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Abstract

A Coarse Mesh Condensation Multiscale Method (CMCM) is proposed to solve large heterogeneous linear struc-
tures without scale separation assumption. The technique aims to approximate the full field solution in heterogeneous
structures by performing parallel calculations on subdomains. In the linear case, treated in this paper, direct linear
relationships can be established between a reduced number of parameters describing Dirichlet boundary conditions
on the subdomains boundaries and the degrees of freedom of a coarse mesh. The problem associated with the coarse
mesh can be solved in one iteration and allows reconstructing the fine mesh solution in all subdomains. The accuracy
of the method is analyzed through benchmarks involving subdomains crossed by the interfaces. Appplications to large
industrial finite element applications are presented, including one involving around 1.3 billion degrees of freedom.

Keywords: Multiscale methods, composites, parallel calculations, CMCM

1. Introduction

Composite materials constitute a mature technology in many industrial fields including the aircraft and automotive
industries. With the constant increase in computer performance, numerical methods play a crucial role in the study
of heterogeneous structures, including those made of composites. They allow the analysis of these materials without
performing expensive laboratory experiments. In some situations, it may be useful to solve the structural problem
with a full description of all heterogeneities. For example when the characteristic size of the heterogeneities is not
much smaller than the dimensions of the sample, classical homogenization methods fail to describe the local fields
and up to a certain precision even the global response. However, solving even small samples with all heterogeneities
in complex materials, like woven composites, is a challenge as the corresponding finite element problem can involve
billions of degrees of freedom.

One possible strategy for tackling this issue is parallel computing based on domain decomposition methods. In
the past years, many techniques have been proposed, including Finite Element Tearing and Interconnecting (FETI)
[1] and Balanced Domain Decomposition (BDD) [2], where the BDD method is referred to as a primal approach and
FETI as a dual approach. The above methods are based on the decomposition of the structure into nonoverlapping sub-
domains. FETI and BDD were initially developed for homogeneous structures, and later extended to heterogeneous
structures using preconditioners [3] and initialization [4]. However when dealing with structures containing large het-
erogeneities and high contrast of phase properties, these methods often exhibit poor performance. More specifically,
when the subdomain interface intersects the heterogeneities, the interface problem lacks an efficient preconditioner.
Several techniques have been proposed to alleviate these issues such as FETI-Geneo (FETI-generalized eigenvalues
in the overlaps) [5], multipreconditioned FETI method (MPFETI) [6] or MultiPreconditioned algorithm (AMPFETI)

∗Corresponding author: J. Yvonnet, Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5
bd Descartes, 77454 Marne la Vallée, France. E-mail: julien.yvonnet@univ-paris-est.fr

Preprint submitted to Computer Methods in Applied Mechanics and Engineering January 23, 2020



[7, 8]. Another technique, the Large Time Increment (LATIN) method [9, 10], is a non-incremental iterative computa-
tional strategy where local (nonlinear) problems solutions in subdomains are updated through a global linear problem
through interfaces conditions and an appropriate search direction to ensure the global convergence.

Other parallel strategies have been proposed, such as the algebraic multigrid method (AMG) [11, 12, 13, 14],
developed to solve efficiently large linear system of equations. Such approach is a purely algebraic matrix-based
approach used to deal with large sparse linear systems and can be considered as a solver to various finite element
discretization problems without any geometrical or physical background. The main principle of AMG lies in the
coarsening of a given linear system of equations using a coarse grid in order to reduce the problem size.

Multiscale methods constitute another class of approaches to solve the fully detailed heterogeneous structures.
For example, in the method proposed by by Zohdi et al. (see e.g. [15], [16]), the concepts of homogenization are
used in an iterative way. Each iteration consists in solving the homogeneous macro structure, using the effective
elasticity tensor, which is computed from substructure problems. The macro strain solution is then applied to the
substructure interfaces as Dirichlet boundary conditions and an interface corrector is used to minimize the interface
error. Other multiscale methods or subdomain methods with appropriate reduction have been proposed, such as
e.g. in [17, 18, 19, 20]. Another approach which has similarities with the method proposed in this work is the
Multiscale Finite Element method [21, 22], where shape functions obtained from fine scale calculations in each coarse
mesh elements substitute the polynomial shape functions. However, the treatments to reduce discontinuities across
interfaces induce discontinuities in the displacement field in the reconstructed solution at the fine scale.

Another approach is the direct use of homogenization methods to include the effects of strain gradient in the case
where scales are not separated. This situation occurs when the wavelength associated with the strain and stress fields
at the micro scale is of the same order of magnitude as the wavelength of the prescribed loads or the characteristic di-
mensions of the structure. In such situations, first order computational homogenization (see e.g. [23]) fails to capture
boundary effects or localized fields near defects. For these purposes, strain gradient computational homogenization
approaches have been proposed, including Cosserat-type generalized continuum media [24, 25], second-order com-
putational homogenization [26, 27, 28, 29], asymptotic expansion-based approaches [30], extended computational
homogenization with more refined strain gradient fields [31] or nonlocal homogenization methods [32].

In this paper, we introduce a new multiscale method called Coarse Mesh Condensation Multiscale Method (CMCM),
which shares analogies with the FE2 method but with aim to solve directly a heterogeneous structure. The FE2 method
was originally proposed in [33, 34, 24]. In this method, the main idea is to solve a heterogeneous nonlinear struc-
ture problem by means of a macroscopic mesh, whose strain state defines boundary conditions on representative
volume elements (RVE) associated to a lower scale, which after solving the local problem provides the macro stress
through averaging. One appealing feature of FE2 is that the local (fine scale) problems can be solved in parallel, as
being independent of each others. FE2 has been widely applied and extended to many problems including second-
order homogenization, transient conduction problems, model reduction, damage localization or topology optimization
[27, 35, 36, 37, 38, 39].

In this work, we use analogies with this idea to solve heterogeneous structures without scale separation trough
an efficient approximation of the fine scale solution by means of parallel computations on subdomains. Even though
possibly applied to nonlinear problems, we restrict in this work to linear problems and show that in this case the
technique leads to an efficient one-iteration scheme where local solution (in subdomains decomposing the structure)
can be solved in parallel through off-line calculations. Here, the solution of fine scale subdomain problems are related
to the degrees of freedom of a coarse mesh which has much fewer degrees of freedom than the full problem (by several
order of magnitudes). The summary of the paper is as follows. In section 2, we first introduce notations used in this
paper. In Section 3, we describe CMCM and provide practical application details in 2D and 3D. Numerical examples
involving both academic validation tests as well as large industrial examples are presented and discussed in section 4.

2. Preliminary: notations

Vectors and second order tensors, as well as matrices, are denoted by bold letters A. Third order tensors are
denoted by calligraphic uppercase letters G, fourth-order, fifth-order and sixth-order tensors are denoted by double
case letters A. Double contraction of indices for second order tensors A and B is denoted by A : B = Ai jBi j, dot
product for two vectors a and b by a · b = aibi, and simple contraction of indices for a second order tensor A and a
vector b is denoted by (Ab)i = Ai jb j. The gradient operator is denoted by ∇(.) and the divergence operator by ∇ · (.).
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x : Position vector at the fine scale
u(x) : Displacement vector at the fine scale
ε : Linearized strain tensor
σ : Cauchy stress tensor
G : Tensor of second gradient of displacements
∇ε : Strain gradient tensor

C(x) : Elastic tensor
C0(x) : Auxiliary elastic tensor

ε̄ : Macroscopic linearized strain tensor
Ḡ : Macroscopic second gradient of displacements tensor
∇ε̄ : Macroscopic strain gradient tensor
ḡα : Vector of parameters defining Dirichlet boundary conditions on the

boundary of Ωα

Ωα : Subdomain α
Aα(x) : Localization tensor in Ωα

[ε(x)] : Vector for associated with ε
[σ(x)] : Vector form associated with σ

C(x) : Matrix form associated with C(x)
Ωm : Domain associated with an element m in the fine mesh
Ωe : Domain associated with an element e in the fine mesh
um : Vector of nodal displacements in one element m of the fine mesh
ūe : Vector of nodal displacements in one element e of the coarse mesh

Table 1: Notations

Let u be defined as the displacement vector and x as a material coordinate, we define the linearized strain as:

εi j =
1
2

(
∂ui

∂x j
+
∂u j

∂xi

)
, (1)

the second gradient displacement tensor by

Gi jk =
∂2ui

∂x j∂xk
, (2)

and the strain gradient tensor as:

∇εi jk =
1
2

(
∂2ui

∂x j∂xk
+

∂2u j

∂xi∂xk

)
. (3)

We denote the analogous macro quantities ε̄, Ḡ and∇ε̄ as the macro strain, macro second gradient of displacements
and macro strain gradient tensors, respectively.
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3. Coarse Mesh Condensation Multiscale Method (CMCM)

3.1. General description

Fine mesh

Elementary
computations (parallel)

Coarse mesh
(a)

(b)

(c)

α∂Ω αΩ

Figure 1: Schematic description of the CMCM method; (a) decomposition of the structure into subdomains; (b) discretization of the structure with
a coarse mesh; (c) elementary (off-line) problems to be solved over the subdomains.

The key idea of CMCM approximation is to construct an approximation of the strain and stress solution fields
at the finest scale in subdomains whose solutions can be computed in parallel through off-line calculations. First,
the heterogeneous structure is decomposed into subdomains Ωα, α = 1, 2, ...,Nsub where Nsub denotes the number of
subdomains, and such that Ω =

⋃
α Ωα (see Fig. 1 (a)). Then, each subdomain is discretized with a mesh of finite

elements associated with the fine scale. In addition, a coarse mesh is defined to discretize the structure, independently
of the heterogeneities (see Fig. 1 (b)). Dirichlet boundary conditions are then defined over each subdomain, and
associated with a small number of parameters, gathered in a vector ḡα (see section 3.2). We define these parameters
such that they minimize the error in the least square senses between the strain field in the subdomain and the strain field
in the elements of the coarse mesh covering the subdomain. In the linear case, a linear relationship can be established
between displacements of the coarse mesh and the strain field in the subdomains. Note that this approximation depends
on the location of the point x in the element of the coarse mesh and is then richer than the simple linear combination of
subdomain elementary solutions (see details in section 3.2.1). Then, the solution in the subdomains can be condensed
at the nodes of the coarse mesh and the problem can be solved on this coarse mesh only to define the fine scale solution
by post-treatment. The main steps are summarized below and described in more details in the following.

(i) Solve localization problems in each subdomain Ωα (parallel computations).

(ii) Determine the relationship between the dofs of the coarse mesh and the reduced vector ḡα in each subdomain
Ωα (parallel computations).

(iii) Solve the global problem on the coarse mesh.

(iv) Re-localization of fine scale fields from global problem solution.

3.2. Step (i): Subdomain problem
3.2.1. Localization problem on subdomains

We first define the problem to be solved on each individual subdomain Ωα whose boundary is denoted by ∂Ωα

(see Fig. 1) (a). A general expression of Dirichlet boundary conditions is introduced as:

ui(x) =
∑

k

ḡαk dαik(x) on ∂Ωα, (4)
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where ḡα is the reduced parameters vector. The size of ḡα is assumed to be small as compared to the total number of
dofs on the boundary ∂Ωα in order to perform a reduced condensation of the internal dofs.

In this work, we adopt the particular form for relation (4) as:

ui(x) = ε̄i jx j +
1
2
Ḡi jk x jxk on ∂Ωα, (5)

where ε̄i j is a macroscopic strain tensor and Ḡi jk is a macroscopic third-order second gradient displacement tensor,
which can also be re-expressed as a function of an effective (homogeneous) first gradient of the strain tensor ∇ε̄i jk

through (see e.g. [40, 41]):

Ḡi jk = ∇ε̄i jk + ∇ε̄ik j − ∇ε̄ jki. (6)

In addition, we restrict the approximation (5) to the x jxk, ( j , k) terms to reduce the number of parameters, i.e.
terms products of x2

i are set to zero. The corresponding obtained solutions will be referred to as Second-order CMCM
in the example (section 4). For comparison, another approximation of (5) keeping only the linear terms (i.e. setting
all Ḡ term products to zero) will be considered and referred to as CMCM in the examples.

Special attention must be paid to the case of a homogeneous subdomain, i.e. containing only one material phase.
In that situation, we must ensure that the boundary conditions (5) do not induce spurious fluctuations, i.e. that the
solution in Ωα derives from (5) in the form:

ε(x) = ε̄ + ∇ε̄ · x in Ωα. (7)

Considering that one subdomain contains a single material phase with elastic properties C0, applying the Hooke’s
law and taking the divergence of (7) one obtains:

∇ ·
(
C0 : ε(x)

)
= ∇ ·

(
C0 : [ε̄ + ∇ε̄ · x]

)
= f, (8)

which is verified if

fi = C0
i jkl∇ε̄kl j. (9)

Then, body forces must be prescribed in addition to the boundary conditions to ensure null fluctuations in the case
of a homogeneous subdomain. One possible choice for C0 is (see [42]) C0

i jkl = C, where C is the homogenized elastic
modulus defined by

C =
1
V

∫
Ωα

C(x) : A(x)dΩ, (10)

and where A(x) is the classical localization tensor. Then, the localization problem is defined as follows:
Given ḡα = {ε̄,∇ε̄}, find ε(x) in Ωα such that:

∇ · (C(x) : ε(x)) = f, (11)

fi = Ci jkl∇ε̄kl j, (12)

u(x) = ε̄ · x +
1
2
Ḡ : x ⊗ x on ∂Ωα. (13)

We can see that with this definition, if the subdomain is homogeneous, then the solution is self-equilibrated for
the above quadratic boundary conditions. Problem (11)-(13) is then classically solved by finite elements as follows.

The weak form of the problem to be solved on the subdomain Ωα is given by: search u ∈ H1(Ωα) satisfying the
boundary conditions (13) and such that:∫

Ωα

ε(u) : C(x) : ε(δu)dΩ =

∫
Ωα

f(x) · δudΩ ∀δu ∈ H1
0(Ωα) (14)
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where H1 and H1
0 are the usual Sobolev vector spaces. Introducing classical FEM discretization in (14), we obtain a

linear system in the form:
Kαu = Fα (15)

with
Kα =

∫
Ωα

BmT (x)C(x)Bm(x)dΩ, Fα =

∫
Ωα

NmT (x)fdΩ, (16)

where N∗ and Bm are matrices of shape functions and of shape functions derivatives on the fine mesh in the subdomain,
respectively (see Fig. 49), and C(x) is the matrix form associated with C(x). It is worth noting that for one subdomain
Ωα, the linear systems to be solved for each component of ḡα involve the same matrix Kα, which thus has to be
assembled only once.

In case the when subdomain boundaries cross the interfaces, large errors can be generated by the boundary con-
ditions (13). In that case, an extension of the method consist in prescribing the boundary conditions on the external
boundary ∂Ω̃α of an extended subdomain Ω̃α (see Fig. 2). However, the localization tensor is only evaluated in the
initial subdomain Ωα). We define a parameter β = hext/L0, where L0 is the initial length of the subdomain Ωα (consid-
ered as square subdomain in this work for the sake of simplicity). Note that this process is similar to the oversampling
technique in MSFEM [21].

~

h
ext

L
0

Figure 2: Illustration of an extended subdomain.

3.2.2. Reduced parameters gα in the 2D case
In 2D, after neglecting terms in x2

i , (13) leads to:

u1(x) = ε̄11x1 + ε̄12x2 +
1
2

(
Ḡ112 + Ḡ121

)
x1x2, (17)

u2(x) = ε̄12x1 + ε̄22x2 +
1
2

(
Ḡ212 + Ḡ221

)
x1x2. (18)

After simplifications, we obtain:

u1(x) = ε̄11x1 + ε̄12x2 + ∇ε̄112x1x2, (19)

u2(x) = ε̄12x1 + ε̄22x2 + ∇ε̄221x1x2. (20)

In the Second-order CMCM case, the boundary conditions of each Ωα subdomain are parameterized by 5 inde-
pendent scalar values gathered in the ḡα vector:

ḡα = [ε̄11, ε̄22, ε̄12,∇ε̄112,∇ε̄221]T . (21)
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As the problem to be solved over Ωα is linear, applying the superposition principle allows the strain field to be
expressed in Ωα as:

[ε(x)] = Aα(x)ḡα ∀x ∈ Ωα. (22)

where [ε(x)] is the column-vector notation associated with the second-order strain tensor ε = 1
2

(
∇u + ∇T u

)
and Aα(x)

is a localization matrix (see section 3.2.2).
The matrix Aα(x) is therefore a 3 × 5 matrix whose columns [εi(x)] are the strain vector solution of (11)-(13) for

ḡαi = 1 and ḡαj = 0, i , j:

Aα(x) =
[
[ε1(x)], [ε2(x)], [ε3(x)], [ε4(x)], [ε5(x)]

]
. (23)

In the basic CMCM case, only the first three terms of ḡα and consequently the first three columns of Aα are
computed.

3.2.3. Reduced parameters gα in the 3D case
In 3D, using (13) and (6), we obtain, after simplifications and neglecting terms in x2

i :

u1(x) = ε̄11x1 + ε̄12x2 + ε̄13x3 + ∇ε̄112x1x2 + ∇ε̄113x1x3 + G123x2x3, (24)

u2(x) = ε̄12x1 + ε̄22x2 + ε̄23x3 + ∇ε̄221x1x2 + ∇ε̄223x2x3 + G213x1x3, (25)

u3(x) = ε̄13x1 + ε̄23x2 + ε̄33x3 + ∇ε̄331x1x3 + ∇ε̄332x2x3 + G312x1x2. (26)

In the Second-order CMCM case, ḡα contains 15 independent parameters (and in the basic CMCM case, only the
first 6 are needed):

ḡα =
[
ε̄11, ε̄22, ε̄33, ε̄12, ε̄13, ε̄23,∇ε̄112,∇ε̄113,∇ε̄221,∇ε̄223,∇ε̄331,∇ε̄332,G123,G213,G312

]T
.

Thus 15 (resp. 6) linear problems need to be solved on each subdomain. Moreover all these problems can be
solved in parallel. The matrix Aα(x) is in that case a 6 × 15 (resp. 6 × 6) matrix.

It is worth noting that in the case where the strain gradient parameters are applied, the subdomain needs to be
centered in order to obtain the correct deformation mode.

3.3. Step (ii): Relation between coarse mesh-displacements and subdomain boundary conditions

To relate the solutions in the subdomains to the coarse mesh, a relationship between the vector of boundary
conditions ḡα of subdomain Ωα and the dofs in one element Ωe of the coarse mesh, denoted by ūe, must be established.
For this purpose, we minimize the distance between the strain approximation provided by (22) and the strain in each
element of the coarse mesh individually (see Fig. 1), which is given by:

[ε̂(x)] = B̄e(x)ūe, (27)

where B̄e is a matrix of shape functions derivatives of one element Ωe of the coarse mesh. Then the problem to be
solved is given by

ḡα = Arg min J (28)

with

J =

∫
Ωe

(
Aα(x)ḡα − B̄eūe

)2
dΩ, (29)
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where Ωe is the domain associated with the element e in the coarse mesh, and (a)2 = a ·a, a being a vector. Minimizing
J with respect to ḡα gives (writing ḡαi ≡ gi, Aα

i j ≡ Ai j, B̄e
i j ≡ Bi j and ūE

inc ≡ ui for alleviating the notations):

∂J
∂gm

= 0, m = 1, 2, ...,Ng, (30)

or; ∫
Ωe

2Ai j
∂g j

∂gm

(
Ai jg j − Bi ju j

)
dΩ = 0. (31)

Then: ∫
Ωe

Aim(x)Ai j(x)dΩg j =

∫
Ωe

Aim(x)Bi j(x)u jdΩ m = 1, 2, ...,Ng. (32)

We obtain a linear system of equations in the form:

Gαḡα = Hαeūe (33)

and then:

ḡα = (Gα)−1 Hαeūe, (34)

with:
Gα =

∫
Ωα

(Aα(x))T Aα(x)dΩ, (35)

and
Hαe =

∫
Ωe

(Aα(x))T B̄e(x)dΩ. (36)

Finally, we obtain the approximation of the fine scale strain in each element Ωe of the coarse mesh covering a
subdomain Ωα, using (22) and (33), as:

[ε(x)] = Aα(x) (Gα)−1 Hαeūe = Mα(x)Hαeūe, (37)

or
[ε(x)] = Mα(x)Hαeūe (38)

with
Mα(x) = Aα(x) (Gα)−1 . (39)

3.4. Step (iii): Global problem

We now consider the problem to be solved on the coarse mesh over the entire structure (see Fig. 1 (b)). Assuming
zero body forces, the governing equations of the problem in the structure are given by:

∇ · σ(x) = 0 ∀x ∈ Ω,

σ(x) = C(x) : ε(x) ∀x ∈ Ω,

u(x) = ū∗ ∀x ∈ ∂Ωu,

σ · n = F̄∗ ∀x ∈ ∂ΩF ,

(40)
(41)
(42)
(43)

where ū∗ and F̄∗ are prescribed displacements and tractions on the corresponding Dirichlet and Neumann boundaries
∂Ωu and ∂ΩF . Using vector forms of strain tensors, the weak form of the system of equations (40) can be expressed
as follows: ∫

Ω

[ε(u)]T C(x)[ε(δu)]dΩ =

∫
∂ΩF

F̄∗ · δudΓ. (44)
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Considering the same approximation for test functions δūe as in (38):

[ε(δu)] = Mα(x)Hαeδūe, (45)

and substituting (38) and (45) in (44) we obtain:

δūeT
∑
α

∫
Ωα

(Hαe)T (Mα(x))T C(x)Mα(x)HαedΩ ūe = δūeT
∫
∂ΩF

NT (x)F∗dΓ. (46)

Owing to the arbitrariness of δūeT , we then obtain a linear system of equations in the form:

K̄ū = F̄ (47)

where:
K̄ =

∑
α

∫
Ωα

(Hαe)T (Mα(x))T C(x)Mα(x)HαedΩ. (48)

In practice, K̄ is assembled from elementary matrices computed in each micro element m covered by an element
e defined in its associated domain Ωe of the coarse mesh (see Fig. 3). Given the subdomain Ωα containing the fine
mesh element em, the matrix Hαe is constant in Ωα and then the elementary matrix K̄ can be expressed as:

Figure 3: Domain Ωα, coarse mesh element e associated with a domain Ωe and fine mesh element m associated with a domain Ωm.

K̄m = (Hαe)T
∫

Ωm
(Mα(x))T C(x)Mα(x)dΩHαe (49)

where Ωm is the domain associated with one fine mesh element m and

F̄ =

∫
∂ΩF

N̄T (x)F̄∗dΓ, (50)

where N̄ is the shape function matrix of elements in the coarse mesh. The Dirichlet and Neumann boundary conditions
are classically prescribed on the coarse mesh. Once ū is known, the strain field on the fine mesh in each subdomain
can be reconstructed by (34) and the stress using:

[σ(x)] = C(x)Mα(x)Hαeūe. (51)

In this work, we did not consider the case when one micro element m cut the boundaries of the domain Ωe occupied
by a coarse mesh element. This point is reported to future studies. The algorithm for solving the coarse mesh problem
is summarized in Algorithm 2.
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1: LOOP over all subdomains Ωα (parallel)
2: - Solve (11)-(13) to obtain Aα(x) and store
3: - Compute Gα using (35) and store
4: - Compute Mα(x) using (39) and store
5: LOOP over all macro elements eM ∈ Ωα

6: - Compute Hαe using (36) and store
7: END LOOP
8: END LOOP

Algorithm 1: Offline calculations.

1: LOOP over all coarse mesh elements e (parallel)
2: - Find micro elements m ∈ Ωe

3: - Find the subdomain α contaning m
4: - Given Hαe, Mα(x):
5: LOOP over all micro elements m ∈ Ωe

6: - Compute K̄m = (Hαe)T
(∫

Ωm Mα(x)T C(x)Mα(x)dΩ
)

Hαe

7: Assemble K̄m in K̄
8: END LOOP
9: END LOOP

Algorithm 2: Online calculations.

3.5. Analogies between FE2 and CMCM

CMCM
Figure 4: (a) Schematic description of FE2 method [33] and of CMCM.

In this subsection, we show analogies between the present method and the FE2 method, originally proposed in [24]
to solve nonlinear multiscale problems with separated scales. In FE2 (see Fig. 49 (a)), a relationship between macro
strain ε̄ and the macro stress σ̄ is obtained numerically at each Gauss point of the coarse mesh by: (i) prescribing
Dirichlet boundary conditions depending on ε̄ on the boundary of an RVE associated with the element; (ii) solving
the local problem on the RVE; (iii) averaging the stress in the RVE to obtain σ̄. In CMCM (see Fig. 49 (b)), a
group of elements is covering a subdomain. Solving a minimization problem (see section 3.3), Dirichlet boundary
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conditions are prescribed on the boundary of the subdomain. The solution is then solved on the subdomain to obtain
the stress field. The main differences are summarized as follows: (a) in FE2, the local calculations are computed on
an RVE associated with the microstructure. In CMCM, the local calculations are performed in subdomains whose
union is the fully detailed heterogeneous structure; (b) In FE2, the parameters defining the boundary conditions on
the local problem (RVE) are associated with a single integration point in the mesh at the maccroscale. In CMCM,
the parameters associated with boundary conditions to be applied on the local problem (subdomain) depend on the
strain field of all elements of the coarse mesh covering the subdomain; (c) in FE2, the local problem is used to define
the macro strain -macro stress relationship. In CMCM, the local problem is used to relate the strain in the coarse
mesh to the full stress field in all elements in the subdomain (fine scale) covered by the coarse mesh elements and the
notion of macro stress is no more necessary. Both methods share the following features: (a) all local computations
can be performed in parallel; (b) the local solution (fine scale) can be reconstructed given the macro (coarse) mesh
solution; (c) the macro (coarse) mesh problem involves much fewer degrees of freedom as compared to solving the
full problem.

However it is necessary to make it clear that CMCM is not a special case of FE2. Even though the method can
be potentially applied to nonlinear problems, we only treat linear problems in this paper. The treatment of nonlinear
problems would involve the same idea but applied to the linearized problem in a Newton solving procedure. In such,
the appealing parallel solving feature of the method would be maintained. However, the developments related to
nonlinear problems are out of the scope of the present work and are reported to future studies.

As another remark, note that in CMCM the full microstructure has to be known everywhere in the structure, in
contrast with FE2. However, we recall that this method applies to structures where scale cannot be separated, and
where the size of heterogeneities becomes not negligible as compared to the size of the structure, as for example in
woven composites. In industrial application, it is nowadays common to obtain microtomography images of the full
structure up to the level of the yarns.

4. Numerical examples

In this section, we analyze and demonstrate the potential of the method through both academic and simplified
industrial examples of realistic scale. In the present work we only consider periodic heterogeneous structures, even
though the technique is not restricted to this class of problems. The application to non-repeatable structures will be
discussed in a separate study. In the context of periodic subdomains, the local problem (11)-(13) has to be solved only
once (see section 3.2). In the following, three solutions are considered for comparison:

• A reference solution obtained by a direct finite element calculation, where the structure is fully meshed, covering
all the details of the heterogeneities. The reference solution of the largest 3D problem is obtained with the
iterative AMPFETI method [7, 8].

• A solution using the present method without using strain gradient (denoted by CMCM).

• A solution using the present method with strain gradient (denoted by CMCM).

An energy global error is defined as:

ErrE =

∫
Ω

(
εre f (x) − εCMCM(x)

)
: C(x) :

(
εre f (x) − εCMCM(x)

)
dΩ∫

Ω
εre f (x) : C(x) : εre f (x)dΩ

(52)

where εre f denotes the strain field obtained by the reference solution, and εCMCM denotes the corresponding strain
field obtained from CMCM.

Alternatively, a global L2-error is defined as:

ErrL2 =

∫
Ω

(
ure f (x) − uCMCM(x)

)
.
(
ure f (x) − uCMCM(x)

)
dΩ∫

Ω

(
ure f (x)

)
.
(
ure f (x)

)
dΩ

(53)

where ure f denotes the displacement field obtained by the reference solution, and uCMCM denotes the corresponding
displacement field obtained from CMCM.
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4.1. 2D periodic composite structure with cylindrical fibers

We consider the academic structure depicted in Fig. 5 (a), containing 4 periodic cylindrical fibers. Here, the
structure is subdivided into 4 subdomains (see Fig. 9 (b)). The size of the square structure is L = 180 mm, and
the diameter of the fibers is D = 54 mm. The matrix is assumed to be isotropic elastic with coefficients Emat = 1
Mpa and νmat = 0.25. The inclusions are also isotropic, with Poisson’s ration νinc = 0.25. We analyze several values
of the inclusion Young modulus: Einc = 5 MPa, which is roughly the ratio of phase properties found in typical
ceramics/ceramics composites, Einc = 103 MPa (large ratio) and an extreme case Einc = 106 MPa to analyze the
capabilities of the method in that case, and especially in the case when the subdomains cross the interfaces, as such
case is known to be a difficult one for iterative FETI domain decomposition methods (see [5]). The structure is
subjected to the following Dirichlet boundary conditions:

u(x) =

 ux =
x2y
α

uy = − x3

3α

on ∂Ω, (54)

where α = 106 mm2 and ∂Ω is the whole external boundary of the structure. We first solve the problem with the
present method without the strain gradient enhancement (CMCM). The reference finite element mesh describing the
entire structure including all heterogeneities is composed of 73130 linear triangular elements, corresponding to 73852
degrees of freedom.

L

x

y

(0,0)

(a) Structure geometry

D

(b) A subdomain
(c) Subdomain mesh

Figure 5: (a) Composite structure: geometry; (b) subdomain used for off-line calculations; (c) subdomain finite element mesh.

In order to investigate the convergence of the proposed method, 2 cases will be considered in this example:

• For a fixed number of subdomains, we vary the number of coarse mesh elements.

• For a fixed number of coarse mesh elements, we vary the number of subdomains.

4.1.1. Convergence with respect to the number of coarse mesh elements
In this first case, we fix the number of subdomains to 4 and increase the number of coarse mesh elements to

analyze the convergence of the error. The case Einc = 106 MPa is first chosen (most defavorable case). In this work,
we use 4-node bilinear elements and 8-node trilinear elements in 2D and 3D respectively for the coarse mesh. Five
coarse meshes are used, whose numbers of elements and dofs are provided in Table 2.

Fig. 6 shows a comparison of the strain field ε11(x) solution obtained with CMCM with the 5 meshes and the
reference solution. We can note that the local solution, reconstructed from (34), is significantly improved when the
coarse mesh is refined.
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In Figs. 7 and 8, the global energy and L2 errors are plotted as a function of the number of coarse mesh dofs, and
for several values of β, the parameter which defines the size of the oversampling (see section 3.2.1). We can see from
Figs. 7 and 8 that the convergence is observed with both respect to the number of coarse mesh dofs and to β.

Coarse mesh 1 Coarse mesh 2 Coarse mesh 3 Coarse mesh 4 Coarse mesh 5
Number of elements 4 16 64 256 1024

Number of dofs 18 50 162 578 2178

Table 2: Number of elements and dofs for each coarse mesh.

(a) Reference solution (b) Coarse mesh 1 (c) Coarse mesh 2

(d) Coarse mesh 3 (e) Coarse mesh 4 (f) Coarse mesh 5

Figure 6: ε11(x) of reference and different coarse meshes.
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Figure 8: Evolution of L2 error with respect to the number of coarse mesh dofs.

Figure 7: Evolution of energy error with respect to the number of coarse mesh dofs.

4.1.2. Case 2: fixing number of coarse mesh dofs, changing the number of subdomains
In this case, the number of coarse mesh elements is fixed and equal to 502, corresponding to 1305 dofs. The

number of subdomains is then increased as described in Fig. 9. In the case of 16 subdomains, we can note that the
interfaces cross the inclusions.

In this test, we investigate the influence of β on the relocalized solution for the case with 16 subdomains (Fig. 9
(c)). Several values of β (β = 0.16, 0.33, 0.47, 0.82 and 1) are used. Figs. 11 and 12 show the stress fields with respect
to β in the cases Einc = 106 MPa and Einc = 5 MPa. The evolution of global energy error and L2 error versus β is
given in Fig. 10. We can see that the obtained global errors are very high when the interfaces cross the inclusions
(i.e. β = 0.16, 0.33 and 0.47). However, when the extended subdomains cover the whole inclusions (i.e. β = 0.82 and

14



1), the global errors are significantly reduced. Error also decrease with respect to the phase properties contrast. More
interestingly, for contrasts of the order of 5 (as e.g. in ceramics/ceramics composites), the error is low even for β = 0.

We now use the converged solution in the case of 16 subdomains (i.e. β = 1) and compare to the cases of 1 and 4
subdomains. Fig. 13 (a), (b), (c) and (d) show the relocalized stress field of the refence solution and of the CMCM
solution, for 1, 4 and 16 subdomains, respectively in the case Einc = 106 MPa and in Figs. 14 in the case Einc = 5
MPa. Fig. 15 shows the evolution of global strain energy error in function of number of subdomains. We can see that
when the number of subdomains increases, the corresponding global error increases. This is due to the fact that some
errors are localized at the interfaces between subdomains, thus more subdomains we have, more errors are likely to
be committed. However, it is worth noting that in the third case where interface crosses inclusions, the global error is
0.032 which is still reasonable considering a high contrast between inclusion and matrix properties (106).

In conclusion, from the numerical results, we can see that refining the coarse mesh indeed reduces the global
error while increasing the number of subdomain increases the global error, due to the fact that the chances that the
subdomains cross the interfaces are higher. When inclusions cut the interfaces we have seen that the use of the larger
subdomains (β > 0) (see section 3.2.1) might drastically reduce the errors. If this case can be avoided, e.g. by means of
appropriate choices of subdomains not crossing the interfaces, the errors can also be reduced. These errors also reduce
with the contrast of phase properties between the inclusions and the matrix. it is also worth noting that defining an
error indicator in this framework and an associate mesh adaptation would be useful and might deserve investigations
in future works.

(a) 1 subdomain (b) 4 subdomains (c) 16 subdomains

Figure 9: Structure divided into (a) 1 subdomain, (b) 4 subdomains and (c) 16 subdomains.

(a) Energy error

0.16 0.33 0.47 0.82 1
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(b) L2 error

Figure 10: Evolution of energy error (left) and L2 error (right) in function of different values of β in the case of 16 subdomains with contrast
Einc/Emat = 106, 103 and 5.
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(a) Reference solution (b) β = 0.16 (c) β = 0.32

(d) β = 0.47 (e) β = 0.82 (f) β = 1

Figure 11: σ11(x) using different values of β in the case of 16 subdomains with Einc/Emat = 106.
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(a) Reference solution (b) β = 0.16 (c) β = 0.32

(d) β = 0.47 (e) β = 0.82 (f) β = 1

Figure 12: σ11(x) using different values of β in the case of 16 subdomains with Einc/Emat = 5.
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(a) Reference solution (b) 1 subdomain

(c) 4 subdomains (d) 16 subdomains

Figure 13: Relocalized stress σ11(x) (MPa) Einc/Emat = 106: (a) reference solution, (b) proposed methos with 1 subdomain, (c) proposed method
with 4 subdomains and (d) proposed method with 16 subdomains.
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(a) Reference solution (b) 1 subdomain

(c) 4 subdomains (d) 16 subdomains

Figure 14: Relocalized stress σ11(x)(MPa) with Einc/Emat = 103: (a) reference solution, (b) proposed methos with 1 subdomain, (c) proposed
method with 4 subdomains and (d) proposed method with 16 subdomains.

Figure 15: Evolution of energy error in function of number of subdomains.
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4.1.3. Comparison with a simple method using fine integration and submodelling
In this section, we compare the present method with a simple other approach using a coarse mesh and relocal-

ization. In this method, the same fine mesh is defined over the whole domain to describe the microscale. The same
coarse mesh as in Fig. 1 (a) is used. Here, the problem is first solved on the coarse mesh, but an exact integration
is performed on the fine mesh. Then, a "submodelling" step is performed, by applying the obtained coarse mesh
strain field as first order boundary conditions u(x) = ε̂ · x (see Eq. 27 for the expression of ε̂) on a domain of fine
mesh elements contained in the corresponding coarse mesh element, in order to obtain the displacement as well as
strain and stress fields at the micro scale. It is worth noting that this simple approach does not require preliminary
calculations and thus takes much less computational times. To perform fair comparisons, an extended subdomain
method, as described in Fig. 2 is employed. Results are presented in Figs. 16, 17 and 18. The same example as in the
previous section is chosen with a coarse mesh containing 256 elements (see Table 2). The contrast between inclusion
and matrix properties is taken as Einc/Emat = 106. Fig. 16 shows the evolution of the global error in the energy norm
and L2 error as a function of β, which defines the size of the extended subdomain. It can be shown that the error can
be reduced from CMCM as comparison whith such simple approach. Figs. 17 and 18 show re-localized strain and
stress fields obtained by both approaches for β = 1, showing that the simple approach based on fine integration on the
fine mesh is not able to capture correctly local fields while the present CMCM provides acceptable re-localized fine
scale fields.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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(a) Energy error
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0.1078

0.1340

0.3337

0.5161
0.5974

1.6452

E
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L
2

CMCM
Submodeling

(b) L2 error

Figure 16: Evolution of energy error (left) and L2 error (right) in function of different values of β with contrast Einc/Emat = 106 using CMCM and
submodeling.
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(a) Reference solution (b) CMCM (c) Submodeling

Figure 17: ε11(x) with Einc/Emat = 106 of: (a) reference solution, (b) CMCM solution and (c) submodelling solution.

(a) Reference solution (b) CMCM (c) Submodeling

Figure 18: σ11(x) with Einc/Emat = 106 of: (a) reference solution, (b) CMCM solution and (c) submodelling solution.
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4.2. 2D three-point bending composite beam

(0,0)

L

H x

y

(a) Structure and boundary conditions

(b) Subdomain mesh

Figure 19: (a) 2D three-point bending composite beam: geometry and boundary conditions (b) subdomain finite element mesh.

In this example, we consider a composite beam under bending (see Fig. 19a). The objective of this academic
example is to appreciate the gain obtained by introducing the strain gradient effects. The dimensions of the beam
are L = 21 mm and H = 1 mm. Each fiber has a diameter of 0.4 mm and is positioned at the center of a square
subdomain of size H, as depicted in Fig. 19b. The mechanical properties of fibers and matrix are the same as in the
previous example. The applied loading is a pressure field mimicking the reaction force of contact with cylinders. The
corresponding fields are applied in the vicinity of three points with coordinates (xc

i , y
c
i ) from left to right as follows:

(0.5, 0), (10.5, 1) and (20.5, 0) and are provided as:

pi(x) = p0
i

1 − (
x − xc

i

xp

)2 , (55)

where p0
2 = 20 MPa, p0

1 = p0
3 = 10 MPa and xp = 1 mm. To remove rigid body motions, the nodal y-displacements

at nodes (0, 0) and (L, 0), and the nodal x-displacement at node (0,H) are blocked. Three different coarse meshes are
considered (Fig. 20). The number of elements and the corresponding number of dofs are listed in Table 3).

subdomain Coarse mesh 1 Coarse mesh 2 Coarse mesh 3
Element type T3 Q4 Q4 Q4

Number of elements 5000 21 84 336
Number of dofs 5202 88 258 850

Table 3: Number of elements and of dofs for each mesh used in calculation (T3: linear triangular element; Q4: bilinear quadrilateral element).
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(a) Coarse mesh 1

(b) Coarse mesh 2

(c) Coarse mesh 3

Figure 20: Coarse meshes for global calculation of the beam: (a) coarse mesh 1, (b) coarse mesh 2, and (c) coarse mesh 3.

(a) Reference

(b) CMCM

(c) Second-order CMCM

Figure 21: Relocalized strain solution ε11(x).

(a) Reference

(b) CMCM

(c) Second-order CMCM

Figure 22: Relocalized strain solution ε22(x).
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(a) Reference

(b) CMCM

(c) Second-order CMCM

Figure 23: Relocalized strain solution ε12(x).
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Figure 24: Comparison of reference, CMCM, and Second-order CMCM solutions of local (1, 1) components long the line (x = L/2).

Here, the parameter β (see section 3.2.1) was chosen to be zero. Different components of the local strain field ε(x)
are compared with the reference solution, the CMCM and the Second-order CMCM in Figs. 21, 22 and 23. To better
quantify the accuracy of each solution, the strain and stress (1, 1) components are plotted on the line (x = L/2) in Fig.
24. In these figures, only the most converged solutions, on coarse mesh 3, are displayed. In Fig. 25, the logarithmic
error between the reference solution on a fine mesh and the reconstructed solution using GFE2 is shown. We can note
that in this case, the Second-order CMCM gives a good convergence to the reference solution when refining the coarse
mesh, while the CMCM does not converge.

In this example, the method with strain gradient leads to a more accurate solution at the same computational costs
than the first-order method, as we recall that no additional degrees of freedom are introduced for that purpose.

In the next example, we consider a three dimensional problem to evaluate the capability of the method to handle a
structure that is closer to practical applications.

24



88 258 1344
10−3

10−2

10−1

Number of macroscopic dofs

ε U

CMCM
Second-order CMCM

88 258 1344
10−2

10−1

100

Number of macroscopic dofs

ε σ

CMCM
Second-order CMCM

Figure 25: Minimum displacement (left) and maximum stress (right) using different coarse meshes.

4.3. 3D three point bending of a woven composite structure

In this example, we show the capability of the method to handle industrial problems with a fine description of
local heterogeneities within the structure. We consider the 3-point bending of a plain woven composite, as depicted in
Fig. 26. The dimensions of the structure are L = 50 mm, b = 10 mm and h = 1.1 mm. As in the previous example, the
loading is applied as pressure fields distributed along three lines (x = 3, z = 0), (x = 25, z = 1.1) and (x = 47, z = 0).
The field distribution is described in Eq. 55. In order to remove rigid body motions, the nodal z-displacements on line
(x = 0, z = 0), (x = L, z = 0), the nodal y−displacements at nodes (0, 0, 0), (L, 0, 0) and the nodal x−displacements at
node (0, 0, 0) are blocked.

In woven composites, there are three main scales of interest: the micro scale related to an explicit description of
the fibers which compose the yarns, the meso scale related to the yarn’s weaving, and the macro scale related to the
whole structure. In this example, we consider a mesoscale description of the structure. Such simulations are usually
avoided as not computationally tractable. However, we show that using CMCM, we are now able to solve the full
problem including all the details of the macro and meso scales. In order to provide a reference solution, the problem
is both solved using CMCM and the high performance parallel domain decomposition method AMPFETI (Adaptive
Multi-Preconditioned Finite Element Tearing and Interconnect i.e. AMPFETI [7] which has been implemented in the
finite element software Z-set at Safran Tech [8]. The solution obtained with the AMPFETI method is performed on a
mesh involving 63 × 106 linear tetrahedral elements, corresponding to 37 × 106 dofs, while the CMCM computation
involves a total of 37.1× 106 dofs, distributed over 652 subdomains including 59.2× 103 dofs (and 16.6× 103 trilinear
hexahedral elements). The discretizations of both methods are of comparable sizes. In CMCM, the global problem
is computed on a coarse mesh involving only 16.6 × 103 trilinear hexahedral elements corresponding to 60.6 × 103

dofs. The mesh of a periodic subdomain at the meso scale is generated with the TexGen software [43], on a domain
with dimensions (2×2×0.22 mm3), using linear tetrahedral elements. For the sake of simplicity, the parameter β (see
section 3.2.1) was chosen as zero. The parameters used to generate this representative unit cell are described in Table
4. For the comparison of the local fields, we re-localize one block column at the center of the structure (see Fig. 28)
and compare the strain and stress fields within the red section.

Yarn spacing (mm) Yarn width (mm) Fabric thickness (mm) Gap size
1 0.8 0.2 (+10 % option) 0

Table 4: Parameters used in TexGen for the generation of the texture form.

25



Figure 26: 3D woven composite beam structure problem: geometry and boundary conditions.

Figure 27: Finite element mesh of: (a) the macro structure and (b) one subdomain at the meso scale.

The behavior of the matrix is considered as elastic and isotropic (see Table 5). The yarns are considered as linear
elastic orthotropic, and their properties are provided in Table 6.

Young’s modulus E (MPa) Poisson’s ratio ν
4000 0.3

Table 5: Mechanical properties of the matrix.

E11 (MPa) E22 (MPa) E33 (MPa) ν12 ν23 ν31 G12 (MPa) G23 (MPa) G31 (MPa)
194400 8200 8200 0.3 0.3 0.0126 7000 3100 7000

Table 6: Mechanical properties of the yarns

The constitutive relation of the stress and strain in the yarns is given in matrix form as:



σ11
σ22
σ33
σ12
σ13
σ23


=



1/E11 −ν12/E22 −ν13/E33 0 0 0
−ν12/E11 1/E22 −ν23/E33 0 0 0
−ν13/E11 −ν23/E22 1/E33 0 0 0

0 0 0 1/G12 0 0
0 0 0 0 1/G13 0
0 0 0 0 0 1/G23



−1 

ε11
ε22
ε33
2ε12
2ε13
2ε23


. (56)

These orthotropic properties are defined in a frame attached to the material orientation of the yarns. In each main
(warp and weft) yarn direction, the above tensor is further slightly rotated according to their normal orientation, which
varies due to weaving form. However, in this example we simplify the problem by assuming that each yarn only has
one constant direction. To be specific, for the warp yarn elements (along x), the above tensor is unchanged, but for the
weft yarn elements (along y), it is rotated 90◦.
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Figure 28: Illustration of the section used for result comparison.

Figure 29: Macro strain solution ε̄33(x) on the deformed coarse mesh using the Second-order CMCM.

Figure 30: Relocalized strain solution ε22(x): (a) reference solution (AMPFETI); (b) basic-CMCM; (c) Second-order CMCM.

Figure 31: Relocalized strain solution ε33(x): (a) reference solution (AMPFETI); (b) basic-CMCM; (c) Second-order CMCM.
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Figure 32: Relocalized stress solution σ11(x)(MPa): (a) reference solution (AMPFETI); (b) basic-CMCM; (c) Second-order CMCM.

Figure 33: Relocalized stress solution σ22(x)(MPa): (a) reference solution (AMPFETI); (b) basic-CMCM; (c) Second-order CMCM.

Figure 34: Computational time in function of number of cores.

Fig. 34 shows the computational time of the local and global problem for different number of processors. It is
worth noting that all local problems are independent, and thus can all be performed in parallel. We can then observe
that the computational times are decreased linearly with the number of available cores
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We can clearly see on the different results that the agreement between AMPFETI and CMCM is satisfying, and
that the use of the gradient enhancement improves the agreement with the reference solution. For comparison, the
AMPFETI calculation took 10 minutes on 744 cores. The CMCM took 73 minutes in total (including parallel calcu-
lations and solving the problem on the coarse mesh), but on a standard 24 cores workstation.

4.4. Large scale simulation involving 1.3 Billion of dof

In this example, we demonstrate the capabilities of the method to handle fully detailed structures with large dimen-
sions, and a larger scale ratio between structure dimensions and microstructural details, as found in some industrial
applications. The structure has the same characteristics as the one presented in the previous example, but involves
49 × 10 × 10 subdomains (see Fig. 35) as defined in Fig 27 (b). The material properties and the boundary conditions
are the same as in the previous section. The complete model involves roughly 1.3 billion dofs. It is obvious than in
such situation, most available FEM solvers are not able to handle such a large simulation even with high performance
computing. The coarse mesh involves 96,800 trilinear hexahedral elements corresponding to 321,489 dofs (Figure
37), indicating that there is still room for possible refinement of this mesh to improve accuracy. Here again, the pa-
rameter β (see section 3.2.1) was chosen as zero. To provide a more accurate solution in the vicinity of the load, the
coarse mesh is refined in some regions near the pressure fields, as depicted in Fig. 37(a).

Figure 35: Structure decomposed into 49 × 10 × 10 subdomains and involvin 1.3 × 109 dofs.

Figure 36: Subdomains chosen for relocalization of strain and stress fields.
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For illustration, we relocalize the local strain and stress fields in two block columns of the structure (see Fig. 36).
As we have already shown that, for such bending-dominated cases, the Second-order CMCM method improves the
accuracy without additional costs, we have here only used the Second-order CMCM method.

(a) Considered structure
(b) Zoom-in at the center

Figure 37: Coarse mesh: (a) global view and (b) zoom-in at the center of the structure.

Figure 38: Macro strain solution ε̄33(x) on the deformed coarse mesh.

Figure 39: Relocalized solution: ε11(x) (left) and ε22(x) (right).

The total simulation time was 20 minutes for each subdomain off-line calculation (performed in parallel) and the
coarse mesh calculation took roughly 5 days, on 32 cores. Then, the present method has a very high potential to study
fully detailed composite structures without any assumptions on scale separation and periodicity.
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Figure 40: Relocalized solution: ε33(x) (left) and σ11(x)(MPa) (right).

Figure 41: Relocalized solution: σ22(x)(MPa) (left) and σ33(x)(MPa) (right).

5. Conclusions

In this work, we have introduced a new method for parallel computations of large heterogeneous structures, called
Coarse Mesh Condensation Multiscale Method (CMCM). In this technique, the key idea is to construct an approxi-
mation of the full field solution in the structure at the scale of heterogeneities by combining solutions computed on a
fine mesh on subdomains decomposing the structure and a solution computed on a coarse mesh. By analogy with the
FE2 method [24], elements of the coarse mesh provide information for applying Dirichlet on the boundaries of subdo-
mains covering the structure. As a result, the full-field solution is approximated over the whole structure at the cost of
a finite number of calculations on subdomains which can be solved in parallel and a coarse mesh problem with a low
number of dofs. In this paper, we have only treated the linear case. In this situation, matrix relationships can be obtain
to relate the dofs of the coarse mesh and the dofs of the fine mesh subdomains solutions, resulting in a one-iteration
scheme only. An extension of the approach to strain gradient has been proposed to enhance the solution in case of
global bending of the structures. The accuracy of the method has been tested through benchmark problems involving
subdomains crossing the interfaces in the case of high contrast between the phase, which is known to constitute a
difficult case for iterative domain decomposition methods. Finally, we have presented an industrial-sized example of
a composite beam involving 1.3 billion dofs which has been computed on a standard 32-core standard workstation to
show the potential of the method.
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