Dorian Dumez
email: dorian.dumez@imt-atlantique.fr

Fabien Lehuédé
email: fabien.lehuede@imt-atlantique.fr

Olivier Péton
email: olivier.peton@imt-atlantique.fr

A Large Neighborhood Search approach to the Vehicle Routing Problem with Delivery Options

Keywords: city logistics, vehicle routing, matheuristic, large neighborhood search

To reduce delivery failures in last mile delivery, several types of delivery options have been proposed in the past twenty years. Still, customer satisfaction is a challenge because a single location is chosen independently of the time at which customers will be delivered. In addition, delivery in shared locations such as lockers and shops also experience failure due to capacity or opening-time issues at the moment of delivery. To address this issue and foster consolidation in shared delivery points, we investigate the case where a customer can specify several delivery options together with preference levels and time windows. We define, in this article, the Vehicle Routing Problem with Delivery Options, which integrates several types of delivery locations. It consists of designing a set of routes for a fleet of vehicles that deliver to each customer at one of his/her options during the corresponding time window. These routes should respect capacities at shared locations such as lockers and minimum service level requirements, while minimizing the total routing costs. To solve this problem, we have designed a large neighborhood search in which a set partitioning problem is solved to regularly reassemble routes. Specific ruin and recreate operators are proposed and combined with numerous operators from the literature. A thorough experimental study was carried out to determine a subset of efficient and complementary operators. The proposed method outperforms existing algorithms from the literature on particular cases of the problem under consideration, such as the vehicle routing problem with roaming delivery locations and the vehicle routing problem with home and roaming delivery locations. New instances are generated and used both to serve as a benchmark and to propose some managerial insight into the vehicle routing problem with alternative delivery options.

Introduction

The revenue of online stores in France was 92.6 billion euros in 2018, after an average growth of 13% per year during the last four years [START_REF] Moyou | Chiffre d'affaires annuel du e-commerce en france de 2005 à 2018[END_REF]. With this growth of e-commerce, an increasing number of parcels have to be delivered each day. Consequently, several possibilities have been developed so that distribution can be faster and cheaper. According to [START_REF] Morganti | The impact of e-commerce on final deliveries: alternative parcel delivery services in France and Germany[END_REF], in 2012, 90% of the French and German population were within 10 minutes of a locker or a pick-up point (often shops or post offices), and the number of such locations grew by 33% between 2008 and 2012. Furthermore, trunk deliveries were recently tested on an industrial scale [START_REF] Mcfarland | Amazon now delivers to the trunk of your car[END_REF].

The customer is generally required to choose one delivery location. Nevertheless, people move around during the day, for example, to go to work or take children to school. Consequently, it is very likely that a purchaser would like to choose between several delivery options depending on the time of delivery. For attended delivery, the fact that people move around is a problem, because of "no show". According to [START_REF] Allen | Analysis of the parcels market and parcel carriers' operations in the UK[END_REF], in the UK, 14% of all deliveries fail. In 2014, in the UK, the cost of these failed deliveries has been estimated at £771 million.

The objective of carriers is to deliver all their parcels at a minimum cost. They also want to maintain a good quality of service, but the time window width has a great impact on delivery costs. Nevertheless, they are essential because 80% of the parcels delivered in the UK do not fit into the letterbox [START_REF] Allen | Analysis of the parcels market and parcel carriers' operations in the UK[END_REF] and nobody likes to wait all afternoon at home for a parcel [START_REF] Agatz | Time slot management in attended home delivery[END_REF]. Accordingly, new strategies are being developed to increase the number of successful deliveries [START_REF] Alexandre | The delivery problem: Optimizing hit rates in e-commerce deliveries[END_REF].

This paper discusses the Vehicle Routing Problem with Delivery Options (VRPDO). It is an extension of both the Vehicle Routing Problem with Time Windows (VRPTW) [START_REF] Martin | Local search in routing problems with time windows[END_REF] and the Generalized Vehicle Routing Problem (GVRP) [START_REF] Ghiani | An efficient transformation of the generalized vehicle routing problem[END_REF]]. In the VRPDO, each customer can choose to have a package delivered through several delivery options. For example, customers can receive their parcel at the office during work hours, at home in the evening or in a locker at any time.

From the standpoint of the carrier, these delivery options can be of two natures. They can take place in individual delivery locations, like a home or a car trunk. This means that only one customer can be served in that location. Otherwise, deliveries can take place in shared delivery locations, like lockers or pick-up points. This means that several parcels can be left at the same location. Some delivery locations can be limited in capacity.

The contribution of this paper is two-fold. First, from the managerial point of view, we propose a new variant of the VRP, the VRPDO. It combines delivery options to reduce delivery costs while guaranteeing a higher quality of service. From the methodological point of view, we propose a Large Neighborhood Search (LNS) metaheuristics that embeds many recent and new ideas. In particular, this LNS includes many operators from the literature and compares them rigorously.

The paper is structured as follows: In Section 2, the VRPDO is described and a mathematical model is proposed. Section 3 exposes the literature on related problems. Section 4 details the LNS developed to solve the VRPDO. In addition, our methodology to configure the algorithm is explained. Finally, Section 5 develops experiments, first to validate the method and second to draw managerial insights from randomly generated instances of the VRPDO.

The Vehicle Routing Problem with Delivery Options

In this section, the Vehicle Routing Problem with Delivery Options (VRPDO) is laid out. All the components of the problem are explained in Section 2.1. A mathematical model is described in Section 2.2.

Problem settings

The VRPDO is an operational optimization problem defined on a short time horizon, typically one day. In this problem, each customer can choose several delivery options. In the following, for the sake of conciseness, we will refer to them only as options.

Let us define an option as a tuple composed of a location, a preference level and a service duration, as follows:

• A location has a geographical address and a time window during which the service can be performed. For each location, a fixed preparation time represents the time needed to park a vehicle and access the delivery point. We consider two types of locations: individual delivery locations and shared delivery locations. An individual delivery location is typically a personal address. Only one option can be associated with this location. It generally has a tight time window. A shared delivery location (SDL) is typically a pickup point or a locker. Several options can be associated with this location. A shared delivery location generally has a wide time window. It can be given a capacity, which is defined as the maximum number of packages which can be delivered to this location during the time horizon. For the sake of conciseness, shared delivery locations and individual delivery locations may be called "shared locations" and "individual locations", respectively.

• The preference level of an option is an integer in {1, ..., P }, with 1 being the value associated with the most preferred options by a customer and P , the least preferred.

• The service duration of an option represents the time needed to deliver the customer's package after accessing the location.

An option is associated with a unique customer.

The quality of service is measured by P numbers, P being the number of preference levels. For each level p ∈ {1, ..., P -1}, the service level SL p of a solution is defined as the percentage of customers served with an option of maximum level of p. A minimal service level β p has to be achieved for each level p ∈ {1, ..., P -1}.

Let us consider a homogeneous fleet of vehicles starting from a given depot and returning to this depot within the time period. Travel time and routing cost between each pair of locations is assumed to be known.

The VRPDO consists in designing a route for each vehicle, serving each customer with one of his/her options, and satisfying the shared delivery locations' capacities and the minimal service level constraints, such that the number of vehicles and the sum of routing cost are minimized in lexicographical order.

Note that each customer's order has to be delivered by a single truck (i.e. split deliveries are not allowed).

To illustrate this definition, Figure 1 shows the options from the customer perspective. Figure 1 shows the example of one customer with 3 delivery options. Delivery at home between 7pm and 9pm is the preferred option, then delivery at a shop between 8am and 11am, then a delivery in the trunk of his/her car between 9am and 6pm.

When a customer orders a parcel, he/she can choose multiple options, sorted by preference level. If the option takes place at an individual location, he/she must specify the time window. If it takes place in a shared location he/she will be able to pick up the package at any time while the location is opened. The time window for the carrier will already have been negotiated, for example shops do not want to receive parcels during their rush hours.

Figure 2 presents the options from the carrier perspective. Each customer is represented by a color/number. The individual locations are the same color (with the number) as the associated customer. The carrier has to serve all customers via exactly one option. This amounts selecting one option inside each group.

Like in the Generalized Vehicle Routing Problem (GVRP) [START_REF] Ghiani | An efficient transformation of the generalized vehicle routing problem[END_REF], the set of options is composed of subsets, for each customer. Vehicles must visit exactly one option in each subset. In the GVRP, subsets of options form a partition of the set of locations. In the VRPDO, the subsets of options form a cover of the set of locations. This is because options associated with distinct customers can take place at the same shared location. An instance of [START_REF] Moccia | An incremental tabu search heuristic for the generalized vehicle routing problem with time windows[END_REF] is an instance of the VRPDO without shared locations and a single preference level. Hence, the VRPDO can be seen as a generalization of the GVRPTW. 4 represents a solution to the VRPTW for the same instance, using home delivery only. For the sake of conciseness, only one route has been drawn. An option that takes place in an individual location is depicted by a circle including the customer's identity and the location. A shared location is depicted by a rectangle including the location and the identity of the customers served.

The time spent by a vehicle at a location is equal to the preparation time of the location plus the service duration of the visited options. The preparation time of a location corresponds to the time to find a parking place. Hence, it is counted only once, regardless of the number of parcels delivered. The service duration of an option corresponds to the time to deliver the parcel or to put it in a box.

Customer 2 has a remote home address. Thus delivering to this customer in an alternative delivery location avoids a big detour. The parcels for customers 1 and 3 are delivered in a shared location. The time spent at this location is equal to the preparation time of the location plus the service duration of the two options. We assume that a parcel always occupies one box in a locker, no matter its size. Indeed, a locker is a rack of automatic boxes so there is at most one parcel per box, as long as it fits. Hence, the capacity of the shared locations is expressed as a number of parcels. Due to uncertainty on when customers will pick up their parcels, we suppose that each box can be used only once per day. On the contrary, it is realistic to consider that some shared locations (e.g. post offices) have unbinding capacity.

The assignment of parcels to boxes is not taken into account in the VRPDO, but it would be possible to consider different sizes of boxes by duplicating options. Figure 5 illustrates the capacity constraints induced by shared locations for the example described in Figure 3. Not all shared locations must be visited. On the contrary, they can be visited by different vehicles as long as the number of parcels is not too large. Considering the quality of the service, Figure 6 represents an example with a service level constraint requiring that at least 50% of the customers are served with their preferred options (β 1) and that at least 75% of the customers are served with options of level 1 or 2 (β 2). Since 50% of the customers are served via their preferred option (SL 1) and 83% of the customers are served by an option of level 1 or 2 (SL 2), the service level constraints are satisfied. The last two groups of constraints, namely shared delivery location capacity and service level constraints, can be seen as capacity constraints involving all the vehicles. They fall under the category of "synchronized resources" defined by [START_REF] Demir | Synchronization in vehicle routing-a survey of VRPs with multiple synchronization constraints[END_REF] as: "At any point in time, the total utilization or consumption of a specified resource by all vehicles must be less than or equal to a specified limit". We model the VRPDO on an option-based complete graph G = (V, A). The set of vertices, denoted V = O ∪ {0, 0 }, contains one vertex for each option plus the starting depot 0 and the ending depot 0 . The routes are defined on the option-based graph G. A route is a sequence of options belonging to distinct customers. Consequently, when multiple deliveries are made in a shared location, it is represented by several vertices of V . Figure 7 is the representation of the route from of Figure 3. The travel time on arc (i, j) ∈ A is denoted t i,j . It includes the preparation time at the location of option j if the two locations are distinct. The cost of traveling on arc (i, j) is denoted by c i,j . The service duration s i at vertex i ∈ V represents the time necessary to visit the option associated with this vertex. It is assumed to be null at depot vertices 0 and 0 . Each option i ∈ O is associated with the time window [a i , b i] of its location. We assume that a 0 = a 0 = 0 and that b 0 and b 0 correspond to the end of the working day.

I 🔒 Ⅱ 🔒 Ⅱ 🏤 1 📦 3 📦 6 📦 5 📦 ...
SL 1 : 50% β 1 SL 2 : 83% β 2 4 😊 6 😊 5 😊 2 😐 1 😐 3 😞 Level 1 Level 2 Level 3 β 1 = 50% β 2 = 75%

Mathematical model

1 I 🔒 3 I 🔒 2 🏢 5 Ⅱ 🔒 6 Ⅱ 🔒 4🏡 ⛟ ⛟
Let P be the number of preference levels. For a preference level p ∈ {1, ..., P }, β p is the minimal percentage of customers that can be served via an option of level p or lower. By definition β P = 100% and ∀p ∈ {1, ..., P -1} : β p β p+1 .

Let C l be the capacity of location l ∈ L, expressed as a number of parcels. For each option o ∈ O, we define its preference level p o , and its demand q o which is equal to the demand of its associated customer. We assume a homogeneous fleet of K vehicles with capacity Q.

Model 1 describes the VRPDO for a fleet of K vehicles. x k i,j is a binary variable that indicates whether the k th vehicle uses arc (i, j) ∈ A. y o is a binary variable that states whether option o ∈ O is visited. h k i is the service date of vehicle k at vertex i ∈ V . The objective function (1.1) minimizes the transportation costs. Constraint (1.2) states that exactly one option must be chosen for each customer. Constraint (1.3) represent vehicle capacity. Constraint (1.4) models the capacity of the shared locations. Constraint (1.5) model the general satisfaction level. Constraint (1.6) states that each selected option should be visited by one route. The remaining constraints are the classical VRPTW constraints [START_REF] Cordeau | Solomon, and François Soumis. 7. vrp with time windows[END_REF] : (1.7) and (1.8) ensure that the routes start and end at the depot, (1.9) ensures the continuity of the routes, (1.10) computes the service time and (1.11) ensures the respect of the time windows.

Model 1: option-based graph model min k∈{1,...,K} (i,j)∈A c i,j x k i,j

(1.1)

s.c o∈Oc y o = 1 ∀c ∈ N (1.2) o∈O (i,o)∈A x k i,o q o Q ∀k ∈ {1, ..., K} (1.3) o∈O l y o C l ∀l ∈ L (1.4) o∈O|po p y o β p × |N | ∀p ∈ {1, ..., P } (1.5) (i,o)∈A k∈{1,...,K} x k i,o y o ∀o ∈ O (1.6) j∈V x k 0,j = 1 ∀k ∈ {1, ..., K} (1.7) i∈V x k i,0 = 1 ∀k ∈ {1, ..., K} (1.8) (i,j)∈A x k i,j - (j,i)∈A
x k j,i = 0 ∀k ∈ {1, ..., K}; ∀j ∈ O (1.9)

x k i,j (h k i -h k j + t i,j + s i) 0 ∀k ∈ {1, ..., K}; ∀(i, j) ∈ A (1.10) a i h k i b i ∀k ∈ {1, ..., K}; ∀i ∈ V (1.11) x k i,j ∈ {0, 1} ∀k ∈ {1, ..., K}; ∀(i, j) ∈ A y o ∈ {0, 1} ∀o ∈ O h k i 0 ∀k ∈ {1, ..., K}; ∀i ∈ V 3 Relevant literature
The VRPDO is a VRPTW with multiple delivery options and synchronized resources. This section is organized according to these three aspects: VRPTW, delivery options and resource synchronization. In addition, some closely related problems are laid out.

VRPTW

Since the introduction of the VRPTW by [START_REF] Martin | Local search in routing problems with time windows[END_REF], a plethora of papers have been published on this subject. We refer to Bräysy and Gendreau [2005a,b] for a review of the applicable literature and to [START_REF] Vidal | A hybrid genetic algorithm with adaptive diversity management for a large class of vehicle routing problems with time windows[END_REF] for the latest advances. Many LNS heuristics have been used to solve problems related to the VRPTW. They will be briefly discussed in Section 4.

Delivery options

In the VRPDO, customer requests can be satisfied at various locations. This characteristic is shared by the Generalized Vehicle Routing Problem with Time Windows (GVRPTW) [START_REF] Moccia | An incremental tabu search heuristic for the generalized vehicle routing problem with time windows[END_REF]. The GVRPTW is a specific case of the VRPDO without shared locations and with a single preference level. The literature on the GVRPTW is very scarce. We refer to Afsar et al. [2014] for details on the GVRP, and to [START_REF] Moccia | An incremental tabu search heuristic for the generalized vehicle routing problem with time windows[END_REF] for details of the GVRPTW. [START_REF] Yuan | A branch-and-cut algorithm for the generalized traveling salesman problem with time windows[END_REF] develop a B&C for the GTSPTW (a single vehicle GVRPTW) that can solve instances with 30 clusters. [START_REF] Moccia | An incremental tabu search heuristic for the generalized vehicle routing problem with time windows[END_REF] propose a tabu search that is able to tackle instances with 120 clusters within few minutes.

The VRP with multiple time windows (VRPMTW) [START_REF] Favaretto | Ant colony system for a VRP with multiple time windows and multiple visits[END_REF] can be seen as a special case of the VRPDO and of the GVRPTW, where all options of a customer take place at the same location and their time windows are disjointed. For more detail we refer to [START_REF] Tricoire | Heuristics for the multiperiod orienteering problem with multiple time windows[END_REF], [START_REF] Belhaiza | A hybrid variable neighborhood tabu search heuristic for the vehicle routing problem with multiple time windows[END_REF] and [START_REF] Hoogeboom | Vehicle routing with arrival time diversification[END_REF].

In addition to the GVRP, some classes of vehicle routing problems include choices in the locations to visit. The goal of these problems is to select locations to visit and find routes between these locations, such that requirements are met at minimum cost or such that profit is maximized. This category of problem includes the Team Orienteering Problem (TOP), the VRP with profit [START_REF] Archetti | Chapter 10: Vehicle routing problems with profits[END_REF][START_REF] Vansteenwegen | The orienteering problem: A survey[END_REF], the Traveling Purchaser Problem (TPP) [START_REF] Bernardino | Metaheuristics based on decision hierarchies for the traveling purchaser problem[END_REF], and the Covering Tour Problem (CTP) [START_REF] Manel Kammoun | An integration of mixed VND and VNS: the case of the multivehicle covering tour problem[END_REF].

Among the heuristics that have been proposed to solve VRP with choices in locations or time windows, most of the authors include a perturbation component in their method. For variants of the TOP, Souffriau et al. [2013] combine GRASP with ILS and[START_REF] Tricoire | Heuristics for the multiperiod orienteering problem with multiple time windows[END_REF] use VNS. For variants of the CTP, [START_REF] Allahyari | A hybrid metaheuristic algorithm for the multi-depot covering tour vehicle routing problem[END_REF] combine GRASP with ILS, [START_REF] Takada | An iterated local search algorithm for the multi-vehicle covering tour problem[END_REF] use ILS, [START_REF] Vargas | A selector operatorbased adaptive large neighborhood search for the covering tour problem[END_REF] work with ALNS and Kammoun et al. [2017] propose a VNS.

Besides, some papers propose using dynamic programming. In the context of a multi-period TOP with multiple time windows, [START_REF] Tricoire | Heuristics for the multiperiod orienteering problem with multiple time windows[END_REF] use dynamic programming to choose which time window should be used in a given route. [START_REF] Moccia | An incremental tabu search heuristic for the generalized vehicle routing problem with time windows[END_REF] handle the GVRPTW, when a customer is inserted in a route, the options for the other customers of this route can be changed through dynamic programming. [START_REF] Vargas | A selector operatorbased adaptive large neighborhood search for the covering tour problem[END_REF] solve the CTP with an ALNS algorithm that uses dynamic programming to decompose a giant tour into routes.

Resource synchronization

Drexl [2012] underlined that [START_REF] Hempsch | Vehicle routing problems with inter-tour resource constraints[END_REF] was almost the only paper considering synchronized resources. Few other heuristics have been proposed since then. In [START_REF] Hempsch | Vehicle routing problems with inter-tour resource constraints[END_REF], Grangier et al. [2017b], [START_REF] Froger | A matheuristic for the electric vehicle routing problem with capacitated charging stations[END_REF], the resources are only temporarily used during a limited period of time, before becoming available again. For example, in Grangier et al. [2017b], a truck uses a dock at a satellite facility only during the loading and unloading operations.

In the VRPDO, the synchronized resources are permanently used during the whole time horizon. Thus, it is only necessary to count the number of parcels in each locker and the number of visited options of each preference level to check the satisfaction of the synchronized resource constraints. [START_REF] Souffriau | The multiconstraint team orienteering problem with multiple time windows[END_REF] defines a variant of the TOP applied to tour planning for tourists. It is called the Multiconstraint Team Orienteering Problem with Multiple Time Windows (MC-TOP-MTW). The routes represent the different days of the trip. The synchronized resource constraints represent the budget and the maximal number of monuments of each type that can be visited. They consider these resources in a local search with a label on the locations. These labels are updated at each modification of the schedule. To get good solutions even with these resources, their algorithm relies on perturbations through a combination of GRASP with ILS. Besides, local search moves are chosen with a score. It is a function of the increase in the objective function, time shift, and resource consumption.

Closely related problems

Now that the three components of the VRPDO have been described, let us focus on very close problems. [START_REF] Reyes | Vehicle routing with roaming delivery locations[END_REF] define the VRP with Roaming Delivery Locations (VRPRDL). This problem involves delivering parcels into the trunks of cars, which move according to known schedules. In the VRPRDL, there are no synchronized resources, the time windows of a customer are disjointed and cars do not move faster than the delivery truck. This problem is solved with an LNS heuristic. Classical operators are adapted and dynamic programming is used to reoptimize routes by selecting better options without changing the customer sequence in the route. The combination with home delivery is considered in a variant called VRP with Home and Roaming Delivery Locations (VRPHRDL). It is defined by [START_REF] Ozbaygin | A branch-and-price algorithm for the vehicle routing problem with roaming delivery locations[END_REF] and solved to optimality by a Branch-and-Price (B&P) algorithm for instances with up to 60 customers. [START_REF] Sitek | Capacitated vehicle routing problem with pick-up and alternative delivery (CVRPPAD): model and implementation using hybrid approach[END_REF] define the Capacitated VRP with Pick-up and Alternative Delivery (CVRPPAD). This paper considers multiple options for each parcel to be delivered. Lockers and post offices are modeled with limited capacities. Customer preferences are modeled with a penalty on the objective function if a non-desired option is used. No time windows are considered. Their method relies on a pre-processing phase done by constraint programming. A heuristic then groups parcels together before assigning them to a route. [START_REF] Zhou | A multi-depot two-echelon vehicle routing problem with delivery options arising in the last mile distribution[END_REF] define the Multi-Depot Two-Echelon Vehicle Routing Problem with Delivery Options (MD-2EVRP-DO). In this paper, a parcel can either be delivered to the customer's home or to a selected pick-up facility. Shared locations are incapacitated and customer preferences are modeled through penalties in the objective function. Time windows are not considered. This problem is solved with a multi-population genetic algorithm that embeds an ad-hoc local search.

The most closely related study seems to be the one by [START_REF] Yuan | The generalized vehicle routing problem with time windows[END_REF], on the GVRPTW. Their metaheuristic method is based on a Set Partitioning formulation of the problem, coupled with an LNS heuristic and a local search that works with dual information.

Solution method

The Large Neighborhood Search (LNS) metaheuristic was first proposed by [START_REF] Shaw | Using constraint programming and local search methods to solve vehicle routing problems[END_REF] in a constraint programming context. In LNS, the current solution is iteratively improved by ruining it (i.e. removing a part of it) and recreating it (i.e reinserting the removed parts). This process is repeated until a stopping criterion (usually a time limit). The potential of LNS for solving a large variety of vehicle routing problems was revealed by Ropke and Pisinger who proposed an adaptive version of LNS, known as ALNS, consisting of multiple search operators adaptively selected according to their past performance [Ropke andPisinger, 2006a,b, Pisinger and[START_REF] Pisinger | A general heuristic for vehicle routing problems[END_REF]. LNS has been successfully applied to many variants of vehicle routing problems [START_REF] Pisinger | Large neighborhood search[END_REF] and the literature is abundant. Recently, [START_REF] Turkeš | Meta-analysis of metaheuristics: Quantifying the effect of adaptiveness in adaptive large neighborhood search[END_REF] compiled many papers using an LNS heuristic in a meta-analysis that concludes that the adaptive component proposed by Ropke and Pisinger [2006a] has, at best, a small impact.

We have selected a few papers of major importance with respect to the VRPDO: [START_REF] Shaw | Using constraint programming and local search methods to solve vehicle routing problems[END_REF] (VRP, VRPTW), Ropke and Pisinger [2006a,b], [START_REF] Pisinger | A general heuristic for vehicle routing problems[END_REF] (diverse VRPTW), [START_REF] Nagata | A powerful route minimization heuristic for the vehicle routing problem with time windows[END_REF] (VRPTW), [START_REF] Prescott-Gagnon | A branch-and-price-based large neighborhood search algorithm for the vehicle routing problem with time windows[END_REF] (VRPTW), [START_REF] Demir | Synchronization in vehicle routing-a survey of VRPs with multiple synchronization constraints[END_REF] (VRPTW and variants) and [START_REF] Christiaens | Slack induction by string removals for vehicle routing problems[END_REF] (CVRP and variants). Almost all operators from these papers were implemented, so that we have a representative panel of the LNS operators. In addition, ad-hoc operators for the VRPDO were developed in order to integrate synchronized resources and shared locations. The 20 ruin operators implemented are presented in Section 4.2 and the 15 recreate operators implemented are presented in Section 4.3. Numerous tests were performed, using a rigorous methodology, to restrict the operators used in our LNS implementation. The experimental procedure to selected operators is presented in Section 4.4. For the sake of readability, in Sections 4.2 and 4.3, the operators that were selected are listed with an [S] and the ones that were discarded are listed with a [D], with respect to the results explained in Section 4.4. Note that discarded operators may be as efficient as selected ones, but redundant in our configuration. For the sake of traceability, the original names have been used whenever possible.

Sections 4.5 and 4.6 present the acceptance criterion and the set partitioning problem, respectively. The final tuning of the presented algorithm is detailed in Section 4.7.

Large Neighborhood Search heuristic

Algorithm 1 presents the main steps of the proposed heuristic. It is an LNS metaheuristic with a Set Partitioning component, which we therefore call LNS-SPP. The main loop of the iterative process is from lines (3) to (18). On line (5), a ruin operator σ -is randomly selected in Σ -. Each operator has a given constant probability of being selected. The same process is used at line (6) to select a recreate operator σ + in Σ + . At line (7), the size Φ of the destruction is randomly chosen in a given interval [δ, ∆]. The destruction size is the percentage of customers to be removed from the current solution.

The selected operators are applied to the current solution s at line (8). First, Φ% of the customers are removed from the solution with the chosen ruin operator σ -. These customers are placed in the so-called request bank. Second, the customers from the request bank are inserted in the solution by the recreate operator σ + . At line (9), the routes of the newly generated solution are stored into a set of routes: the pool of routes R. On line (10), an acceptance criterion is used to decide whether the new solution becomes the current solution for the next LNS iteration. The routes of pool R are recombined every η iterations by solving a Set Partitioning Problem (SPP) on line (14). After this combination, the pool of routes R is emptied, on line (15).

The VRPDO has two lexicographic objectives: (1) to minimize the number of vehicles, and (2) to minimize the routing cost (described by the objective function 1.1). Similarly to Ropke and Pisinger [2006b], Algorithm 1 is run twice, with half of the time budget for each part. During the first phase, the number of vehicles is decreased by removing the smallest route from the solution each time a feasible solution is found (the customers are placed in the request bank). During the second phase, the cost of the solution is minimized, using the minimum number of vehicles found in a feasible solution obtained during the first phase. The configuration of our algorithm does not change between the two phases.

Algorithm 1: LNS-SPP

Parameters: a set Σ + of recreate operators, a set Σ -of ruin operators, a frequency η Input: an initial solution s 1: pool of routes R = ∅ 2: nbIt = 1 3: while the time budget is not reached do 4:

s ← s 5:

randomly select a ruin operator σ -∈ Σ - 6:

randomly select a recreate operator σ + ∈ Σ + 7:

randomly select a destruction size Φ ∈ [δ, ∆] 8: s ← σ + (σ -(s , Φ)) 9:
store the routes of s into pool R

Ruin operators

Ruin operators use different rules to remove customers from the solutions. Upon removal, customers are placed in the request bank of the solution.

We divide ruin operators from the literature into two categories, denoted local ruin operators and large ruin operators. A local ruin operator deletes customers so that even if few customers are deleted, it is likely that it is possible to improve the solution. On the contrary, a large ruin operator requires that more customers be deleted. Indeed, with a large ruin operator, if too few customers are removed, it is likely that they will be re-inserted in the same position.

Local ruin operators

The local ruin operators implemented from the literature are:

[S] Distance-related removal [Ropke and Pisinger, 2006a] : removes customers that are close to each other with respect to the Euclidean distance.

[D] Node neighborhood removal [START_REF] Demir | Synchronization in vehicle routing-a survey of VRPs with multiple synchronization constraints[END_REF]: removes customers that are close to each other with respect to the infinity norm.

[D] Proximity removal [START_REF] Prescott-Gagnon | A branch-and-price-based large neighborhood search algorithm for the vehicle routing problem with time windows[END_REF]: removes customers that are close both from a spatial and a temporal point of view, according to a parameterless formula. This is an extension of Shaw removal [START_REF] Shaw | Using constraint programming and local search methods to solve vehicle routing problems[END_REF]].

[S] (Split) String removal [START_REF] Christiaens | Slack induction by string removals for vehicle routing problems[END_REF]: removes sequences of customers in the routes of the current solution, either conserving, or not, a sub-string in the middle.

Large ruin operators

The large ruin operators implemented from the literature are:

[S] Random removal [Ropke and Pisinger, 2006a]: randomly removes customers.

[D] Demand-related removal [START_REF] Demir | Synchronization in vehicle routing-a survey of VRPs with multiple synchronization constraints[END_REF]: removes customers that have demands of similar size.

[S] Time-related removal [START_REF] Pisinger | A general heuristic for vehicle routing problems[END_REF]: removes customers that are served at approximately the same time.

[S] Zone removal [START_REF] Demir | Synchronization in vehicle routing-a survey of VRPs with multiple synchronization constraints[END_REF]: randomly removes customers into predefined fixed rectangular zones.

[S] Cluster removal [START_REF] Pisinger | A general heuristic for vehicle routing problems[END_REF]: removes customers that are served by the same route in the current solution. A route is randomly selected and the Kruskal's algorithm is run on the arcs of this route until two clusters remain. All the customers in one of them, randomly chosen, are removed.

[S] Route removal [START_REF] Nagata | A powerful route minimization heuristic for the vehicle routing problem with time windows[END_REF]: removes all the customers of a route.

[D] Distance worst removal [Ropke and Pisinger, 2006b]: iteratively removes the customer with the highest individual service cost. The individual service cost of a customer is the cost of the arcs that enter and exit the location where the given customer is served in the current solution, minus the cost of going directly from the previous location on the route to the next one. If it is a shared location, this cost is divided by the number of customers served at this location on the same route.

[D] Time worst removal [START_REF] Demir | Synchronization in vehicle routing-a survey of VRPs with multiple synchronization constraints[END_REF]: removes the customers that cause the largest time loss.

[D] Neighborhood removal [START_REF] Demir | Synchronization in vehicle routing-a survey of VRPs with multiple synchronization constraints[END_REF]: first, the cost of each route divided by the number of customers served by this route is computed. The customers are then removed sequentially by decreasing order of the difference between their individual service cost and the average service cost of their route.

[D] Node-pair history removal [START_REF] Pisinger | A general heuristic for vehicle routing problems[END_REF]: memorizes the cost of the best solution that uses each arc. The operator removes the nodes that are reached via arcs with the largest score.

[S] Historical knowledge node removal [START_REF] Demir | Synchronization in vehicle routing-a survey of VRPs with multiple synchronization constraints[END_REF]: this history removal memorizes the lowest individual service cost of each customer. The operator removes the customers with the largest difference between their current individual service cost and their lowest individual service cost. It can be see as a history-biased worst removal.

Ruin operator for the VRPTW can be adapted to the VRPDO in two ways: option-based or customer-based. Hence, the ruin operators that we are using for the VRPDO can be split between these two categories. An option-based operator only takes in account the options that are currently visited to serve the customers. A customer-based operator takes all the options into account. Let us describe an example with distance-related removal. The distance between two customers in distance option-based related removal is the distance between the options that are currently visited to serve these customers. On the contrary, in distance customer-based related removal, it is the minimal distance between any two options of these customers. That is to say, the option-based version will remove customers that are currently served in close locations and the customer-based one will delete customers that are potentially served in close locations.

VRPDO specific ruin operators

The new ruin operators specifically developed for the VRPDO are:

[D] Preference-oriented random removal: randomly selects customers and deletes them with a probability based on the preference level of the options currently visited to serve them. The probability of deleting a selected customer, currently served with option o, is (1 /P +1-po) 3 . When there are three preference levels, the probability of deleting a customer served with an option of level 3, 2 and 1 is 1.0, 0.125 and 0.04, respectively.

[S] SDL-oriented random removal (Shared Delivery Location-oriented random removal): randomly selects customers in the solution. If the selected customer is served in an individual location, the probability of being deleted is only 10%. Otherwise, if customers are served in a shared location, they are always deleted.

[D] Random SDL removal: randomly selects a shared delivery location and removes all the customers served at this location.

[D] SDL-related removal: selects a shared delivery location and randomly deletes customers that have an option at this location.

[D] SDL-worst removal: a distance worst removal where the detour cost is fully assigned to all the customers served at the shared delivery locations. The detour cost is not divided by the number of customers served at this location.

All these ad-hoc ruin operators are large ruin operators. With the exception of the SDL related removal, they are all option-based.

Recreate operators

Most recreate operators follow the best insertion principle: any given customer is inserted at the position that minimizes the routing cost increase. To compute the best insertion of customer c in route r, we try to insert all customer options in all positions of route r. Only feasible insertions are performed by the algorithm. Hence, a solution always satisfies the vehicle capacity constraints, time windows, shared location capacities, and service level constraints.

The only form of infeasibility considered in LNS-SPP is the fact that not all the customers are served, i.e the request bank can be non-empty.

The forward time slacks [START_REF] Martin | The vehicle routing problem with time windows: Minimizing route duration[END_REF] of all routes are stored in order to evaluate insertions in constant time with respect to time windows. The usage of each shared location and of each preference level is stored. Hence, testing the validity of insertions with respect to synchronized resources is done in constant time. When an insertion is performed, the forward time slacks of the corresponding route are updated in linear time with respect to the length of the route. The update of capacity usage is done in constant time.

Recreate operators from the literature

We divide the recreate operators from the literature into two categories: list heuristics and others. Most of the operators proposed in the literature may evaluate the insertion of a given customer into a given route multiple times. Typically, the insertion of each customer in each route is evaluated once at the beginning. After each modification, the insertion of the remaining customers in the modified route is then re-evaluated. In a list heuristic, the insertion of a customer into a route is evaluated at most once. Typically, the customers in the request bank are sorted once and inserted in this order. Consequently, list heuristics are very fast recreate operators.

The list heuristics implemented from the literature are:

[S] Random order best insertions [START_REF] Christiaens | Slack induction by string removals for vehicle routing problems[END_REF]: sequentially inserts the customers in the request bank at their best insertion position in a random order.

[D] Oldest first best insertions [START_REF] Christiaens | Slack induction by string removals for vehicle routing problems[END_REF]: sequentially inserts the customers in the request bank at their best insertion position in non-increasing order of the number of iterations since the last time a given customer was served.

[S] Largest first best insertions [START_REF] Christiaens | Slack induction by string removals for vehicle routing problems[END_REF]: sequentially inserts the customers in the request bank at their best insertion position in non-increasing order of their demand.

[D] Farthest first best insertions [START_REF] Christiaens | Slack induction by string removals for vehicle routing problems[END_REF]: sequentially inserts the customers in the request bank at their best insertion position in non-increasing order of their distance to the depot.

[D] Closest first best insertions [START_REF] Christiaens | Slack induction by string removals for vehicle routing problems[END_REF]: sequentially inserts the customers in the request bank at their best insertion position in increasing order of their distance to the depot.

The other operators implemented from the literature are:

[D] Best temporal insertions [START_REF] Demir | Synchronization in vehicle routing-a survey of VRPs with multiple synchronization constraints[END_REF]: inserts the customers so that the loss of time is minimal. The loss of time is defined as the waiting time at the inserted option plus the waiting time at the next option on the route. Customers can be processed either in random order or by decreasing order of demand, respectively.

[D] Greedy best insertion [Ropke and Pisinger, 2006b]: iteratively computes the cheapest insertion for each customer and inserts the customers that have the lowest insertion cost.

[S] k-regret [Ropke and Pisinger, 2006b]: iteratively computes the best insertion cost on each route for each customer and inserts the one that has the largest difference between its best insertion cost and next (k -1) route's best insertion costs.

[S] Ejection search [START_REF] Nagata | A powerful route minimization heuristic for the vehicle routing problem with time windows[END_REF]: first, all the customers in the request bank are placed in a FIFO structure. The customers from this structure are inserted into the solution by allowing some customers from the solution to be removed and put in the queue. As in [START_REF] Curtois | Large neighbourhood search with adaptive guided ejection search for the pickup and delivery problem with time windows[END_REF] the procedure is heuristically sped up. First, to insert one customer, at most two customers can be removed from the solution. Second, insertions are tested with an increasing number of removed customers. If a feasible insertion is found, insertions with more removals will not be tested. Third, when customers must be removed to insert the customer in question, the insertion that removes the customers with the smallest score is chosen. The score of a customer is the number of times where no feasible insertion was found for this customer during all the calls to ejection search.

Finally, the number of iterations of ejection search, at each call, is limited to five times the initial size of the request bank.

VRPDO specific recreate operators

The operators specifically developed for the VRPDO are:

[S] Preferred best insertion: this operator considers the preferred insertion. The preferred insertion of a customer is the cheapest feasible insertion at the best available preference level.

The customer with the cheapest preferred insertion is inserted first with this insertion.

[D] Preference regret: the best insertion is computed for each customer and for each preference level. Let C i p be the cost of the best insertion of a customer i with an option of level p or lower. The preference regret score of customer i is

P -1 p=1 (C i P -C i p)
. Customers are always inserted at their cheapest position and the customer with the largest regret is inserted first.

[D] Normalized best insertion: the equalized insertion cost is the real cost of insertion, divided by the capacity of the location. Normalized best insertion is a greedy best insertion that uses an equalized insertion cost to select the insertion possibility for each customer and select the first customer to insert.

[S] SDL-regret (Shared Delivery Location regret): customers are inserted at their cheapest insertion by decreasing order of their regret. In this version, the regret of a customer is the difference between the insertion cost when all options are allowed or the cost when only individual locations are authorized. For example, let us consider the partial solution represented in Figure 8 (same instance as in Figure 3). Customers 5 and 6 are not served.

Both can be served through locker II, where customer 4 is currently being served. But this locker only has a capacity of two, as in Figure 5. For both customers 5 and 6, the cheapest insertion is in this locker, with a cost of 0. Figures 9 and 10 show the cheapest insertion of customers 5 and 6 without considering shared locations. Hence, the SDLregret for customer 6 is higher than that of customer 5. In this case, the SDL-regret will select customer 6 first and insert him/her in the locker.

Operator selection

As described in sections 4.2 and 4.3, a number of operators have been implemented. Because it does not seem useful to keep them all, we searched for a configuration of LNS-SPP with fewer operators. In this section, we define a configuration as a subset of ruin operators and a subset of recreate operators.

A statistical study was performed to choose a configuration from the 20 ruin operators and the 15 recreate operators that were implemented. Tests were performed on a representative set of randomly generated VRPDO instances. To determine if one configuration is significantly different from another, we use the Wilcoxon pairwise test [START_REF] Wilcoxon | Individual comparisons by ranking methods[END_REF] with a threshold of 5%. This test compares two populations of results. In our case, it compares the results obtained by two configurations on each instance of a set of VRPDO instances. This methodology is inspired from [START_REF] Stützle | Heuristic optimization[END_REF]. Note that we also tried the automatic configuration package IRACE [START_REF] López-Ibánez | The IRACE package, iterated race for automatic algorithm configuration[END_REF], but it did not converge after several days of computation.

We define a class of operators as a group of operators that have similar purposes. First, we split the ruin operators into 4 classes: random removals, related removals, worst removals and history removals. Second, we split the recreate operators into 4 classes: list heuristics, time best insertion heuristics, regret heuristics and ejection search. This classification is detailed in Tables 1 and2.

This statistical study is decomposed in two phases: (1) a study of the impact of each class of operators; (2) a study of the impact of each individual operator.

To study classes of operators, the reference configurations are: the full configuration with all the operators, and a minimal configuration with as few operators as possible. All the operators of each class are removed from the full configuration and added to the minimal configuration. All these "sub-configurations" were tested on all instances of the test set and compared. This first phase determines whether the operators in question are redundant with other operators of the full configuration, and whether they improve the results of the minimal configuration.

Based on the previous results, we build an intermediate configuration. The operators from this configuration are changed one by one. If a given operator was used, then we deactivate it, otherwise we add it to the configuration. All these alternative configurations are compared with the intermediate configuration. It determines if the assessed operator significantly improves the results, or if it is redundant with used operators.

The results of the operators are summarized in Tables 1 and2. Operators marked with ++ are considered essential. Operators marked with + slightly improve the results. Operators marked with -are useless or redundant with already kept operators, and adding them does not improve the results. The selected operators are those rated ++ and + .

Option-based operators

Customer-based operators

Acceptance Criterion

On line 10 of Algorithm 1, we determine whether the newly generated solution should be accepted as the current solution at the next iteration. Ropke and Pisinger [2006a] use the Metropolis criterion from Simulated Annealing [START_REF] Kirkpatrick | Optimization by simulated annealing[END_REF]]. To deal with partial solutions, a modified cost is proposed in [START_REF] Pisinger | A general heuristic for vehicle routing problems[END_REF]. The modified cost of Equation (1) penalizes the unserved customers with factor β. In this formula, B is the request bank of the current solution, cost is its routing cost (described by 1.1) and N is the set of customers. [START_REF] Santini | A comparison of acceptance criteria for the adaptive large neighbourhood search metaheuristic[END_REF] conducted a comprehensive study on the acceptance criteria for the LNS metaheuristic. In their conclusion about the CVRP, they advocate for the record-to-record criterion [START_REF] Demir | Synchronization in vehicle routing-a survey of VRPs with multiple synchronization constraints[END_REF]. With this criterion, the solution is accepted if its modified cost is less than T % larger than the modified cost of the best known solution. Furthermore, they propose decreasing the acceptance threshold T during the algorithm. T decreases linearly between its initial value at the beginning and 0, when the time limit is reached. They conclude that the best values of T and β depend of the type and size of instance.

modified cost = cost × 1 + β. |B| |N| (1)
In our implementation, we use the record-to-record criterion with modified cost (1). To avoid tuning parameters and get a reliable acceptance criterion, we propose a simple adaptive procedure.

Our experiments empirically show that LNS-SPP performs well if the ratio of accepted solutions is between 4% and 14%. T and β are changed so as to maintain the ratio of accepted solutions in this target. The ratio of accepted solutions is periodically evaluated. If the ratio of accepted solutions is less than 4%, T is multiplied by 1.5 and β is divided by 1.5. On the contrary, if it is larger than 14%, T is divided by 1.5 and β is multiplied by 1.5.

Set Partitioning Problem

The utilization of the Set Partitioning Problem (SPP) to solve vehicle routing problems was first introduced by Foster and Ryan [1976]. It is now widely used in column generation methods [START_REF] Toth | Vehicle routing: problems, methods, and applications[END_REF] for many routing problems [START_REF] Archetti | Chapter 10: Vehicle routing problems with profits[END_REF]. It can also be used to recombine routes that are produced by a heuristic. The SPP is used as a post-optimization technique [START_REF] Rochat | Probabilistic diversification and intensification in local search for vehicle routing[END_REF][START_REF] Mancini | A combined multistart random constructive heuristic and set partitioning based formulation for the vehicle routing problem with time dependent travel times[END_REF][START_REF] Gschwind | Adaptive large neighborhood search with a constanttime feasibility test for the dial-a-ride problem[END_REF], as well as inside hybrid heuristics [START_REF] Prescott-Gagnon | A branch-and-price-based large neighborhood search algorithm for the vehicle routing problem with time windows[END_REF][START_REF] Groër | A parallel algorithm for the vehicle routing problem[END_REF][START_REF] Mendoza | A multi-space sampling heuristic for the vehicle routing problem with stochastic demands[END_REF][START_REF] Subramanian | A hybrid algorithm for a class of vehicle routing problems[END_REF][START_REF] Sophie | Hybrid column generation and large neighborhood search for the dial-a-ride problem[END_REF][START_REF] Mahir | An ant colony-based matheuristic approach for solving a class of vehicle routing problems[END_REF], Grangier et al., 2017a[START_REF] Tellez | The fleet size and mix dial-a-ride problem with reconfigurable vehicle capacity[END_REF].

We solve the SPP by solving a Set Covering Problem (SCP) and by repairing the solution if a customer is served more than once. Yıldırım and Çatay [2015] show that solving an SCP instead of a SPP slightly shortens solving time. Additionally, an exact repair is rarely needed and a greedy procedure finds the optimal reparation almost all the time.

The SCP model for the VRPDO is represented in Model 2. R is a set of routes that are valid with respect to time windows and vehicle capacity. Let us define R as the pool of routes generated in Algorithm 1. Indicator α o r has value 1 if the option o ∈ O is visited by the route r ∈ R; it is equal to 0 otherwise. The cost of route r ∈ R is denoted w r . Let z r be a binary variable that indicates whether route r ∈ R is used in the solution.

The objective function (2.1) minimizes the total cost of the solution, i.e the sum of the cost of the routes used. Constraints (2.2) state that each customer must be served at least once. Constraints (2.3) express the capacity of the shared locations. Constraints (2.4) are the service level constraints. Because it is a set covering formulation, more than one option may be used to serve a customer. Consequently, we express the service level constraint as a capacity constraint. Constraints (2.3) and (2.4) are the synchronized resource constraints. Constraints (2.5) set the upper bound on the number of vehicles used in the solution to K.

Model 2: SCP for the VRPDO

min r∈R w r z r (2.1) s.c r∈R o∈Oc α o r z r 1 ∀c ∈ N (2.2) r∈R o∈O l α o r z r C l ∀l ∈ L (2.3) r∈R o∈O|po p α o r z r (1 -β p+1) × |N | ∀p ∈ {1, ..., P -1} (2.4) r∈R z r K (2.5) z r ∈ {0, 1} ∀r ∈ R
Model 2 is solved every η iterations by an ILP solver. The set of routes R is then composed of the routes that have been generated by Algorithm 1 during the last η iterations. As proposed by [START_REF] Tellez | The fleet size and mix dial-a-ride problem with reconfigurable vehicle capacity[END_REF], frequency η can be adapted. The value of η is reduced by a quarter when the solver does not succeed in proving optimality, nor in improving the best known solution, twice in a row. We extend this procedure as follows. η is increased by a quarter if the optimality is proven, or if the best-known solution is improved, twice in a row.

In addition, we observe that it is not necessary to solve the SPP every η iterations. While the LNS still improves the current solution, it is better to wait for stabilization. Hence, the SPP is solved only if LNS cannot improve the cost of the best-known solution's cost by more than ρ% during the last η iterations.

We observe that the SCP defined for the VRPDO is more difficult to solve than the pure VRPTW set covering formulation. Thus, an extension of Model 2 is proposed to reduce solving time. We introduce binary variables y o that indicate whether option o ∈ O is visited. These variables allow the solver to branch on options, hence discarding a lot of routes.

Constraints (3.1), (3.2), and (3.3) reformulate constraints (2.2), (2.3), and (2.4) with the y variables, respectively. Constraints (3.4) bind the two sets of variables by stating that if an option is visited, then the corresponding y o must be set at value 1.

The following constraints are added to Model 2

o∈Oc y o = 1 ∀c ∈ N (3.1) o∈O l y 0 C l ∀l ∈ L (3.2) o∈O|po p y o β p × |N | ∀p ∈ {1, ..., P } (3.3) r∈R α o r z r y o ∀o ∈ O (3.4) y o ∈ {0, 1} ∀o ∈ O

Final parameter tuning

In our LNS-SPP, the probability of selecting each operator is constant throughout the algorithm. In the proposed implementation, all ruin operators are equiprobable. The probability of selecting each recreate operator is inversely proportional to its average running time. Furthermore, [START_REF] Christiaens | Slack induction by string removals for vehicle routing problems[END_REF] propose to perform a huge number of small and fast iterations in LNS in order to compensate the lack of local search in this metaheuristic. We added this functionality as a special case: if a list heuristic is selected, there is a high probability φ that the destruction size will be small (between δ mini and ∆ mini percent of the customer) and that the ruin operator will be local, i.e string removal, split string removal or distance-related customer removal. The probability of each operator, δ, ∆, δ mini , ∆ mini and φ was tuned according to the recommendations of IRACE [START_REF] López-Ibánez | The IRACE package, iterated race for automatic algorithm configuration[END_REF]. [START_REF] Christiaens | Slack induction by string removals for vehicle routing problems[END_REF] introduced the blink principle for recreate operators. It randomly ignores certain insertions with a given probability during the computation of the best insertion. In the proposed implementation, this feature did not prove to have a significant impact. It introduces diversification through randomization. Nevertheless, this principle has been applied to the ruin operators; for each removal evaluated there is a given probability of simply ignoring it.

To summarize, on the one hand, the list heuristics and the small destructions favor a high number of iterations. On the other hand, using regret heuristics and ejection search tends to reduce the number of iterations. As observed by [START_REF] Christiaens | Slack induction by string removals for vehicle routing problems[END_REF], the small destruction and list heuristic can compensate for a lack of local search. Furthermore, the numerous iterations coupled with blink provide a good exploration of the search space in the CVRP. To deal with time windows, we observe that it is worthwhile to perform larger destruction and to take some time to anticipate constraint violation, like Ropke and Pisinger [2006a] and [START_REF] Demir | Synchronization in vehicle routing-a survey of VRPs with multiple synchronization constraints[END_REF]. Hence the final operator configuration in the proposed LNS-SPP combines fast and slow iterations in addition to long intensification phases with the SPP component.

To conclude this section, we indicate the values of the parameters (tuned with the help of IRACE) :

• The probability of selecting each ruin operator is the same for all operators. The probability to blink a deletion possibility is 30%.

• The probability of selecting a recreate operator is inversely proportional to its running time. The probability of selecting list heuristics (random order best insertion, largest first best insertion) is 0.4. The probability of selecting the other recreate operator (2-regret, ejection search, SDL-regret and preferred best insertion) is 0.05.

• The destruction size and removal operator selection rule is different for the list heuristics and the other recreate operators. In general the destruction size is between δ = 10% and ∆ = 20% of the number of customers. For the list heuristic there is a 30% probability of performing a classical destruction (using any ruin operator) and a φ = 70% probability of performing a small, local destruction. That is to say, only between δ mini = 1% and ∆ mini = 10% of customers are removed, and a local removal operator (distance-related removal, (split) string removal) is used.

• The initial values of the record-to-record acceptance criteria are T = 0.18 and β = 9. These values are adjusted every 4500 iterations by a factor of 1.5, as described in section 4.5.

• The initial call frequency to the SPP component is η = 20 000. It is adjusted by a factor of 1.25. Furthermore, the time budget for the solver is 30 seconds and ρ = 1%.

Experiments

The method is coded in C++ and is compiled with g++ 5.4.0. We use IBM Ilog CPLEX 12.8.0 [IBM, 2018] as the MIP solver. The experiments were performed using Linux, Ubuntu 16.04 LTS, running on an Intel Xeon X5650 @ 2.57 GHz. A single core is used by our code and the third-party solvers. We use the following options of CPLEX: branch up first and emphasis on hidden feasible solutions. Section 5.1 validates the proposed matheuristic on related problems. Section 5.2 presents the generated VRPDO instances and Section 5.3 presents managerial insights.

Validation of LNS-SPP

We evaluate LNS-SPP on 120 benchmark instances of the VRPRDL proposed by [START_REF] Reyes | Vehicle routing with roaming delivery locations[END_REF] and [START_REF] Ozbaygin | A branch-and-price algorithm for the vehicle routing problem with roaming delivery locations[END_REF]. Two versions of the set of instances are used. In the first version, denoted VRPRDL, the time windows associated with the options of each customer are disjointed, and only trunk deliveries are considered. In the second version, denoted VRPHRDL, the first option of each customer is considered to be the home option and it has no time window. The others remain unchanged. Instances 1 to 40 come from [START_REF] Reyes | Vehicle routing with roaming delivery locations[END_REF], but were modified by [START_REF] Ozbaygin | A branch-and-price algorithm for the vehicle routing problem with roaming delivery locations[END_REF] to satisfy triangle inequality. Instances 41 to 50, v1 and v2, come from [START_REF] Ozbaygin | A branch-and-price algorithm for the vehicle routing problem with roaming delivery locations[END_REF].

The solutions produced by LNS-SPP are compared with those produced by the B&P of [START_REF] Ozbaygin | A branch-and-price algorithm for the vehicle routing problem with roaming delivery locations[END_REF]. Their method does not minimize the number of vehicles. Tables 3 and4 provide a summary of the results. Each line represents an instance group, whose features are described by the first two columns. The last line is the total over all the instances. Columns 3 and 4 depict the total number of routes and cost for all the instances of the group. A "*" indicates that the B&P could not prove the optimality of all the solutions in the set. The results of LNS-SPP are summarized in the remaining columns, and are based on five runs on each instance. In columns 5 and 6, the cost is optimized with the number of routes that used in the solution in [START_REF] Ozbaygin | A branch-and-price algorithm for the vehicle routing problem with roaming delivery locations[END_REF]. Notice that it is possible that the solution found by LNS-SPP with this number of vehicles comprises empty routes. Column 5 is the sum, over the instances of the group, of the average cost over 5 runs on each instance with LNS-SPP. Column 6 is the sum, over the instances of the group, of the lowest cost over 5 runs on each instance with LNS-SPP. Columns 7 to 10 provide the results of LNS-SPP when the number of routes is minimized. Column 7, 8 and 9, 10 are the total number of vehicles and cost, for the instances of the group on average on each instance or the best solution obtained on each instance, respectively. Finally, the computational time for the instances of each class is provided. The results are detailed in Tables 9,10, 11 and 12 in A.

When the number of routes is set to the same value: the cost of the best solution of LNS-SPP is never higher than the cost of the solution provided by [START_REF] Ozbaygin | A branch-and-price algorithm for the vehicle routing problem with roaming delivery locations[END_REF]. The B&P proves the optimality of the cost on 93 instances out of 120. Based on the best results out of five runs (column 6), the cost is the same on 97 instances and it is improved on 23 instances by LNS-SPP.

When the number of vehicles is minimized first (column 9 and 10): the number of vehicles is reduced, which results in a higher cost, on 12 instances. On these instances, the total number of vehicles is decreased from 128 to 110 (14%) and the routing costs increase from 33 543 to 34 250 (+2.1%), knowing that 10 of these 12 instances have a cost proven optimal. In addition, the number of vehicles is reduced on 3 instances with the same cost, and both the number of vehicles and the cost were improved on 14 instances.

Unfortunately, no fair comparison can be made with the metaheuristic of [START_REF] Reyes | Vehicle routing with roaming delivery locations[END_REF] because the instances were modified by [START_REF] Ozbaygin | A branch-and-price algorithm for the vehicle routing problem with roaming delivery locations[END_REF]. Furthermore, running times are not indicated in [START_REF] Reyes | Vehicle routing with roaming delivery locations[END_REF]. Their method does not succeed in finding optimal solutions for small instances with 15 and 20 customers (with respect to optimal solutions provided by Gurobi 5.6).

The results on the VRPRDL and VRPHRDL show that the proposed LNS-SPP is clearly able to deal with delivery options, even with quite a short time budget. et al. [2017] Total number of routes and total cost over the instances of each group, and over all the instances, with the two considered algorithms for the VRPHRDL instances

Instances of the VRPDO

VRPDO instances were randomly generated, because we did not find any suitable existing instances. Three types of instances were generated: U, V and UBC. For each type, instances with 50, 100 and 200 customers were generated.

All the delivery locations were randomly generated in a 50 × 50 square. The depot is located at the bottom left-hand corner. Euclidean distances are considered. A unit of distance costs 1 and takes a unit of time to be crossed. We consider a time horizon of 12 hours, i.e. 720 time units.

In the U and UBC instances, each customer has between 1 and 3 options, with an average of 2 options per customer. In the V instance, each customer has 1 or 2 options, with an average of 1.5 options per customer.

In the U and V instances, the capacities are tight, both for the vehicles and the lockers. A locker can accept between 3 and 5 parcels, and vehicle capacity is such that a route can serve around 10 customers. In the UBC instances (U with Big Capacity), the vehicle capacity is such that a route can serve around 25 customers. Furthermore, there are five times fewer lockers and their capacity is five times larger.

The time window of individual locations can be either: the morning ([0; 360]), the afternoon ([360; 720]), random in the morning (i.e [a i , b i] such that 0 a i 240 and b i = a i + 120), random in the afternoon (i.e [a i , b i] such that 360 a i 600 and b i = a i + 120) or random in the whole day (i.e [a i , b i] such that 0 a i 480 and b i = 240). The time window of a shared location can be either: random in the day (i.e [a i , b i] such that 0 a i 240 and b i = 480) or the full day ([0; 720]).

The characteristics of instance classes are summarized in Table 5. For each size and each class, 10 instances were generated, leading to a total of 90 instances. All the instances are available upon request.

Table 6 summarizes the results obtained by LNS-SPP on these instances. This table depicts the total number of vehicles and the total cost for all instances of each class. These results are detailed in Tables 13, 14 and 15 in B. By default, all these tests were conducted with a service level of 80% -90%, i.e at least 80% of the customers are served with their level 1 option and at least 90% of the customers are served with an option of level 1 or 2. The time budget of the algorithm only depends on the instance size: 30 seconds for 50 customers, 90 seconds for 100,

Managerial insights for the VRPDO

To quantify the impact of the delivery options, we compare the solution of the VRPDO instances with their VRPTW counterpart. To transform a VRPDO instance into a VRPTW instance, we consider only the home option. No preference level is taken into account. In the VRPDO instances, we assume that home delivery options are the preferred individual locations. In the case of customers that only have a locker option, a random location is added as a home location. The total number of vehicles and the total cost for each instance class are depicted in Table 7. The instances are grouped by line, the first line indicating the type of instance and the second column the number of customers. Each group is composed of 10 instances and the "Total" line is the sum over all the instances. Columns 3 and 4 indicate the total number of vehicles and the total cost over the instances of the group when only home delivery is considered. Columns 5 and 6 indicate the total number of vehicle and the total cost over the instances of the group when all options are considered. Column 7 is the relative savings on the route length obtained by using delivery options. In our instances, considering delivery options leads to a cost reduction of 29.2%, on average. Furthermore, on the UBC instance, with large lockers, the savings are even larger. The number of routes is not reduced, because it is determined by the binding vehicles' capacities. We performed a sensitivity analysis by modifying the width of individual locations' time windows. Considering a time window [a i , b i] at location i ∈ L, the modified time window is still centered at time 0.5 × (a i + b i) but its width is reduced by a factor α as shown in formula (2).

[a i , b i] = a i + b i 2 - b i -a i 2α ; a i + b i 2 + b i -a i 2α . (2)
We conduct the same experiments as in Table 7 with these smaller time windows for individual locations. Figure 11 summarizes these results. The graphs present the total cost and the total number of vehicles based on the time window width. Along the the x-axis, we show the time window width in time units while the y-axis shows the cost and the number of vehicles, respectively. The time windows are reduced by a factor α between 1 and 10 according to Equation 2. Thus the average time window width range from 180 time units down to 20 time units. Because some instances become infeasible when the time windows are too tight, not all instances are taken into account in this figure . With the VRPTW counterpart, both the number of vehicles and the cost grow by 33% when the individual locations' time window width is divided by 10. For the VRPDO, the number of vehicles only increases from 598 to 604 and the cost grows by only 10%. That is to say, with time windows of about 20 minutes, the cost savings of the VRPDO is 44.3%, while the number of vehicles decreases by 21.8%, on average over all the considered instances.

On these instances, considering delivery options and shared delivery locations makes it possible to to serve customers with very narrow time windows without significant cost increase, as observed in the VRPTW. In order to quantify the impact of the required service level, we perform some experiments with different values. Table 8 presents the total number of vehicles and the total cost, for all the VRPDO instances, with respect to the required service level. Each line sets a different minimal percentage of options of level 1 and 2. Each column sets a different minimal percentage of customers served via their preferred option.

This table shows that the total cost does not significantly increase when the required service level is more strict. When the service level becomes too strict (e.g with β 1 = 90 and β 2 = 100), some instances become infeasible. The proposed experiments show that considering delivery options and shared delivery locations can reduce cost. In addition, such options make it possible to guarantee a very high quality of service, with respect to both the time window width and service level.

Conclusion

In this paper we have proposed a new extension of the VRPTW allowing multiple delivery options for each customer. The Vehicle Routing Problem with Delivery Options (VRPDO) includes the use of shared delivery locations, such as lockers, and takes in account customer preferences. In addition, the model is general enough to include new modes of delivery, such as trunk delivery. The VRPDO is theoretically challenging because it introduces synchronized resources and a new structure of the search space, due to the delivery locations for each customer.

The numerical experiments show that VRPDO can save considerable amounts of money compared with VRPTW. Moreover, for a small cost increase, a very high quality of service can be achieved, especially with respect to the time window width.

The VRPDO is solved with an LNS meta-heuristic combined with a set partitioning component. After implementing a large number of ruin and recreate operators, we led a comprehensive tuning process that resulted in the selection of a few relevant operators. The experiments show that combining local impact fast operators and global impact slower operators is an efficient strategy. Alternating between large and small removal operators help perform intensification as well as diversification.

For future research, we plan to use dynamic programming, as in [START_REF] Moccia | An incremental tabu search heuristic for the generalized vehicle routing problem with time windows[END_REF] and [START_REF] Reyes | Vehicle routing with roaming delivery locations[END_REF], to improve promising solutions. The difficulty in efficiently applying these methods to the VRPDO is the combinatorial explosion of the number of labels induced by the synchronized resources. Another perspective is to integrate delivery options into multi-echelon [Grangier et al., 2017b] or multi-modal [START_REF] Masson | Optimization of a city logistics transportation system with mixed passengers and goods[END_REF] city logistics systems, or to combine it with the use of autonomous vehicles [START_REF] Boysen | Scheduling last-mile deliveries with truck-based autonomous robots[END_REF].

Figure 1 :

 1 Figure 1: Example of a customer in the VRPDO

Figure 2 :

 2 Figure 2: An instance of the VRPDO from the carrier perspective

 Figure3represents a solution to the VRPDO instance introduced in Figure2. Figure4represents a solution to the VRPTW for the same instance, using home delivery only. For the sake of conciseness, only one route has been drawn. An option that takes place in an individual location is depicted by a circle including the customer's identity and the location. A shared location is depicted by a rectangle including the location and the identity of the customers served.The time spent by a vehicle at a location is equal to the preparation time of the location plus the service duration of the visited options. The preparation time of a location corresponds to the time to find a parking place. Hence, it is counted only once, regardless of the number of parcels delivered. The service duration of an option corresponds to the time to deliver the parcel or to put it in a box.Customer 2 has a remote home address. Thus delivering to this customer in an alternative

Figure 4 :

 4 Figure 3: Example of a route in the VRPDO

Figure 5 :

 5 Figure 5: Shared delivery locations' capacity

Figure 6 :

 6 Figure 6: Service level measured with respect to a set of selected options

Let

 N be the set of customers and O the set of options. The options of customer c ∈ N are denoted by O c ⊂ O. Since an option belongs to a single customer, we have c∈N O c = O. Let L denote the set of locations and O l ⊂ O be the subset of options that take place at location l ∈ L.

Figure 7 :

 7 Figure 7: Representation of the route from Figure 3 on Graph G

Figure 10 :

 10 Figure 8: Example of a partial solution

Figure 11 :

 11 Figure 11: Impact of time window width with and without delivery options Total number of vehicles and total cost with the VRPDO and the VRPTW with respect to average individual locations time window width

Table 1 :

 1 Overview of configuration experiments for ruin operators

	Random removals	-preference-oriented random removal + SDL-oriented random removal -random SDL removal	+ random option removal
		-distance-related option removal	+ distance-related customer removal
	Related	-node neighborhood removal	+ zone removal
	removals	-time-related option removal	+ time-related customer removal
		++ (split) string removal	-proximity customer removal
		++ cluster removal	-demand-related removal
		+ route removal	-SDL-related removal
	Worst		
	removals		
			VRPTW operators	VRPDO operators
	List heuristics	
			++ 2-regret
			-3-regret
			-4-regret
	Ejection search	+ ejection search

-distance worst removal -time worst removal -neighborhood removal -SDL worst removal History removals -node-pair history removal ++ historical knowledge node removal ++ random order best insertion -normalized best insertion + preferred best insertion -oldest first best insertion ++ largest first best insertion -farthest first best insertion -closest first best insertion Time best insertions -time best insertion Regrets -greedy best insertion + SDL-regret -preference regret

Table 2 :

 2 Overview of configuration experiments for recreate operators

Table 3 :

 3 Summary of the results on the VRPRDL instances of[START_REF] Reyes | Vehicle routing with roaming delivery locations[END_REF] and[START_REF] Ozbaygin | A branch-and-price algorithm for the vehicle routing problem with roaming delivery locations[END_REF]

	Total number of routes and total cost over the instances of each group, and over all the instances, with the two
	considered algorithms for the VRPRDL instances

Table 4 :

 4 Summary of the results on the VRPHRDL instances of[START_REF] Reyes | Vehicle routing with roaming delivery locations[END_REF] and Ozbaygin

Table 6 :

 6 Summary of the results obtained by LNS-SPP on the VRPDO instances

	Instance type Capacity	Avg.	option	Time windows
			per customer			
				Individual locations	Shared Locations
	U	medium	2	2 to 6 hours		8 to 12 hours
	UBC	big	2	2 to 6 hours		8 to 12 hours
	V	medium	1.5	2 to 6 hours		8 to 12 hours
			Table 5: VRPDO instance classes		
	and 300 seconds for 200 customers.				
			Average of 5	Best of 5	
	Type	Customers	Routes	Cost.0	Routes	Cost.0	Time (s)
		50	54.0	3 913.88	54	3 864.48	30
	U	100	105.0	6 577.74	105	6 502.99	90
		200	205.0 14 082.36	205 13 641.13	300
		50	20.0	2 301.31	20	2 293.53	30
	UBC	100	40.0	3 666.90	40	3 608.39	90
		200	80.0	6 534.72	80	6 384.29	300
		50	54.0	3 759.76	54	3 742.59	30
	V	100	104.6	7 172.94	104	7 089.06	90
		200	205.0 15 261.14	205 14 781.23	300
	Total		867.6 63 270.75	867 61 907.68

Table 7 :

 7 Economic impact of delivery optionsTotal number of routes and total cost of the solutions of each VRPDO instance group, and over all the VRPDO instances, with and without delivery options

	Type nbCustomers	1 option (home)	With options	Gap (%)
		50	54	5 504.07	54	3 864.48	29.8
	U	100	105	8 662.22	105	6 502.99	24.9
		200	205	16 223.30	205 13 641.13	15.9
		50	20	5 253.71	20	2 293.53	56.3
	UBC	100	40	7 052.06	40	3 608.39	48.8
		200	80	10 681.93	80	6 384.29	40.2
		50	54	5 192.10	54	3 742.59	27.9
	V	100	104	9 877.77	104	7 089.06	28.2
		200	205	18 945.38	205 14 781.23	22.0
	Total		867	87 392.53	867 61 907.68	29.2

Table 8 :

 8 Impact of the required service levelTotal number of routes and total cost, over all VRPDO instances, based on the required service level

	min percentage of options of level 1 (β 1)
	70	80	90

Table 9 :

 9 Comparison with the results of[START_REF] Ozbaygin | A branch-and-price algorithm for the vehicle routing problem with roaming delivery locations[END_REF] on the VRPRDL instances of[START_REF] Reyes | Vehicle routing with roaming delivery locations[END_REF]

	5 841	5 841	19.8 5 869.8	19	5 985	60

B Detailed results on the VRPDO instances

				Average of 5	Best of 5
	Instance	Customers Time (s)	Routes	Cost.0	Routes	Cost.0
	U_50_1 U_50_2 U_50_3 U_50_4 U_50_5 U_50_6 U_50_7 U_50_8 U_50_9 U_50_10	50 50 50 50 50 50 50 50 50 50	30 30 30 30 30 30 30 30 30 30	6 6 5 5 6 5 5 5 5 6	434.773 424.665 329.138 448.321 354.322 403.979 336.428 387.648 360.930 433.679	6 6 6 5 6 5 5 5 5 6	433.081 423.228 329.138 427.183 353.179 399.620 332.481 384.635 359.888 422.048
	Total			54	3 913.883	54	3 864.481
	U_100_1 U_100_2 U_100_3 U_100_4 U_100_5 U_100_6 U_100_7 U_100_8 U_100_9 U_100_10	100 100 100 100 100 100 100 100 100 100	90 90 90 90 90 90 90 90 90 90	11 10 11 10 10 10 11 11 10 11	484.226 687.754 634.604 610.063 678.523 597.610 761.344 856.017 690.985 576.614	11 10 11 10 10 10 11 11 10 11	479.972 683.365 630.215 592.860 673.844 586.810 746.400 847.533 687.659 574.328
	Total			105	6 577.739	105	6 502.986
	U_200_1 U_200_2 U_200_3 U_200_4 U_200_5 U_200_6 U_200_7 U_200_8 U_200_9 U_200_10	200 200 200 200 200 200 200 200 200 200	300 300 300 300 300 300 300 300 300 300	21 21 20 21 21 20 21 20 20 20	1 706.754 1 326.250 1 603.076 968.057 1 164.854 1 310.448 1 166.970 1 345.542 1 623.972 1 866.434	21 21 20 21 21 20 21 20 20 20	1 687.420 1 287.250 1 565.130 943.988 1 112.500 1 261.360 1 108.010 1 259.660 1 575.460 1 840.350
	Total			205 14 082.357	205 13 641.128

Table 13 :

 13 Detailed results on the U instances of the VRPDO

Acknowledgements

This work has been supported by ANR-DFG under the OPUSS (Optimization of Urban Synchromodal Systems -OPUSS; ANR-17-CE22-0015) project.

We authors thank Stefan Irnich, Katharina Olkis and Christian Tilk from Johannes Gutenberg University Mainz for the generation of the VRPDO instances.

A Detailed results on the VRPRDL and VRPHRDL instances