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Abstract 20 

The Arabian Sea in the NW Indian Ocean is a place where two major transform boundaries are 21 

currently active : the Owen Fracture Zone between India and Arabia and the Owen Transform 22 

between India and Somalia. These transform systems result from the fragmentation of the India-23 

Africa Transform boundary, which initiated about 90 Myrs ago, when the India-Seychelles 24 

block separated from Madagascar to move towards Eurasia. Therefore, the geological record of 25 

the Arabian Sea makes it possible to investigate the sensitivity of a transform system to several 26 

major geodynamic changes. 27 

Here we focus on the evolution of the India-Africa transform system during the ~47-90 Ma 28 

interval. We identify the Late Cretaceous (~90-65 Ma) transform plate boundary along Chain 29 

Ridge, in the North Somali Basin. From 65 to ~42-47 Ma, the India-Africa transform is 30 

identified at the Chain Fracture Zone, which crossed both the Owen Basin and the North East 31 

Oman margin. Finally, the transform system jumped to its present-day location in the vicinity of 32 

the Owen Ridge. These shifts of the India-Africa boundary with time provide a consistent 33 

paleogeographic framework for the emplacement of the Masirah Ophiolitic Belt, which 34 

constitutes a case of ophiolite emplaced along a transform boundary. The successive locations of 35 

the India-Africa boundary further highlight the origin of the Owen Basin lithosphere incoming 36 

into the Makran subduction zone. 37 

  38 



1. Introduction 39 

Transform plate boundaries experience episodes of structural reorganization and migration related to 40 

geodynamic changes (e.g., the San Andreas and Queen Charlotte Faults: DeMets and Merkouriev, 41 

2016; the Levant Fault: Smit et al., 2010; the North Anatolian Fault: Hubert-Ferrari et al., 2009; 42 

LePichon et al., 2016; the Saint Paul transform: Maia et al., 2016). In the oceanic domain, several 43 

transform systems have been active over more than 100 Myrs (Bonatti and Crane, 1982; Ligi et al., 44 

2002; Maia et al., 2016; Maia, 2018), which allows us to investigate their behavior in the wake of 45 

major geodynamic changes. 46 

Transform motion between India and Africa started around 90 Ma, when rifting began between 47 

Madagascar and the India-Seychelles block (Bernard and Munschy, 2000; Shuhail et al., 2018). Since 48 

then, Africa has been split into different plates, including Arabia and Somalia, which still have active 49 

transform boundaries with India at the Owen Fracture Zone and the Owen transform, respectively 50 

(Fig. 1; Fournier et al., 2008a, b; 2011; Rodriguez et al., 2011). The India-Africa transform plate 51 

boundary therefore constitutes a good case-study to investigate the response of an oceanic transform 52 

system to geodynamic changes on the 100-Myr scale. The sensitivity of the India-Africa transform 53 

system since the Late Paleogene (~24 Ma) is described in Rodriguez et al. (2011; 2013; 2014a,b; 54 

2016; 2018). However, the geological description of  this transform fault is largely incomplete for the 55 

Late Cretaceous-Paleogene, a period marked by two major global plate reorganization events at 63-73 56 

Ma (Cande and Patriat, 2015) and 42-47 Ma (Matthews et al., 2016).  57 

The aim of the present study is to identify the successive locations and configurations of the India-58 

Africa transform boundary during this time interval, based on geological and free-air gravity maps, as 59 

well as seismic profiles crossing the Owen and the North Somali Basins. The successive shifts of the 60 

India-Africa transform boundary shed light onto 1) the mode of emplacement of the Masirah 61 

Ophiolite, and of the Bela, Muslim Bagh, Zhob, and Waziristan-Khost ophiolites in Pakistan and 62 

Afghanistan (Fig. 1), and on 2) the origin of the oceanic lithosphere presently subducting under 63 

eastern Makran (Pakistan). 64 

 65 

2- Geological background & paleogeographic constraints 66 



2-1- Opening of the Indian Ocean 67 

From the Jurassic to the Cenomanian, two subduction zones drove the fragmentation of 68 

Gondwanaland and the subsequent opening of the Indian Ocean (Norton and Sclater, 1979; Besse and 69 

Courtillot, 1988; Seton et al., 2012; Matthews et al., 2012): the Northern Neotethys Subduction 70 

(nowadays recorded along the Indus-Yarlong-Tsangpo suture zone) and the East Gondwana 71 

Subduction (which was located to the East of Australia and Antarctica Plates). A global plate 72 

reorganization event at 100-105 Ma corresponds to the initiation of a new subduction in the Southern 73 

Neotethys Ocean, while the East Gondwana subduction deactivated (Matthews et al., 2012; Jolivet et 74 

al., 2016). A late consequence of the 100-105 Ma plate reorganization event is the onset of the 75 

northwards migration of India in the Late Cretaceous (84-87 Ma; Fig. 2; Bernard and Munschy, 2000; 76 

Calvès et al., 2011; Matthews et al., 2012; Gibbons et al., 2013; Battacharya and Yateesh, 2015). 77 

India’s northwards drift is disturbed in the Late Maastrichtian, resulting in major changes in 78 

configuration of Indian Ocean’s spreading centers. This change is recorded by the bending of fracture 79 

zones since chron 33 (74 Ma) at the SW Indian Ridge (Cande and Patriat, 2015) and a series of ridge 80 

jumps from the Mascarenes spreading centers to the Gop basin and eventually, the Carlsberg Ridge 81 

since 63 Ma (Royer et al., 2002).  82 

 Seafloor spreading rates at the Carlsberg Ridge peaked at 18 cm.yr
-1 

at 52 Ma, before slowing down 83 

due to the onset of a global plate reorganization event, partly related to collision between India and the 84 

Kohistan-Ladakh arc (Burg, 2011; Cande and Stegman, 2011; Bouilhol et al., 2013; Jagoutz et al., 85 

2015; Cande and Patriat, 2015). However, the role of India-Eurasia collision over global plate 86 

dynamics is still highly debated due to uncertainties in its precise timing (see the various 87 

paleogeographic scenarios proposing ages of collision between 24 and 55 Ma in Patriat and Achache, 88 

1984; Chaubey et al., 2002; Ali et al., 2008; Molnar and Stock, 2009; van Hinsbergen et al., 2012; 89 

Gibbons et al., 2015; Matthews et al., 2015; Buckman et al., 2018). Regardless of the precise timing 90 

of the India-Eurasia collision, the Indian Ocean’s fabric documents a global plate reorganization event 91 

between 47 and 42 Ma, expressed by changes in spreading rates and trends, as well as a major ridge 92 

jump from the Wharton Basin to the South East Indian Ridge (Coffin et al., 2002). 93 

 94 



2-2. The fragmentation of the India-Seychelles-Madagascar block 95 

The series of global plate reorganization events that shaped the Indian Ocean induced several episodes 96 

of breakup within the India-Madagascar block initially separated from Africa and Australia in the Late 97 

Jurassic (Gibbons et al., 2013).  98 

First, a mid-oceanic ridge active during Albian-Senonian isolated the Kabul Block continental sliver 99 

from India (Fig. 2; Tapponnier et al., 1981; Gnos and Perrin, 1997; Gaina et al., 2015).  100 

Second, a Late Cretaceous break-up between Madagascar and the India-Laxmi-Seychelles continental 101 

blocks (Fig. 1) led to the opening of the Mascarene and the East Somali Basins (Fig. 2; Schlich, 1982; 102 

Bernard and Munschy, 2000; Calvès et al., 2011; Gibbons et al., 2013; Gibbons et al., 2015; 103 

Battacharya and Yateesh, 2015; Shuhail et al., 2018).  104 

Third, the break-up between the Seychelles-Laxmi block and India formed the Gop Basin (between 105 

magnetic chrons 31 (68 Ma) and 30 (67 Ma; Minshull et al., 2008; Yateesh et al., 2009; Eagles and 106 

Hoang, 2014). Following the culmination of the Deccan trap volcanism at ~65.5 Ma (Courtillot and 107 

Renne, 2003; Hooper et al., 2010), the onset of the Carlsberg Ridge at chron 28 (63 Ma) marks the full 108 

Laxmi-Seychelles break-up (Dyment, 1998; Royer et al., 2002).  109 

 110 

2-3- Late Cretaceous-Early Paleocene ophiolites in the NW Indian Ocean 111 

Ophiolites are remnants of oceanic lithosphere emplaced over continental lithosphere that are mainly 112 

encountered in fossil convergence zones, but also in contexts such as transform boundaries (Dilek and 113 

Furnes, 2014). To avoid any confusion, we use the term of ‘obduction’ where the ophiolites can be 114 

related to a subduction zone, and the term of ‘ophiolite emplacement’ where the ophiolite cannot be 115 

unambiguously tied to a subduction zone.  116 

The initiation of an intra-oceanic subduction  ~100-105 Ma in the southern part of the Neotethys 117 

Ocean led to obduction north of Arabia and India during the Campanian (Hacker et al., 1996; Agard et 118 

al., 2007, 2011; Hébert et al., 2012; Morris et al., 2017; Nicolas and Boudier, 2017; Guilmette et al., 119 

2018). In the surroundings of the Arabian Sea, the related ophiolites are the Semail in Oman (Searle 120 

and Cox, 1999; Breton et al., 2004) and Zhob-Waziristan-Khost ophiolites in NE Pakistan 121 

(Cassaigneau, 1979; Badshah et al., 2000; Sarwar, 1992;  Khan et al., 2007).  122 



In south east Pakistan, the Bela and Muslim Bagh ophiolites record a different timing of subduction 123 

initiation, ranging between 65-70 Ma from the dating of metamorphic soles (Allemann, 1979; 124 

Mahmood et al., 1995; Gnos et al., 1998;  Khan et al., 2007), and 80 Ma from dating of Supra-125 

Subduction Zone lavas (Kakar et al., 2014). These ophiolites are derived from the basin extending 126 

between India and the Kabul Block.  127 

The Masirah Ophiolite running along eastern Oman (Fig. 1) has a different paleogeographic origin. 128 

The oceanic crust exposed in the Masirah Ophiolite was formed at a latitude of ~30-50°S (Gnos and 129 

Perrin, 1997) in Tithonian-Berriasian times (~140-145 Ma; Peters and Mercolli, 1998). These 130 

ophiolites are therefore remnants of the Indian Ocean formed during the early stages of Gondwanaland 131 

break-up. The oldest Arabia-derived sediments (detrital Fayah formation) date back to Coniacian at 132 

Masirah (Immenhauser, 1996), indicating that the Masirah ophiolite was a part of India’s lithosphere 133 

prior to its obduction (Gnos et al., 1997). A particularity of the Masirah Ophiolite is the lack of 134 

metamorphic sole and hence, possibly no relationship to subduction (Wakabayashi and Dilek, 2003; 135 

Agard et al., 2016). The age of emplacement is defined from stratigraphic and structural constraints 136 

(Immenhauser, 1996; Schreurs and Immenhauser, 1999; Immenhauser et al., 2000). Late 137 

Maastrichtian folds affecting deep-sea sediments in the Batain plain record the first step of 138 

emplacement, whereas unconformable, Priabonian shallow water carbonates seal the ophiolite.  139 

 140 

2-4- The Oman abyssal plain and the Owen Basin 141 

The oceanic lithosphere incoming into the present-day Makran Subduction Zone is 70 to 100 Myrs-old 142 

according to heat flow measurements (Hutchison et al., 1981), similar to ophiolites exposed at Semail. 143 

As a result, the lithosphere of the Oman abyssal plain is generally considered as a remnant of the 144 

Neotethys Ocean (McCall, 1997; Ravaut et al., 1997; 1998; Ellouz-Zimmerman et al., 2007; Barrier 145 

and Vrielynck, 2008; Frizon de Lamotte et al., 2011; Burg, 2018). 146 

However, offshore eastern Oman, most of the Owen basin basement is of Paleogene age (Fig. 3; 147 

Mountain and Prell, 1990; Rodriguez et al., 2016). Considering a Neotethys origin for the entire Oman 148 

abyssal plain would imply that the Indian Ocean Tithonian lithosphere facing Arabia during the Late 149 

Maastrichtian emplacement of the Masirah ophiolites (Peters and Mercolli, 1998) must have been 150 



subducted between the Owen Basin and the Oman abyssal plain. Such a subduction zone is not 151 

documented, however, questioning the fate of the Tithonian lithosphere now represented by the 152 

Masirah ophiolite, and the origin of the Late Cretaceous lithosphere in the eastern part of the Oman 153 

abyssal plain (Rodriguez et al., 2016).  154 

In addition, several features of the Oman abyssal plain remain enigmatic, including the Sonne 155 

lineament and the Qalhat Seamount-Little Murray Ridge (Fig. 3). Although the NW-SE trending 156 

Sonne lineament imaged on the free-air gravity map (Fig. 3) has been first interpreted as a still active 157 

strike-slip fault (Kukowski et al., 2001), no trace of activity has been observed on seismic lines 158 

acquired since (Mouchot, 2009). The Qalhat Seamount and Little Murray Ridge constitute a chain of 159 

submarine volcanoes of Late Cretaceous age (Edwards et al., 2000; Mouchot, 2009) whose 160 

paleogeographic origin remains unclear. 161 

 162 

3- Materials and Methods 163 

3-1- Geological, free-air gravity maps and plate reconstructions 164 

The free-air gravity maps (Figs. 3, 4) have been designed using the DTU 13 database filtered for short 165 

wavelengths (Andersen et al., 2013). Offshore, a few multibeam tracks have been acquired in the area 166 

of the Chain Ridge (Fig. 5) during transits of the AOC and VARUNA-CARLMAG cruises onboard 167 

the BHO Beautemps-Beaupré operated by the French navy in 2006 and 2019. The structure of the 168 

strike-slip fault system crossing the Huqf desert in Oman (Fig. 6) is mapped after geological maps of 169 

Oman at 1: 250 000 (sheets of Duqm, Madreka, Khalouf by Platel et al., 1992) and maps built from 170 

seismic data (Filbrandt et al., 2006). The paleogeographic reconstructions of India and Africa 171 

continents are drawn after the Gplates files provided in Matthews et al. (2016). The successive 172 

locations of the India-Africa plate boundary identified hereafter complete these reconstructions.  173 

 174 

3-2- Seismic reflection  175 

3-2-1. Sources of the datasets 176 

For the Owen Basin, we use the seismic dataset from the OWEN 2 survey (Figs. 7 to 10; Rodriguez et 177 

al., 2016), acquired in 2012 onboard the R/V Beautemps-Beaupré using a high-speed (10 knots) 178 



seismic device. The source consists in two GI air-guns (one 105/105 c.i. and one 45/45 c.i.) fired every 179 

10 seconds at 160 bars in harmonic mode, resulting in frequencies ranging from 15 to 120 Hz. The 180 

receiver is a 24-channel, 300-m-long seismic streamer, allowing a common mid-point spacing of 6.25 181 

m and a sub-surface penetration of about 2 s two-way travel time. The standard processing consisted 182 

of geometry setting, water-velocity normal move-out, stacking, water-velocity f-k domain post-stack 183 

time migration, bandpass filtering and automatic gain control.  184 

New interpretations for seismic lines crossing the North Somali Basin (Fig. 4) and the Batain plain in 185 

NE Oman (Fig. 11) are based on the dataset published in Bunce and Molnar (1977) and Beauchamp et 186 

al. (1995), respectively.  187 

 188 

3-2-2. Stratigraphy in the Owen Basin 189 

Seismic profiles have been tied to drilling sites available in the Arabian Sea from DSDP and ODP legs 190 

(Shipboard Scientific Party, 1974a, 1974b, 1989) and stratigraphic details can be found in Rodriguez 191 

et al. (2016). Two key seismic horizons have been identified on the seismic lines (Figs.  7 to 10). The 192 

cross-section of the Oman margin provided in Figure 7 summarizes the stratigraphic framework of the 193 

area. A first key reflector corresponds to an angular unconformity recording the end of the uplift of 194 

marginal ridges along the Oman margin in the Late Eocene. This unconformity is only recognized in 195 

the western part of the Owen Basin, and becomes concordant to the east. A second Late Oligocene-196 

Early Miocene unconformity is observed across the entire Owen Basin, and reflects the diachronous 197 

flooding of the Owen Basin by the Indus turbiditic system (Rodriguez et al., 2016). Finally, the top of 198 

the Masirah Ophiolites, expressed by a chaotic and highly reflective body on seismic lines (Fig. 7, 11), 199 

is considered as Late Maastrichtian, in agreement with onland studies (Immenhauser et al., 1996; 200 

Immenhauser et al., 2000). 201 

 202 

4- Configurations of the India-Africa plate boundary during the Late Cretaceous-203 

Eocene 204 

4-1- Configuration of the Late Cretaceous India-Africa plate boundary  205 



In the northern Somali Basin, on the western edge of the NE-SW trending Chain Ridge, a large sub-206 

vertical fault (offset over ~2 s TWT) is imaged on the seismic profile (Fig. 4; Bunce and Molnar, 207 

1977). The fault lineament is well-expressed on the free-air gravity field, and partly mapped on the 208 

multibeam coverage of Chain Ridge (Fig. 5). This fault juxtaposes two different oceanic lithospheres. 209 

On the eastern flank of Chain Ridge, gabbros dredged at DSDP Site 235 indicate a 90 Myrs-old 210 

seafloor (Shipboard Scientific Party, 1974a), i.e., a piece of the East Somali Basin. For the seafloor 211 

west of Chain Ridge, magnetic anomalies document a Late Jurassic to Early Cretaceous age (160 to 212 

130 Ma; Cochran, 1988; Gaina et al., 2015). The western part of the northern Somali Basin is 213 

therefore a remnant of the first stage of opening of the Indian Ocean. The juxtaposition of oceanic 214 

lithospheres of different ages is explained by considering the fault observed west of Chain Ridge as 215 

the fossil Late Cretaceous India-Africa transform plate boundary (Chain Ridge Transform, Fig. 4).  216 

Evidence for Late Cretaceous (Santonian-Campanian) left-lateral strike-slip tectonics is further 217 

identified in Oman (Fig. 6). Three-dimensional seismic reflection data document a distributed system 218 

of conjugate strike-slip faults, which display typical flower structures, previously mapped by Filbrandt 219 

et al. (2006). Left-lateral faults are also widely observed in the Huqf desert (Oman), cutting through 220 

outcrops of Neoproterozoic remnants of the Pan-African orogeny, at the Khufai, Buah, Shuram, 221 

Mukhaibah and Haushi anticlines (Fig. 6; Shackleton and Ries, 1990; Allen, 2007). This set of 222 

observations defines the NW-SE trending transtensive Haushi-Nafun-Maradi Fault System (HNMFS 223 

hereafter), mapped in Figs. 3 and 6. The HNMFS was active only during the deposition of the Fiqa 224 

formation in Early Maastrichtian (Filbrandt et al., 2006) and also locally accompanied by volcanic 225 

activity (Glennie et al., 1974; Wyns et al., 1992). 226 

Despite a poor sedimentary record due to low sedimentation rates during Late Maastrichtian-Early 227 

Paleogene, the seismic lines crossing the western part of the Owen Basin at various latitudes document 228 

some sedimentary layers beneath the Late Maastrichtian horizon sealing the Masirah ophiolites (Figs. 229 

8-10). These Late Maastrichtian-Early Paleocene layers are trapped in half-graben structures and 230 

display a fanning configuration (Figs. 8-10), which reflects tectonic activity. The low density of 231 

available seismic lines does not allow us to map accurately these grabens and their precise relationship 232 



with the HNMFS, but they are likely coeval with the tectonic deformation observed along the 233 

HNMFS. 234 

 235 

4-2- Configuration of the Paleocene-Eocene India-Africa plate boundary  236 

In the North Somali Basin, the Paleocene-Eocene India Africa plate boundary is expressed as the 237 

Chain Fracture Zone (Figs. 1, 4), which bounds the seafloor accreted at the Carlsberg Ridge since 63 238 

Ma (Royer et al., 2002; Chaubey et al., 2002). However, the trace of the India-Africa transform 239 

boundary has not been clearly identified offshore Arabia in the Owen Basin, due to the complex 240 

history of the area related to various episodes of margin reactivation (Rodriguez et al., 2014, 2016). In 241 

this section we explore the remnants of the Paleocene-Eocene India Africa plate boundary preserved 242 

along the East Oman Margin and the Owen Basin.  243 

Eastern Oman margin -Masirah : 244 

The free-air gravity map of the Oman margin (Fig. 3) documents a series of en-échelon marginal 245 

ridges within a ~90-km-wide, N30°E-trending corridor running from Sawqirah to Ras Al Hadd (over 246 

~600 km). The seismic line displayed in Fig. 11 (from Beauchamp et al., 1995) crosses the Masirah 247 

Ophiolite onshore, in one of the few places where the initial structure of the ophiolite is still preserved. 248 

There, the Masirah Ophiolites display a double vergent thrust stack of numerous ophiolite sheets, 249 

according to our revised interpretation (Fig. 11; Beauchamp et al., 1995). The cross section and the 250 

profiles displayed in Fig 7 show that elsewhere along the en-échelon marginal ridge system, the 251 

offshore segments of the Masirah Ophiolites are scattered. Vertical fault offsets (Fig. 7) indicate that 252 

the initial Masirah Ophiolite has been highly dismembered during the formation (i.e., uplift and 253 

shearing) of the en-échelon marginal ridge system (Fig. 3).  254 

The stratigraphy of the eastern Oman margin documents the period of formation of this system of en-255 

échelon marginal ridges. Onland, the Masirah ophiolite overlies a Late Maastrichtian, deep-sea detrital 256 

formation (Fayah Fm; Immenhauser, 1996), indicating that the marginal ridges did not exist at that 257 

time. On the other hand, the Priabonian shallow-water carbonates of the Aydim formation and laterites 258 



cover both the ophiolites and the marginal ridges (Immenhauser, 1996; Shipboard Scientific Party, 259 

1989). The Aydim formation is coeval with a major angular unconformity along the edges of the 260 

marginal ridges in the Owen Basin, marking the end of the marginal ridge uplift (Figure 3, 7; 261 

Rodriguez et al., 2016). The uplift of the en-échelon system of marginal ridges therefore lasted over 262 

more than 25 Myrs, from 65-70 Ma up to ~40 Ma. This period is coeval with numerous geological 263 

events identified along the east Oman margin, including alkaline volcanism in the Batain and Haushi-264 

Huqf areas (Gnos and Peters, 2003), and a reorganization of detrital sedimentary systems in SE Oman 265 

consistent with surface uplift (Filbrandt et al., 2006; Robinet et al., 2013).  266 

Owen Basin: 267 

The seismic lines displayed in Figs. 8 to 10 document the structural expression of the Paleogene India-268 

Africa plate boundary within the Owen Basin, at various latitudes. In all these lines, we map the area 269 

where the indicators of pre-Late Maastrichtian tectonics vanish within the Owen Basin (Figs. 8-10). 270 

The area bounding the Late Maastrichtian basins displays a V-shape typical of transform valleys, with 271 

flanks characterized by a ~30° slope, shaped by erosion due to bottom current and mass wasting 272 

(frequently observed on figs. 8-10). Due to the low sedimentation rates during the Paleogene, the 273 

preservation of this extinct transform structure in the geological record is poor. 274 

 The location of the Chain Fracture Zone according to reconstructions by Royer et al. (2002) coincides 275 

with the eastern boundary of the pre-Maastrichtian basins identified on the seismic lines (Figs. 8-10). 276 

In reconstructions, the Chain Fracture Zone follows the trend of the northeast Oman margin north of 277 

20°N (Fig. 3), where its steepness is compatible with a transform margin. The eastern part of the Owen 278 

Basin is Paleogene in age, consistent with basement ages obtained  at ODP drilling sites along the 279 

Owen Ridge (Shipboard Scientific Party, 1974b, 1989). The composite age of the basement may 280 

therefore be explained by a major transform boundary crossing the Owen Basin (Fig. 3, Rodriguez et 281 

al., 2016).  282 

 283 

5- Discussion  284 



Identification or reappraisal of these structural relationships highlight a major change in the 285 

configuration of the India-Africa boundary around ~65-70 Ma (i.e., coeval with the global plate 286 

reorganization event; Cande and Patriat, 2015). Data indicate that the India-Africa plate boundary 287 

migrated from the Chain Ridge Transform to the Chain Fracture Zone (Fig. 12). Here we address 288 

critical points of the structural evolution of the India-Africa plate boundary raised by the 289 

reconstruction of figure 12, as well as the paleogeographic implications of the transform plate 290 

boundary migration.  291 

5-1-Structural evolution of the India-Africa plate boundary during the Late Cretaceous-Eocene  292 

For the Late Cretaceous India-Africa plate boundary, our reconstruction highlights a lack of direct 293 

connection between the Chain Ridge transform offshore Somalia and the HNMFS in Oman (Fig.  12). 294 

While the HNMFS could be a distributed strike-slip system related to the partitioning of India-Africa 295 

motion along the offshore Chain Ridge Transform ( Filbrandt et al., 2006), its trend may reflect older 296 

Neoproterozoic structures (Allen, 2007) reactivated in response to the complex Late Cretaceous stress 297 

field, influenced by both the obduction of the Semail to the north and transform tectonics to the east.  298 

For the Paleocene-Middle Eocene India-Africa plate boundary, the development of the en-échelon 299 

system of marginal ridges constitutes the clearest record of transform fault activity. The en-échelon 300 

system of marginal ridges may be interpreted as the result of a sheared transform margin (Fig. 13), in a 301 

transpressive, partitioned left-lateral strike-slip system of deformation related to the Chain Fracture 302 

Zone between ~65-70 Ma and ~40-45 Ma. Strain partitioning may explain the development of the 303 

marginal ridges along the southern part of the Oman margin, which was located more than 100 km 304 

away from the Chain Fracture Zone. In this framework, the en-échelon system of marginal ridges 305 

results from the reactivation of Tithonian passive margin structures, and probably structures 306 

reactivated during the activity of the HNMFS (Fig. 13; see below).  307 

Trehu et al. (2015) demonstrated for a similar marginal ridge at the Queen Charlotte Transform 308 

(Carlson et al., 1988; Barrie et al., 2013; Rhor 2015)  that such a configuration is typical of a slight 309 

(<15°) component of oblique convergence inducing transpression.   310 

 311 



5-2- Emplacement of the Masirah Ophiolite along the east Oman transform margin 312 

These results allow to reappraise the emplacement of the Masirah ophiolite of Jurassic age (Fig. 13). 313 

The story begins during the Late Maastrichtian, coeval with the migration of the India-Africa plate 314 

boundary at ~65-70 Ma from Chain Ridge to the Chain Fracture Zone. Paleogeographic 315 

reconstructions show that the Chain Fracture Zone must have crossed the Owen basin and the 316 

northeastern Oman margin in the area of the Batain plain (Royer et al., 2002; Fournier et al., 2010; 317 

Rodriguez et al., 2016). There, the Masirah Ophiolite was a double vergent structure (Fig. 11) formed 318 

along a transpressive segment of the Chain Fracture Zone, or a remnant of Chain Ridge passing by the 319 

Chain Fracture Zone. The Masirah Ophiolite is uplifted during the Paleogene, when the en-échelon 320 

marginal ridges of the Oman transform margin developed  (Fig. 10). During the Paleocene-Eocene, 321 

distributed left-lateral shear and uplift of the marginal ridges promoted the dismembering of the 322 

ophiolite fragments initially located in the Batain plain (Fig. 13). Dismembering of the ophiolites 323 

within the shear zone would explain why the double vergent structure identified at the Batain, as well 324 

as the fold system in front of the ophiolites (Schreurs and Immenhauser, 1999), are no longer observed 325 

to the south at Sawqirah or Masirah.  326 

The initial double-vergent structure proposed for the Masirah ophiolites along the Chain Fracture Zone 327 

is very similar to many transverse ridges observed worldwide, such as the Davie Ridge offshore 328 

Mozambique (Mahanjane, 2014), the St Paul transverse ridge in the Atlantic (Maia et al., 2016) or the 329 

MacQuarie Ridge at the Australia-Pacific plate boundary (Meckel et al., 2003). The fact that double 330 

vergent structures may be a favorable setting for the initiation of ophiolite emplacement has already 331 

been proposed for the Meratus ophiolite in SE Borneo (Pubellier et al., 1999) along an oblique 332 

convergent plate boundary.  333 

5-3-Paleogeographic implications  334 

Figure 14 presents paleogeographic reconstructions, which emphasize the successive locations of the 335 

India-Africa boundary and the related transfer of fragments of oceanic lithosphere from one plate to 336 

another. The migration of the India-Africa plate boundary from the Chain Ridge to the Chain Fracture 337 

Zone around 65-70 Ma induced a transfer of a sliver of Late Cretaceous oceanic lithosphere from the 338 



East Somali Basin to Africa, explaining the age contrast with the western part of the North Somali 339 

Basin (Fig. 14c). The Late Cretaceous lithosphere from the East Somali Basin was displaced 340 

northwards along the Chain Fracture Zone, while seafloor was formed at Carlsberg Ridge (Fig. 14d). 341 

The plate boundary then jumped to its present-day location along the Owen Ridge, during the Late 342 

Eocene-Oligocene (Rodriguez et al., 2016), probably as a consequence of India-Eurasia collision and 343 

the global plate reorganization event recorded around 47 Ma (Müller et al., 2016). This migration of 344 

the India-Africa plate boundary lead to another episode of transfer to Africa of a piece of the oceanic 345 

lithosphere accreted at the Carlsberg Ridge (Fig. 14e; Rodriguez et al., 2016). In this reconstruction, 346 

the composite origin of the Owen Basin is explained by the juxtaposition of remnants of a Tithonian 347 

passive margin to the west, slices of a Tithonian proto-Indian Ocean lithosphere preserved along the 348 

Masirah ophiolite, and Paleogene lithosphere formed at the Carlsberg Ridge to the east (Fig. 14). 349 

Therefore, the Late Cretaceous lithosphere subducting in front of the Makran has two different 350 

paleogeographic origins (Fig. 14): the Neotethys west of the Chain Fracture Zone and the East Somali 351 

Basin to the east (east of ~61°E). 352 

This scenario also provides an explanation for the paleogeography of the Tithonian lithosphere at the 353 

origin of the Masirah ophiolite, that does not require a subduction zone between the Owen Basin and 354 

the Oman abyssal plain (Fig. 14). The East Somali Basin spreading center formed within the Tithonian 355 

oceanic lithosphere at the origin of the ophiolites, or at the tip of the Lower Cretaceous basin located 356 

between India and the Kabul block (Fig. 14). During the Late Cretaceous, the Tithonian lithosphere 357 

was progressively displaced to the north along the Chain Ridge Transform, while the East Somali and 358 

Mascarenes Basins opened to the south (the spreading center being at the tip of the Chain Ridge 359 

Transform). In the Late Maastrichtian, when the Masirah ophiolite emplacement started (unrelated to 360 

any subduction), the Tithonian lithosphere had reached the latitude of Oman (Fig. 12,14). After the 361 

Masirah obduction, the remaining Tithonian lithosphere located east of the Chain Fracture Zone was 362 

subducted beneath eastern Makran (Figs. 14c,d). In detail, this reconstruction suggests that the Sonne 363 

lineament, Qalhat seamount and Little Murray Ridge (Fig. 3) are parts of the fossil ocean-ocean 364 

transition between the East Somali Basin and the Carlsberg seafloor, when the Carlsberg Ridge 365 

formed in the wake of the Deccan plume (Dyment, 1998).  366 



With regards to the eastern Pakistan ophiolites, the India-Africa plate boundary was located west of 367 

the Kabul block in the Late Maastrichtian according to our reconstruction (Fig. 14), making it difficult 368 

to consider these ophiolite sequences as remnants of an India-Africa transform, unless a complex 369 

stepover is involved. Instead, during the Paleogene-Early Eocene, the trend of the Chain Fracture Zone 370 

allows a connection with the Sistan Ocean (Fig. 14; Treolar and Izatt, 1993; McCall, 1997). More 371 

constraints from the surroundings of the Kabul block are needed to further document this episode of 372 

transform tectonics.  373 

 374 

5-4- Migration of the India-Africa plate boundary at ~74-63 Ma as part of a global plate 375 

reorganization event? 376 

The reorganization of the India-Africa plate boundary identified around 74-63 Ma may result from a 377 

major geodynamic reorganization event affecting the entire Indian Ocean. The driver of this plate 378 

reorganization event is a matter of debate. The Indonesian Slab reached the Lower Mantle during this 379 

period, which affects the slab pull force (Faccenna et al., 2013). The volcanic activity of the Deccan-380 

Réunion Plume peaked at 65 Ma, but earliest traces of Deccan type volcanism are encountered around 381 

110-120 Ma (Mahoney et al., 2002). Both slab penetration into the lower mantle and plume-push may 382 

affect oceanic spreading patterns at mid-oceanic ridges and global plate dynamics (Cande et al., 2011; 383 

van Hinsbergen et al., 2011; Faccenna et al., 2013), even if the relative contribution of each process to 384 

force balance remains a matter of debate (Anderson, 2001; Bercovici, 2003; Cande and Stegman, 385 

2011). However, these processes do not explain the abrupt change in plate boundary configuration.  386 

Two punctual geological events (duration <5 myrs) may have contributed to the plate boundary 387 

reorganization event by affecting subduction dynamics (boundary forces): 388 

- deactivation of the subduction at the origin of the Bela and Muslim-Bagh ophiolites and the Masirah 389 

Slab in tomography (Gaina et al., 2015); 390 

- collision of the Woyla Arc (Wajzer et al., 1991; Gibbons et al., 2015) and Burma Block by the Late 391 

Maastrichtian (Socquet and Pubellier, 2005) or the Early Tertiary (Searle et al., 2007) with 392 

southeastern Eurasia. 393 



While collision of continental terranes and subduction deactivation events are common phenomenon 394 

in plate tectonics, their relationship to transform boundary migration events is yet unclear (Maia, 395 

2018). Our reconstructions nevertheless provide first order constraints on the context in which the 396 

migration of the India-Africa transform boundary occurred and a way to test the sensitivity of 397 

transform boundary to geodynamic changes. At ~70 Ma, spreading and convergence rates were high 398 

(>10 cm.yr
-1

), the age contrast between the adjacent oceanic lithospheres at the Chain Ridge transform 399 

was > 30 Myrs,  and the Chain Ridge transform offset was at least of 500-km (Figs. 12, 14). We 400 

propose that the integrated strength of the Chain Ridge transform may have been too high at the time 401 

of this plate reorganization to further accommodate the relative motion of India-Africa, hence resulting 402 

in the relocation of the transform boundary in a weaker area, at the Chain Fracture Zone.  403 

 404 

6- Conclusions 405 

 406 

Our reconstructions show that during the Late Cretaceous-Late Eocene interval, the India-Africa 407 

transform boundary migrated in response to broader geodynamic events. The Late Maastrichtian 408 

migration from the Chain Ridge Transform to the Chain Fracture Zone records the plate reorganization 409 

event at 74-63 Ma (Cande and Stegman, 2011). The Late Eocene migration from the Chain Fracture to 410 

the present-day location along the Owen Ridge records the well-defined global plate reorganization 411 

event at ~42-47 Ma (Muller et al., 2016). The successive episodes of migration of the India-Africa 412 

plate boundary since the Late Cretaceous contributed to the transfer of oceanic slivers between both 413 

plates. Our updated paleogeographic framework suggests that the lithosphere presently subducting 414 

beneath eastern Makran originates from the East Somali Basin in the Indian Ocean, instead of the 415 

Neotethys as previously proposed. 416 

This study also highlights how ophiolites may be emplaced along a transform boundary as a 417 

consequence of a transform migration event. Although the proposed scenario fits with all available 418 

geological constraints, a denser grid of seismic reflection profiles along the east Oman margin is 419 

needed to confirm and describe more precisely the mode of development of the en-échelon marginal 420 

ridges, and the related uplift and dismembering of the Masirah Ophiolitic Belt.  421 
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 428 

Figure captions:  429 

Figure 1: Structural map of the north western Indian Ocean, showing the currently active plate 430 

boundaries, the distribution of the oceanic basins, as well as the distribution of the main ophiolites.  431 

Figure 2: General paleogeographic reconstructions of the Indian Ocean from Early Cretaceous to 432 

Early Tertiary, proposed by Gaina et al. (2015), and main geological events during the history of the 433 

Indian Ocean. KB: Kabul Block; Masc. : Mascarenes; Sey: Seychelles; GPRE : Global Plate 434 

Reorganization Events.  435 

Figure 3: a) Free air gravity map of the Owen Basin offshore Oman and the Arabian Sea (filtered for 436 

short wavelengths from DTU 13 database; Andersen et al., 2013) and b) its interpretation, 437 

with an emphasis on the composite age of the basement of the Owen Basin. HNMFS: Haushi-438 

Nafun-Maradi Fault System.  439 

Figure 4: a) Free air gravity map of the North Somali Basin (filtered for short wavelengths from DTU 440 

13 database; Andersen et al., 2013) and b) its interpretation, with an emphasis on the composite age of 441 

the basement of the North Somali Basin. c) New interpretation of a vintage seismic line from Bunce 442 

and Molnar (1977) highlighting a major fossil transform fault at the western edge of Chain Ridge, 443 

interpreted as a remnant of the Late Cretaceous India-Africa plate boundary.  444 

Figure 5 : Multibeam map of the northern termination of the Chain Ridge and Chain Fracture Zone 445 

Figure 6: a) Map of the Haushi Nafun Maradi Fault system; b) Simplified geological sketchmap of the 446 

Huqf desert highlighting strike-slip offsets related to the Haushi-Nafun fault, after Platel et al., 1992; 447 

c) line drawing of a seismic profile crossing the Maradi fault, highlighting a negative flower structure, 448 

redrawn from Filbrandt et al., 2006.  449 

Figure 7: a) Seismic line from the OWEN 2 cruise (Rodriguez et al., 2016) crossing the western side 450 

of the Sawqirah Ridge, where the Masirah ophiolites are tilted westwards, in direction of the Oman 451 

platform; b) Seismic line from the OWEN 2 cruise (Rodriguez et al., 2016) crossing the eastern edge 452 

of the Sawqirah Ridge, showing a piece of the Masirah Ophiolite lying in the Owen Basin, and the 453 

unconformity corresponding to the end of the formation of the marginal ridges. c) Cross section of the 454 



Oman margin at the latitude of the Sawqirah Ridge (modified from Rodriguez et al., 2016). Three 455 

main angular unconformities can be tracked across the Owen Basin.  456 

 457 

Figure 8: Seismic lines from the Owen-2 cruise (Rodriguez et al., 2016) crossing the Owen Basin. 458 

Figure 9 : Seismic lines from the Owen-2 cruise (Rodriguez et al., 2016) crossing the Owen Basin. 459 

Figure 10 : Seismic lines from the Owen-2 cruise (Rodriguez et al., 2016) crossing the Owen Basin. 460 

These seismic lines highlight the presence of pre-Maastrichtian fanning configurations lying above the 461 

basement of the western part of the Owen Basin, and their absence in its eastern part. The boundary of 462 

the pre-Maastrichtian fanning configurations roughly coincides with the expected location of the fossil 463 

Chain Fracture Zone (according to reconstructions by Royer et al., 2002).  464 

Figure 11: a) Seismic profile crossing the Masirah ophiolite in the Batain plain (from Beauchamp et 465 

al., 1995) and b) its revised interpretation, highlighting the positive flower structure of the Masirah 466 

Ophiolites. See fig. 3 for location.  467 

Figure 12: Reconstruction of the configuration of the India-Africa plate Boundary at 65-70 Ma and 60 468 

Ma, highlighting the major migration of the transform system occurring at that time. 469 

Figure 13: Simplified reconstruction of the mode of emplacement of the Masirah ophiolites along 470 

with the development of the en-échelon marginal ridge system offshore Oman. Note that the 471 

emplacement of the ophiolites last over more than 25 Myrs and does not imply any subduction zone.  472 

Figure 14: Revised paleogeographic reconstructions of the northwestern Indian Ocean, from 90 Ma to 473 

present-day, modified after Matthews et al. (2016). These reconstructions highlight the successive 474 

locations of the India-Africa plate boundary: the Chain Ridge Transform from 90 to 65 Ma, the Chain 475 

Fracture Zone from 65 to 47 Ma, in the vicinity of the Owen Ridge since the Oligocene. The main 476 

paleogeographic implications are the East Somali Basin origin of the lithosphere subducting beneath 477 

the eastern Makran, and the disconnection between the India-Africa transform boundary and the 478 

eastern Pakistan ophiolites.  479 

 480 
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