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Abstract 

Antibiotic resistance (AR) is becoming a worldwide threat due to the increasing 
occurrence of antibiotic-resistant pathogenic bacterial strains. There is a general 
consensus about the potential implications of the use of antibiotics in livestock on the 
onset of antibiotic resistant bacteria (ARB), mainly through meat consumption. However, 
the ever-increasing use of reclaimed wastewater (RWW) in agriculture may also 
contribute significantly to the non-accounted exposure to antibiotics, ARB, and antibiotic 
resistance genes (ARGs). This position paper aims at evaluating the current knowledge 
concerning the occurrence of antibiotics, ARBs, and ARGs in edible parts of different 
common crops irrigated with RWW. We will discuss which regulations on the use of 
RWW may contribute to the minimization of the prevalence of these contaminants in 
crops, and provide recommendations on how to minimize the impact of these practices. 
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1. Occurrence of antibiotics (ABs), antibiotic resistant bacteria (ARB), and 
antibiotic resistance genes (ARGs) in edible plant parts, and their contribution to 
the general public exposure. 

A growing number of reports shows that crops can passively uptake water soluble 
contaminants through roots [1-3], and that some of these compounds can be 
translocated and concentrated into the aerial parts of plants, mainly leaves [4]. This 
effect, intimately related to the plant transpiration, leads to the uptake by plants of any 
bioavailable contaminant present in the soil, provided its physicochemical properties 
and persistence to degradation allow it [5]. In case of hydroponic cultures, the uptake of 
low-volatility contaminants such as ABs is greater than conventional crops in soil. 
Different reports demonstrated the presence of pharmaceuticals, including ABs, in 
edible parts of different crops under field experimental conditions, including application 
of manure or biosolids as fertilizer or RWW irrigation [1, 6-9]. The extent of this uptake 
is determined by the physicochemical properties of the substance and of the soil, by the 
plant genotype (species and cultivars), and by the physiological state (transpiration 
rate) and other stress effects of the plants and climate [3]. Following their uptake, ABs 
are translocated and reallocated in the various plant tissues including the edible parts, 
thus entering in the food chain. While leaves or roots are deemed to be the main 
concentrator of contaminants, trapping mechanisms of ionized ABs in plant transport 
tissues may lead to preferential translocation to leafy parts or fruits [4, 10]. Commonly 
detected ABs include sulfonamides (sulfamethoxazole, sulfapyridine), trimethoprim, 
fluoroquinolones (ciprofloxacin, ofloxacin, enrofloxacin), tetracyclines (tetracycline, 
oxytetracycline) and macrolides (erythromycin). However, lower accumulation than 
other organic micropollutants (e.g., carbamazepine) is expected, due to their reduced 
mobility in soil (fluoroquinolones, tetracyclines [11]), their relatively large molecular 
size (macrolides) and/or their ionizable nature, resulting in reduced cell permeability 
[5]. Nevertheless, concentrations up to several µg per kg plant tissue have been 
observed in edible crops [9] 

The potential uptake of ARB and ARGs by RWW-irrigated crops is currently largely 
unexplored [9]. Recent developments on DNA sequencing allowed for the 
characterization of complex microbiomes not only associated to roots and to the 
adjacent soil (rhizosphere), but also to the skin of the aerial parts, and inside the plant 
itself [12]. It is unclear what portion of this microbiome reflects the composition of the 
soil microbiome, but it is known that bacteria can enter into the plant vascular system 
and can be translocated to the aerial parts [13]. While it is unknown which fraction, if 
any, of these bacterial community qualifies as ARB, recent studies detected ARGs in this 
endophytic or periphytic microbiome [14, 15]. For example, plants grown in 
sulfonamide-contaminated soil showed internalization of ARB and ARGs in leaves [16]. 
The ability of these genes and bacteria to colonize the gut microbiome of human and 
animals exposed to these crops is to date largely unknown.   

 

2. Potential contribution of water reuse strategies to the contamination of 
agricultural soils and crops  

Similarly to other biologically active compounds, like pharmaceuticals or ingredients of 
personal care products, some ABs are notoriously recalcitrant to conventional biological 
treatment (e.g., biological activated sludge) in urban wastewater treatment plants 
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(WWTPs), and are therefore continuously released into agroecosystems receiving RWW 
[17, 18]. Sulfonamides and macrolides seem to deserve special attention when 
considering the potential emissions via RWW reuse. Sulfonamides typically undergo 
incomplete removal in WWTPs, with additional formation during biological treatment 
through deconjugation of excreted human metabolites [19, 20]. Macrolides have been 
also considered as recalcitrant [21] and included in the latest version of the EU Watch 
List of Chemicals from the Water Framework Directive [22]. Among other ABs, 
fluoroquinolones and tetracyclines are mostly released to soils through fertilization with 
biosolids or manure, due to significant accumulation in sewage sludge [23, 24] and 
widespread use for animal therapy.  

Given their continuous release into the environment, these contaminants are commonly 
considered as pseudo-persistent contaminants of emerging concern, or CEC [25]. CECs 
may enter agroecosystems through wastewater irrigation and soil amendment with 
animal manures or biosolids. Once in the soil, these contaminants can interact with 
other pollutants such as metals or alkaline earth cations (Fe, Cu, Al, Ca), forming 
complexes or chelates, which dramatically modify their fate. Limited information exists 
on how these cations influence the effect and the fate of pollutants [26-29], and, hence, 
the ability of plants to uptake them. 

Antibiotics are routinely detected in RWW-irrigated agricultural soils runoff and 
management practices associated with concentrated animal feeding operations (CAFOs) often 

involve the application of highly contaminated wash and runoff water to agricultural lands, 
with AB concentrations ranging from low μg L-1 to low mg L-1 [9, 30-32]. The 
dissemination of ABs in agricultural soils can disrupt essential soil functions (e.g., 
nitrification processes and iron reduction), thus leading to a loss of crop productivity 
[33, 34]. There are many reports demonstrating that irrigation by RWW alters soil 
microbiome, reduces complexity and favors the appearance of ARB and ARGs due to the 
introduction of CECs in soil [35, 36]. While the direct connection between these 
observations and the use of RWW for irrigation is not yet clear, the presence of 
antibiotics in RWW and the receiving agricultural soils is a potential hazard that needs 
to be addressed. Although not so solidly tested, ARB and ARGs generated by the 
treatment of animals and humans with antibiotics could conceivably reach soils through 
irrigation with RWW. In any case, their capacity to compete with the resident soil 
microbiome is still to be determined.  

 

 3. Effects of AB, ARB and ARGs pollution on crop growth. 

 

While the linkage between the presence of ARB/ARGs in edible plants and the onset of 
pathogenic ARB in human and animals is still to be assessed, there are some other 
hazards that should be explored for the risk assessment of the use of RWW for irrigation 
[37]. The effects of antibiotics on plant morphology and physiology have been described 
for different plant species, including both hormetic (positive and negative effects 
occurring at low exposure concentrations) and phytotoxic (at high exposure 
concentration) effects [7, 38, 39]. Plants exposed to environmentally relevant or higher 
concentrations of ABs (isolated or in combination) show lower rates of germination, 
inhibition of growth, tissues deformation, reduced photosynthetic rate and chlorophyll 
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content, and other stress-related phenomena, classical phytotoxic effects [40]. Although 
not definitely demonstrated, it is likely that complex mixtures of ABs and/or other CECs 
may exert synergistic or additive effects in plants, as demonstrated for aquatic and 
terrestrial organisms [41]. Moreover, increasing evidences show that the growth and 
production of crops is influenced by their interaction with the soil microbiome, being the 
nitrogen-fixing bacteria only an extreme case [42]. Following the same line of thought, 
endophytic bacteria appear as important elements on plant physiology, not only as 
parasites, but also by reinforcing different metabolic functions of the plant. Related to 
this, there is increasing information showing that irrigating crop plants with water 
polluted with different CEC alters the plant metabolism and, in some cases, reduces its 
growth [43]. While it is not clear that the quality of the final edible product may 
decrease due to this, it seems obvious that at least some of its organoleptic properties 
may also vary. If this relationship between CEC pollution and crop outcome is confirmed, 
it will add uncertainties to the cost/benefit balance of RWW irrigation. 

4. Public health risks associated with the unintended intake of CEC due to the 
consumption of RWW-irrigated agricultural products. 

Antibiotic resistance is becoming a worldwide concern due to the occurrence of 
pathogenic bacterial strains increasingly recalcitrant to treatment with the existing 
antibiotic medications. One of the most notorious cases is the methicillin-
resistant Staphylococcus aureus (MRSA), one of the most prominent pathogens linked to 
hospital- and livestock-associated infections, which constitute a virtual pandemy 
capable to affect not only hospitalized patients but also healthy individuals in the 
community [44]. As the origin and maintenance of ARBs ultimately depends on the 
presence of sublethal concentrations of ABs in the microbiome environment [45, 46], it 
is of paramount importance to evaluate the contribution of ABs present in RWW-
irrigated vegetables to the total AB burden in the human(and animal) gut.  

A recent seminal study demonstrated that the antiepileptic drug carbamazepine and its 
metabolites can be detected at considerable concentrations in the urine of people 
consuming RWW-irrigated vegetables [47]. This proof of concept study indicates that 
consumers may be inadvertently exposed to ABs, in addition to other pharmaceuticals, 
due to the consumption of RWW-irrigated agricultural products. Therefore, the 
unintended intake of a certain antibiotic and its transformation products (TPs) at trace 
or higher levels and its presence in blood and urine may elicit physiological, and 
potentially unfavorable responses, which may vary according to the exposure 
concentration and the potential simultaneous exposure to a cocktail of pharmaceuticals 
or other classes of pollutants. 

Different tools have been developed for the assessment of the antibiotics-mediated risks 
to human health, with the most important being the estimation of the daily or annual 
exposure of humans to antibiotics and its conversion to medical dose equivalent [8, 48, 
49], the threshold of toxicological concern (TTC) [50],  and the hazard quotient approach 
[51]. Most of these studies considered negligible the risk of consuming RWW-irrigated 
vegetables to human health [9, 48, 51]. However, the current parameters in ABs intake 
risk assessments may have to be readjusted to incorporate new knowledge on ABs 
toxicity and potential hazards. For example, special attention should be drawn to 
antibiotics with structural alert for potential genotoxicity and carcinogenicity (i.e. 
sulfapyridine, sulfamethoxazole and ciprofloxacin), for which the toxicological 
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thresholds are extremely low (2.5 ng kg body weight-1 day-1) [50]. Moreover, risk 
assessment tools underestimate the hazard associate to AB transformation products 
(TPs) produced in the human and animal gut, during the WWTP process, and in the 
plants themselves. TPs are present in all environmental matrices, including crops, and 
they may accumulate in greater concentrations and exert higher toxic effects that the 
parent compounds [9]. 

 When focusing on final consumers, risk assessment studies need to consider the 
cocktail effects of many different ABs and other CECs, and of their TPs, which are 
present in RWW-irrigated products. This complex mixture may produce additive or 
synergistic effects, and it can interact in unknown ways with medications already 
prescribed for the treatment of pre-existing infections [51]. Finally, food processing 
and/or cooking can increase the complexity of the total CEC intake.  

Hazards linked to the presence of ARB and ARGs in food and their relationship with 
RWW-irrigation practices are poorly understood.  The current knowledge cannot 
exclude the possibility that ARB thriving in the environment can be transmitted to 
humans [52, 53], even at very low abundance. This may result in an asymptomatic long-
term colonization, noticed only when for some reason the general health condition is 
compromised [52]. Several limitations prevent the establishment of adequate 
recommendations about maximum admissible threshold values or to define critical 
control points or critical sources for ARB dissemination. It is obvious from the above 
that further field studies need to be performed in order to obtain more solid information 
on the safety of RWW use for irrigation.  

 

5. Risk mitigation strategies 

Risk mitigation strategies should be implemented at various levels, including the 
administrative-legislative level, the policy makers, the scientific community, the farmers, 
and the general public. The obvious first strategy to minimize the contamination of soils 
and crops by partially depurated RWW is to limit the amount of contaminants in the 
source. Consumption of antibiotics is difficult to tackle in human populations, but there 
are many good reasons for limiting it at maximum -- if not, to prevent the onset of ARBs 
in human guts. Sensitive facilities (hospitals, AB-producing factories) should have 
separated specific water treatment systems, to prevent massive contamination of the 
public sewerage [54, 55]. While being extremely significant at the local scale, AB loads 
from hospitals are globally insignificant compared to emissions from households, as a 
result of common therapy practices or short hospitalization periods [56].  The reduction 
of the overuse of antibiotics in human medicine practice along with encouraging local 
authorities to set up and implement collection systems and inactivation of the unused 
and expired medicines, are expected to significantly control the release of antibiotics 
through RWW irrigation. Finally, the use of ABs in animal farming has to be reduced and 
controlled, in line with the modern tendencies in different countries, with the regulation 
of antibiotics usage in the farmers’ level, the reduction of meat consumption, and the 
adoption of users fees to be the most important [57]. Management decisions should also 
consider the benefits of the use of antibiotics in animals, such as improved animal 
welfare, reduction in losses due to morbidity and mortality, and any production 
efficiencies or food safety benefits that may arise from the use of antibiotics. 
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 At the legislative level, the implementation of a European legislative tool on the use of 
RWW, which could determine the wastewater treatment levels and quality criteria, the 
reuse practices and other agricultural practices when RWW is applied for irrigation, 
would facilitate the mitigation of all evolving risks, mediated from the release of 
insufficiently treated RWW and the implementation of improper agricultural practices. 
Preventing the use of RWW for the irrigation of leafy vegetables would mean that 
consumers will be exposed to lower AB levels, as leafy vegetables seem to be the crops 
with the higher for the uptake and bioaccumulation of CECs with high translocation 
potential [58]. The regulated use of RWW through modern irrigation systems, which 
promote water use efficiency and the application of the precise irrigation water at the 
right place and the right time, would mitigate the input of RWW-applied antibiotics to 
the agroecosystems and therefore their presence in RWW-irrigated agricultural 
products.  

Finally, the use of RWW for irrigation in agricultural soil rich in organic matter or clay 
content, rather than sandy soils, could also mitigate the uptake of CEC by crop plants, as 
the bioavailability of CEC for plant uptake is proven to be lower in soils rich in organic 
matter and clay content. To this end, the use of sorbent materials, such as biochar, 
compost or zeolite, in RWW-irrigated soils may also minimize the bioavailability of CECs 
for plant uptake, by their sequestration and inactivation in the sorbents’ surfaces [59]. 

6. Conclusions 

Our position is that the use of RWWs for irrigation of edible crops poses hazards 
associated to their content in ABs, ARBs and ARGs, the magnitude of which needs to be 
evaluated. We propose first to limit contamination in the sources, promoting a rational 
use of ABs and of their disposal both for human and veterinarian treatments. A second 
preventing strategy would be to reduce the use of RWWs in crops that are consumed 
raw, particularly edible leaves (e.g., lettuce) and sweet fruits. Finally, advanced water 
treatment methodologies able to remove CECs from wastewaters would be advisable if 
reclaimed waters are to become a general commodity to irrigate edible crops. The 
contribution of the scientific community towards the implementation of this task is 
crucial, as treatment technologies that would sufficiently eliminate these contaminants 
from effluents at economically-feasible prices, while simultaneously promote the 
circular economy, are still to be developed.  
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