Construction and Analysis of Systems, pp. 441–444,
Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

[6] A. Iliasov, L. Laibinis, E. Troubitsyna and A. Romanovsky. Formal

derivation of a distributed program in Event-B. In Shengchao Qin and
Zongyan Qiu, editors, Formal Methods and Software Engineering, pp.
420–436, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[7] S. Hallerstede and T.S. Hoang. Qualitative probabilistic modelling in

Event-B. In: Integrated Formal Methods, pp. 293–312, Berlin, Heidel-
berg, 2007. Springer Berlin Heidelberg.

[8] B. Siala, T. Bhiri, J.-P. Bodeveix, M. Filali. An Event-B Development

Process for the Distributed BIP Framework. In: 18th International Con-
ference on Formal Engineering Methods (ICFEM 2016), 14 November
2016 - 18 November 2016 (Tokyo, Japan).

[9] Basu, A., Bensalem, S., Bozga, M., Combaz, J., Jaber, M., Nguyen, T.-
H., Sifakis, J. Rigorous component-based system design using the BIP

framework. In: IEEE Software, vol. 28, no. 3, pp. 41–48, May-June
2011. doi: 10.1109/MS.2011.27

[10] C. Hawblitzel, J. Howell, M. Kapritsos, J.R. Lorch, B. Parno, M.L.
Roberts, S. Setty, and B. Zill. IronFleet: proving practical distributed

systems correct. In Proceedings of the 25th Symposium on Operating
Systems Principles (SOSP ’15). ACM, New York, NY, USA, 1–17.

