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Abstract
To reduce delivery failures in last mile delivery, several types of delivery options have

been proposed in the past twenty years. Still, customer satisfaction is a challenge because a
single location is chosen independently of the time at which customers will be delivered. In
addition, delivery in shared locations such as lockers and shops also experience failure due to
capacity or opening-time issues at the moment of delivery. To address this issue and foster
consolidation in shared delivery points, we investigate the case where a customer can specify
several delivery options together with preference levels and time windows. We define, in this
article, the Vehicle Routing Problem with Delivery Options, which integrates several types
of delivery locations. It consists of designing a set of routes for a fleet of vehicles that deliver
to each customer at one of his/her options during the corresponding time window. These
routes should respect capacities at shared locations such as lockers and minimum service
level requirements, while minimizing the total routing costs. To solve this problem, we
have designed a large neighborhood search in which a set partitioning problem is solved to
regularly reassemble routes. Specific ruin and recreate operators are proposed and combined
with numerous operators from the literature. A thorough experimental study was carried
out to determine a subset of efficient and complementary operators. The proposed method
outperforms existing algorithms from the literature on particular cases of the problem under
consideration, such as the vehicle routing problem with roaming delivery locations and the
vehicle routing problem with home and roaming delivery locations. New instances are
generated and used both to serve as a benchmark and to propose some managerial insight
into the vehicle routing problem with alternative delivery options.

Keywords: city logistics, vehicle routing, matheuristic, large neighborhood search

1 Introduction
The revenue of online stores in France was 92.6 billion euros in 2018, after an average growth
of 13% per year during the last four years [Moyou, 2019]. With this growth of e-commerce, an
increasing number of parcels have to be delivered each day. Consequently, several possibilities
have been developed so that distribution can be faster and cheaper. According to Morganti
et al. [2014], in 2012, 90% of the French and German population were within 10 minutes of a
locker or a pick-up point (often shops or post offices), and the number of such locations grew by
33% between 2008 and 2012. Furthermore, trunk deliveries were recently tested on an industrial
scale [McFarland, 2018].

The customer is generally required to choose one delivery location. Nevertheless, people
move around during the day, for example, to go to work or take children to school. Consequently,

1



it is very likely that a purchaser would like to choose between several delivery options depending
on the time of delivery. For attended delivery, the fact that people move around is a problem,
because of “no show”. According to Allen et al. [2016], in the UK, 14% of all deliveries fail. In
2014, in the UK, the cost of these failed deliveries has been estimated at £771 million.

The objective of carriers is to deliver all their parcels at a minimum cost. They also want to
maintain a good quality of service, but the time window width has a great impact on delivery
costs. Nevertheless, they are essential because 80% of the parcels delivered in the UK do not fit
into the letterbox [Allen et al., 2016] and nobody likes to wait all afternoon at home for a parcel
[Agatz et al., 2008]. Accordingly, new strategies are being developed to increase the number of
successful deliveries [Florio et al., 2018].

This paper discusses the Vehicle Routing Problem with Delivery Options (VRPDO). It is an
extension of both the Vehicle Routing Problem with Time Windows (VRPTW) [Savelsbergh,
1985] and the Generalized Vehicle Routing Problem (GVRP) [Ghiani and Improta, 2000]. In
the VRPDO, each customer can choose to have a package delivered through several delivery
options. For example, customers can receive their parcel at the office during work hours, at
home in the evening or in a locker at any time.

From the standpoint of the carrier, these delivery options can be of two natures. They can
take place in individual delivery locations, like a home or a car trunk. This means that only one
customer can be served in that location. Otherwise, deliveries can take place in shared delivery
locations, like lockers or pick-up points. This means that several parcels can be left at the same
location. Some delivery locations can be limited in capacity.

The contribution of this paper is two-fold. First, from the managerial point of view, we
propose a new variant of the VRP, the VRPDO. It combines delivery options to reduce delivery
costs while guaranteeing a higher quality of service. From the methodological point of view, we
propose a Large Neighborhood Search (LNS) metaheuristics that embeds many recent and new
ideas. In particular, this LNS includes many operators from the literature and compares them
rigorously.

The paper is structured as follows: In Section 2, the VRPDO is described and a mathematical
model is proposed. Section 3 exposes the literature on related problems. Section 4 details the
LNS developed to solve the VRPDO. In addition, our methodology to configure the algorithm
is explained. Finally, Section 5 develops experiments, first to validate the method and second
to draw managerial insights from randomly generated instances of the VRPDO.

2 The Vehicle Routing Problem with Delivery Options
In this section, the Vehicle Routing Problem with Delivery Options (VRPDO) is laid out. All
the components of the problem are explained in Section 2.1. A mathematical model is described
in Section 2.2.

2.1 Problem settings

The VRPDO is an operational optimization problem defined on a short time horizon, typically
one day. In this problem, each customer can choose several delivery options. In the following,
for the sake of conciseness, we will refer to them only as options.

Let us define an option as a tuple composed of a location, a preference level and a service
duration, as follows:

• A location has a geographical address and a time window during which the service can
be performed. For each location, a fixed preparation time represents the time needed
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to park a vehicle and access the delivery point. We consider two types of locations:
individual delivery locations and shared delivery locations. An individual delivery location
is typically a personal address. Only one option can be associated with this location. It
generally has a tight time window. A shared delivery location (SDL) is typically a pickup
point or a locker. Several options can be associated with this location. A shared delivery
location generally has a wide time window. It can be given a capacity, which is defined as
the maximum number of packages which can be delivered to this location during the time
horizon. For the sake of conciseness, shared delivery locations and individual delivery
locations may be called “shared locations” and “individual locations”, respectively.

• The preference level of an option is an integer in {1, ..., P}, with 1 being the value asso-
ciated with the most preferred options by a customer and P , the least preferred.

• The service duration of an option represents the time needed to deliver the customer’s
package after accessing the location.

An option is associated with a unique customer.
The quality of service is measured by P numbers, P being the number of preference levels.

For each level p ∈ {1, ..., P − 1}, the service level SLp of a solution is defined as the percentage
of customers served with an option of maximum level of p. A minimal service level βp has to
be achieved for each level p ∈ {1, ..., P − 1}.

Let us consider a homogeneous fleet of vehicles starting from a given depot and returning to
this depot within the time period. Travel time and routing cost between each pair of locations
is assumed to be known.

The VRPDO consists in designing a route for each vehicle, serving each customer with one of
his/her options, and satisfying the shared delivery locations’ capacities and the minimal service
level constraints, such that the number of vehicles and the sum of routing cost are minimized
in lexicographical order.

Note that each customer’s order has to be delivered by a single truck (i.e. split deliveries
are not allowed).

To illustrate this definition, Figure 1 shows the options from the customer perspective.
Figure 1 shows the example of one customer with 3 delivery options. Delivery at home between
7pm and 9pm is the preferred option, then delivery at a shop between 8am and 11am, then a
delivery in the trunk of his/her car between 9am and 6pm.

When a customer orders a parcel, he/she can choose multiple options, sorted by preference
level. If the option takes place at an individual location, he/she must specify the time window.
If it takes place in a shared location he/she will be able to pick up the package at any time while
the location is opened. The time window for the carrier will already have been negotiated, for
example shops do not want to receive parcels during their rush hours.

Figure 2 presents the options from the carrier perspective. Each customer is represented by a
color/number. The individual locations are the same color (with the number) as the associated
customer. The carrier has to serve all customers via exactly one option. This amounts selecting
one option inside each group.

Like in the Generalized Vehicle Routing Problem (GVRP) [Ghiani and Improta, 2000], the
set of options is composed of subsets, for each customer. Vehicles must visit exactly one option
in each subset. In the GVRP, subsets of options form a partition of the set of locations. In the
VRPDO, the subsets of options form a cover of the set of locations. This is because options
associated with distinct customers can take place at the same shared location. An instance of
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Figure 1: Example of a customer in the VRPDO

the Generalized Vehicle Routing Problem with Time Windows (GVRPTW) [Moccia et al., 2012]
is an instance of the VRPDO without shared locations and a single preference level. Hence, the
VRPDO can be seen as a generalization of the GVRPTW.
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Figure 2: An instance of the VRPDO from the carrier perspective

Figure 3 represents a solution to the VRPDO instance introduced in Figure 2. Figure 4
represents a solution to the VRPTW for the same instance, using home delivery only. For the
sake of conciseness, only one route has been drawn. An option that takes place in an individual
location is depicted by a circle including the customer’s identity and the location. A shared
location is depicted by a rectangle including the location and the identity of the customers
served.

The time spent by a vehicle at a location is equal to the preparation time of the location
plus the service duration of the visited options. The preparation time of a location corresponds
to the time to find a parking place. Hence, it is counted only once, regardless of the number
of parcels delivered. The service duration of an option corresponds to the time to deliver the
parcel or to put it in a box.

Customer 2 has a remote home address. Thus delivering to this customer in an alternative
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delivery location avoids a big detour. The parcels for customers 1 and 3 are delivered in a
shared location. The time spent at this location is equal to the preparation time of the location
plus the service duration of the two options.
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Figure 3: Example of a route in the VRPDO
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Figure 4: Example of a route in the VRPTW

We assume that a parcel always occupies one box in a locker, no matter its size. Indeed,
a locker is a rack of automatic boxes so there is at most one parcel per box, as long as it
fits. Hence, the capacity of the shared locations is expressed as a number of parcels. Due to
uncertainty on when customers will pick up their parcels, we suppose that each box can be used
only once per day. On the contrary, it is realistic to consider that some shared locations (e.g.
post offices) have unbinding capacity.

The assignment of parcels to boxes is not taken into account in the VRPDO, but it would
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be possible to consider different sizes of boxes by duplicating options.
Figure 5 illustrates the capacity constraints induced by shared locations for the example

described in Figure 3. Not all shared locations must be visited. On the contrary, they can be
visited by different vehicles as long as the number of parcels is not too large.

I 🔒

Ⅱ 🔒

Ⅱ🏤

1 📦 3 📦

6 📦 5 📦

...

Figure 5: Shared delivery locations’ capacity

Considering the quality of the service, Figure 6 represents an example with a service level
constraint requiring that at least 50% of the customers are served with their preferred options
(β1) and that at least 75% of the customers are served with options of level 1 or 2 (β2). Since
50% of the customers are served via their preferred option (SL1) and 83% of the customers are
served by an option of level 1 or 2 (SL2), the service level constraints are satisfied.

SL1 : 50% > β1

SL2 : 83% > β2

4😊 6😊 5😊 2😐 1😐 3😞
Level 1 Level 2 Level 3

β1 = 50% β2 = 75%

Figure 6: Service level measured with respect to a set of selected options

The last two groups of constraints, namely shared delivery location capacity and service
level constraints, can be seen as capacity constraints involving all the vehicles. They fall under
the category of “synchronized resources” defined by Drexl [2012] as: “At any point in time, the
total utilization or consumption of a specified resource by all vehicles must be less than or equal
to a specified limit”.

2.2 Mathematical model

Let N be the set of customers and O the set of options. The options of customer c ∈ N are
denoted by Oc ⊂ O. Since an option belongs to a single customer, we have

⊎
c∈N

Oc = O. Let

L denote the set of locations and Ol ⊂ O be the subset of options that take place at location
l ∈ L.

We model the VRPDO on an option-based complete graph G = (V,A). The set of vertices,
denoted V = O ∪ {0, 0′}, contains one vertex for each option plus the starting depot 0 and the
ending depot 0′. The routes are defined on the option-based graph G. A route is a sequence of
options belonging to distinct customers. Consequently, when multiple deliveries are made in a
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shared location, it is represented by several vertices of V . Figure 7 is the representation of the
route from of Figure 3.

1 I🔒 3 I🔒 2🏢 5 Ⅱ🔒 6 Ⅱ🔒 4🏡⛟ ⛟

Figure 7: Representation of the route from Figure 3 on Graph G

The travel time on arc (i, j) ∈ A is denoted ti,j . It includes the preparation time at the
location of option j if the two locations are distinct. The cost of traveling on arc (i, j) is denoted
by ci,j . The service duration si at vertex i ∈ V represents the time necessary to visit the option
associated with this vertex. It is assumed to be null at depot vertices 0 and 0′. Each option
i ∈ O is associated with the time window [ai, bi] of its location. We assume that a0 = a0′ = 0
and that b0 and b0′ correspond to the end of the working day.

Let P be the number of preference levels. For a preference level p ∈ {1, ..., P}, βp is the
minimal percentage of customers that can be served via an option of level p or lower. By
definition βP = 100% and ∀p ∈ {1, ..., P − 1} : βp 6 βp+1.

Let Cl be the capacity of location l ∈ L, expressed as a number of parcels. For each option
o ∈ O, we define its preference level po, and its demand qo which is equal to the demand of its
associated customer. We assume a homogeneous fleet of K vehicles with capacity Q.

Model 1 describes the VRPDO for a fleet of K vehicles. xki,j is a binary variable that
indicates whether the kth vehicle uses arc (i, j) ∈ A. yo is a binary variable that states whether
option o ∈ O is visited. hki is the service date of vehicle k at vertex i ∈ V .

The objective function (1.1) minimizes the transportation costs. Constraint (1.2) states
that exactly one option must be chosen for each customer. Constraint (1.3) represent vehicle
capacity. Constraint (1.4) models the capacity of the shared locations. Constraint (1.5) model
the general satisfaction level. Constraint (1.6) states that each selected option should be visited
by one route. The remaining constraints are the classical VRPTW constraints [Cordeau et al.,
2002] : (1.7) and (1.8) ensure that the routes start and end at the depot, (1.9) ensures the
continuity of the routes, (1.10) computes the service time and (1.11) ensures the respect of the
time windows.
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Model 1: option-based graph model

min
∑

k∈{1,...,K}

∑
(i,j)∈A

ci,jx
k
i,j (1.1)

s.c
∑
o∈Oc

yo = 1 ∀c ∈ N (1.2)

∑
o∈O

∑
(i,o)∈A

xki,oqo 6 Q ∀k ∈ {1, ...,K} (1.3)

∑
o∈Ol

yo 6 Cl ∀l ∈ L (1.4)

∑
o∈O|po6p

yo > βp × |N | ∀p ∈ {1, ..., P} (1.5)

∑
(i,o)∈A

∑
k∈{1,...,K}

xki,o > yo ∀o ∈ O (1.6)

∑
j∈V

xk0,j = 1 ∀k ∈ {1, ...,K} (1.7)

∑
i∈V

xki,0′ = 1 ∀k ∈ {1, ...,K} (1.8)∑
(i,j)∈A

xki,j −
∑

(j,i)∈A

xkj,i = 0 ∀k ∈ {1, ...,K}; ∀j ∈ O (1.9)

xki,j(h
k
i − hkj + ti,j + si) 6 0 ∀k ∈ {1, ...,K}; ∀(i, j) ∈ A (1.10)

ai 6 hki 6 bi ∀k ∈ {1, ...,K}; ∀i ∈ V (1.11)
xki,j ∈ {0, 1} ∀k ∈ {1, ...,K}; ∀(i, j) ∈ A

yo ∈ {0, 1} ∀o ∈ O

hki > 0 ∀k ∈ {1, ...,K}; ∀i ∈ V

3 Relevant literature
The VRPDO is a VRPTW with multiple delivery options and synchronized resources. This
section is organized according to these three aspects: VRPTW, delivery options and resource
synchronization. In addition, some closely related problems are laid out.

3.1 VRPTW

Since the introduction of the VRPTW by Savelsbergh [1985], a plethora of papers have been
published on this subject. We refer to Bräysy and Gendreau [2005a,b] for a review of the ap-
plicable literature and to Vidal et al. [2013] for the latest advances. Many LNS heuristics have
been used to solve problems related to the VRPTW. They will be briefly discussed in Section
4.

3.2 Delivery options

In the VRPDO, customer requests can be satisfied at various locations. This characteristic is
shared by the Generalized Vehicle Routing Problem with Time Windows (GVRPTW) [Moccia
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et al., 2012]. The GVRPTW is a specific case of the VRPDO without shared locations and
with a single preference level. The literature on the GVRPTW is very scarce. We refer to Afsar
et al. [2014] for details on the GVRP, and to Moccia et al. [2012] for details of the GVRPTW.
Yuan et al. [2018] develop a B&C for the GTSPTW (a single vehicle GVRPTW) that can solve
instances with 30 clusters. Moccia et al. [2012] propose a tabu search that is able to tackle
instances with 120 clusters within few minutes.

The VRP with multiple time windows (VRPMTW) [Favaretto et al., 2007] can be seen as
a special case of the VRPDO and of the GVRPTW, where all options of a customer take place
at the same location and their time windows are disjointed. For more detail we refer to Tricoire
et al. [2010], Belhaiza et al. [2014] and Hoogeboom and Dullaert [2019].

In addition to the GVRP, some classes of vehicle routing problems include choices in the
locations to visit. The goal of these problems is to select locations to visit and find routes
between these locations, such that requirements are met at minimum cost or such that profit is
maximized. This category of problem includes the Team Orienteering Problem (TOP), the VRP
with profit [Archetti et al., 2014, Vansteenwegen et al., 2011], the Traveling Purchaser Problem
(TPP) [Bernardino and Paias, 2018], and the Covering Tour Problem (CTP) [Kammoun et al.,
2017].

Among the heuristics that have been proposed to solve VRP with choices in locations or
time windows, most of the authors include a perturbation component in their method. For
variants of the TOP, Souffriau et al. [2013] combine GRASP with ILS and Tricoire et al. [2010]
use VNS. For variants of the CTP, Allahyari et al. [2015] combine GRASP with ILS, Takada
et al. [2015] use ILS, Vargas et al. [2015] work with ALNS and Kammoun et al. [2017] propose
a VNS.

Besides, some papers propose using dynamic programming. In the context of a multi-period
TOP with multiple time windows, Tricoire et al. [2010] use dynamic programming to choose
which time window should be used in a given route. Moccia et al. [2012] handle the GVRPTW,
when a customer is inserted in a route, the options for the other customers of this route can
be changed through dynamic programming. Vargas et al. [2015] solve the CTP with an ALNS
algorithm that uses dynamic programming to decompose a giant tour into routes.

3.3 Resource synchronization

Drexl [2012] underlined that Hempsch and Irnich [2008] was almost the only paper considering
synchronized resources. Few other heuristics have been proposed since then. In Hempsch and
Irnich [2008], Grangier et al. [2017b], Froger et al. [2017], the resources are only temporarily
used during a limited period of time, before becoming available again. For example, in Grangier
et al. [2017b], a truck uses a dock at a satellite facility only during the loading and unloading
operations.

In the VRPDO, the synchronized resources are permanently used during the whole time
horizon. Thus, it is only necessary to count the number of parcels in each locker and the
number of visited options of each preference level to check the satisfaction of the synchronized
resource constraints.

Souffriau et al. [2013] defines a variant of the TOP applied to tour planning for tourists. It
is called the Multiconstraint Team Orienteering Problem with Multiple Time Windows (MC-
TOP-MTW). The routes represent the different days of the trip. The synchronized resource
constraints represent the budget and the maximal number of monuments of each type that can
be visited. They consider these resources in a local search with a label on the locations. These
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labels are updated at each modification of the schedule. To get good solutions even with these
resources, their algorithm relies on perturbations through a combination of GRASP with ILS.
Besides, local search moves are chosen with a score. It is a function of the increase in the
objective function, time shift, and resource consumption.

3.4 Closely related problems

Now that the three components of the VRPDO have been described, let us focus on very close
problems.

Reyes et al. [2017] define the VRP with Roaming Delivery Locations (VRPRDL). This
problem involves delivering parcels into the trunks of cars, which move according to known
schedules. In the VRPRDL, there are no synchronized resources, the time windows of a customer
are disjointed and cars do not move faster than the delivery truck. This problem is solved with
an LNS heuristic. Classical operators are adapted and dynamic programming is used to re-
optimize routes by selecting better options without changing the customer sequence in the
route. The combination with home delivery is considered in a variant called VRP with Home
and Roaming Delivery Locations (VRPHRDL). It is defined by Ozbaygin et al. [2017] and solved
to optimality by a Branch-and-Price (B&P) algorithm for instances with up to 60 customers.

Sitek and Wikarek [2017] define the Capacitated VRP with Pick-up and Alternative Delivery
(CVRPPAD). This paper considers multiple options for each parcel to be delivered. Lockers
and post offices are modeled with limited capacities. Customer preferences are modeled with
a penalty on the objective function if a non-desired option is used. No time windows are
considered. Their method relies on a pre-processing phase done by constraint programming. A
heuristic then groups parcels together before assigning them to a route.

Zhou et al. [2018] define the Multi-Depot Two-Echelon Vehicle Routing Problem with Deliv-
ery Options (MD-2EVRP-DO). In this paper, a parcel can either be delivered to the customer’s
home or to a selected pick-up facility. Shared locations are incapacitated and customer prefer-
ences are modeled through penalties in the objective function. Time windows are not considered.
This problem is solved with a multi-population genetic algorithm that embeds an ad-hoc local
search.

The most closely related study seems to be the one by Yuan et al. [2019], on the GVRPTW.
Their metaheuristic method is based on a Set Partitioning formulation of the problem, coupled
with an LNS heuristic and a local search that works with dual information.

4 Solution method
The Large Neighborhood Search (LNS) metaheuristic was first proposed by Shaw [1998] in a
constraint programming context. In LNS, the current solution is iteratively improved by ruining
it (i.e. removing a part of it) and recreating it (i.e reinserting the removed parts). This process
is repeated until a stopping criterion (usually a time limit). The potential of LNS for solving
a large variety of vehicle routing problems was revealed by Ropke and Pisinger who proposed
an adaptive version of LNS, known as ALNS, consisting of multiple search operators adaptively
selected according to their past performance [Ropke and Pisinger, 2006a,b, Pisinger and Ropke,
2007]. LNS has been successfully applied to many variants of vehicle routing problems [Pisinger
and Ropke, 2019] and the literature is abundant. Recently, Turkeš et al. [2019] compiled many
papers using an LNS heuristic in a meta-analysis that concludes that the adaptive component
proposed by Ropke and Pisinger [2006a] has, at best, a small impact.
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We have selected a few papers of major importance with respect to the VRPDO: Shaw [1998]
(VRP, VRPTW), Ropke and Pisinger [2006a,b], Pisinger and Ropke [2007] (diverse VRPTW),
Nagata and Bräysy [2009] (VRPTW), Prescott-Gagnon et al. [2009] (VRPTW), Demir et al.
[2012] (VRPTW and variants) and Christiaens and Vanden Berghe [2020] (CVRP and variants).
Almost all operators from these papers were implemented, so that we have a representative panel
of the LNS operators. In addition, ad-hoc operators for the VRPDO were developed in order to
integrate synchronized resources and shared locations. The 20 ruin operators implemented are
presented in Section 4.2 and the 15 recreate operators implemented are presented in Section 4.3.
Numerous tests were performed, using a rigorous methodology, to restrict the operators used
in our LNS implementation. The experimental procedure to selected operators is presented in
Section 4.4. For the sake of readability, in Sections 4.2 and 4.3, the operators that were selected
are listed with an [S] and the ones that were discarded are listed with a [D], with respect to the
results explained in Section 4.4. Note that discarded operators may be as efficient as selected
ones, but redundant in our configuration. For the sake of traceability, the original names have
been used whenever possible.

Sections 4.5 and 4.6 present the acceptance criterion and the set partitioning problem,
respectively. The final tuning of the presented algorithm is detailed in Section 4.7.

4.1 Large Neighborhood Search heuristic

Algorithm 1 presents the main steps of the proposed heuristic. It is an LNS metaheuristic with
a Set Partitioning component, which we therefore call LNS-SPP. The main loop of the iterative
process is from lines (3) to (18). On line (5), a ruin operator σ− is randomly selected in Σ−.
Each operator has a given constant probability of being selected. The same process is used at
line (6) to select a recreate operator σ+ in Σ+. At line (7), the size Φ of the destruction is
randomly chosen in a given interval [δ,∆]. The destruction size is the percentage of customers
to be removed from the current solution.

The selected operators are applied to the current solution s′ at line (8). First, Φ% of the
customers are removed from the solution with the chosen ruin operator σ−. These customers are
placed in the so-called request bank. Second, the customers from the request bank are inserted in
the solution by the recreate operator σ+. At line (9), the routes of the newly generated solution
are stored into a set of routes: the pool of routes R. On line (10), an acceptance criterion is used
to decide whether the new solution becomes the current solution for the next LNS iteration.
The routes of pool R are recombined every η iterations by solving a Set Partitioning Problem
(SPP) on line (14). After this combination, the pool of routes R is emptied, on line (15).

The VRPDO has two lexicographic objectives: (1) to minimize the number of vehicles, and
(2) to minimize the routing cost (described by the objective function 1.1). Similarly to Ropke
and Pisinger [2006b], Algorithm 1 is run twice, with half of the time budget for each part. Dur-
ing the first phase, the number of vehicles is decreased by removing the smallest route from the
solution each time a feasible solution is found (the customers are placed in the request bank).
During the second phase, the cost of the solution is minimized, using the minimum number of
vehicles found in a feasible solution obtained during the first phase. The configuration of our
algorithm does not change between the two phases.
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Algorithm 1: LNS-SPP
Parameters: a set Σ+ of recreate operators, a set Σ− of ruin operators, a frequency η
Input: an initial solution s

1: pool of routes R = ∅
2: nbIt = 1
3: while the time budget is not reached do
4: s′ ← s
5: randomly select a ruin operator σ− ∈ Σ−

6: randomly select a recreate operator σ+ ∈ Σ+

7: randomly select a destruction size Φ ∈ [δ,∆]
8: s′ ← σ+(σ−(s′,Φ))
9: store the routes of s′ into pool R

10: if s′ meets the acceptance criterion then
11: s← s′

12: end if
13: if nbIt%η = 0 then
14: s = best combination of the routes of R found with a Set Partitioning Problem
15: R = ∅
16: end if
17: nbIt = nbIt+ 1
18: end while
19: return the best feasible solution found

4.2 Ruin operators

Ruin operators use different rules to remove customers from the solutions. Upon removal,
customers are placed in the request bank of the solution.

We divide ruin operators from the literature into two categories, denoted local ruin operators
and large ruin operators. A local ruin operator deletes customers so that even if few customers
are deleted, it is likely that it is possible to improve the solution. On the contrary, a large ruin
operator requires that more customers be deleted. Indeed, with a large ruin operator, if too few
customers are removed, it is likely that they will be re-inserted in the same position.

4.2.1 Local ruin operators

The local ruin operators implemented from the literature are:

[S] Distance-related removal [Ropke and Pisinger, 2006a] : removes customers that are close
to each other with respect to the Euclidean distance.

[D] Node neighborhood removal [Demir et al., 2012]: removes customers that are close to each
other with respect to the infinity norm.

[D] Proximity removal [Prescott-Gagnon et al., 2009]: removes customers that are close both
from a spatial and a temporal point of view, according to a parameterless formula. This
is an extension of Shaw removal [Shaw, 1998].
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[S] (Split) String removal [Christiaens and Vanden Berghe, 2020]: removes sequences of cus-
tomers in the routes of the current solution, either conserving, or not, a sub-string in the
middle.

4.2.2 Large ruin operators

The large ruin operators implemented from the literature are:

[S] Random removal [Ropke and Pisinger, 2006a]: randomly removes customers.

[D] Demand-related removal [Demir et al., 2012]: removes customers that have demands of
similar size.

[S] Time-related removal [Pisinger and Ropke, 2007]: removes customers that are served at
approximately the same time.

[S] Zone removal [Demir et al., 2012]: randomly removes customers into predefined fixed
rectangular zones.

[S] Cluster removal [Pisinger and Ropke, 2007]: removes customers that are served by the
same route in the current solution. A route is randomly selected and the Kruskal’s algo-
rithm is run on the arcs of this route until two clusters remain. All the customers in one
of them, randomly chosen, are removed.

[S] Route removal [Nagata and Bräysy, 2009]: removes all the customers of a route.

[D] Distance worst removal [Ropke and Pisinger, 2006b]: iteratively removes the customer
with the highest individual service cost. The individual service cost of a customer is the
cost of the arcs that enter and exit the location where the given customer is served in the
current solution, minus the cost of going directly from the previous location on the route
to the next one. If it is a shared location, this cost is divided by the number of customers
served at this location on the same route.

[D] Time worst removal [Demir et al., 2012]: removes the customers that cause the largest
time loss.

[D] Neighborhood removal [Demir et al., 2012]: first, the cost of each route divided by the
number of customers served by this route is computed. The customers are then removed
sequentially by decreasing order of the difference between their individual service cost and
the average service cost of their route.

[D] Node-pair history removal [Pisinger and Ropke, 2007]: memorizes the cost of the best
solution that uses each arc. The operator removes the nodes that are reached via arcs
with the largest score.

[S] Historical knowledge node removal [Demir et al., 2012]: this history removal memorizes
the lowest individual service cost of each customer. The operator removes the customers
with the largest difference between their current individual service cost and their lowest
individual service cost. It can be see as a history-biased worst removal.

Ruin operator for the VRPTW can be adapted to the VRPDO in two ways: option-based
or customer-based. Hence, the ruin operators that we are using for the VRPDO can be split
between these two categories. An option-based operator only takes in account the options that
are currently visited to serve the customers. A customer-based operator takes all the options
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into account. Let us describe an example with distance-related removal. The distance between
two customers in distance option-based related removal is the distance between the options that
are currently visited to serve these customers. On the contrary, in distance customer-based re-
lated removal, it is the minimal distance between any two options of these customers. That is to
say, the option-based version will remove customers that are currently served in close locations
and the customer-based one will delete customers that are potentially served in close locations.

4.2.3 VRPDO specific ruin operators

The new ruin operators specifically developed for the VRPDO are:

[D] Preference-oriented random removal: randomly selects customers and deletes them with a
probability based on the preference level of the options currently visited to serve them. The
probability of deleting a selected customer, currently served with option o, is (1/P+1−po)3.
When there are three preference levels, the probability of deleting a customer served with
an option of level 3, 2 and 1 is 1.0, 0.125 and 0.04, respectively.

[S] SDL-oriented random removal (Shared Delivery Location-oriented random removal): ran-
domly selects customers in the solution. If the selected customer is served in an individual
location, the probability of being deleted is only 10%. Otherwise, if customers are served
in a shared location, they are always deleted.

[D] Random SDL removal: randomly selects a shared delivery location and removes all the
customers served at this location.

[D] SDL-related removal: selects a shared delivery location and randomly deletes customers
that have an option at this location.

[D] SDL-worst removal: a distance worst removal where the detour cost is fully assigned to
all the customers served at the shared delivery locations. The detour cost is not divided
by the number of customers served at this location.

All these ad-hoc ruin operators are large ruin operators. With the exception of the SDL related
removal, they are all option-based.

4.3 Recreate operators

Most recreate operators follow the best insertion principle: any given customer is inserted
at the position that minimizes the routing cost increase. To compute the best insertion of
customer c in route r, we try to insert all customer options in all positions of route r. Only
feasible insertions are performed by the algorithm. Hence, a solution always satisfies the vehicle
capacity constraints, time windows, shared location capacities, and service level constraints.
The only form of infeasibility considered in LNS-SPP is the fact that not all the customers are
served, i.e the request bank can be non-empty.

The forward time slacks [Savelsbergh, 1992] of all routes are stored in order to evaluate
insertions in constant time with respect to time windows. The usage of each shared location
and of each preference level is stored. Hence, testing the validity of insertions with respect to
synchronized resources is done in constant time. When an insertion is performed, the forward
time slacks of the corresponding route are updated in linear time with respect to the length of
the route. The update of capacity usage is done in constant time.
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4.3.1 Recreate operators from the literature

We divide the recreate operators from the literature into two categories: list heuristics and
others. Most of the operators proposed in the literature may evaluate the insertion of a given
customer into a given route multiple times. Typically, the insertion of each customer in each
route is evaluated once at the beginning. After each modification, the insertion of the remain-
ing customers in the modified route is then re-evaluated. In a list heuristic, the insertion of a
customer into a route is evaluated at most once. Typically, the customers in the request bank
are sorted once and inserted in this order. Consequently, list heuristics are very fast recreate
operators.

The list heuristics implemented from the literature are:

[S] Random order best insertions [Christiaens and Vanden Berghe, 2020]: sequentially inserts
the customers in the request bank at their best insertion position in a random order.

[D] Oldest first best insertions [Christiaens and Vanden Berghe, 2020]: sequentially inserts
the customers in the request bank at their best insertion position in non-increasing order
of the number of iterations since the last time a given customer was served.

[S] Largest first best insertions [Christiaens and Vanden Berghe, 2020]: sequentially inserts
the customers in the request bank at their best insertion position in non-increasing order
of their demand.

[D] Farthest first best insertions [Christiaens and Vanden Berghe, 2020]: sequentially inserts
the customers in the request bank at their best insertion position in non-increasing order
of their distance to the depot.

[D] Closest first best insertions [Christiaens and Vanden Berghe, 2020]: sequentially inserts
the customers in the request bank at their best insertion position in increasing order of
their distance to the depot.

The other operators implemented from the literature are:

[D] Best temporal insertions [Demir et al., 2012]: inserts the customers so that the loss of
time is minimal. The loss of time is defined as the waiting time at the inserted option
plus the waiting time at the next option on the route. Customers can be processed either
in random order or by decreasing order of demand, respectively.

[D] Greedy best insertion [Ropke and Pisinger, 2006b]: iteratively computes the cheapest
insertion for each customer and inserts the customers that have the lowest insertion cost.

[S] k-regret [Ropke and Pisinger, 2006b]: iteratively computes the best insertion cost on each
route for each customer and inserts the one that has the largest difference between its
best insertion cost and next (k − 1) route’s best insertion costs.

[S] Ejection search [Nagata and Bräysy, 2009]: first, all the customers in the request bank
are placed in a FIFO structure. The customers from this structure are inserted into
the solution by allowing some customers from the solution to be removed and put in the
queue. As in Curtois et al. [2018] the procedure is heuristically sped up. First, to insert one
customer, at most two customers can be removed from the solution. Second, insertions
are tested with an increasing number of removed customers. If a feasible insertion is
found, insertions with more removals will not be tested. Third, when customers must
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be removed to insert the customer in question, the insertion that removes the customers
with the smallest score is chosen. The score of a customer is the number of times where
no feasible insertion was found for this customer during all the calls to ejection search.
Finally, the number of iterations of ejection search, at each call, is limited to five times
the initial size of the request bank.

4.3.2 VRPDO specific recreate operators

The operators specifically developed for the VRPDO are:

[S] Preferred best insertion: this operator considers the preferred insertion. The preferred in-
sertion of a customer is the cheapest feasible insertion at the best available preference level.
The customer with the cheapest preferred insertion is inserted first with this insertion.

[D] Preference regret: the best insertion is computed for each customer and for each preference
level. Let Ci

p be the cost of the best insertion of a customer i with an option of level p or

lower. The preference regret score of customer i is
P−1∑
p=1

(Ci
P − Ci

p). Customers are always

inserted at their cheapest position and the customer with the largest regret is inserted
first.

[D] Normalized best insertion: the equalized insertion cost is the real cost of insertion, divided
by the capacity of the location. Normalized best insertion is a greedy best insertion that
uses an equalized insertion cost to select the insertion possibility for each customer and
select the first customer to insert.

[S] SDL-regret (Shared Delivery Location regret): customers are inserted at their cheapest
insertion by decreasing order of their regret. In this version, the regret of a customer is
the difference between the insertion cost when all options are allowed or the cost when
only individual locations are authorized. For example, let us consider the partial solution
represented in Figure 8 (same instance as in Figure 3). Customers 5 and 6 are not served.
Both can be served through locker II, where customer 4 is currently being served. But
this locker only has a capacity of two, as in Figure 5. For both customers 5 and 6, the
cheapest insertion is in this locker, with a cost of 0. Figures 9 and 10 show the cheapest
insertion of customers 5 and 6 without considering shared locations. Hence, the SDL-
regret for customer 6 is higher than that of customer 5. In this case, the SDL-regret will
select customer 6 first and insert him/her in the locker.
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Figure 8: Example of a partial solution
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Figure 9: Insertion of the brown(6) customer without lockers
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Figure 10: Insertion of the purple(5) customer without lockers

4.4 Operator selection

As described in sections 4.2 and 4.3, a number of operators have been implemented. Because it
does not seem useful to keep them all, we searched for a configuration of LNS-SPP with fewer
operators. In this section, we define a configuration as a subset of ruin operators and a subset
of recreate operators.

A statistical study was performed to choose a configuration from the 20 ruin operators and
the 15 recreate operators that were implemented. Tests were performed on a representative
set of randomly generated VRPDO instances. To determine if one configuration is significantly
different from another, we use the Wilcoxon pairwise test [Wilcoxon, 1945] with a threshold
of 5%. This test compares two populations of results. In our case, it compares the results
obtained by two configurations on each instance of a set of VRPDO instances. This methodology
is inspired from Stützle [2018]. Note that we also tried the automatic configuration package
IRACE [López-Ibánez et al., 2011], but it did not converge after several days of computation.

We define a class of operators as a group of operators that have similar purposes. First, we
split the ruin operators into 4 classes: random removals, related removals, worst removals and
history removals. Second, we split the recreate operators into 4 classes: list heuristics, time
best insertion heuristics, regret heuristics and ejection search. This classification is detailed in
Tables 1 and 2.

This statistical study is decomposed in two phases: (1) a study of the impact of each class
of operators; (2) a study of the impact of each individual operator.

To study classes of operators, the reference configurations are: the full configuration with all
the operators, and a minimal configuration with as few operators as possible. All the operators
of each class are removed from the full configuration and added to the minimal configuration.
All these “sub-configurations” were tested on all instances of the test set and compared. This
first phase determines whether the operators in question are redundant with other operators of
the full configuration, and whether they improve the results of the minimal configuration.

Based on the previous results, we build an intermediate configuration. The operators from
this configuration are changed one by one. If a given operator was used, then we deactivate it,
otherwise we add it to the configuration. All these alternative configurations are compared with
the intermediate configuration. It determines if the assessed operator significantly improves the
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results, or if it is redundant with used operators.

The results of the operators are summarized in Tables 1 and 2. Operators marked with
++ are considered essential. Operators marked with + slightly improve the results. Operators
marked with - are useless or redundant with already kept operators, and adding them does not
improve the results. The selected operators are those rated ++ and +.

Option-based operators Customer-based operators

Random
removals

- preference-oriented random removal
+ random option removal+ SDL-oriented random removal

- random SDL removal

Related
removals

- distance-related option removal + distance-related customer removal
- node neighborhood removal + zone removal
- time-related option removal + time-related customer removal
++ (split) string removal - proximity customer removal
++ cluster removal - demand-related removal
+ route removal - SDL-related removal

Worst
removals

- distance worst removal
- time worst removal
- neighborhood removal
- SDL worst removal

History
removals

- node-pair history removal ++ historical knowledge node removal

Table 1: Overview of configuration experiments for ruin operators

VRPTW operators VRPDO operators

List heuristics

++ random order best insertion
- normalized best insertion
+ preferred best insertion

- oldest first best insertion
++ largest first best insertion
- farthest first best insertion
- closest first best insertion

Time best insertions - time best insertion

Regrets

- greedy best insertion
+ SDL-regret
- preference regret

++ 2-regret
- 3-regret
- 4-regret

Ejection search + ejection search

Table 2: Overview of configuration experiments for recreate operators
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4.5 Acceptance Criterion

On line 10 of Algorithm 1, we determine whether the newly generated solution should be
accepted as the current solution at the next iteration.

Ropke and Pisinger [2006a] use the Metropolis criterion from Simulated Annealing [Kirk-
patrick et al., 1983]. To deal with partial solutions, a modified cost is proposed in Pisinger
and Ropke [2007]. The modified cost of Equation (1) penalizes the unserved customers with
factor β. In this formula, B is the request bank of the current solution, cost is its routing cost
(described by 1.1) and N is the set of customers.

modified cost = cost×
(
1 + β.

|B|
|N|

)
(1)

Santini et al. [2018] conducted a comprehensive study on the acceptance criteria for the LNS
metaheuristic. In their conclusion about the CVRP, they advocate for the record-to-record cri-
terion [Dueck, 1993]. With this criterion, the solution is accepted if its modified cost is less
than T% larger than the modified cost of the best known solution. Furthermore, they propose
decreasing the acceptance threshold T during the algorithm. T decreases linearly between its
initial value at the beginning and 0, when the time limit is reached. They conclude that the
best values of T and β depend of the type and size of instance.

In our implementation, we use the record-to-record criterion with modified cost (1). To
avoid tuning parameters and get a reliable acceptance criterion, we propose a simple adaptive
procedure.

Our experiments empirically show that LNS-SPP performs well if the ratio of accepted
solutions is between 4% and 14%. T and β are changed so as to maintain the ratio of accepted
solutions in this target. The ratio of accepted solutions is periodically evaluated. If the ratio
of accepted solutions is less than 4%, T is multiplied by 1.5 and β is divided by 1.5. On the
contrary, if it is larger than 14%, T is divided by 1.5 and β is multiplied by 1.5.

4.6 Set Partitioning Problem

The utilization of the Set Partitioning Problem (SPP) to solve vehicle routing problems was
first introduced by Foster and Ryan [1976]. It is now widely used in column generation methods
[Toth and Vigo, 2014] for many routing problems [Archetti et al., 2014]. It can also be used
to recombine routes that are produced by a heuristic. The SPP is used as a post-optimization
technique [Rochat and Taillard, 1995, Mancini, 2017, Gschwind and Drexl, 2019], as well as
inside hybrid heuristics [Prescott-Gagnon et al., 2009, Groër et al., 2011, Mendoza and Villegas,
2013, Subramanian et al., 2013, Parragh and Schmid, 2013, Yıldırım and Çatay, 2015, Grangier
et al., 2017a, Tellez et al., 2018].

We solve the SPP by solving a Set Covering Problem (SCP) and by repairing the solution
if a customer is served more than once. Yıldırım and Çatay [2015] show that solving an SCP
instead of a SPP slightly shortens solving time. Additionally, an exact repair is rarely needed
and a greedy procedure finds the optimal reparation almost all the time.

The SCP model for the VRPDO is represented in Model 2. R is a set of routes that are
valid with respect to time windows and vehicle capacity. Let us define R as the pool of routes
generated in Algorithm 1. Indicator αo

r has value 1 if the option o ∈ O is visited by the route
r ∈ R; it is equal to 0 otherwise. The cost of route r ∈ R is denoted wr. Let zr be a binary
variable that indicates whether route r ∈ R is used in the solution.
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The objective function (2.1) minimizes the total cost of the solution, i.e the sum of the cost
of the routes used. Constraints (2.2) state that each customer must be served at least once.
Constraints (2.3) express the capacity of the shared locations. Constraints (2.4) are the service
level constraints. Because it is a set covering formulation, more than one option may be used to
serve a customer. Consequently, we express the service level constraint as a capacity constraint.
Constraints (2.3) and (2.4) are the synchronized resource constraints. Constraints (2.5) set the
upper bound on the number of vehicles used in the solution to K.

Model 2: SCP for the VRPDO

min
∑
r∈R

wrzr (2.1)

s.c
∑
r∈R

∑
o∈Oc

αo
rzr > 1 ∀c ∈ N (2.2)

∑
r∈R

∑
o∈Ol

αo
rzr 6 C l ∀l ∈ L (2.3)

∑
r∈R

∑
o∈O|po>p

αo
rzr 6 (1− βp+1)× |N | ∀p ∈ {1, ..., P − 1} (2.4)

∑
r∈R

zr 6 K (2.5)

zr ∈ {0, 1} ∀r ∈ R

Model 2 is solved every η iterations by an ILP solver. The set of routes R is then composed
of the routes that have been generated by Algorithm 1 during the last η iterations. As proposed
by Tellez et al. [2018], frequency η can be adapted. The value of η is reduced by a quarter when
the solver does not succeed in proving optimality, nor in improving the best known solution,
twice in a row. We extend this procedure as follows. η is increased by a quarter if the optimality
is proven, or if the best-known solution is improved, twice in a row.

In addition, we observe that it is not necessary to solve the SPP every η iterations. While
the LNS still improves the current solution, it is better to wait for stabilization. Hence, the
SPP is solved only if LNS cannot improve the cost of the best-known solution’s cost by more
than ρ% during the last η iterations.

We observe that the SCP defined for the VRPDO is more difficult to solve than the pure
VRPTW set covering formulation. Thus, an extension of Model 2 is proposed to reduce solving
time. We introduce binary variables yo that indicate whether option o ∈ O is visited. These
variables allow the solver to branch on options, hence discarding a lot of routes.

Constraints (3.1), (3.2), and (3.3) reformulate constraints (2.2), (2.3), and (2.4) with the
y variables, respectively. Constraints (3.4) bind the two sets of variables by stating that if an
option is visited, then the corresponding yo must be set at value 1.
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The following constraints are added to Model 2∑
o∈Oc

yo = 1 ∀c ∈ N (3.1)

∑
o∈Ol

y0 6 Cl ∀l ∈ L (3.2)

∑
o∈O|po6p

yo > βp × |N | ∀p ∈ {1, ..., P} (3.3)

∑
r∈R

αo
rzr 6 yo ∀o ∈ O (3.4)

yo ∈ {0, 1} ∀o ∈ O

4.7 Final parameter tuning

In our LNS-SPP, the probability of selecting each operator is constant throughout the algo-
rithm. In the proposed implementation, all ruin operators are equiprobable. The probability
of selecting each recreate operator is inversely proportional to its average running time. Fur-
thermore, Christiaens and Vanden Berghe [2020] propose to perform a huge number of small
and fast iterations in LNS in order to compensate the lack of local search in this metaheuris-
tic. We added this functionality as a special case: if a list heuristic is selected, there is a high
probability φ that the destruction size will be small (between δmini and ∆mini percent of the
customer) and that the ruin operator will be local, i.e string removal, split string removal or
distance-related customer removal. The probability of each operator, δ, ∆, δmini, ∆mini and φ
was tuned according to the recommendations of IRACE [López-Ibánez et al., 2011].

Christiaens and Vanden Berghe [2020] introduced the blink principle for recreate operators.
It randomly ignores certain insertions with a given probability during the computation of the
best insertion. In the proposed implementation, this feature did not prove to have a significant
impact. It introduces diversification through randomization. Nevertheless, this principle has
been applied to the ruin operators; for each removal evaluated there is a given probability of
simply ignoring it.

To summarize, on the one hand, the list heuristics and the small destructions favor a high
number of iterations. On the other hand, using regret heuristics and ejection search tends to
reduce the number of iterations. As observed by Christiaens and Vanden Berghe [2020], the
small destruction and list heuristic can compensate for a lack of local search. Furthermore,
the numerous iterations coupled with blink provide a good exploration of the search space in
the CVRP. To deal with time windows, we observe that it is worthwhile to perform larger
destruction and to take some time to anticipate constraint violation, like Ropke and Pisinger
[2006a] and Demir et al. [2012]. Hence the final operator configuration in the proposed LNS-
SPP combines fast and slow iterations in addition to long intensification phases with the SPP
component.

To conclude this section, we indicate the values of the parameters (tuned with the help of
IRACE) :

• The probability of selecting each ruin operator is the same for all operators. The proba-
bility to blink a deletion possibility is 30%.
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• The probability of selecting a recreate operator is inversely proportional to its running
time. The probability of selecting list heuristics (random order best insertion, largest first
best insertion) is 0.4. The probability of selecting the other recreate operator (2-regret,
ejection search, SDL-regret and preferred best insertion) is 0.05.

• The destruction size and removal operator selection rule is different for the list heuristics
and the other recreate operators. In general the destruction size is between δ = 10% and
∆ = 20% of the number of customers. For the list heuristic there is a 30% probability of
performing a classical destruction (using any ruin operator) and a φ = 70% probability
of performing a small, local destruction. That is to say, only between δmini = 1% and
∆mini = 10% of customers are removed, and a local removal operator (distance-related
removal, (split) string removal) is used.

• The initial values of the record-to-record acceptance criteria are T = 0.18 and β = 9.
These values are adjusted every 4500 iterations by a factor of 1.5, as described in section
4.5.

• The initial call frequency to the SPP component is η = 20 000. It is adjusted by a factor
of 1.25. Furthermore, the time budget for the solver is 30 seconds and ρ = 1%.

5 Experiments
The method is coded in C++ and is compiled with g++ 5.4.0. We use IBM Ilog CPLEX 12.8.0
[IBM, 2018] as the MIP solver. The experiments were performed using Linux, Ubuntu 16.04
LTS, running on an Intel Xeon X5650 @ 2.57 GHz. A single core is used by our code and the
third-party solvers. We use the following options of CPLEX: branch up first and emphasis on
hidden feasible solutions.

Section 5.1 validates the proposed matheuristic on related problems. Section 5.2 presents
the generated VRPDO instances and Section 5.3 presents managerial insights.

5.1 Validation of LNS-SPP

We evaluate LNS-SPP on 120 benchmark instances of the VRPRDL proposed by Reyes et al.
[2017] and Ozbaygin et al. [2017]. Two versions of the set of instances are used. In the first
version, denoted VRPRDL, the time windows associated with the options of each customer are
disjointed, and only trunk deliveries are considered. In the second version, denoted VRPHRDL,
the first option of each customer is considered to be the home option and it has no time window.
The others remain unchanged. Instances 1 to 40 come from Reyes et al. [2017], but were modified
by Ozbaygin et al. [2017] to satisfy triangle inequality. Instances 41 to 50, v1 and v2, come
from Ozbaygin et al. [2017].

The solutions produced by LNS-SPP are compared with those produced by the B&P of
Ozbaygin et al. [2017]. Their method does not minimize the number of vehicles. Tables 3 and
4 provide a summary of the results. Each line represents an instance group, whose features are
described by the first two columns. The last line is the total over all the instances. Columns
3 and 4 depict the total number of routes and cost for all the instances of the group. A “*”
indicates that the B&P could not prove the optimality of all the solutions in the set. The
results of LNS-SPP are summarized in the remaining columns, and are based on five runs on
each instance. In columns 5 and 6, the cost is optimized with the number of routes that used
in the solution in Ozbaygin et al. [2017]. Notice that it is possible that the solution found by
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LNS-SPP with this number of vehicles comprises empty routes. Column 5 is the sum, over
the instances of the group, of the average cost over 5 runs on each instance with LNS-SPP.
Column 6 is the sum, over the instances of the group, of the lowest cost over 5 runs on each
instance with LNS-SPP. Columns 7 to 10 provide the results of LNS-SPP when the number
of routes is minimized. Column 7, 8 and 9, 10 are the total number of vehicles and cost, for
the instances of the group on average on each instance or the best solution obtained on each
instance, respectively. Finally, the computational time for the instances of each class is provided.
The results are detailed in Tables 9, 10, 11 and 12 in A.

When the number of routes is set to the same value: the cost of the best solution of LNS-
SPP is never higher than the cost of the solution provided by Ozbaygin et al. [2017]. The B&P
proves the optimality of the cost on 93 instances out of 120. Based on the best results out of
five runs (column 6), the cost is the same on 97 instances and it is improved on 23 instances by
LNS-SPP.

When the number of vehicles is minimized first (column 9 and 10): the number of vehicles
is reduced, which results in a higher cost, on 12 instances. On these instances, the total number
of vehicles is decreased from 128 to 110 (14%) and the routing costs increase from 33 543 to 34
250 (+2.1%), knowing that 10 of these 12 instances have a cost proven optimal. In addition,
the number of vehicles is reduced on 3 instances with the same cost, and both the number of
vehicles and the cost were improved on 14 instances.

Unfortunately, no fair comparison can be made with the metaheuristic of Reyes et al. [2017]
because the instances were modified by Ozbaygin et al. [2017]. Furthermore, running times are
not indicated in Reyes et al. [2017]. Their method does not succeed in finding optimal solutions
for small instances with 15 and 20 customers (with respect to optimal solutions provided by
Gurobi 5.6).

The results on the VRPRDL and VRPHRDL show that the proposed LNS-SPP is clearly
able to deal with delivery options, even with quite a short time budget.

B&P LNS-SPP

Fixed nbRoutes Average of 5 Best of 5

Instances Customers Routes Cost ∗ Avg. cost Best of 5 cost Routes Cost.0 Routes Cost Time (s)

1-5 15 24 6 072 ∗ 6 072.0 6 072 22.0 6 119.0 22 6 119 3
6-10 20 28 6 848 ∗ 6 848.0 6 848 27.0 6 848.0 27 6 848 4
11-20 30 68 18 595 ∗ 18 595.0 18 595 67.0 18 651.4 67 18 639 8
21-30 60 129 37 213 ∗ 37 213.0 37 213 127.0 37 535.0 127 37 535 12
31-40 120 195 53 881 ∗ 53 738.4 53 738 178.8 53 826.0 178 53 918 60
41-50_v1 40 94 29 842 ∗ 29 838.0 29 838 93.0 29 855.4 93 29 838 10
41-50_v2 40 75 21 863 ∗ 21 864.4 21 863 71.0 21 928.4 71 21 927 10

Total 613 174 314 174 168.8 174 167 585.8 174 763.2 585 174 824

Table 3: Summary of the results on the VRPRDL instances of Reyes et al. [2017] and Ozbaygin
et al. [2017]
Total number of routes and total cost over the instances of each group, and over all the instances, with the two
considered algorithms for the VRPRDL instances
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B&P LNS-SPP

Fixed nbRoutes Average of 5 Best of 5

Instances Customers Routes Cost ∗ Avg. cost Best of 5 cost Routes Cost Routes Cost Time (s)

1-5 15 19 5 450 ∗ 5 450.0 5 450 19.0 5 450 19 5 450 3
6-10 20 20 5 604 ∗ 5 604.0 5 604 20.0 5 604 20 5 604 4
11-20 30 52 15 128 ∗ 15 128.0 15 128 51.0 15 228 51 15 212 8
21-30 60 83 26 829 ∗ 26 800.0 26 800 83.0 26 800 83 26 800 12
31-40 120 132 38 610 ∗ 37 310.4 37 252 115.6 37 423 115 37 373 60
41-50_v1 40 88 27 997 ∗ 27 996.0 27 996 87.0 27 996 87 27 996 10
41-50_v2 40 67 20 977 ∗ 20 958.0 20 958 67.6 20 958 67 20 958 10

Total 461 142 595 139 259.2 139 188 443.2 139 459 442 139 393

Table 4: Summary of the results on the VRPHRDL instances of Reyes et al. [2017] and Ozbaygin
et al. [2017]
Total number of routes and total cost over the instances of each group, and over all the instances, with the two
considered algorithms for the VRPHRDL instances

5.2 Instances of the VRPDO

VRPDO instances were randomly generated, because we did not find any suitable existing
instances. Three types of instances were generated: U, V and UBC. For each type, instances
with 50, 100 and 200 customers were generated.

All the delivery locations were randomly generated in a 50×50 square. The depot is located
at the bottom left-hand corner. Euclidean distances are considered. A unit of distance costs 1
and takes a unit of time to be crossed. We consider a time horizon of 12 hours, i.e. 720 time
units.

In the U and UBC instances, each customer has between 1 and 3 options, with an average
of 2 options per customer. In the V instance, each customer has 1 or 2 options, with an average
of 1.5 options per customer.

In the U and V instances, the capacities are tight, both for the vehicles and the lockers. A
locker can accept between 3 and 5 parcels, and vehicle capacity is such that a route can serve
around 10 customers. In the UBC instances (U with Big Capacity), the vehicle capacity is such
that a route can serve around 25 customers. Furthermore, there are five times fewer lockers and
their capacity is five times larger.

The time window of individual locations can be either: the morning ([0; 360]), the afternoon
([360; 720]), random in the morning (i.e [ai, bi] such that 0 6 ai 6 240 and bi = ai + 120),
random in the afternoon (i.e [ai, bi] such that 360 6 ai 6 600 and bi = ai + 120) or random in
the whole day (i.e [ai, bi] such that 0 6 ai 6 480 and bi = 240). The time window of a shared
location can be either: random in the day (i.e [ai, bi] such that 0 6 ai 6 240 and bi = 480) or
the full day ([0; 720]).

The characteristics of instance classes are summarized in Table 5. For each size and each
class, 10 instances were generated, leading to a total of 90 instances. All the instances are
available upon request.

Table 6 summarizes the results obtained by LNS-SPP on these instances. This table depicts
the total number of vehicles and the total cost for all instances of each class. These results are
detailed in Tables 13, 14 and 15 in B. By default, all these tests were conducted with a service
level of 80% − 90%, i.e at least 80% of the customers are served with their level 1 option and
at least 90% of the customers are served with an option of level 1 or 2. The time budget of the
algorithm only depends on the instance size: 30 seconds for 50 customers, 90 seconds for 100,
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Instance type Capacity Avg. option
per customer

Time windows

Individual locations Shared Locations

U medium 2 2 to 6 hours 8 to 12 hours
UBC big 2 2 to 6 hours 8 to 12 hours
V medium 1.5 2 to 6 hours 8 to 12 hours

Table 5: VRPDO instance classes

and 300 seconds for 200 customers.

Average of 5 Best of 5

Type Customers Routes Cost.0 Routes Cost.0 Time (s)

U
50 54.0 3 913.88 54 3 864.48 30

100 105.0 6 577.74 105 6 502.99 90
200 205.0 14 082.36 205 13 641.13 300

UBC
50 20.0 2 301.31 20 2 293.53 30

100 40.0 3 666.90 40 3 608.39 90
200 80.0 6 534.72 80 6 384.29 300

V
50 54.0 3 759.76 54 3 742.59 30

100 104.6 7 172.94 104 7 089.06 90
200 205.0 15 261.14 205 14 781.23 300

Total 867.6 63 270.75 867 61 907.68

Table 6: Summary of the results obtained by LNS-SPP on the VRPDO instances

5.3 Managerial insights for the VRPDO

To quantify the impact of the delivery options, we compare the solution of the VRPDO instances
with their VRPTW counterpart. To transform a VRPDO instance into a VRPTW instance,
we consider only the home option. No preference level is taken into account. In the VRPDO
instances, we assume that home delivery options are the preferred individual locations. In the
case of customers that only have a locker option, a random location is added as a home location.

The total number of vehicles and the total cost for each instance class are depicted in Table
7. The instances are grouped by line, the first line indicating the type of instance and the second
column the number of customers. Each group is composed of 10 instances and the “Total” line
is the sum over all the instances. Columns 3 and 4 indicate the total number of vehicles and the
total cost over the instances of the group when only home delivery is considered. Columns 5 and
6 indicate the total number of vehicle and the total cost over the instances of the group when
all options are considered. Column 7 is the relative savings on the route length obtained by
using delivery options. In our instances, considering delivery options leads to a cost reduction of
29.2%, on average. Furthermore, on the UBC instance, with large lockers, the savings are even
larger. The number of routes is not reduced, because it is determined by the binding vehicles’
capacities.
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Type nbCustomers 1 option (home) With options Gap (%)

U
50 54 5 504.07 54 3 864.48 29.8
100 105 8 662.22 105 6 502.99 24.9
200 205 16 223.30 205 13 641.13 15.9

UBC
50 20 5 253.71 20 2 293.53 56.3
100 40 7 052.06 40 3 608.39 48.8
200 80 10 681.93 80 6 384.29 40.2

V
50 54 5 192.10 54 3 742.59 27.9
100 104 9 877.77 104 7 089.06 28.2
200 205 18 945.38 205 14 781.23 22.0

Total 867 87 392.53 867 61 907.68 29.2

Table 7: Economic impact of delivery options
Total number of routes and total cost of the solutions of each VRPDO instance group, and over all the VRPDO
instances, with and without delivery options

We performed a sensitivity analysis by modifying the width of individual locations’ time
windows. Considering a time window [ai, bi] at location i ∈ L, the modified time window is still
centered at time 0.5× (ai + bi) but its width is reduced by a factor α as shown in formula (2).

[a′i, b
′
i] =

[
ai + bi

2
− bi − ai

2α
;
ai + bi

2
+

bi − ai
2α

]
. (2)

We conduct the same experiments as in Table 7 with these smaller time windows for indi-
vidual locations. Figure 11 summarizes these results. The graphs present the total cost and
the total number of vehicles based on the time window width. Along the the x-axis, we show
the time window width in time units while the y-axis shows the cost and the number of vehi-
cles, respectively. The time windows are reduced by a factor α between 1 and 10 according to
Equation 2. Thus the average time window width range from 180 time units down to 20 time
units. Because some instances become infeasible when the time windows are too tight, not all
instances are taken into account in this figure.

With the VRPTW counterpart, both the number of vehicles and the cost grow by 33% when
the individual locations’ time window width is divided by 10. For the VRPDO, the number of
vehicles only increases from 598 to 604 and the cost grows by only 10%. That is to say, with
time windows of about 20 minutes, the cost savings of the VRPDO is 44.3%, while the number
of vehicles decreases by 21.8%, on average over all the considered instances.

On these instances, considering delivery options and shared delivery locations makes it
possible to to serve customers with very narrow time windows without significant cost increase,
as observed in the VRPTW.
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Figure 11: Impact of time window width with and without delivery options
Total number of vehicles and total cost with the VRPDO and the VRPTW with respect to average individual
locations time window width

In order to quantify the impact of the required service level, we perform some experiments
with different values. Table 8 presents the total number of vehicles and the total cost, for all the
VRPDO instances, with respect to the required service level. Each line sets a different minimal
percentage of options of level 1 and 2. Each column sets a different minimal percentage of
customers served via their preferred option.

This table shows that the total cost does not significantly increase when the required service
level is more strict. When the service level becomes too strict (e.g with β1 = 90 and β2 = 100),
some instances become infeasible.

min percentage of options of level 1 (β1)
70 80 90

min percentage
of options of
level 1 or 2 (β2)

80 866 60 215.29 866 61 475.93 NA NA
90 866 60 393.85 867 61 907.68 867 66 155.67
95 866 60 710.38 867 61 980.41 867 66 574.68

100 866 61 892.21 867 63 172.80 NA NA

Table 8: Impact of the required service level
Total number of routes and total cost, over all VRPDO instances, based on the required service level

The proposed experiments show that considering delivery options and shared delivery lo-
cations can reduce cost. In addition, such options make it possible to guarantee a very high
quality of service, with respect to both the time window width and service level.

6 Conclusion
In this paper we have proposed a new extension of the VRPTW allowing multiple delivery
options for each customer. The Vehicle Routing Problem with Delivery Options (VRPDO)
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includes the use of shared delivery locations, such as lockers, and takes in account customer
preferences. In addition, the model is general enough to include new modes of delivery, such
as trunk delivery. The VRPDO is theoretically challenging because it introduces synchronized
resources and a new structure of the search space, due to the delivery locations for each customer.

The numerical experiments show that VRPDO can save considerable amounts of money
compared with VRPTW. Moreover, for a small cost increase, a very high quality of service can
be achieved, especially with respect to the time window width.

The VRPDO is solved with an LNS meta-heuristic combined with a set partitioning compo-
nent. After implementing a large number of ruin and recreate operators, we led a comprehensive
tuning process that resulted in the selection of a few relevant operators. The experiments show
that combining local impact fast operators and global impact slower operators is an efficient
strategy. Alternating between large and small removal operators help perform intensification as
well as diversification.

For future research, we plan to use dynamic programming, as in Moccia et al. [2012] and
Reyes et al. [2017], to improve promising solutions. The difficulty in efficiently applying these
methods to the VRPDO is the combinatorial explosion of the number of labels induced by the
synchronized resources. Another perspective is to integrate delivery options into multi-echelon
[Grangier et al., 2017b] or multi-modal [Masson et al., 2017] city logistics systems, or to combine
it with the use of autonomous vehicles [Boysen et al., 2018].
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A Detailed results on the VRPRDL and VRPHRDL instances
B&P LNS-SPP

Fixed nbRoutes Average of 5 Best of 5
Instances Customers Routes Cost Avg. cost Best of 5 cost Routes Cost Routes Cost Time (s)
1 15 4 901 901 901 4 901 4 901 3
2 15 5 1 286 1 286 1 286 5 1 286 5 1 286 3
3 15 4 991 991 991 3 999 3 999 3
4 15 5 1 062 1 062 1 062 4 1 101 4 1 101 3
5 15 6 1 832 1 832 1 832 6 1 832 6 1 832 3
Group avg 4.8 1 214.4 1 214.4 1 214.4 4.4 1 223.8 4.4 1 223.8
6 20 5 1 294 1 294 1 294 5 1 294 5 1 294 4
7 20 4 1 155 1 155 1 155 4 1 155 4 1 155 4
8 20 6 1 455 1 455 1 455 6 1 455 6 1 455 4
9 20 5 1 260 1 260 1 260 5 1 260 5 1 260 4
10 20 8 1 684 1 684 1 684 7 1 684 7 1 684 4
Group avg 5.6 1 369.6 1 369.6 1 369.6 5.4 1 369.6 5.4 1 369.6
11 30 7 1 922 1 922 1 922 7 1 922 7 1 922 8
12 30 8 2 324 2 324 2 324 8 2 324 8 2 324 8
13 30 6 1 747 1 747 1 747 6 1 747 6 1 747 8
14 30 6 1 273 1 273 1 273 5 1 329.4 5 1 317 8
15 30 6 1 694 1 694 1 694 6 1 694 6 1 694 8
16 30 7 1 938 1 938 1 938 7 1 938 7 1 938 8
17 30 8 1 965 1 965 1 965 8 1 965 8 1 965 8
18 30 7 1 827 1 827 1 827 7 1 827 7 1 827 8
19 30 7 2 083 2 083 2 083 7 2 083 7 2 083 8
20 30 6 1 822 1 822 1 822 6 1 822 6 1 822 8
Group avg 6.8 1 859.5 1 859.5 1 859.5 6.7 1 865.1 6.7 1 863.9
21 60 13 3 761 3 761 3 761 13 3 761 13 3 761 12
22 60 10 2 828 2 828 2 828 10 2 828 10 2 828 12
23 60 16 4 440 4 440 4 440 16 4 440 16 4 440 12
24 60 11 3 378 3 378 3 378 11 3 378 11 3 378 12
25 60 11 3 161 3 161 3 161 11 3 161 11 3 161 12
26 60 16 4 536 4 536 4 536 16 4 536 16 4 536 12
27 60 10 2 865 2 865 2 865 9 2 976 9 2 976 12
28 60 14 4 173 4 173 4 173 14 4 173 14 4 173 12
29 60 14 3 964 3 964 3 964 13 4 175 13 4 175 12
30 60 14 4 107 4 107 4 107 14 4 107 14 4 107 12
Group avg 12.9 3 721.3 3 721.3 3 721.3 12.7 3 753.5 12.7 3 753.5
31 120 18 4 935 4 935 4 935 16 4 938 16 4 938 60
32 120 19 5 278 ∗ 5 258 5 258 17 5 273.4 17 5 263 60
33 120 18 5 083 ∗ 5 061 5 061 17 5 061 17 5 061 60
34 120 17 5 218 5 218 5 218 17 5 218 17 5 218 60
35 120 20 5 519 ∗ 5 498 5 498 18 5 528.6 18 5 526 60
36 120 22 6 498 6 498 6 498 21 6 498 21 6 498 60
37 120 17 4 845 ∗ 4 830 4 830 17 4 830 17 4 830 60
38 120 21 5 608 ∗ 5 604 5 604 19 5 604 19 5 604 60
39 120 24 5 849 ∗ 5 841 5 841 19.8 5 869.8 19 5 985 60
40 120 19 5 048 ∗ 4 995.4 4 995 17 5 005.2 17 4 995 60
Group avg 19.5 5 388.1 5 373.8 5 373.8 17.9 5 382.6 17.8 5 391.8
Overall avg 11.1 3 065.2 3 061.6 3 061.6 10.6 3 074.5 10.5 3 076.5

Table 9: Comparison with the results of Ozbaygin et al. [2017] on the VRPRDL instances of
Reyes et al. [2017]
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B&P LNS-SPP
Fixed nbRoutes Average of 5 Best of 5

Instances Customers Routes Cost Avg. cost Best of 5 cost Routes Cost Routes Cost Time (s)
1 15 3 773 773 773 3 773 3 773 3
2 15 4 1 065 1 065 1 065 4 1 065 4 1 065 3
3 15 3 988 988 988 3 988 3 988 3
4 15 3 914 914 914 3 914 3 914 3
5 15 6 1 710 1 710 1 710 6 1 710 6 1 710 3
Group avg 3.8 1 090.0 1 090.0 1 090.0 3.8 1 090 3.8 1 090
6 20 4 1 099 1 099 1 099 4 1 099 4 1 099 4
7 20 3 996 996 996 3 996 3 996 4
8 20 5 1 346 1 346 1 346 5 1 346 5 1 346 4
9 20 4 997 997 997 4 997 4 997 4
10 20 4 1 166 1 166 1 166 4 1 166 4 1 166 4
Group avg 4.0 1 120.8 1 120.8 1 120.8 4 1 120.8 4 1 120.8
11 30 5 1 587 1 587 1 587 5 1 593.6 5 1 587 8
12 30 6 1 808 1 808 1 808 6 1 808 6 1 808 8
13 30 6 1 563 1 563 1 563 5 1 647 5 1 647 8
14 30 4 1 058 1 058 1 058 4 1 058 4 1 058 8
15 30 5 1 347 1 347 1 347 5 1 347 5 1 347 8
16 30 5 1 517 ∗ 1 517 1 517 5 1 517 5 1 517 8
17 30 5 1 445 1 445 1 445 5 1 445 5 1 445 8
18 30 5 1 627 1 627 1 627 5 1 636.4 5 1 627 8
19 30 5 1 461 1 461 1 461 5 1 461 5 1 461 8
20 30 6 1 715 1 715 1 715 6 1 715 6 1 715 8
Group avg 5.2 1 512.8 1 512.8 1 512.8 5.1 1 522.8 5.1 1 521.2
21 60 8 2 580 2 580 2 580 8 2 580 8 2 580 12
22 60 7 2 213 ∗ 2 206 2 206 7 2 206 7 2 206 12
23 60 10 3 363 3 363 3 363 10 3 363 10 3 363 12
24 60 8 2 569 ∗ 2 569 2 569 8 2 569 8 2 569 12
25 60 8 2 400 ∗ 2 378 2 378 8 2 378 8 2 378 12
26 60 9 2 845 ∗ 2 845 2 845 9 2 845 9 2 845 12
27 60 8 2 518 2 518 2 518 8 2 518 8 2 518 12
28 60 8 2 758 2 758 2 758 8 2 758 8 2 758 12
29 60 9 2 892 ∗ 2 892 2 892 9 2 892 9 2 892 12
30 60 8 2 691 2 691 2 691 8 2 691 8 2 691 12
Group avg 8.3 2 682.9 2680.0 2 680.0 8.3 2 680.0 8.3 2 680.0
31 120 14 3 984 ∗ 3 666 3 666 11 3 666 11 3 666 60
32 120 13 3 958 ∗ 3 885 3 885 12 3 886.4 12 3 885 60
33 120 13 3 630 ∗ 3 543.6 3 543 11.4 3 567 11 3 544 60
34 120 13 3 891 ∗ 3 711.8 3 694 12 3 784.8 12 3 783 60
35 120 11 3 255 ∗ 3 184 3 184 10 3 184 10 3 184 60
36 120 15 4 525 ∗ 4 311 4 273 13.2 4 326 13 4 304 60
37 120 11 3 395 ∗ 3 217 3 217 10 3 217 10 3 217 60
38 120 14 3 976 ∗ 3 935.8 3 935 12 3 935 12 3 935 60
39 120 15 4 316 ∗ 4 300 4 300 13 4 300 13 4 300 60
40 120 13 3 680 ∗ 3 556.2 3 555 11 3 556.8 11 3 555 60
Group avg 13.2 3 861.0 3 731.0 3 725.2 11.6 3 742.3 11.5 3 737.3
Overall avg 7.6 2 290.5 2 257.3 2 255.8 7.2 2 262.6 7.2 2 261

Table 10: Comparison with the results of Ozbaygin et al. [2017] on the VRPHRDL instances of
Reyes et al. [2017]
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B&P LNS-SPP
Fixed nbRoutes Average of 5 Best of 5

Instances Routes Cost Avg. cost Best of 5 cost Routes Cost Routes Cost Time (s)
41_v1 10 3 203 3 203 3 203 10 3 219.4 10 3 203 10
41_v2 7 2 133 2 134.4 2 133 7 2 134.4 7 2 133 10
42_v1 9 2 799 2 799 2 799 9 2 799 9 2 799 10
42_v2 7 1 946 1 946 1 946 6 1 946 6 1 946 10
43_v1 8 2 607 ∗ 2 603 2 603 8 2 604 8 2 603 10
43_v2 8 1 966 1 966 1 966 7 1 967 7 1 967 10
44_v1 7 2 261 2 261 2 261 7 2 261 7 2 261 10
44_v2 6 1 610 1 610 1 610 5 1 614 5 1 614 10
45_v1 10 3 217 3 217 3 217 10 3 217 10 3 217 10
45_v2 8 2 478 2 478 2 478 8 2 478 8 2 478 10
46_v1 9 2 805 2 805 2 805 9 2 805 9 2 805 10
46_v2 8 2 469 2 469 2 469 8 2 469 8 2 469 10
47_v1 10 3 339 3 339 3 339 10 3 339 10 3 339 10
47_v2 7 1 946 1 946 1 946 6 2 005 6 2 005 10
48_v1 10 3 325 3 325 3 325 10 3 325 10 3 325 10
48_v2 8 2 380 2 380 2 380 8 2 380 8 2 380 10
49_v1 11 3 534 3 534 3 534 11 3 534 11 3 534 10
49_v2 8 2 492 2 492 2 492 8 2 492 8 2 492 10
50_v1 10 2 752 2 752 2 752 9 2 752 9 2 752 10
50_v2 8 2 443 2 443 2 443 8 2 443 8 2 443 10
Avg 8.4 2 585.2 2 585,1 2 585.0 8.2 2 589.2 8.2 2 588.2

Table 11: Comparison with the results of Ozbaygin et al. [2017] on the VRPRDL instances of
Ozbaygin et al. [2017]

B&P LNS-SPP
Fixed nbRoutes Average of 5 Best of 5

Instances Routes Cost Avg. cost Best of 5 cost Routes Cost Routes Cost Time (s)
41_v1 8 2 662 2 662 2 662 8 2 662 8 2 662 10
41_v2 6 1 998 1 998 1 998 6.6 1 998 6 1 998 10
42_v1 8 2 610 2 610 2 610 8 2 610 8 2 610 10
42_v2 6 1 946 ∗ 1 927 1 927 6 1 927 6 1 927 10
43_v1 7 2 260 2 260 2 260 7 2 260 7 2 260 10
43_v2 6 1 830 1 830 1 830 6 1 830 6 1 830 10
44_v1 7 2 147 2 147 2 147 7 2 147 7 2 147 10
44_v2 5 1 478 1 478 1 478 5 1 478 5 1 478 10
45_v1 10 3 172 3 172 3 172 10 3 172 10 3 172 10
45_v2 8 2 466 2 466 2 466 8 2 466 8 2 466 10
46_v1 8 2 616 2 616 1 616 8 2 616 8 2 616 10
46_v2 8 2 388 2 388 2 388 8 2 388 8 2 388 10
47_v1 9 3 011 ∗ 3 010 3 010 9 3 010 9 3 010 10
47_v2 6 1 848 1 848 1 848 6 1 848 6 1 848 10
48_v1 10 3 278 3 278 3 278 10 3 278 10 3 278 10
48_v2 7 2 264 2 264 2 264 7 2 264 7 2 264 10
49_v1 11 3 514 ∗ 3 514 3 514 11 3 514 11 3 514 10
49_v2 8 2 457 2 457 2 457 8 2 457 8 2 457 10
50_v1 10 2 727 2 727 2 727 9 2 727 9 2 727 10
50_v2 7 2 302 2 302 2 302 7 2 302 7 2 302 10
Avg 7.7 2 448.7 2 447.7 2 447.7 7.7 2 447.7 7.7 2 447.7

Table 12: Comparison with the results of Ozbaygin et al. [2017] on the VRPHRDL instances of
Ozbaygin et al. [2017]
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B Detailed results on the VRPDO instances

Average of 5 Best of 5
Instance Customers Time (s) Routes Cost.0 Routes Cost.0
U_50_1 50 30 6 434.773 6 433.081
U_50_2 50 30 6 424.665 6 423.228
U_50_3 50 30 5 329.138 6 329.138
U_50_4 50 30 5 448.321 5 427.183
U_50_5 50 30 6 354.322 6 353.179
U_50_6 50 30 5 403.979 5 399.620
U_50_7 50 30 5 336.428 5 332.481
U_50_8 50 30 5 387.648 5 384.635
U_50_9 50 30 5 360.930 5 359.888
U_50_10 50 30 6 433.679 6 422.048
Total 54 3 913.883 54 3 864.481
U_100_1 100 90 11 484.226 11 479.972
U_100_2 100 90 10 687.754 10 683.365
U_100_3 100 90 11 634.604 11 630.215
U_100_4 100 90 10 610.063 10 592.860
U_100_5 100 90 10 678.523 10 673.844
U_100_6 100 90 10 597.610 10 586.810
U_100_7 100 90 11 761.344 11 746.400
U_100_8 100 90 11 856.017 11 847.533
U_100_9 100 90 10 690.985 10 687.659
U_100_10 100 90 11 576.614 11 574.328
Total 105 6 577.739 105 6 502.986
U_200_1 200 300 21 1 706.754 21 1 687.420
U_200_2 200 300 21 1 326.250 21 1 287.250
U_200_3 200 300 20 1 603.076 20 1 565.130
U_200_4 200 300 21 968.057 21 943.988
U_200_5 200 300 21 1 164.854 21 1 112.500
U_200_6 200 300 20 1 310.448 20 1 261.360
U_200_7 200 300 21 1 166.970 21 1 108.010
U_200_8 200 300 20 1 345.542 20 1 259.660
U_200_9 200 300 20 1 623.972 20 1 575.460
U_200_10 200 300 20 1 866.434 20 1 840.350
Total 205 14 082.357 205 13 641.128

Table 13: Detailed results on the U instances of the VRPDO
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Average of 5 Best of 5
Instance Customers Time (s) Routes Cost.0 Routes Cost.0
UBC_50_1 50 30 2 256.042 2 256.042
UBC_50_2 50 30 2 305.678 2 301.963
UBC_50_3 50 30 2 241.696 2 241.696
UBC_50_4 50 30 2 226.627 2 223.522
UBC_50_5 50 30 2 208.172 2 208.096
UBC_50_6 50 30 2 242.484 2 241.846
UBC_50_7 50 30 2 246.186 2 246.186
UBC_50_8 50 30 2 196.079 2 196.079
UBC_50_9 50 30 2 184.054 2 183.804
UBC_50_10 50 30 2 194.297 2 194.297
Total 20 2 301.314 20 2 293.531
UBC_100_1 100 90 4 383.743 4 374.862
UBC_100_2 100 90 4 357.865 4 351.220
UBC_100_3 100 90 4 330.514 4 323.464
UBC_100_4 100 90 4 335.395 4 334.615
UBC_100_5 100 90 4 376.359 4 371.859
UBC_100_6 100 90 4 364.341 4 357.611
UBC_100_7 100 90 4 339.716 4 337.902
UBC_100_8 100 90 4 426.310 4 419.714
UBC_100_9 100 90 4 394.706 4 386.871
UBC_100_10 100 90 4 357.947 4 350.272
Total 40 3 666.896 40 3 608.39
UBC_200_1 200 300 8 609.565 8 601.353
UBC_200_2 200 300 8 525.744 8 511.301
UBC_200_3 200 300 8 851.712 8 842.696
UBC_200_4 200 300 8 670.960 8 634.515
UBC_200_5 200 300 8 674.374 8 669.268
UBC_200_6 200 300 8 665.084 8 649.461
UBC_200_7 200 300 8 649.339 8 630.953
UBC_200_8 200 300 8 655.330 8 640.022
UBC_200_9 200 300 8 582.294 8 562.377
UBC_200_10 200 300 8 650.315 8 562.377
Total 80 6 534.717 80 6 384.287

Table 14: Detailed results on the UBC instances of the VRPDO
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Average of 5 Best of 5
Instance Customers Time (s) Routes Cost.0 Routes Cost.0
V_50_1 50 30 5 417.903 5 416.349
V_50_2 50 30 6 345.635 6 345.635
V_50_3 50 30 5 401.676 5 398.662
V_50_4 50 30 5 378.415 5 374.501
V_50_5 50 30 5 328.692 5 328.387
V_50_6 50 30 5 390.432 5 387.196
V_50_7 50 30 5 368.295 5 365.985
V_50_8 50 30 6 387.645 6 387.645
V_50_9 50 30 6 366.000 6 366.000
V_50_10 50 30 6 375.068 6 372.228
Total 54 3 759.762 54 3 742.588
V_100_1 100 90 11 652.508 11 647.566
V_100_2 100 90 10.2 905.803 10 895.205
V_100_3 100 90 10.4 743.616 10 733.412
V_100_4 100 90 10 596.960 10 594.605
V_100_5 100 90 10 795.629 10 765.491
V_100_6 100 90 11 597.567 11 597.288
V_100_7 100 90 11 705.792 11 702.181
V_100_8 100 90 11 745.717 11 744.855
V_100_9 100 90 10 812.543 10 794.041
V_100_10 100 90 10 616.804 10 614.412
Total 104.6 7 172.939 104 7 089.056
V_200_1 200 300 21 1 321.538 21 1 288.280
V_200_2 200 300 20 1 526.820 20 1 420.190
V_200_3 200 300 21 1 369.850 21 1 346.210
V_200_4 200 300 21 1 545.578 21 1 488.720
V_200_5 200 300 21 1 445.074 21 1 420.810
V_200_6 200 300 21 1 562.392 21 1 519.580
V_200_7 200 300 20 1 204.788 20 1 171.590
V_200_8 200 300 20 1 851.056 20 1 799.830
V_200_9 200 300 20 1 837.234 20 1 798.400
V_200_10 200 300 20 1 596.814 20 1 527.620
Total 205 15 261.144 205 14 781.23

Table 15: Detailed results on the V instances of the VRPDO
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