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Abstract 
 

 

 Dynamin 2 (DNM2) mutations cause autosomal dominant centronuclear myopathy 

(CNM), a rare form of congenital myopathy, and intermediate and axonal forms of Charcot-

Marie-Tooth disease (CMT), a peripheral neuropathy. DNM2 is a large GTPase mainly 

involved in membrane trafficking through its function in the formation and release of nascent 

vesicles from biological membranes. DNM2 participates in clathrin-dependent and clathrin-

independent endocytosis and intracellular membrane trafficking (from endosomes and Golgi 

apparatus). Recent studies have also implicated DNM2 in exocytosis. DNM2 belongs to the 

machinery responsible for the formation of vesicles and regulates the cytoskeleton providing 

intracellular vesicle transport. In addition, DNM2 tightly interacts with, and is involved in the 

regulation of actin and microtubule networks, independent from membrane trafficking 

processes. We summarize here the molecular, biochemical and functional data on DNM2 and 

discuss the possible pathophysiological mechanisms via which DNM2 mutations can lead to 

two distinct neuromuscular disorders. 

 

 

Key Words: dynamin 2, centronuclear myopathy, Charcot-Marie-Tooth neuropathy, 

endocytosis, cytoskeleton. 
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Dynamin 2 (DNM2) belongs to a superfamily of large GTPases, including three 

classical dynamins and several dynamin-like proteins, which are involved in a wide range of 

cell functions [1]. The importance of DNM2 was emphasized in 2005 with the demonstration 

of DNM2 gene mutations causing two distinct human diseases [2, 3]. Our purpose is to review 

the molecular and functional data on DNM2 to highlight the possible pathophysiological 

hypotheses in DNM2-related diseases. Knowledge of the dynamins, especially of their 

molecular and biochemical properties, mainly comes from numerous studies of dynamin 1 

(DNM1) [4]. However, we have focused this review on DNM2 since several studies have 

clearly demonstrated notable differences between DNM1 and DNM2 [5-9]. Moreover, DNM1 

and DNM2 seem to be involved in different membrane trafficking processes in cells 

expressing the two proteins [10, 11]. 

 

DNM2 gene organization and isoforms 

 

DNM2, one of three classical dynamins, was initially identified in rat liver and brain 

cDNA libraries [5, 12]. A human homologue was thereafter identified by screening of a 

fibroblast library [13]. The human transcript (3.6 kilobases) is ubiquitously expressed, with 

higher abundance in heart and skeletal muscle [13]. Human DNM2 is encoded by the DNM2 

gene located on the short arm of chromosome 19 (19p13.2). The gene is composed of 22 

exons in a 114-kilobase region. Four isoforms are expressed by the DNM2 gene using a 

combination of two alternative splice sites (Figure 1A). Isoforms 1, 2, 3 and 4 are also known 

as isoforms aa, ba, ab and bb, respectively [14]. Exons 10 and 10bis have the same length 

(139 base pairs encoding the amino-acids 399-445 in the middle domain) and are alternatively 

spliced. In addition, the exon 13bis (12-base pair length) can be spliced leading to the 

translation of proteins of 866 or 870 amino-acids (Figure 1) without or with the GEIL 
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sequence at position 516-519 in the C-terminal part of the middle domain. The expression of 

the four isoforms have been assessed in a panel of rat tissues including brain, heart, kidney, 

liver, lung, pancreas and testis [14]. The human tissue expression pattern is unknown, but we 

have shown expression of the four isoforms in skeletal muscle and peripheral nerve [15]. 

Specific functions of these isoforms will be discussed below. 

 

DNM2 structure and regulation 

 

The 98 kDa DNM2 is a large GTPase composed of a N-terminal GTPase domain, a 

middle domain, a pleckstrin homology domain (PH), a GTPase effector domain (GED) and a 

C-terminal proline rich domain (PRD) (Figure 1B). The catalytic GTPase domain is 

responsible for GTP binding and hydrolysis, whereas the middle domain is involved in 

DNM2 self-assembly [16] and in GTP hydrolysis-induced conformational change of the 

protein [17]. The PH domain interacts with membrane phosphoinositides and therefore 

involved in the targeting of dynamin to plasma or Golgi membranes [18]. Klein and 

collaborators reported that the DNM2-PH domain displays phosphoinositide binding affinity 

following the order; PI4,5P2 ≈ PI3,4,5P3 ≈ PI3,4P2 > PI4P ≈ PI3P, and DNM2 

oligomerization appears crucial for high affinity [19]. The GED probably participates in the 

self-assembly of DNM2 and acts as a GTPase-activating protein (GAP) [20]. The PRD 

contains multiple Src homology 3 (SH3) binding motifs and mediates multiple protein-protein 

interactions (Table 1). 

In vitro at high ionic strength, DNM2 is in monomer-tetramer equilibrium. At low 

ionic strength, DNM2 self-assembles into higher order aggregates leading to a drastic increase 

in GTPase activity [21, 22]. Microtubules or phospholipid vesicles, especially those 

containing PI4,5P2, also induce self-assembly and increase DNM2 GTPase activity [6, 21, 
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23]. Purified from baculovirus, GTP-bound and GDP-bound monomer DNM2 has Kd values 

of 13.2 and 7.1 µM, respectively, with GTPase activity of 37 nmol/mg/min. When in an 

oligomeric state, the GTPase activity of DNM2 markedly increased and Kd values decreased 

[24]. DNM2 basal activity appears 10-fold higher than for DNM1 probably due to the greater 

propensity of DNM2 to self-assemble and a higher affinity for GTP (Km=12 µM) [21]. When 

compared to small GTPases, DNM2 exhibits a relatively low affinity for GTP but high 

intrinsic rates of GTP hydrolysis. 

DNM2 activity is regulated by post-translational modifications. DNM2 becomes 

phosphorylated on Tyr231 (middle domain) and Tyr597 (PH domain) through Src-mediated 

phosphorylation, leading to its association with caveolin and thus albumin endocytosis [25]. 

Similarly, IL5-induced DNM2 phosphorylation leads to redistribution of DNM2 within 

endocytic vesicles and is required for IL5 receptor internalization [26]. In contrast, dopamine 

leads to the dephosphorylation of DNM2 by increasing protein phosphatase 2A activity, 

necessary for dopamine-induced Na+K+-ATPase endocytosis [27]. S-nitrosylation of Cys86 

(GTPase domain) and Cys607 (PH domain) by nitric oxide (NO) increases DNM2 GTPase 

activity and endocytosis [28]. Finally, regulation of DNM2 by proteolysis under pathological 

condition has also been reported [29]. Sever et al. identified a cathepsin L cleavage site at 

positions 355-360 in the middle domain (Figure 1B). In a mouse model of kidney disease, 

cathepsin L induction leads to the cleavage of the cytoplasmic DNM2 and then actin 

reorganization in renal podocytes, filtration impairment and proteinuria [29]. It remains to be 

determined whether such proteolytic regulation occurs in other tissues.  

Phosphorylation of DNM1 by protein kinase C (PKC) increases Ca2+ binding to the 

protein, which in turn inhibits DNM1 stimulated GTPase activity [30]. Although DNM2 is 

not a substrate of PKC and does not bind Ca2+ [5] it was demonstrated that Ca2+ also inhibits 
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DNM2 GTPase activity (IC50=150µM) and receptor mediated endocytosis in Hela cells [31]. 

This may have physiological importance in excitable cells like neurons and muscle fibers. 

It is still largely unknown how the expression of DMN2 is regulated. In rat, DNM2 is 

up-regulated during normal pancreatic development after birth [32] but not in the liver [12] or 

the brain [33]. In mouse, treatment with opioid agonist results in increased DNM2 protein 

content in the spinal cord [34, 35] whereas opioid antagonist decreases DNM2 abundance [35, 

36]. These changes in the level of DNM2 expression are inversely correlated with opioid 

receptor density at the plasma membrane, suggestive of feed-back regulation. A similar type 

of regulation has also been described in brain [37].  

 

DNM2 function 

 

1. Endocytosis. DNM2 has been implicated in the formation of clathrin-coated pits [21]. In 

the cytosol, DNM2 forms a complex with sorting nexin 9 (SNX9) and fructose-1,6-

bisphosphate aldolase [38, 39]. Phosphorylation of SNX9 releases aldolase from the SNX9-

DNM2 complex which is now competent for membrane targeting [39, 40]. DNM2 anchorage 

to the membrane occurs via interaction with PI4,5P2 membrane phosphoinositide [41] and 

BAR (Bin1/Amphiphysin/RVS167) domain proteins; amphiphysin 1, amphiphysin 2, and 

SNX9 (Table 1) in curved sites of the membranes. Subsequently, DNM2 co-localizes with 

clathrin before and during the internalization of the coated vesicle [7]. This suggests that 

DNM2 may play a role not only in the release, but also in the first steps of vesicle formation, 

as recently shown in the turnover of intermediates during the maturation of clathrin-coated 

pits [42]. During this process, DNM2 forms an oligomer helical structure around the neck of 

the nascent vesicles [21] and GTP hydrolysis is associated with the release of the vesicles. 
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DNM2 is also involved in clathrin-independent endocytosis by its role in the formation 

of the phagosomes in macrophages and Sertoli cells [43, 44] and caveolae in hepatocytes and 

endothelial cells [45, 46]. Predescu et al. described a protein complex, including DNM2, 

intersectin and SNAP-23, that was important for the fission and internalization of caveolae 

[47]. In caveolae, DNM2 also interacts with endothelial nitric-oxide synthase (eNOS) in 

bovine aortic endothelial cells [48] where DNM2 may regulate eNOS activation and the NO 

signalling cascade [48-51]. DNM2 also participates in coat-independent endocytosis 

processes, i.e. micropinocytosis and macropinocytosis, by which fluid droplets and specific 

membrane components are internalized [52, 53]. 

Altogether, these data demonstrate a role for DNM2 in clathrin- and caveolae-

dependent endocytosis as well as coat-independent endocytosis, and in regulating several 

important cellular processes including signal transduction, cholesterol homeostasis, plasma 

membrane composition and turnover, cell migration and entry of pathogens. 

 

2. Intracellular membrane trafficking. DNM2 targets to the Golgi apparatus where it is 

predominantly localized in the trans-Golgi network (TGN) [54]. Anti-DNM2 antibody 

injection and over-expression of DNM2 mutants impair vesicle formation from the TGN [55-

57]. Association of DNM2 with cortactin, by an arf-1 and actin-dependent mechanism, and 

with syndapin 2, is required for trafficking of nascent vesicles from the TGN [58, 59]. DNM2 

is also found at the clathrin-coated buds of early endosomes [60] and in late endosomes in 

Hela cells, located to the tubulo-vesicular appendices [61]. In these two cases, interfering 

DNM2 mutant impairs the recycling of components from the endosomal system towards the 

plasma membrane or TGN [60, 61]. These data highlight the role of DNM2 in the secretory 

pathway and in the sorting of cell components from the Golgi apparatus and endosomal 

compartment. 
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3. Exocytosis. In neuroendocrine cells, monomers of DNM2 are associated with the 

membrane of secretory chromaffin granules in a complex including syntaxin, a member of the 

exocytosis machinery [62]. DNM2 also interacts and co-localizes with complexin I, a SNARE 

regulatory protein [63]. Therefore, DNM2 may participate in endocytosis-exocytosis coupling 

as suggested in mouse pancreatic β-cells [64]. However, a role for DNM2 in exocytosis alone 

has been reported. During cell-mediated killing by natural killer (NK) cells, DNM2 co-

localizes with lytic granules after NK cell activation, and is required for fusion of the granules 

with the plasma membrane [65]. Similarly in macrophages, focal exocytosis is blocked after 

anti-DNM2 antibody microinjection [66] and DNM2 GTPase activity regulates the fusion of 

secretory vesicles at the plasma membrane [67]. Further studies will be necessary to precisely 

identify the molecular role played by DNM2 in the exocytosis machinery. 

 

4. Actin network. Actin-based dynamic processes are crucial for late stage endocytosis and 

vesicle formation, and DNM2 interacts with several actin-binding proteins. Direct interactions 

have been identified with Abp1 (actin-binding protein 1) [68] and cortactin [69, 70]. Abp1 is a 

Src kinase which provides a physical bridge between the endocytosis machinery and the 

cortical actin network, and cortactin is a component of the clathrin-mediated endocytosis 

machinery [71]. In addition, DNM2 is a component of actin-based motile vesicles (actin 

comets) [72, 73] which provide transport through the cytoplasm for vesicles formed by the 

Golgi apparatus or plasma membrane. Expression of DNM2-K44A mutant, defective for the 

GTPase activity, strongly reduces the number, length and velocity of the comets [72, 73]. 

Interaction between DNM2 and the actin cytoskeleton may have another cytoskeletal 

role such as in the formation of membrane tubules and protrusions. Furthermore, a recent 

study showed the crucial function played by the DNM2-cortactin complex in the global 
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organisation and remodelling of the actomyosin cytoskeleton [74]. In addition, DNM2 is 

present in cortical ruffles and lamellipodia, both important in cell migration [14, 69]. The 

supramolecular complex including DNM2, cortactin and Arp2/3 mediates the reorganization 

of actin allowing lamellipodia formation at the leading edge of migrating cells [75]. 

Disruption of DNM2 function by DNM2-K44A mutant or small interfering RNA (siRNA), 

inhibits the formation of lamellipodia [76]. Similarly, under PDGF stimulation, DNM2 is 

concentrated within the leading ruffles of migrating fibroblasts where it co-localizes with 

cortactin [69]. To allow cell migration, DNM2 participates in disassembly of focal adhesions, 

as well as β-integrin internalization at the rear of the cell [77, 78]. Additionally, DNM2 is 

enriched in specialized membrane protrusions such as podosomes and invadipodia. 

Podosomes represent attachment sites between cells and substratum [79] and invadipodia are 

focalized matrix degradation sites [80]. Inhibition of DNM2 diminishes the amount of such 

structures [80]. It has also been shown that DNM2 regulates the formation of actin stress-

fibers by interaction with the cell surface heparin sulphate proteoglygan syndecan-4 [81] 

Expression of DNM2-mutant, truncated for the PRD domain mediating interaction with 

cortactin, increases the number of actin-stress fibers, which is associated with abnormal cell 

shape [69]. 

 

5. Microtubule network and MTOC. It is noteworthy that the first isolated dynamin, i.e. 

DNM1, was initially reported as a microtubule associated protein [4]. A similar binding 

property has been evidenced for DNM2 in vitro [21] and the binding region was located to the 

PRD [6, 82]. More recently, it was shown that down-regulation of DNM2 by siRNA increases 

the amount of acetylated tubulin, a more stable form of tubulin in microtubules, and reduces 

their growing capacity [83], suggesting that DNM2 may regulate the polymerization-

depolymerization equilibrium of microtubules. Through its interaction with microtubules, 
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DNM2 appears involved in Golgi apparatus cohesion [83]. Moreover, DNM2 has been 

identified as a component of the centrosome, the main microtubule organizing center 

(MTOC), where it binds to γ-tubulin [84]. The centrosome consists of a pair of centrioles 

embedded in a filamentous pericentriolar matrix, where γ-tubulin is essential for microtubule 

nucleation. The function played by DNM2 at the centrosome is still unknown, but DNM2 

silencing by siRNA suggests a role in centrosome splitting [84]. Likewise, participation of 

DNM2 in all the phases of mitosis has also been reported. DNM2 is detected in the 2 MTOC 

during early prophase, along the mitotic spindle during metaphase and in the spindle midzone 

region during anaphase and early telophase [85]. Thereafter, DNM2 is accumulated at the 

intracellular bridge where the final separation occurs. The time required for separation of the 

two daughter cells is longer in DNM2 knock-out cells [53]. Taken together, these data suggest 

that DNM2 may regulate microtubule-dependent processes by acting on microtubule 

dynamics and organisation. 

 

6. Apoptosis. In order to establish a stable Hela cell line over-expressing DNM2 isoform 2, 

Fish et al. have reported a significant cell toxicity in dividing cells [86]. The cytotoxicity 

occurred via induction of apoptosis by a p53-dependent mechanism. Similar results were 

gained in vascular smooth muscle cells [87]. The capacity to trigger apoptosis appears 

DNM2-specific as DNM1 over-expression does not induce apoptosis [86]. The GTPase 

domain of DNM2 is crucial to induce apoptosis [88]. Besides, a point mutation (p.I684K) in 

the DNM2 GED enhances the apoptosis induction by the wild-type DNM2 suggesting that 

GED negatively regulates this DNM2 function [88]. Mitochondria are key actors in apoptosis 

and, interestingly, DNM2 has been detected in isolated mitochondria from bovine 

lymphoblastoid BL-3 cells [89]. However, to our knowledge, such localization has not been 

reported in other cell lines or tissues. DNM2 also regulates the apoptosis-inducing Fas-Fas 
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ligand pathway by facilitating the transport of Fas from the trans-Golgi network to the plasma 

membrane [90].  

 

7. Specific functions of DNM2 isoforms. In a cultured rat epithelial cell line (clone 9), both 

DNM2 isoforms 1 and 3 show punctuate labeling of clathrin heavy chain-positive or -negative 

structures, but only isoform 1, with the GEIL sequence in the middle domain, appears located 

to the Golgi apparatus [14]. These data suggest a role for the GEIL sequence in targeting to 

the Golgi apparatus. However, cell-type specificity probably exists, as isoforms without the 

GEIL sequence were also shown to be targeted to the Golgi apparatus in MDCK cells [56], 

3T3L1 adipocytes [91] and fibroblastoid-like cells derived from mouse embryonic stem cells 

[53]. Nevertheless, this possible differential localization argues for distinct functions. Indeed, 

in clone 9 cells, the K44A mutants of isoforms 2 and 4 are able to inhibit fluid-phase 

endocytosis, whereas the mutant forms of isoforms 1 and 3 do not [52], and are more potent 

inhibitors of clathrin-mediated endocytosis. Similarly in a hepatocyte cell line, the K44A-

isoform 1 inhibits caveolae-dependent internalization, but not the other K44A mutant 

isoforms [92]. In fibroblastoid-like cells derived from mouse embryonic stem cells, isoforms 

2 and 4 are the most efficient at rescuing export from the Golgi in DNM2 knock-out cells 

[53]. Altogether, these data suggest a preferential involvement of isoforms 1 and 3 in clathrin- 

and caveolae-dependent endocytosis, whereas isoforms 2 and 4 participate in uncoated 

endocytosis and trafficking from the Golgi apparatus. However, cell-type specificity also 

occurs as the four isoforms exhibit a similar subcellular distribution in 3T3L1 adipocytes and 

dominant negative mutants of each isoform similarly affect basal and insulin-stimulated 

GLUT4 trafficking [91]. 

 

DNM2 and human disease 
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Mutations in the DNM2 gene cause rare forms of the Charcot-Marie-Tooth peripheral 

neuropathy (CMT) [2, 93-96] and autosomal dominant centronuclear myopathy (CNM) [3, 

15, 97-99]. The 19 reported heterozygous mutations affect only the Middle domain, the PH 

domain and the GED (figure 1B). DNM2-related CNM is a slowly progressive congenital 

myopathy characterized by frequent centrally located nuclei in muscle fibers. The most 

common clinical features are delayed motor milestones, facial and generalized muscle 

weakness, ptosis and ophthalmoplegia [100]. Nevertheless, the severity of DNM2-CNM is 

variable, ranging from severe neonatal to mild late-onset forms. DNM2-CMT is a peripheral 

neuropathy characterized by progressive muscle weakness and atrophy. DNM2 mutations can 

cause axonal CMT (CMT2) and dominant intermediate CMT (DI-CMT-B). In CMT2, the 

nerve conduction velocity is usually normal (> 38 m/s for the median nerve, which represents 

the cut-off value between the demyelinating CMT1 and the axonal CMT2). In the group of 

rare patients affected by DI-CMT-B, the nerve conduction velocity values are intermediate 

(between 25 and 45 m/s). In some CMT patients, neuropathy is associated with neutropenia 

[2, 94, 96] but this association has not been described in DNM2-CNM patients. Clinical 

overlap could exist in some patients, but the majority of patients are affected by a tissue-

specific disorder targeting either skeletal muscle or peripheral nerve [94, 99, 100]. Among the 

19 distinct DNM2 mutations identified to date, there are no mutations common to the two 

disorders and no mutations in the regions of variation due to alternative splicing. No clear 

genotype-phenotype relationship can be generated, except for the de novo mutations located 

in the C-terminal part of the PH domain, which are all associated with a severe neonatal CNM 

phenotype [98]. In these patients, the phenotype progressively improves, suggesting 

compensatory mechanisms. Of note is that the CMT-mutation G358R, is located in the 
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cathepsin L cleavage site [29] and therefore may impair the regulation of DNM2 by 

proteolysis. 

More recently, the DNM2 gene has been described as a susceptibility gene for late-

onset Alzheimer disease [101], and DNM2 expression was subsequently found to be 

decreased in the brains of late-onset Alzheimer patients [102]. Cognitive impairments have 

been reported in some CNM patients harboring the p.E368Q [97], p.R465W [103; Family 1] 

and p.R369Q [103; Families 2 and 3] DNM2 mutations. Future studies will be necessary to 

determine the prevalence of central nervous system involvement in DNM2-related diseases. 

 

Pathophysiological hypotheses 

 

1. Membrane trafficking and signaling pathway hypothesis. In addition to the DNM2 

mutations in autosomal dominant CNM, mutations in the BIN1 gene encoding amphiphysin 2, 

a partner of DNM2 in the endocytic process, can cause the autosomal recessive form of the 

disease [104]. This suggests that endocytic impairment is implicated in the pathophysiological 

mechanisms of autosomal CNM. Indeed, impairment of clathrin-mediated endocytosis was 

also reported in cultured cells expressing CNM- or CMT-DNM2 mutants [2, 15, 83]. The 

crucial question which remains to be explored is how a defect in clathrin-mediated 

endocytosis can alter the cell function. Endocytosis (via clathrin-coated vesicles, caveolae or 

uncoated vesicles) regulates fundamental processes including nutrient uptake, membrane 

composition and turnover, cell adhesion or migration, pathogen entry, and signaling of G 

protein-coupled receptors, tyrosine kinase receptors or channels [105-107]. Thus, DNM2 

mutations may have a large spectrum of functional consequences. On one hand, DNM2 

mutations may lead to a decrease in receptor stimulated signaling as shown for the MAPK 

ERK1/2 pathway [15, 108]. On the other hand, DNM2 mutations may lead to a prolonged 
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half-life of various proteins at the cell surface due to a defect in protein removal, similar to 

that as suggested for the EnaC sodium channel [109, 110], KCNQ1 potassium channel 

subunits [111] or the GLUT4 glucose transporter [91, 112-114]. A deregulation of glucose 

transport in patients with DNM2 mutations could have a strong impact on muscle fibers given 

their high glucose consumption. Of note, the microtubule network plays an important role in 

GLUT4 trafficking [115] and a decrease in muscle weight has been reported for a transgenic 

mouse over-expressing GLUT4 [116]. 

To date, the impact of disease-associated DNM2 mutants on other membrane 

trafficking processes in which DNM2 is involved, especially in endosomal and Golgi 

pathways, has not been studied. In cells over-expressing the K44A-DNM2 mutant, an 

impairment in the trafficking from the Golgi apparatus has been reported [117, 118]. We 

cannot exclude a participation of these pathways in the pathomechanisms of DNM2-related 

disorders. 

 

2. Cytoskeleton. In DNM2-CNM, the majority of patients harbour a mutation in the middle 

domain, which is essential for the centrosomal localization of DNM2 and for its interaction 

with γ-tubulin [84]. Previous results in skin fibroblasts indicate that transfected GFP-DNM2-

mutants failed to be correctly targeted to the centrosome, suggesting that DNM2 mutations 

might cause CNM by interfering with centrosome function [3]. In addition, CMT-related 

DNM2 mutants can disorganize the microtubule cytoskeleton [2] and one particular CMT- 

mutant was shown to impair microtubule-dependent membrane transport [83]. During skeletal 

muscle differentiation a profound reorganization of the microtubule network occurs, changing 

from a classical network centered on the juxtanuclear centrosome in myoblasts, to a 

longitudinal organization along the axis of differentiated myotubes [119]. One can 

hypothesize that mutated-DNM2 can impair functions associated with this specific 
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cytoskeleton reorganization. In addition to their roles in intracellular trafficking, the 

microtubule and actin networks regulate cellular architecture including nuclear positioning 

[120, 121]. Thus, cytoskeletal impairment may be implicated in the abnormal central location 

of the nuclei in the muscle fibers in CNM. In CMT, DNM2 mutations could also induce a 

destabilization of the microtubule network leading to abnormal axonal transport and protein 

trafficking, a pathophysiological mechanism described previously in various forms of CMT 

[122]. 

 

Concluding remarks and open questions 

 

Given the numerous distinct functions in which the ubiquitously expressed DNM2 is 

involved, the identification of pathophysiological mechanisms will be a challenge. The 

phenotypes encountered in CNM and CMT patients are probably due to impairment of the 

various functions of the protein. DNM2 is engaged in numerous protein-protein interactions 

(Table 1) but the relevance of these interactions in skeletal muscle and the nervous system, is 

largely unexplored. For example, DNM2 interacts with β-catenin in rat testis in relation to the 

maintenance of the blood-testis barrier integrity [123] but no data are available on this 

interaction in skeletal muscle where β-catenin plays an important role [124, 125]. Another 

essential unresolved question is whether each particular mutation can similarly affect the 

functions of the four DNM2 isoforms. Finally, whereas some data emerge on the impact of 

disease-related DNM2 mutations on the microtubule network, their impact on the actin 

cytoskeleton is totally unknown. Future developments and characterization of animal models 

will certainly be useful to better determine the main functions of DNM2 in vivo, especially in 

skeletal muscle and peripheral nerves where membrane trafficking displays different 

characteristics depending to the length of the cells. 
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PI4,5P2: phophatidylinositol 4,5-bisphosphate 

PI3,4,5P3: phophatidylinositol 3,4,5-triphosphate 

PI3,4P2: phophatidylinositol 3,4-bisphosphate 

PI4P: phophatidylinositol 4-monophosphate 
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LPA: lysophosphatidic acid 

GLUT4: glucose transporter 4 
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BAR: Bin1/Amphiphysin/RVS167 
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Legends 

 

Figure 1: DNM2 gene organization and mutations. 

A. Schematic organization of the human DNM2 gene showing alternative splicing. Asterisks 

indicate the seven exons in which disease associated mutations have been identified. Exons 

were colored relative to the encoded protein domain illustrated in B. The combination of the 

two alternative splice sites leads to the translation of four DNM2 isoforms. B. Schematic 

representation of DNM2 showing the five protein domains and the position of the 19 disease-

associated mutations. CMT-mutations are indicated in green and CNM-mutations in red. The 

two regions of variation (at positions 399-445 and 516-519) between the four isoforms were 

indicated in the middle domain by black lines. In black are indicated the sites of post-

translational modifications (phosphorylation, nitrosylation and cathepsin L cleavage). In blue 

are indicated the DNM2 constructs with point mutations or small deletions overexpressed in 

vitro [2, 15, 29, 79, 83, 88, 126, 159]. 

 

Figure 2: DNM2 cellular functions 

Representation of the multiple cellular localizations reported for DNM2 (in red). EE: early 

endosome. LE: late endosome. 
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Table 1: Direct or indirect interactions with DNM2 
 

 
Name 

 
OMIM 

Site of 
interaction 
in DNM2 

 
Function 

 
Reference 

Abp1 610106 nd Endocytosis-actin bridge [68, 127] 
Amphiphysin 1 600418 PRD Membrane trafficking [18, 128] 
Amphiphysin 2 601248 PRD Membrane trafficking [18, 129] 
Annexin VI 114070 nd Membrane trafficking [130] 
Aquaporin 2 107777 nd Aquaporin trafficking [131] 
Arc 612461 PH AMPA receptor trafficking [132] 
CAP 605264 nd Actin remodelling during endocytosis [133] 
β-catenin 116806 nd Blood-testis barrier integrity [123] 
Caveolin-1 601047 nd endocytosis [92, 134, 135] 
CBL 165360 nd Actin remodelling during endocytosis [136] 
CIP4 604504 nd GLUT4 trafficking [137] 
Complexin I 605032 nd Acrosome formation and/or exocytosis [63] 
Complexin II 605033 nd Acrosome formation and/or exocytosis [63] 
cortactin 164765 PRD Actin assembly - Endocytosis- [69, 70, 135] 
c-Src 124095 PRD Cell signalling and membrane trafficking [138] 
eNOS 163729 nd NO production - Cell signalling [48, 139] 
Ese1 602191 PRD Endocytosis [140] 
FAK 600758 PRD Focal adhesion disassembly [77] 
FBP17 606191 PRD Actin reorganization during endocytosis [141, 142] 
Grb2 108355 PRD Receptor internalization and signalling [138, 143, 144]  
IL-5Rα 147851 nd IL-5 signaling pathway and trafficking [26] 
Jak2 147796 nd IL-5 signaling pathway [26] 
JAM-A 605721 nd Blood-testis barrier integrity [123] 
Kalirin 12 604605 GTPase Membrane trafficking [145] 
KDR 191306 nd Receptor signaling and expression [146] 
LYN 165120 PRD IL-5 signaling pathway [26, 138] 
MLK2 600137 PRD Actin (filipodia and membrane ruffles) [147] 
Myosin 1E 601479 PRD Receptor-mediated endocytosis [148] 
N-cadherin 114020 nd Blood-testis barrier integrity [123] 
Nef - MD / GED HIV-1 entry [149] 
Nostrin 607496 PRD eNOS trafficking [150] 
N-WASp 605056 nd Actin remodelling [75] 
Occludin 602876 nd Blood-testis barrier integrity [123] 
p85 171833 PRD  [138] 
PDEγ 180073 nd Cell signalling [151] 
PLCγ 172420 PRD  [138] 
PLD2 602384 nd Cell signalling [152] 
Shank 1 604999 PRD Postsynaptic membrane turnover [153] 
Pyk2 601212 nd Podosome dynamics [154] 
Shank 2 603290 PRD Postsynaptic membrane turnover [153] 
SNX9 605952 PRD Membrane remodelling – actin dynamics [38, 155] 
SNX18 - PRD Endosomal trafficking [155] 
SNX30 - PRD Membrane trafficking? [155] 
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Syndapin 2 604960 PRD Vesicle formation from the TGN [59] 
Syndecan-4 600017 PH Actin stress-fibers and focal adhesion sites [81] 
Tks5/FISH - PRD Cell signalling [156] 
TULA 605736 nd EGFR trafficking [157] 
Vav1 164875 PRD T cell activation by actin remodelling [158] 
β-tubulin 191130 PRD  [18] 
γ-adaptin 603533 PRD  [18] 
γ-tubulin 191135 MD Centrosome cohesion [84] 
ΖΟ1 601009 nd Blood-testis barrier integrity [123] 

 

Abp1: actin binding protein. CAP: CBL associated protein. CBL: Cas-Br-M murine ecotropic 

retroviral transforming sequence homolog. CIP4: cdc42 interacting protein-4. eNOS: 

endothelial nitric-oxide synthase. Ese1: EH domain and SH3 regulator of endocytosis 1. FAK: 

focal adhesion kinase. FBP17: Formin-binding Protein 17. Grb2: growth factor receptor-

bound protein 2. IL-5Rα: α subunit of the interleukin 5 receptor. Jak2: Janus kinase 2. JAM-

A: junctional adhesion molecule A. KDR: kinase insert domain receptor also known as 

Vascular endothelial growth factor receptor-2. MLK2: mixed-lineage kinase 2. Nef: accessory 

protein of the HIV-1. N-WASp: Wiskott Aldrich syndrome protein. PDEγ: inhibitory γ 

subunits of the retinal cGMP phosphodiesterase. PLCγ: Phospholipase C gamma 1. PLD2: 

phospholipase D2. SNX9: sorting nexin 9. Tks5/FISH: tyrosine kinase substrate 5/five SH3 

domains. TULA: Cbl- and ubiquitin-interacting protein T-cell ubiquitin ligand. Vav1: Rho 

family guanine nucleotide exchange factor Vav1. ZO1: Zonula occludens 1. 
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