
HAL Id: hal-02451058
https://hal.science/hal-02451058v1

Submitted on 23 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Modular Framework for Verifying Versatile
Distributed Systems

Florent Chevrou, Aurélie Hurault, Philippe Quéinnec

To cite this version:
Florent Chevrou, Aurélie Hurault, Philippe Quéinnec. A Modular Framework for Verifying Versatile
Distributed Systems. Journal of Logic and Algebraic Methods in Programming, 2019, 108, pp.24-46.
�10.1016/j.jlamp.2019.05.008�. �hal-02451058�

https://hal.science/hal-02451058v1
https://hal.archives-ouvertes.fr

Any correspondence concerning this service should be sent

to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in:
http://oatao.univ-toulouse.fr/24923

To cite this version: Chevrou, Florent and Hurault, Aurélie and Quéinnec,

Philippe A Modular Framework for Verifying Versatile Distributed Systems.

(2019) Journal of Logical and Algebraic Methods in Programming, 108. 24-46.

ISSN 2352-2208

Official URL

DOI : https://doi.org/10.1016/j.jlamp.2019.05.008

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

A modular framework for verifying versatile distributed systems ✩

Florent Chevrou, Aurélie Hurault, Philippe Quéinnec ∗

Université de Toulouse, IRIT, 2, rue Charles Camichel, 31000 Toulouse, France

a b s t r a c t

Keywords:

Distributed systems
Asynchronous communication
Multicast

Compatibility checking
TLA+

Putting independent components together is a common design practice of distributed systems.
Besides, there exists a wide range of interaction protocols that dictate how these components
interact, which impacts their compatibility. However, the communication model itself always consists
in a monolithic description of the rules and properties of the communication. In this paper, we
propose a mechanized framework for the compatibility checking of compositions of peers where the
interaction protocol can be fine tuned through assembly of basic properties on the communication.
These include whether the communication is point-to-point, multicast or convergecast, which
ordering-policies are to be applied, applicative priorities, bounds on the number of messages in
transit, and so on. Among these properties, we focus on a generic description of multicast
communication that encompasses point-to-point and one-to-all communication as special cases. The
components that form the communication model are specified in TLA+, and a system, composed of a
communication model and a specification of the behavior of the peers (also in TLA+), is checked with
the TLA+ model checker. Eventually we provide theoretical views on the relations between ordering-
policies through the lenses of multicast and convergecast communication.

1. Context

1.1. Introduction

Distributed systems are a composition of individual components, the peers, that exchange messages and work towards a
common goal. Their interactions are governed by a protocol, or communication model, that specifies whether the emission
or the reception of a message is possible. For example, synchronous communication dictates that a message shall be sent
and received at the same time (rendez-vous). In asynchronous communication, though, which this paper focuses on, the
emission and the reception of a message do not happen simultaneously: the two events occur with a delay. This results
in many possible interleavings of the communication events, some of which might jeopardize the compatibility or the
correction of a composition of peers unless specific properties on the communication are met. Such properties include
whether the communication is point-to-point, multicast or convergecast, numerous message-ordering policies that state that
some messages have to be delivered in their emission order, bounds on the number of messages in transit, and applicative

✩ This work was supported by project PARDI ANR-16-CE25-0006.
* Corresponding author.

E-mail addresses: florent.chevrou@enseeiht.fr (F. Chevrou), aurelie.hurault@enseeiht.fr (A. Hurault), philippe.queinnec@enseeiht.fr (P. Quéinnec)

https://doi.org/10.1016/j.jlamp.2019.05.008

priorities ensuring that some messages or recipients have precedence over others. Any conjunction of these properties is
a unique communication model. Yet, existing verification frameworks consider the interaction protocol to be an indivisible
entity that may be, at best, parameterized (e.g. capacity of queues) or entirely substituted by another.

In this paper, we describe an extensible framework where the communication model is any desired conjunction of
communication properties we call “micromodels”. We allow for different combinations to apply on different parts of the
distributed system: for instance multicast causally ordered communication on some of the peers and point-to-point capped
FIFO ordered communication on another subsystem. Each micromodel is a transition system specified in TLA+ whose transi-
tions account for an emission or a delivery of a message and whose states may fit any convenient data structure, no matter
how the rest of the communication is described. For instance, a simple specification of the micromodel corresponding to
the property “there are at most n messages in transit” is a set in which a message is added after an emission, removed
after a reception, and that prevents any further emissions when it contains n messages. As an example, it may coexist
with a micromodel that enforces a message delivery order using queues. A system to verify consists of the product of the
micromodels and the behavior of the peers, specified in TLA+ . The correctness of the system is checked with TLC, the TLA+

model checker. This correctness is any linear temporal properties (safety and liveness) that TLA+ can express.
The contributions of the paper are the following. We provide a library of TLA+ modules that specify the behavior of

various micromodels. First, physical micromodels deal with the multiplicities of delivery: point-to-point communication (a
message is delivered to one peer), multicast communication (a message has several receivers) and convergecast communi-

cation (a peer receives a set of messages). One notable contribution is a generic specification (in one single micromodel) of
multicast communication that encompasses point-to-point and one-to-all communication as special cases. Combined with
these physical micromodels, the framework includes nine micromodels that control emission and reception. The complete
files of the framework are available online [12]. Lastly, this paper includes a theoretical study that compare the expressive
power of the message-ordering micromodels.

The outline of this paper follows: This introduction presents a running example. Section 2 provides an introduction to
the TLA+ specification language, Section 3 presents the overall design of our verification framework and the modular design
of communication models, Section 4 details several micromodels: a universal micromodel of communication for both the
point-to-point and multicast paradigms, a micromodel for convergecast communication, and several message-ordering mod-

els that are used in combination with the previous communication paradigms. Section 5 studies the relations between these
message-ordering models with multicast and convergecast communication. Section 6 explores related work, and eventually
Section 7 sums this work up and paves the way for further developments.

1.2. Running example: a conference reviewing system

As a running example, we present a conference reviewing system. This system is composed of peers that are the authors,
the chairs of the program committee and the reviewers. Authors send their papers to all the PC chairs. An author can submit
only one paper. Each chairperson attributes a paper number and takes responsibility for a part of the papers, based on this
number. After the deadline has passed, the chairs reject new submissions and inform the authors. After the deadline, each
chair independently sends his papers to some reviewers, waits for the reviews, and sends the acceptance result to the
author. The system must ensure that it does not deadlock and that every author eventually receives a unique answer (either
rejection for a late paper, or acceptance result if reviewed).

Fig. 1 shows a possible execution: three authors send their paper on channel submission to all the chairs (multicast
communication – black plain arrows). Chair 1 will handle the odd messages (i.e. the one from authors 1 and 3) and chair 2
will handle the even messages (i.e. the one from author 2). The chairs forward the paper that they handle on channel
paper to a set of two or three reviewers (multicast communication – blue dashed arrows). Paper 1 (from author 1) is sent
by chair 1 to all three reviewers, and paper 2 (from author 2) is sent by chair 2 to reviewers 1 and 3. Author 3 submits her
paper after the deadline and is rejected by chair 1. The chairs wait on channel review for at least two reviews by paper
(convergecast communication – green dotted-dashed arrows), and send on channel acceptation the acceptance result to
the authors (point-to-point communication – red dotted arrows).

2. TLA+ specification language

TLA+ [23] is a formal specification language based on untyped Zermelo-Fraenkel set theory for specifying data structures,
and on the temporal logic of actions (TLA) for specifying dynamic behaviors. TLA+ allows to specify symbolic transition
systems with variables and actions. The TLA+ toolbox contains the TLC model checker (an enumerative explicit-state model
checker), the TLAPS proof assistant, and various tools such as a translator for the PlusCal Algorithm Language [24] into a
TLA+ specification.

Expressions rely on standard first-order logic, set operators, and several arithmetic modules. Hilbert’s choice operator,
written as choose x ∈ S : p , deterministically picks an arbitrary value in S which satisfies p , provided such a value exists
(its value is undefined otherwise).

Functions are primitive objects in TLA+ , and tuples are a particular kind of function. The application of function f to an
expression e is written as f [e]. The set of functions whose domain is X and whose co-domain is a subset of Y is written
as [X → Y]. The expression domain f is the domain of the function f . The expression [x ∈ X 7→ e] denotes the function

Fig. 1. An execution for the reviewing example. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

with domain X that maps any x ∈ X to e . The notation [f except ![e1] = e2] is a function that is equal to the function
f except at point e1 , where its value is e2 . Records are functions with domain the names of the fields. As a shorthand,
r [“field”] is written r .field , and [r except !.field = val] is a new record that is equal to r except for the field field which
gets val . In the val expression, @ can be used to refer to the initial value of the field: [r except !.count = @ + 1] means
[r except !.count = r .count + 1].

Modules are used to structure complex specifications. A module contains constant declarations, variable declarations,
and definitions. A module can extend other modules, importing all their declarations and definitions. A module can also be
an instantiation of another module. The module MI

1
= instance M with q1 ← e1, q2 ← e2 . . . is an instantiation of module

M , where each symbol qi is replaced by ei (qi are identifiers specifying constants or variables of module M , and ei are
expressions). Then MI !x references the symbol x of the instantiated module.

Other than constant and variable declarations, a module contains definitions in the form Op(arg1, . . . , argn)
1
= exp . This

defines the symbol Op such that Op(e1, . . . , en) equals exp , where each argi is replaced by ei . In case of no argument,
it is written as Op

1
= e . A definition is just an abbreviation or syntactic sugar for an expression, and never changes its

meaning.

The dynamic behavior of a system is expressed in TLA+ as a transition system, with an initial state predicate, and actions
to describe the transitions. An action formula describes the changes of state variables after a transition. In an action formula,
x denotes the value of a variable x in the origin state, and x ′ denotes its value in the destination state. A prime is never
used to distinguish symbols but always means “in the next state”. enabled A is a predicate which is true in a state iff the
action A is feasible, i.e. there exists a next state such that A is true.

A specification of a system is written as Init ∧✷[Next]vars ∧F , where Init is a predicate specifying the initial states, ✷
is the temporal operator that asserts that the formula following it is always true, Next is the transition relation, usu-
ally expressed as a disjunction of actions, [Next]vars is defined to equal Next ∨ vars ′ = vars (Next with stuttering),
and F expresses fairness conditions. Fairness is usually expressed as a conjunction of weak or strong fairness on actions
WFvars (A1) ∧ WFvars (A2) . . . ∧ SFvars (Ai) Weak fairness WFv (A) means that either infinitely many A steps occur or
A is infinitely often disabled. In other words, an A step must eventually occur if A is continuously enabled. Strong fairness
SFv (A) means that either infinitely many A steps occur or A is eventually disabled forever. In other words, an A step must
eventually occur if A is repeatedly enabled.

System properties are specified using linear temporal logic (LTL). ✷φ means that φ holds in every suffix of the behavior.
✸φ is defined to equal ¬✷¬φ and means that φ eventually holds in a subsequent state. ψ ❀ φ is defined to equal ✷(ψ ⇒

✸φ) and means that, whenever ψ holds, then later φ holds.

3. Overview of the verification framework

The goal of the framework is to check the compatibility or the correction of a composition of peers under specific
properties on the communication. The key feature is a strict separation of concerns between the specification of the peers
and the specification of the communication properties. So, the distributed system consists in the product of two transition
systems: the composition of peers and the communication model. Both are labeled by localized communication events and

are written in separate TLA+ modules that are connected during the verification process carried out by model checking
using TLC.

In this section, the initial presentation only considers point-to-point and multicast communication to avoid introducing
too many concepts. Convergecast communication will be added later (Section 4.2) with minor changes.

3.1. Specification of a composition of peers

The specification of a composition of peers is a TLA+ module that describes the state of each peer in the distributed
system and specify their behavior according to transition predicates (actions). There is no restriction on the design of
the specification of the composition as long as there is at most one communication action (send, receive or ignore) per
transition. The actions in the composition usually consist in a conjunction of a communication action and a local state
change. In practice, the state of the composition is usually a vector of every peer’s state and the actions are local. During an
action in the system, the state of a peer evolves either spontaneously or alongside a communication action. Nevertheless,
the framework does not forbid that some state is shared by several peers, or that the peers evolves synchronously. It’s up
to the designer to decide if the only exchanges between peers occur with the available communication actions, or if some
hidden communication channels are used.

3.1.1. Communication actions
The available communication actions provided by our framework follow.

Send. send(sender, receivers, channel, data) is enabled when the emission of a message by sender on channel channel is possible.
We use the channel as an indirection on the notion of destination peer (point-to-point) or destination group (multicast).
Besides, it makes it possible to specify systems where channels are not statically associated to a given sender and to a
given group of receivers. receivers restrict the set of possible receivers for this message: it is usually the set of all peers
since channels dynamically account for the destination or destination group but it may be used to narrow a possible set
of receivers down or to send a message to an explicit destination. Eventually, the payload of the message is data without
restriction on its type which can be adapted on a case-by-case basis. This payload is retrieved at delivery.

Receive. receive(receiver, channel, data) is enabled when the reception of a message by receiver on channel channel that
contains data is possible. We assume peers cannot prevent a delivery based on the content data of the message: the
communication model imposes the message to be received and the content is only available afterwards. Therefore, in prac-
tice, a receive action in the specification of a composition has the form ∃data ∈ DATATYPE : receive(_, _, data) ∧P(data)

where P(data) is a transition predicate that covers all the possible values of data in DATATYPE. This means that the next
state of the receiver may depend on data but the enabledness of the reception itself is independent of this value.

Ignore. ignore(peer, channels) is always enabled. It states that peer does not expect to receive messages from the channels
in channels anymore. The channels a peer has not ignored is called the interest of this peer. Ignoring a channel cannot be
reverted as this would otherwise breaks delivery orderings: ignoring a channel and later getting interested in it again would
allow to temporally bypass the message dependencies. The interest is crucial to the specification of some communication
properties including multicast communication as detailed later in Section 4.1.1.

3.1.2. Back to the reviewing system
The reviewing system has been described in the PlusCal Algorithm Language, which is translated by the TLA+ tools to a

TLA+ specification. An excerpt1 is given in Fig. 2.
The peers (processes in PlusCal language) are the authors, the chairs and the reviewers. Only the reviewers are

described in the excerpt. The reviewers have two actions: they can either receive a message on channel paper or send a
message on channel review. For a message to be received on the channel paper, the reviewer must not have more than
4 papers to review, and the paper is added to his list of papers to review. For a message to be sent on review, it must
concern a paper the reviewer have to review, and the paper is removed from his list of papers to review.

3.2. Specification of a communication model

A communication model is responsible for collecting messages sent by the peers, and delivering them to the relevant
peers. In our framework, it is a combination of instances of micromodels, each corresponding to a subset of channels of the
system. We will first see the structure of the micromodels before explaining how the different micromodels interact to form
the communication model.

1 The complete files, of the example and of the used communication models, are available online [12].

module reviewing

....

–algorithm reviewing

....

fair process Reviewer ∈ IdReviewers

variable

readinglist = {} ; – for each reviewer, the papers he has to review

begin

rl0: – listen only on channel “paper”

await ignore(self , CHANNELS \ {“paper”}) ;

rl1:

while true do

either – receive a paper to review

await Cardinality(readinglist) ≤ 4 ;

with paper ∈ IdPapers do

await COM !receive(self , “paper”, paper) ;

readinglist := readinglist ∪ {paper} ;

end with ;

or – send a review to the chairs

with paper ∈ readinglist do

await COM !send(self , IdChairs, “review”, 〈self , paper〉) ;

readinglist := readinglist \ {paper} ;

end with ;

end either ;

end while ;

end process

end algorithm

Fig. 2. The peers (processes in PlusCal language) are the authors, the chairs and the reviewers. The reviewers have two actions: they can either receive
a message on channel paper or send a message on channel review. The chairs and the authors (not shown here) have respectively five and two actions.

3.2.1. Micromodels of communication

As just stated, a communication model is a combination of communication properties we call micromodels. A micro-

model has to answer the following two essential questions from which six other questions are derived:

q1) When is the emission of a message, on a given channel, by a given peer, possible?
q2) When is the delivery of a message, on a given channel, to a given peer, possible?

In order to address these questions, the specification of a micromodel, a TLA+ module, relies on its current state.

q3) Which information must the state carry?

Besides, a micromodel can be parameterized by constants in the module. For example, a micromodel corresponding to
the property “the number of messages in transit is capped” has a parameter: the bound, and its state is the set of messages
in transit. An emission requires the cardinality of this set not to exceed the limit and a delivery is always possible. The sole
purpose of this micromodel is to limit the number of messages in transit and it imposes no constraint on the deliveries: the
basics of the communication such as “a message must have been sent before it is delivered” are part of another micromodel
involved alongside. Micromodels are complementary with minimum overlap.

The remaining questions are then:

q4) What is the initial state?
q5) How does the state evolve after an emission?

q6) How does the state evolve after a delivery?
q7) How does the state evolve after some channels are ignored by a peer?

Since we aim at modeling both point-to-point and multicast communication, the answer to the last two questions is
not trivial. Consider a micromodel that specifies either point-to-point or multicast communication and let us combine it
with our example cap micromodel, characterized by a set of messages in transit. When performing a reception in this
micromodel, the resulting state depends on the communication paradigm: the delivered message must be removed when
the communication is point-to-point (the message is not in transit anymore) but the set may be left unchanged when the
communication is multicast (the message remains in transit for further deliveries). We therefore distinguish two classes of
micromodels: physical and non-physical. Physical micromodels specify when a message is removed from the communication
model because it can no longer be received. Non-physical models specify predicates that control the sending and receiving

module message_cap

extends Naturals, FiniteSets

constants ID, PEERS , CHANNEL, BOUND Maximum nb of messages in transit

PhysicalMicromodel , false q8

The state consists of one field: the ids of the messages in transit.

TypeInvariant(s), s ∈ [idInTransit : subset ID] q3

Init , [idInTransit 7→ {}] q4

usedIds(s) , s.idInTransit

preSend(s, id, from, to, channel, data), q1

Cardinality(s.idInTransit) < BOUND

postSend(s, id, from, to, channel, data), q5

[s except !.idInTransit = s.idInTransit ∪ {id}]

preReceive(s, id, to, channel, data), true q2

postReceive(s, id, to, channel, data, remove), q6

if remove then [s except !.idInTransit = @\ {id}] else s

postIgnore(s, peer , chan_set, removedIds), q7

[s except !.idInTransit = s.idInTransit \removedIds]

Fig. 3. TLA+ module of a parameterized micromodel that caps the number of messages in transit. The annotations q1 to q8 indicate the answers to the
questions a micromodel has to address.

of messages but are not concerned by the lifetime of a message. This information is fed to non-physical models by the
physical models so they can evolve in a consistent way.

q8) Is the micromodel physical?

The specification of any micromodel, such as our example (message cap) whose TLA+ specification is in Fig. 3, must
answer each of the eight questions q1 to q8. The answer to q8 is a boolean PhysicalMicromodel ; q1 and q2 are predicates
preSend and preReceive that depend on the current state of the micromodel, the sender or receiver, the channel, and the
data contained in the message; q3 is a type predicate TypeInvariant depending on the current state s; q4 is the value
Init of the initial state; q5, q6, and q7 are the values postSend , postReceive , postIgnore of the state after the operation.
postSend and postReceive share the interface of preSend and preReceive , postIgnore depends on a peer and set of
channels to ignore. Additionally, in the specification of non-physical micromodels, postReceive has an additional boolean
parameter remove stating whether the received message should be removed or kept in transit, and postIgnore has a set
removedIds of messages to remove.

3.2.2. Assembly of a communication model

The following details an example communication model whose structure is summed up in Fig. 4. This assembly states
that, among channels a , b , c , d , e , and f , the communication has the property of a given micromodel on channels a , b ,
and c (say a message ordering property) and that another property (hence another instance of a micromodel such as the
message cap micromodel) is associated to channels c and d . Overlaps are possible: communication on channel c has both
the message ordering and the message cap properties. A micromodel can also be instantiated more than once: the first
micromodel can be instantiated again on channels e and f which would mean messages on e and f are ordered, messages
on a , b , and c are ordered, but there is no guarantee on the ordering of a message of the first group and a message of the
second group.

As stated earlier, a physical micromodel dictates when a message no longer exists in the communication model (e.g.
after the first delivery if the physical micromodel is point-to-point communication) and the information is used by the
non-physical micromodels to update their local state. This implies that every channel must be associated to exactly one
physical micromodel. Especially, the sets of channels of physical micromodels must not overlap. Otherwise, two physical
micromodels could disagree on whether to remove a message on a shared channel. However, the restriction does not apply
to non-physical micromodels: the sets of channels may overlap or extend beyond the domains of physical micromodels.
Given a communication model that is part point-to-point, part multicast, it is possible to limit the number of messages
in transit on the whole communication model with a message cap instance that encompasses the domains of both the
point-to-point and multicast physical micromodels.

The architecture of the reviewing system is given in Fig. 5. As an author writes to all the chairs, the communication
is multicast on channel submission. A chair forwards the papers it handles to all the reviewers, the communication is
also multicast on channel paper. A chair waits for all the reviews before deciding on acceptance, so the communication is
convergecast on channel review. The acceptance result is a message between a chair and an author so the communication
is point-to-point on channel acceptation. In addition, ordering of delivery is required to ensure that the chairs get the

Fig. 4. A communication model built as a combination of micromodels. Each channel is associated to a unique physical micromodel.

Fig. 5. Communication model for the reviewing system example, built as a combination of micromodels.

module reviewing

constant NbAuthors, NbChairs, NbReviewers,

NbMinReviews, NbMaxReviews, Capacity

CHANNELS , {“submission”, “paper”, “review”, “acceptation”}

COMMODELS , {

[name 7→ “multicast”, params 7→ [chan 7→ {“submission”}, min 7→ 1, max 7→ NbChairs]],

[name 7→ “multicast”, params 7→ [chan 7→ {“paper”}, min 7→ NbMinReviews, max 7→ NbMaxReviews]],

[name 7→ “convergecast”, params 7→ [chan 7→ {“review”}, min 7→ NbReviews, max 7→ NbReviews]],

[name 7→ “p2p”, params 7→ [chan 7→ {“acceptation”}]],

[name 7→ “fifon1”, params 7→ [chan 7→ {“submission”}]],

[name 7→ “voting”, params 7→ [chan 7→ {“submission”}, bound 7→ 1]],

[name 7→ “message_cap”, params 7→ [chan 7→ CHANNELS , bound 7→ Capacity]]}

COM , instance multicom with

PEERS ← IdAuthors ∪ IdChairs ∪ IdReviewers,

COM ← COMMODELS ,

CHANNEL ← CHANNELS

....

Fig. 6. An excerpt of the conference reviewing system. COMMODELS specifies the properties of the channels (e.g. submission is a multicast

1-NbChairs channel).

papers in the same order and assign the same number to a paper (FIFO n–1 on channel submission), and a constraint
on sent messages exists to limit the number of submissions by an author (voting on channel submission). Eventually,
to limit explosion when model checking, a message cap is set to all the channels. Note that this bounded model-checking
technique is to be used only to find bugs, as it restricts the checked executions.

3.2.3. Interlinking of the micromodels

The TLA+ module that exposes the three communication operations available for the specification of compositions of
peers is called the “multicom”. It is instantiated in the specification of the composition of peers with a parameter: the
specification of the communication model. The module parameters the desired layout of micromodels of communication
and instantiates the resulting communication model which then enables the peers to interact and exchange information.
Fig. 6 gives the set up of the communication model of the reviewing example where a communication model COM is
instantiated according to a layout of micromodels described in COMMODELS , in compliance with Fig. 5.

The multicom is a dispatcher that gathers the local states of the micromodels, checks whether an operation is possible
(using the pre · · · predicates), and how the local states evolve (using the post · · · values). The multicom also generates and
manages the message identifiers: a message has the same identifier across all the micromodels which makes it possible
to maintain coherence. When an operation is to be performed, say a reception on channel c , the conjunction of all the
preReceive predicates of micromodels associated to c determines whether the reception is possible. If so, the new state of
the physical micromodel of c is computed. By comparing it to the former state, the set of messages identifiers that are no
longer in use (i.e. removed messages) is computed. It is provided to the non-physical micromodels whose state is updated
afterwards.

Fig. 7. Illustration of the dispatcher role of the multicom. An operation on channel c is initiated by a peer of a composition. It corresponds to a unique
atomic TLA+ action. The communication model is described in Fig. 4: for channel c, it does not involve micromodel 2. The conjunction of the guards on
the operation determines whether the operation is possible. If so, it is applied on the physical micromodel first and then on the others with knowledge of
the removed messages.

module multicom

receive(peer , chan, data),

∃ id ∈ id .in_use : There exists a message,

∧ ∀com ∈ COM : that is receivable in all the micromodels the channel is associated to.

chan ∈ com .params.chan =⇒ ComPreReceive(com, id, peer , chan, data)

∧ let physicalCom , Find the physical micromodel associated to the channel.

choose c ∈ COM : c ∈ {com ∈ COM : chan ∈ com .params.chan ∧ ComPhysical(com)}

in Compute the next state of the physical micromodel.

let postPhysicalState ,ComPostReceivePhysical(physicalCom, id, peer , chan, data)

in Check if the physical micromodel decides to remove the received message.

let remove , (id /∈ ComUsedIds(physicalCom, postPhysicalState)) in

∧ s ′ = [com ∈ COM 7→ Apply state update to all concerned micromodels.

if chan ∈ com .params.chan then

if com = physicalCom then postPhysicalState

else ComPostReceiveNonPhysical(com, id, peer , chan, data, remove)

else s[com]]

Update the id state variable for id generation and reuse.

∧ id ′ = [id except !.in_use = ComAllUsedNext(AllModels)]

Fig. 8. TLA+ specification of the reception by a peer of a message on a channel. It finds a message that is receivable in all the micromodels the channel is
associated to, and updates the state of these micromodels. The physical micromodel decides if the message is removed and the other micromodels get this
information to purge their state.

Fig. 7 is a sequence diagram that gives insight into the process. Note that it is purely illustrative: it actually corresponds
to a unique atomic TLA+ action, that is a transition predicate involving the conjunctions of the micromodel-specific pred-
icates. An extract of the multicom module is shown Fig. 8. It presents the receive action receive(peer , chan, data) where
peer receives a message on the channel chan with content data . It consists in finding a message that is receivable in all
the micromodels the channel is associated to, and then updating the state of these micromodels. The physical micromodel
decides if the message is removed (i.e. it is no longer available for another reception) and the other micromodels get this
information to purge their state.

4. Micromodels in detail

In this section, several micromodels are detailed: first two physical micromodels for multicast communication and con-
vergecast communication, and then non-physical micromodels that constrain the emission of messages or their delivery
order.

4.1. A physical micromodel for multicast communication

A physical micromodel for asynchronous point-to-point communication can be modeled as a set of messages in transit,
initially empty: the network. The send action is always enabled, and adds the message to the network. Delivering a message

requires it to be in the network and removes it. Obviously, a message is delivered at most once. In order to describe
multicast communication that allows multiple deliveries of a message (at most one per peer), the lifespan of a message in
transit must be extended to encompass multiple deliveries while making it possible to eventually suppress it.

4.1.1. Lifespan of messages in transit

Sending the messages over and over. A simple solution would send the message again once it has been received so it can
be received another time by another peer. There are two problems. This solution does not specify when to stop sending
messages again. Second, when considering message-ordered communication where the order of the emissions matters (e.g.
messages must be received in their emission order), sending a message again might modify the ordering. For instance, send
m1 followed by m2 , then deliver m1 . The semantics of this solution implies that m1 is put back in the network and the
new ordering is m2 · m1 instead of m1 · m2 the actual order of the multicast emission.

Never removing the messages from the network. Were the messages to remain in the network forever, they could be received
as many times as needed. Once again however, this might conflict with some ordering policies. Assume that messages must
be received in their emission order, that is to say the network can be viewed as a global queue, and consider two messages
in transit. Even after all the peers have received the first message, since it remains in transit forever, none of them will ever
receive the second (not first in queue) and the system will deadlock.

Removing a message from the network once delivered to all the peers. The previous issue is overcome by removing a message
from the network after it has been delivered to every peer. Still, this means that all the peers must be ready to receive all
the messages in order not to block the system. This requirement is too strong to allow for the verification of interesting and
realistic systems: the specification of a peer should not depend on the noise in the environment it takes part in.

Removing when no one is interested. In order not to impose the delivery of a message that a peer has nothing to do with,
and never will, we rely on the concept of interest. A peer is interested in some channels only: it expects messages on these
channels. Over time, the peer may lose interest in some or all of them: either the expected deliveries have occurred or the
peer has ruled out the possibility of ever receiving the messages. Action ignore of the communication model allows a peer
to lose interest in a given set of channels, as described in the previous section. The interest of the peers is part of the state
of the multicast micromodel. The most sensible behavior would be to remove a message from the network as soon as the
last peer interested in the channel of this message receives or ignores it. However, a more generic approach is only a few
tweaks away from this main rule.

4.1.2. A generic description for point-to-point, multicast, and one-to-all communication

The proposed operational specification of multicast communication is adapted to become generic and encompass, in
particular, point-to-point communication. Consider two parameters of the communication denoted MIN and MAX .

• MIN is the minimal number of times a message must be received before it is removed from the network when no
peer is interested;

• MAX is the maximal number of times a message can be received before it is removed from the network regardless of
the interest.

Let N denote the number of peers in the system. Up until now, we have described multicast(0,N) communication: a
message is removed from the network when the corresponding channel does not interest any peer.

Point-to-point communication corresponds to multicast(1,1). Indeed, a message must be received at least once before it
can be removed from the network and must not be received more than once. This means it is immediately removed from
the network following the first reception, never before. Similarly, multicast(1,N) corresponds to multicast communication
where at least one peer must receive a message before it is removed, and multicast(N,N) models one-to-all communication
where a message must be received by all the peers (including the sender) before it is removed from the network, regardless
of the interest. MIN and MAX can also take any other value between 0 and N.

Fig. 9 illustrates the differences between multicast(0,N), multicast(1,1), and multicast(N,N) with a common example sce-
nario involving a global message-ordering policy (the network consists of a global common queue of messages). It shows
the possible constraints and deadlocks that arise from combining two micromodels: a variant of multicast, and the global
ordering policy.

The complete specification of the proposed generic micromodel is presented in Fig. 10 and consists of two state variables
network and interest . The first one is a set of messages in transit which expands after each new emission; the second
one contains, for each peer, the set of channels that it has not ignored (i.e. its interest). A message is composed of meta-

data including its unique identifier provided by the multicom, the sender, channel, and a set receivedBy of peers it has
already been delivered to in order to prevent multiple deliveries to the same peer (see preReceive). After a delivery (see
postReceive), the receiver is added to the message’s receivedBy set but the message remains in the network unless MAX

interest network

Operation p1 p2 p3 (0,N) (1,1) (N,N)

{a,b} {a,b} {a,b} ∅ ∅ ∅

p1 i a {b} {a,b} {a,b} ∅ ∅ ∅

p1 ! a {b} {a,b} {a,b} a a a

p1 ! b {b} {a,b} {a,b} a · b a · b a · b

p2 ? a {b} {a,b} {a,b} a · b b a · b

p2 i a {b} {b} {a,b} a · b b a · b

p3 ? a {b} {b} {a,b} a · b ⊥1 a · b

p3 i a {b} {b} {b} b a · b

p1 ? b {b} {b} {b} b ⊥2

1 The message is not in the network anymore (MAX = 1).
2 The message on a is still in the network (MAX = N) and must
be received first according to the current ordering policy.

Fig. 9. Evolution of the state of the communication according to different instances of multicast(*,*) with global message-ordering, channels a and b , and
N = 3 peers (pi)i∈1..N . The network is represented by a queue. ! means “send”, ? means “receive”, i means “ignore”.

receptions have occurred (after the first delivery in point-to-point, i.e. multicast(1,1)). When channels are ignored by a peer
(see postIgnore), the interest is updated, and messages that no longer interest any peer are removed from the network

unless they have not been delivered at least MIN times yet.

4.2. A physical micromodel for convergecast communication

Convergecast communication, or N-to-1 communication, is the dual of multicast. Where multicast sends a message to
a set of peers, convergecast consists in the reception of a set of messages in one action [31,27,21]. This communication
primitive is interesting as a building block for more complex architectures (e.g. join in a fork-join schema). Contrary to
the multicast micromodel, the convergecast micromodel could actually be simulated with point-to-point communication: to
receive messages from a set of peers, a peer receives them individually until it has received all of them. However, having
a dedicated micromodel is useful, to make explicit a convergence operation in an algorithm, and to reduce the interleaving
in the reception. As the transition of multireception only occurs when all the messages are available, this reduces the n!

possible executions coming from the interleavings of individual receptions of each message to one transition. Since our
framework uses the TLC model checker to verify the correctness, this point alone suffices to justify convergecast.

Like multicast, convergecast is parameterized by MIN and MAX. A multireception of n messages is enabled if MIN ≤ n ≤

MAX . Note that the n messages must come from n distinct peers: a multireception never delivers, in the same action, two
messages issued by a same peer. Point-to-point communication exactly corresponds to convergecast(1,1). convergecast(N,N)
models all-to-one communication where a message must have been sent by all the peers (including the receiver) for the
multireception to be enabled. convergecast(1,N) allows to receive an arbitrary subset of the messages in transit to the re-
ceiver.

In addition to the send, receive and ignore communication actions, a new action is added to the multicom module:
multireceive(receiver, channel, datas). This action is always disabled in the point-to-point and multicast micromodels. In the
convergecast micromodel, it is enabled when the reception by peer receiver of a set of messages sent by distinct peers on
channel channel, and such that the bag holding the content of the messages is datas, is possible. As for receive, we assume
peers cannot prevent a delivery based on the content of the messages, and a reception action in the specification of a
composition has the form ∃datas ∈ SubBag(. . .) : multireceive(_, _, datas) ∧ P(datas).

The specification of the convergecast is presented Fig. 11. The precondition of multireceive takes ids a set of message
identifiers. It checks that the number of messages is in the bound of the convergecast micromodel, that each message is
actually deliverable, that all the messages come from different peers, and builds datas as the bag of all message contents.
As in point-to-point communication, a received message is removed from the messages in transit as it can be received at
most once.

As the point-to-point and multicast physical micromodels, the convergecast micromodel is expected to be used in com-

bination with other micromodels, such as the cap micromodel or any of the ordering micromodels described in the next
section. For instance, one can combine convergecast and FIFO 1–1 (described below). In this way, successive multireceptions
will get messages from each peer in their send order. In practice, convergecast is mainly used in a fork-join schema and is
used without any ordering or with FIFO 1–1.

4.3. Constraining micromodels

We provide non-physical micromodels that limit the enabledness of sending or receiving a message. These models im-

plement classical constraints of common communication models. First, we provide generic message-ordering models such as
FIFO delivery. We also provide an applicative message-ordering model where priorities between channels can be expressed.

1 module multicast

2 extends Naturals, FiniteSets

3 constants ID, PEERS , CHANNEL, DATATYPE , MIN , MAX

4 PhysicalMicromodel , true

5

6 local Message , [

7 id : ID, Message identifier

8 from : PEERS , Sender

9 to : subset PEERS , Possible receivers

10 channel : CHANNEL, Channel

11 data : DATATYPE , Payload

12 receivedBy : subset PEERS] Peers it has already been delivered to

13 local Network , subset Message

14 local Interest , [PEERS → subset CHANNEL]

15

16 TypeInvariant(s), s ∈ [network : Network , interest : Interest]

17 Init , [network 7→ {}, interest 7→ [peer ∈ PEERS 7→ CHANNEL]]

18 usedIds(s) , {m .id : m ∈ s.network}

19

20 postIgnore(s, peer , chan_set) ,

21 let new_peer_interest , s.interest[peer] \chan_set in

22 [s except !.interest = [@ except ![peer] = new_peer_interest],

23 !.network = {m ∈ @ :

24 ∨ m .channel ∈ new_peer_interest

25 ∨ Cardinality(m .receivedBy) < MIN not received enough

26 ∨ ∃p ∈ PEERS \ {peer} : m .channel ∈ s.interest[p]}] another peer is still interested

29 Emission: the message is added to the nework

30 preSend(s, id, from, to, channel, data), true

31 postSend(s, id, from, to, channel, data),

32 [s except !.network = @∪ {[id 7→ id, from 7→ from, to 7→ to, channel 7→ channel,

33 data 7→ data, receivedBy 7→ {}]}]

35 preReceive(s, id, to, channel, data),

36 ∃m ∈ s.network : The metadata of a message in transit match.

37 ∧ m .id = id ∧ to ∈ m .to ∧ m .channel = channel ∧ m .data = data ∧ channel ∈ s.interest[to]

38 ∧ to /∈ m .receivedBy The peer has not received it yet.

40 postReceive(s, id, to, channel, data),

41 let m , (choose x ∈ s.network : x .id = id) in

42 let newm , [m except !.receivedBy = @∪ {to}] in

43 if ∧ Cardinality(newm .receivedBy) < MAX

44 ∧ ∨ Cardinality(newm .receivedBy) < MIN

45 ∨ ∃p ∈ PEERS : newm .channel ∈ s.interest[p]

46 then [s except !.network = (s.network \ {m}) ∪ {newm}] keep the message

47 else [s except !.network = (s.network \ {m})] drop it

48

Fig. 10. TLA+ specification of the generic multicast physical micromodel. The parameters MIN and MAX make it possible to use different instances of
this module to model multicast communication, one-to-all communication, point-to-point communication, or in-between variants.

The previously presented micromodel that caps the number of messages in transit is another constraining model. A dedi-
cated micromodel for voting and bounding the number of sent messages is also specified. These various micromodels can
all be combined together and their diversity demonstrates the power of our framework. New micromodels (e.g. for content
filtering) are easily specified in a few lines.

4.3.1. Generic message-ordering micromodels

We provide non-physical micromodels for a large set of generic message-ordering policies. A detailed description, both
axiomatic and operational, of classic point-to-point communication models is found in [11]. They include the following:

• RSC Realizable with Synchronous Communication [8,21]. The emission of a message is immediately followed by its
delivery. Viewed atomically, it corresponds to synchronous communication.

• FIFO n–n Messages are globally ordered and are delivered in their emission order.
• FIFO 1–n Messages sent from a same peer are delivered in their emission order.
• FIFO n–1 On a given peer, messages are received in their absolute emission order.

1 module convergecast

2 extends FiniteSets, Bags, Naturals

3 constants ID, PEERS , CHANNEL, DATATYPE , MIN , MAX

4 PhysicalMicromodel , true

5

6 local Message , [

7 id : ID, Message identifier

8 from : PEERS , Sender

9 to : subset PEERS , Possible receivers

10 channel : CHANNEL, Channel

11 data : DATATYPE] Payload

12 local Network , subset Message

13

14 TypeInvariant(s) , s ∈ [network : Network]

15 Init , [network 7→ {}]

16 usedIds(s) , {m .id : m ∈ s.network}

17

18 postIgnore(s, peer , chan_set), s

20 Like in point-to-point / multicast

21 preSend(s, id, from, to, channel, data), true

22 postSend(s, id, from, to, channel, data),

23 [s except !.network = @∪ {[id 7→ id, from 7→ from, to 7→ to, channel 7→ channel, data 7→ data]}]

25 preMultiReceive(s, ids, to, channel, datas),

26 ∧ Cardinality(ids) ∈ MIN . . MAX

27 ∧ ∀ id ∈ ids :

28 ∃m ∈ s.network :

29 ∧ m .id = id

30 ∧ to ∈ m .to

31 ∧ m .channel = channel

32 ∧ ∀ i, j ∈ ids : i 6= j =⇒ the messages come from different peers

33 (choose m ∈ s.network : m .id = i).from 6= (choose m ∈ s.network : m .id = j).from

34 ∧ datas = BagOfAll(lambda m : m .data, SetToBag({m ∈ s.network : m .id ∈ ids}))

36 postMultiReceive(s, ids, to, channel, datas), the messages are removed

37 [s except !.network = {m ∈ @ : m .id /∈ ids}]

39 preReceive(s, id, to, channel, data), a single receive is allowed if MIN = 1

40 preMultiReceive(s, {id}, to, channel, SetToBag({data}))

41 postReceive(s, id, to, channel, data),

42 postMultiReceive(s, {id}, to, channel, SetToBag({data}))

43

Fig. 11. TLA+ specification of the generic convergecast physical micromodel. The distinctive feature with regard to p2p/multicast is preMultiReceive which
checks that the number of messages is correct, that they are in transit, that they come from different peers, and which constructs the bag of the message

payloads.

• FIFO 1–1 Messages between a couple of peers are delivered in their emission order. Messages from/to different peers
are independently delivered.

• causal Messages are delivered according to the causality of their emission [22]. If a message m1 is causally sent before
a message m2 (i.e. there exists a causal path from the first emission to the second one), then a peer cannot get m2

before m1 .

The communication models in [11] are only for point-to-point communication. Moreover they are standalone, including
the management of the lifespan of messages in transit. They have been rewritten to obtain specifications of their ordering
policies that follow the previous conventions as pluggable, multicast-ready and convergecast-ready micromodels that make
use of the concept of interest and rely on message histories. The FIFO n–n micromodel is shown in Fig. 12.

4.3.2. Applicative message-ordering micromodel

We also provide a micromodel where priorities are assigned to channels, instead of ordering the deliveries with regard
to the emission events. If a channel a has a higher priority than a channel b , then the existence of a message on a blocks
the delivery of any message on b , for the same receiver. These messages will become deliverable only after the message
on a has been received. A classic use can be found in abortion messages. If the communication model allows the system
to take other messages over the abortion one, this results in a seemingly unresponsive behavior to abortion or presents
security issues.

module fifonn

constants ID, PEERS , CHANNEL

PhysicalMicromodel , false

local Message , [

id : ID,

from : PEERS ,

to : subset PEERS ,

channel : CHANNEL,

history : subset ID]

local Network , subset Message

TypeInvariant(s) , s ∈ [network : Network]

Init , [network 7→ {}]

usedIds(s) , {m .id : m ∈ s.network}

postIgnore(s, peer , chan_set, removedIds), s

preSend(s, id, from, to, channel, data), true

postSend(s, id, from, to, channel, data),

[s except !.network = @∪ {[id 7→ id, from 7→ from, to 7→ to, channel 7→ channel,

history 7→ union {m .history ∪ {m .id} : m ∈ s.network}]}]

preReceive(s, id, to, channel, data) ,

∃m ∈ s.network :

∧ m .id = id ∧ to ∈ m .to ∧ m .channel = channel

∧ ¬∃m2 ∈ s.network : m2.id ∈ m .history there is no preceding message in transit

postReceive(s, id, to, channel, data, remove) ,

if remove

then [s except !.network = {[mes except !.history = @\ {id}] : mes ∈ {mes2 ∈ s.network : mes2.id 6= id}}]

else s

preMultiReceive(s, ids, to, channel, datas),

∀ id ∈ ids : ∃m ∈ s.network :

∧ m .id = id ∧ to ∈ m .to ∧ m .channel = channel

∧ ¬∃m2 ∈ {mm ∈ s.network : mm .id /∈ ids} : m2.id ∈ m .history

postMultiReceive(s, ids, to, channel, datas, remove) ,

[s except !.network = {[mes except !.history = @\ ids] : mes ∈ {mes2 ∈ s.network : mes2.id /∈ ids}}]

Fig. 12. TLA+ Module of the FIFO n–n Micromodel. A message is deliverable (preReceive) if its history does not contain another message in transit, which
must be delivered before.

An extract of the TLA+ model is shown Fig. 13. Priorities are modelled by a set of channel pairs that parameterizes
the micromodel (BLOCKS constant): 〈a, b〉 ∈ BLOCKS means that a has a higher priority than b . A reception of a message
on channel is enabled (preReceive) if there is no message for the same peer on another channel with a higher prior-
ity.

4.3.3. Message cap micromodel

This micromodel ensures that the number of messages in transit is capped by an upper bound. It was presented in
Section 3 and its TLA+ specification is in Fig. 3.

4.3.4. Voting micromodel

The voting micromodel limits the number of messages a peer can send on a set of channels during an execution. Once
a peer has reached the limit, its send action on these channels is permanently disabled. While the message cap micromodel
disables sending for all peers and by looking at the current number of messages in transit, the voting micromodel disables
sending per peer and by taking into account its past actions. This model is especially useful to implement voting by setting
the limit to 1: no peer can send a message (i.e. vote) more than once on the configured channels. Another use is to limit
a cyclic behavior to occur a bounded number of times. This reduces the state space and accelerates model checking of the
system. As said earlier, note that this bounded model-checking technique is to be used only to find bugs, and some liveness
properties may become invalid on these finite executions.

The voting module is shown in Fig. 14. It consists in keeping a state that counts the number of sent messages per peer
(field sent). This state is used to allow send (preSend) and is then updated (postSend).

module priority

extends Naturals, FiniteSets

constants ID, PEERS , CHANNEL, BLOCKS

BLOCKS is a set of channel pairs: 〈ca, cb〉 means that a message on ca blocks the delivery of a message on cb .

local Message , [id : ID, to : subset PEERS , channel : CHANNEL]

Init , [network 7→ {}]

. . .

preSend(s, id, from, to, channel, data), true

postSend(s, id, from, to, channel, data),

[s except !.network = @∪ {[id 7→ id, to 7→ to, channel 7→ channel]}]

preReceive(s, id, to, channel, data),

∃m ∈ s.network :

∧ m .id = id ∧ to ∈ m .to ∧ m .channel = channel

∧ ¬∃m2 ∈ s.network : there is no other message in transit for this peer with a higher priority

∧ to ∈ m2.to ∧ 〈m2.channel, m .channel〉 ∈ BLOCKS

postReceive(s, id, to, channel, data, remove),

if remove then [s except !.network = {mes ∈ @ : mes.id 6= id}] else s

. . .

Fig. 13. TLA+ Module of the priority micromodel (extract).

module voting

extends Naturals, FiniteSets

constants PEERS , CHANNEL, BOUND Maximum number of sent messages per peer

PhysicalMicromodel , false

TypeInvariant(s) , s ∈ [sent : [PEERS → Nat]]

Init , [sent 7→ [peer ∈ PEERS 7→ 0]]

usedIds(s) , {}

postIgnore(s, peer , chan_set, removedIds) , s

preSend(s, id, from, to, channel, data),

s.sent[from] < BOUND

postSend(s, id, from, to, channel, data),

[s except !.sent = [@ except ![from] = @+ 1]]

preReceive(s, id, to, channel, data), true

postReceive(s, id, to, channel, data, remove) , s

preMultiReceive(s, ids, to, channel, datas), true

postMultiReceive(s, ids, to, channel, datas, remove), s

Fig. 14. TLA+ Module of the voting micromodel.

4.4. Analysis of the example

Getting back to our introductory example, let’s consider in detail its description. It uses four channels: submission from
authors to chairs (multicast to all, and voting with bound 1 to limit the number of submissions), paper from chairs to
reviewers (bounded multicast based on the number of expected reviews), review from reviewers to chairs (convergecast), and
acceptation from chairs to authors (point-to-point). Additionally, all chairs need to attribute the same number to a given
paper, and without internal coordination between the PC chairs, the authors must use a totally ordered multicast so that
the papers are delivered in the same order to all the chairs. As demonstrated in Section 5.3.3, this is achieved with the FIFO
n–1 ordering model on the submission channel.

The verified properties are both safety and liveness:

• Safety: one author is handled by exactly one chair:

let handledAuthors(pres)
1
= {papers[pres][id].author : id ∈ domain papers[pres]} in

✷(∀p1,p2 ∈ IdPresidents : p1 6= p2 ⇒ handledAuthors(p1) ∩ handledAuthors(p2) = ∅)

Table 1

Number of transitions & distinct states for the reviewing example.

cap = 1 cap = 2 cap = 3 cap = 4

2 authors, 2 chairs, 2 reviewers 4151 / 1962 63481 / 24204 599625 / 166481 2498881 / 560994

2 authors, 2 chairs, 3 reviewers 26191 / 12820 694385 / 232776 6970035 / 1737452

2 authors, 2 chairs, 4 reviewers 158289 / 68996 4726501 / 1394440 47312453 / 10664656

3 authors, 2 chairs, 2 reviewers 86819 / 50200 9382271 / 3530626

• Liveness: Any submission eventually gets an acceptation/rejection and the authors terminate:

AuthorsGetAnswer
1
= ∀i ∈ IdAuthors : ✸(pc[i] = “Done”)

This system exposes both strict ordering constraints (submissions sent to the chairs), and high interleaving (each reviewer
is independently handling the papers it has received). During the development of the system, several bugs were found. For
instance, the logic to split the papers among the chairs was faulty with an odd number of chairs and some authors were
never receiving their acceptance result; in some cases, the same paper was sent twice to the reviewers, and an unfortunate
(but legal) interleaving in the reception of the reviews led to two acceptance messages to the same author. This system,
albeit simple, already experiences enough communication interactions to warrant formal verification.

In Table 1, we present some results obtained from running TLC, the TLA+ model checker. The message cap on the number
of messages in transit is instrumental to avoid state explosion as it ensures that messages are not delayed for too long.

5. Properties of multicast and convergecast communication

This section presents results that allow to compare models. First, these results are essential to substitutability, the ability
to replace one model with another, without having to redo the proofs. We say that a communication model M1 is stricter
than a communication model M2 if M1 cannot deliver more messages than M2 , or conversely, if any message that M1

delivers is also deliverable in M2 . Thus, for any system using asynchronous communication, a safety property which is
proved with M2 is necessarily true when substituting M2 with M1 . Liveness properties are also preserved if the stricter
model does not cause more blocking. For instance, FIFO 1–1 does not block more than unordered communication and
liveness properties are preserved, while RSC doesn’t allow two consecutive send events without a receive event between
them, and thus a system may deadlock with RSC while progressing with a more liberal model.

Secondly, these results help in differentiating the models. For instance FIFO n–1 is a model where each peer has an
input mailbox, and senders add messages to it. It is sometimes labelled plainly as asynchronous and confused with FIFO
1–1. It is actually stricter than causal communication. Moreover, it induces totally-ordered communication: two independent
multicasts will be delivered in the same order to all the common peers, without any additional coordination. Its dual model
FIFO 1–n, where each peer has an output mailbox where it puts messages for the senders to retrieve, is peculiar: it is
incomparable to causal except in point-to-point communication, and it does not induce totally-ordered communication.

Providing hierarchies of message-ordering policies helps developers with substitutability and gives them a better intu-
ition of their properties. In the following we recall the hierarchies for point-to-point communication and give three new
hierarchies: for multicast communication, for totally-ordered communication and for convergecast communication.

5.1. Formal specification

To study the relations between the models, the set of executions of each model is formally defined.

5.1.1. Specification of executions
Consider a set of messages M and a set of peers P , let E , {s(p, m) | p ∈ P ∧ m ∈ M } ∪ {r(p, m) | p ∈ P ∧ m ∈

M } ∪ {mr(p, mm) | p ∈ P ∧ mm ∈ P (M)} (where P (M) is the power set of M) be the set of communication events: the
disjoint union of the set of send, receive and multireceive events.

An execution σ is a finite or infinite sequence of events such that a message is sent at most once, no message is received
more than once on the same peer, and a receive event of a message is preceded by a send event of this message:

∀p ∈ P : ∀m ∈ M : ∀j , k ∈ dom(σ) :

∀p′ ∈ P : σj = s(p,m) ∧ σk = s(p′,m) ⇒ j = k (a)

∧ σj = r(p,m) ∧ σk = r(p,m) ⇒ j = k (b)

∧ σj = r(p,m) ⇒ ∃i ∈ dom(σ) : ∃p′ ∈ P : σi = s(p′,m) ∧ i < j (c)

(1)

Additionally, if multireception (convergecast) is allowed, each of the received messages is received at most once, the
multireception must be preceded by the emission events of each message, and for mr(p, mm), all messages come from
distinct peers:

∀p ∈ P : ∀j , k ∈ dom(σ) : (2)

∀p′ ∈ P : ∀mm,mm ′ ∈ P (M) : ∀m ∈ M :

m ∈ mm ∧ m ∈ mm ′ ∧ σj = mr(p,mm) ∧ σk = mr(p′,mm ′) ⇒ j = k (a)

∧ ∀mm ∈ P (M) : ∀m ∈ mm : σj = mr(p,mm) ⇒ ∃i ∈ dom(σ) : ∃p′ ∈ P : σi = s(p′,m) ∧ i < j (b)

∧ ∀mm ∈ P (M) : σj = mr(p,mm) ⇒ |{p′ ∈ P : ∃m ∈ mm,∃i ∈ dom(σ) : σi = s(p′,m)}| = |mm| (c)

Point-to-point communication adds an additional constraint on executions as specified by (1): no message is received
more than once (whereas multicast communication imposes that no message is received more than once on the same peer):

∀p,p′ ∈ P : ∀m ∈ M : ∀j , k ∈ dom(σ) : σj = r(p,m) ∧ σk = r(p′,m) ⇒ j = k (3)

5.1.2. Specification of the generic ordering micromodels

Each communication model is characterized by the set of executions it allows to unfold. For instance, the set of exe-
cutions of FIFO n–n contains all the executions such that if a reception happens before another, the two emissions of the
messages must have happened in the same order. The generic message-ordering properties of the micromodels described
in 4.3.1 are specified as additional constraints on executions (equations (1), (2) and (3)):

• RSC (Realizable with Synchronous Communication)

∀m ∈ M ,∀p1,p2 ∈ P,∀i, j ∈ dom(σ) :

σi = s(p1,m) ∧ σj = r(p2,m) ⇒ (j = i + 1)
(4)

• FIFO n–n

∀m,m ′ ∈ M ,∀p1,p
′
1,p2,p

′
2 ∈ P,∀i, j , k , l ∈ dom(σ) :

σi = s(p1,m) ∧ σj = s(p′
1,m

′) ∧ σk = r(p2,m) ∧ σl = r(p′
2,m

′)

⇒
(

(i < j) ⇔ (k < l)
)

(5)

• FIFO 1–n

∀m,m ′ ∈ M ,∀p1,p2,p
′
2 ∈ P,∀i, j , k , l ∈ dom(σ) :

σi = s(p1,m) ∧ σj = s(p1,m
′) ∧ σk = r(p2,m) ∧ σl = r(p′

2,m
′)

⇒
(

(i < j) ⇔ (k < l)
)

(6)

• FIFO n–1

∀m,m ′ ∈ M ,∀p1,p
′
1,p2 ∈ P,∀i, j , k , l ∈ dom(σ) :

σi = s(p1,m) ∧ σj = s(p′
1,m

′) ∧ σk = r(p2,m) ∧ σl = r(p2,m
′)

⇒
(

(i < j) ⇔ (k < l)
)

(7)

• FIFO 1–1

∀m,m ′ ∈ M ,∀p1,p2 ∈ P,∀i, j , k , l ∈ dom(σ) :

σi = s(p1,m) ∧ σj = s(p1,m
′) ∧ σk = r(p2,m) ∧ σl = r(p2,m

′)

⇒
(

(i < j) ⇔ (k < l)
)

(8)

• Causal. This model is the most peculiar as it uses Lamport’s well-known causal order [22], denoted ≺, and defined as
the reflexive transitive closure of s(p, m) ≺ r(p ′, m) (reception is caused by emission) and local order on peer.

∀m,m ′ ∈ M ,∀p1,p
′
1,p2 ∈ P,∀i, j , k , l ∈ dom(σ) :

σi = s(p1,m) ∧ σj = s(p′
1,m

′) ∧ σk = r(p2,m) ∧ σl = r(p2,m
′)

⇒
(

(σi ≺ σj) ⇒ (k < l)
)

(9)

5.2. Correlation with the micromodels of the framework

The communication models are described by the executions they unfold, and they are specified in TLA+ in the frame-

work. We now prove that both descriptions are equivalent, i.e. that the models in the framework are correct and complete
with regard to the execution-based specifications. The correctness means that all the executions generated by the framework
respect the constraints (1)+((4)-(9) depending of the model) (+(2) for convergecast, +(3) for point-to-point). The complete-

ness means that, for a set of peers, the framework generates all the possible executions which conform to (1)+((4)-(9)
depending on the model) (+(2) for convergecast, +(3) for point-to-point) and to the peers behaviors, without omitting any
of them.

[11] proves the correctness and the completeness of fully integrated point-to-point communication models. Here, the
equivalent models are built with two micromodels: the point-to-point part, and the ordering part. In both cases, the order-
ings are specified in TLA+ using history of messages. [11] proves that these histories exactly encode the orders used in (4)
to (9), and the proofs apply to the ordering micromodels presented here.

Nevertheless, we need to prove that the multicast micromodel is correct and complete with regard to (1) and that the
convergecast micromodel is correct and complete with regard to (1) ∧ (2).

5.2.1. Multicast communication

Proof (Correctness). To be correct, an execution generated by a micromodel must respect (1):

• (1.a): the TLA+ module “multicom” creates a new message identifier at every send event, so a send event is associated
to a unique distinct message.

• (1.b): the precondition of the reception check that the peer is not in the list of the peers that have received the message

(line 38, Fig. 10); the post-condition of the reception either adds the receiver to the list of the peers that have received
the message (lines 42 and 46), or definitively removes the message from the network (line 47); since a message is sent
only once, a message cannot be received again by the same receiver.

• (1.c): to be received, a message must be in the network (line 36) and a new message is added in the network solely
by the post condition of a send event, so the message was sent before being received. ✷

Proof (Completeness). To prove that all the valid executions are generated, we prove that no emission or reception is
wrongly disabled.

• preSend is always possible (line 30, Fig. 10).
• postSend adds the new message in the network (lines 32–33) with an empty set of receivers, which allows the message

to be received later by any peer.
• preReceive is enabled if the message has not already been received by the peer (lines 36 and 38), so the only disabled

receptions are the invalid ones.
• postReceive disables future receptions of the same message by the same peer (line 42), which only suppresses invalid

executions. It removes the message from the network if:
– it has been received more than MAX times (lines 43 and 47), which forbids an execution where a message would be

received more than MAX times. Regarding formula (1), the micromodel is complete when MIN = 0 and MAX = N .

– it has been received more than MIN times and no peer is interested (lines 44-45 and 47): as the interest decreases,
no peer will ever be interested again by this message, and no valid execution is omitted.

• postIgnore removes a message from the network when no peer is interested (lines 24 and 26). As the interest decreases,
no peer will ever be interested again by this message, and no valid execution is omitted. ✷

5.2.2. Convergecast communication

Proof (Correction). To be correct, an execution generated by a micromodel must respect (2) ∧ (1):

• (1.a): the TLA+ module “multicom” creates a new message identifier at every send event, so a send event is associated
to a unique distinct message.

• (2.a): to be received, a message must be in the network (lines 27–28, Fig. 11). After the multireception, the messages

are removed from the network (line 37), and since a message is sent only once, a message is only received at most

once.

• (2.b): to be received, a message must be in the network (lines 27–28) and a new message is added in the network

solely by the post condition of a send event, so the message was sent before being received.
• (2.c): for a multireception, all messages come from distinct peers: lines 32–33.
• (1.b) and (1.c): the reception of a single message is done through the multireception of this message (line 41). In that

case, (2.a) yields (1.b) and (2.b) yields (1.c). ✷

Proof (Completeness). To prove that all the valid executions are generated, we prove that no emission or (multi)reception
is wrongly disabled:

• preSend is always possible (line 21, Fig. 11).
• postSend adds the new message on the network (lines 22–23), which allows the message to be received later by any

peer.

• preReceive is enabled if:
– the expected messages are in the network (lines 27–31), which is mandatory for a valid execution;

Fig. 15. A FIFO 1–n execution which is not Causal.

– there are between MIN and MAX messages to receive (line 26). Regarding formula (2), the micromodel is complete

when MIN = 0 and MAX = N ;

– no two messages are from the same peer (lines 32–32), which is the expected behavior, so no valid execution is
forbidden.

• postReceive removes all the received messages from the network (line 38), forbidding the messages from being received
again later, as expected in (2).

• postIgnore does not change the state. ✷

5.3. Hierarchy of communication models

A communication model X is stricter than a communication model Y when the valid executions for X are included in
the valid executions for Y . This is noted X → Y .

5.3.1. Point-to-point communication

Existing results with point-to-point communication reveal the following hierarchy from the strictest model to the most
liberal.

Theorem 1 (Hierarchy of point-to-point communication).

• FIFO n–1 ..\\\
\

RSC // FIFO n–n
00bbbb

..\\\
\ causal // FIFO 1–1 // no-orderingFIFO 1–n

00bbbb

• FIFO n–1 and FIFO 1–n are not comparable.

These results are essentially proved by first-order logic implication of the constraining properties. The inclusions in
causal are the only ones that need additional reasoning because of the causal partial order ≺. These results are explained
and proved in [11] and we refer the reader to it for the details.

5.3.2. Multicast communication

We have extended these results to multicast communication. As it turns out, the multicast hierarchy is not the same as
the point-to-point hierarchy: the FIFO 1–n → causal inclusion no longer stands. Observe that for all constraints (4), (5), (7),
(6), (8), i.e. all except causal, the addition of the point-to-point constraint (3) has no influence. Intuitively, the difference
between multicast and point-to-point lies in the possibility of receiving a message, which creates a causal link on a peer,
while this same message is still in transit for another peer. This can happen only if the message has at least two receptions
(on different peers), which is impossible in point-to-point. The resulting hierarchy is the following:

Theorem 2 (Hierarchy of multicast communication).

• FIFO n–1 // causal ..\\
\\

RSC // FIFO n–n
00bbbb

..\\\
\ FIFO 1–1 // no-orderingFIFO 1–n

00````````````

• FIFO 1–n is not comparable to FIFO n–1 and causal.

Proof. • RSC → FIFO n–n, FIFO n–n → FIFO n–1, FIFO n–n → FIFO 1–n and FIFO 1–n → FIFO 1–1: (1) ∧ (4) ⇒ (1) ∧ (5),

(1) ∧ (5) ⇒ (1) ∧ (6), (1) ∧ (5) ⇒ (1) ∧ (7), (1) ∧ (6) ⇒ (1) ∧ (8) are first-order logic formulae and easily checked.
• FIFO n–1 → causal: in (9), σi ≺ σj ⇒ i < j (if one event causally precedes another, then it occurred before in absolute

time), thus (1) ∧ (7) ⇒ (1) ∧ (9).

• FIFO 1–n and FIFO n–1 are not comparable in point-to-point communication, and point-to-point communication is a
special case of multicast communication, thus they are still not comparable.

• To show that FIFO 1–n 9 causal, we exhibit a counter-example. Consider three peers p1, p2, p3 , two messages m and

m ′ and the execution s(p1, m) · r(p2, m) · s(p2, m ′) · r(p3, m ′) · r(p3, m) (see Fig. 15). This execution trivially ensures
that messages sent from a same peer are delivered in their emission order (no peer sends more than one message)

and it’s FIFO 1–n. However it’s not causal: the message m ′ causally depends on m (m ′ emission on p2 occurs after m
reception on that peer), and m ′ should not be received on p3 before m .

• causal → FIFO 1–1: the causal order ≺ contains the local order of events on a peer, and thus (1) ∧ (9) ⇒ (1) ∧ (8). ✷

Fig. 16. Totally-ordered but not FIFO 1–1.

Fig. 17. Causal & FIFO 1–n but not totally-ordered.

5.3.3. Totally-ordered communication

Some distributed systems feature duplicated peers that are supposed to serve the same purpose and make the overall
system more robust. A message that would be sent to a single peer in point-to-point communication is sent, in multicast
communication, to all the duplicates. In such cases, it is interesting to guarantee that the messages are delivered in the
same order to all the duplicates. This way, the receptions may be viewed as atomic, as if the duplicates were abstracted
by a single peer that receives the message in question. This property is called totally ordered multicast and is independent
from other ordering policies.

Definition 3 (Total ordering). An execution σ is totally ordered if messages are received (when they are received) in the same
order on all the peers.

∀m1,m2 ∈ M ,∀p1,p2 ∈ P,∀i, j , k , l ∈ dom(σ) :

σi = r(p1,m1) ∧ σj = r(p1,m2) ∧ σk = r(p2,m1) ∧ σl = r(p2,m2)

⇒ (i < j) ⇔ (k < l)

(10)

Although we do not propose a micromodel of totally-ordered multicast communication, we have been able to identify
the more liberal and already available micromodel that provides the property. In the example described in the following
section, we make use of this knowledge in a use case involving both multicast(0,N) and FIFO n–1.

Theorem 4 (Totally-ordered communication).

• FIFO n–1 → totally-ordered multicast

• FIFO n–n → totally-ordered multicast

• RSC → totally-ordered multicast

• Causal, FIFO 1–n, FIFO 1–1 are incomparable to totally-ordered multicast.

Proof. FIFO n–1 imposes that on a given peer, messages are received in their absolute emission order (equation (7)). Consider
two messages m and m ′ , their send events σi = s(_, m) and σj = s(_, m ′), and the receptions of both messages on two
peers p1 and p2: σk = r(p1, m), σl = r(p1, m ′), σm = r(p2, m), σn = r(p2, m ′). We show that the messages are received
in the same order on p1 and p2 , i.e. k < l ⇔ m < n . Without loss of generality, assume k < l . As the communication is FIFO
n–1 and σk and σl are on the same peer, (7) gives us i < j . Thus, again from (7) on p2 , m < n .

The second and third inclusions are a consequence of Theorem 2.

For the last results, it suffices to give a counter-example of a totally-ordered execution which is not FIFO 1–1 (Fig. 16),
and a counter-example of an execution which is causal and FIFO n–1, but not totally-ordered (Fig. 17). ✷

The results for multicast communication are illustrated Fig. 18. ExecX are the sets of execution with ordering X (where
FIFO x–y is abbreviated xy). ExecT is the set of totally ordered executions.

5.3.4. Convergecast communication

Regarding message ordering, as all messages in one multireception come from distinct peers and each message is re-
ceived at most once, convergecast behaves as point-to-point.

Theorem 5 (Hierarchy of convergecast communication).

• FIFO n–1 ..\\\
\

RSC // FIFO n–n
00bbbb

..\\\
\ causal // FIFO 1–1 // no-orderingFIFO 1–n

00bbbb

• FIFO n–1 and FIFO 1–n are not comparable.

Fig. 18. Inclusion of the sets of executions for multicast communication. The dashed line is totally-ordered communication. All inclusions are strict.

scc /o/o/o

s(p,m)
²²

spp

s(p,m)
²²

s ′
cc

/o/o/o s ′
pp

scc /o/o/o

r(p,m)
²²

spp

r(p,m)
²²

s ′
cc

/o/o/o s ′
pp

scc /o/o/o

mr(p,{m1,...,mn })

²²

spp

r(p,m1)

²²

...

²²

r(p,mn)
²²

s ′
cc

/o/o/o s ′
pp

Fig. 19. Simulation of convergecast executions by point-to-point executions.

Proof. The preservation of the hierarchy is proved by giving a bisimulation between point-to-point executions (s(p, m)

and r(p, m) events) and convergecast executions (s(p, m), r(p, m) and mr(p, mm) events). An execution is defined as a
sequence of transitions (events). Informally, si , the state reached in σ after i transitions, is the set of messages in transit
and their relations. Formally, all considered transitions are deterministic and a state is defined by the prefix of σ up to i .
We note spp (resp. scc) for a state in a point-to-point (resp. convergecast) execution.

• Initial states are the same, with no message in transit.
• Point-to-point to convergecast: Assume spp ∼ scc and m ∈ M , p ∈ P . Trivially spp · s(p, m) ∼ scc · s(p, m) and spp ·

r(p, m) ∼ scc · r(p, m).

• Convergecast to point-to-point: assume scc ∼ spp . Trivially ∀m ∈ M , p ∈ P : scc · s(p, m) ∼ spp · s(p, m) and scc ·

r(p, m) ∼ spp · r(p, m). For the multireception of a set of messages, we show it is the same as a sequence of receptions
of these messages (see Fig. 19). Observe that all the seven ordering models are defined using a total or partial order
on messages. Thus, in any finite set S of messages, if the transition mr(_, S) is enabled, then there is at least one
receivable message by itself.2 Let m be this message. Then the states scc · mr(p, S) and scc · r(p, m) · mr(p, S \ {m})

are the same. Inductively, this means there is (at least) one sequence m1, . . . , mn such that scc · mr(p, S) and scc ·

r(p, m1) · · · r(p, mn) are identical. As scc ∼ spp , then scc · mr(p, S) ∼ spp · r(p, m1) · · · r(p, mn).

To conclude, as there is a bisimulation between point-to-point executions and convergecast executions, the inclusions of
Theorem 1 are preserved. ✷

6. Related work

6.1. Communication models

Tel’s textbook [32] describes a distributed system as a “collection of processes and a communication subsystem”. Each
process is a transition system, and the transition system induced under asynchronous communication is built with the prod-
uct of the process transition systems extended with a collection of messages in transit, and two rules for send and receive.

2 This is not as trivial as it seems: consider FIFO n–n and the execution s(p1, m) · s(p2, m ′). In the last state, the multireception mr(p3, {m, m ′}) is
enabled, as well as the reception r(p3, m), but r(p3, m ′) is impossible while m is in transit.

His formal definition considers synchronous and fully asynchronous (unordered) point-to-point communication whereas we
explicitly describe the communication subsystem with a conjunction of transition systems, consider several communica-

tion properties, including multicast and message-ordering policies, compare them, and offer a mechanized framework for
checking compositions of peers.

Micro-protocols have been used in Horus [30] and Ensemble [29]. The developer arranges a stack of micro-protocols to
obtain precisely the desired properties. Each micro-protocol layer handles some small aspect of these properties. For in-
stance, one layer might deal with message loss, one with encryption, one with group membership, and another one with
multicast ordering. One notable point of Ensemble was the use of NuPrl for provably rewriting the stack and generating
optimized implementations [25], and of I/O automata for formalizing, specifying, and verifying the Ensemble implementa-

tion [18]. The main differences with our work is the hierarchical structure of the stack, and that the objectives of Horus and
Ensemble was to provide efficient implementations of a group-communication infrastructure and was not concerned with
the verification of the applications themselves.

Regarding ordering of message reception, generic ordering, such as FIFO or causal delivery, has been studied in the
context of distributed algorithms. Asynchronous communication models in distributed systems have been studied in [21]

(notion of ordering paradigm), [8] (notion of distributed computation classes), [16] (hierarchy of communication models
for message sequence charts in a point-to-point setting), or [11] (formal description and hierarchy of several asynchronous
point-to-point models).

Message Sequence Charts are convenient diagrams that allow to describe the desired interactions between components
that exchange messages in a system. Communication is asynchronous but the Message Sequence Charts do not assume
any particular communication model. There are two common ways to formalize the semantics of MSC: with a process
algebra [28]; with partially ordered sets of events [2]. The second formalisation considers the local ordering of events on
each peer and the possible ordering of couples of send and receive events. This corresponds to our generic message-ordering
micromodels (Section 4.3.1), and this also allows [16] to build a hierarchy of communication models.

Priorities, in the context of verification, are usually introduced on specific actions. For instance [13] presents a priority
operator prisum for CCS, allowing for the expression of preference between two actions. The behavior of the ALT construct
in the Occam programming language [20] lets its users give a list of channels to receive from, establishing a priority relation
between them according to their location in the list. In [3], priorities are introduced in a process calculus for trust. In a
choice a.A+̄b.B , one of the alternatives is preferred, according to the trust given to the other interacting process. Each
peer has a trust table, and a +̄ is given a minimal threshold for the first alternative to be allowed (the labels have no
priority associated). As we have done here, [4] assign priorities to labels to provide an interrupt mechanism in process
algebra. Its semantics is defined by rules such as a + b = a if a > b . A thorough exploration of priority in process algebras
with synchronous communication is done in [10]. Priorities are associated to labels, and are used only in a synchronous
communication event.

In some architectural description languages (ADL), it is possible to explicitly describe the communication between the
components. For example, Wright [1] is an ADL whose goal is to describe the interaction between components. Those in-
teractions are described thanks to connectors whose behavior is described with CSP. It is then possible to describe different
types of connectors like pipes, broadcast or shared variables. C2 [33] is specialized in message based-architecture with asyn-
chronous communication like in this paper, but it is designed for describing GUI architectures. Since it is GUI architecture
oriented, there is a hierarchy of components and the communication must respect this hierarchy i.e. a component cannot
send a message to all the other ones. The communication is done through connectors whose goal is to route and broadcast
messages. Several policies for filtering messages are provided: no filtering (broadcast to all the linked peers), notification
filtering (equivalent to our notion of interest), prioritized (in C2, the priority is between the receivers, whereas our priorities
are on messages) and message sink (ignore all messages). Acme [17] is an ADL whose goal is to unify the various existing
ADLs. It is based on an ontology that describes seven type of elements. Communication is administrated through connectors,
ports and roles. Connectors represent interactions among components, such as pipes, procedure calls, or event broadcasts.
The multiplicity of the communication is given through roles. For example, for point-to-point communication a connector
has two roles: caller / callee (RPC connector), reading / writing (pipe), sender / receiver (message passing). For broadcast,
the connector has a unique role as an event announcer but an arbitrary number of event receiver roles. Note that as the
ADL name says, its main concern is to describe an architecture, while we are interested in operational models in order to
propose a framework for verification.

6.2. Verification of distributed systems

Formal verification of distributed algorithms has been conducted with success. However, the hypotheses on the commu-

nication are often fuzzy or unclear and one has to dive deep into the proofs to identify them. For instance, [26] studies the
topology maintenance in structured peer-to-peer networks. Different algorithms are studied, some assume FIFO channels
and some do not. It is unclear why it is required, and if it is required for all channels.

Promela (Process Meta Language) [19] is used to specify state transition systems that may describe distributed systems
and asynchronous interactions. The associated model checker, SPIN, performs efficiently on these specifications. However,
Promela only provides FIFO message channels to model the communication whereas our work requires an approach that
encompasses the variety of asynchronous communication properties and the deriving communication models.

Input/output automata [27] provide a generic way to describe components that interact with each other with input and
output actions. Components can describe processes as well as communication channels, and in that sense, I/O automata
provide a flexible framework to describe distributed systems. However, few automatic tools have been developed to make
use of I/O automata and perform modeling and property checking.

Compatibility of services or software components has largely been studied, especially with regard to collaborations and
choreographies. Usually the interaction model is fixed and global for all the interactions. The majority of the approaches
consider synchronous communication (e.g. [6,15]), even if a few works consider asynchronous communication with vari-
ations of FIFO ordering (e.g. [7,5]). To the best of our knowledge, no work has considered multicast communication or
composed communication models.

Given the implementation of a distributed system, it is easier to prove it correct under a simple reliable environment
than under a more realistic fault model. Wicox et al. propose Verdi [34], a framework that makes it possible to transform
an implementation and proofs of safety in Coq established under an ideal environment into an implementation that is
fault-tolerant under a more hostile environment. “Verified System Transformers” may enrish the system in a modular way
with fault models for crashes, message loss, duplication or reordering. A question remains whether, with this approach,
it would be possible to verify a system with a strict communication model (e.g. FIFO n–n, low message cap. . .) and then
transform the system and its proof for a more liberal model (e.g. FIFO 1–1, no message cap. . .).

PSync [14] is a domain specific language based on the Heard-Of m odel [9], which imposes that the algorithms are
structured in rounds. Distributed algorithms are described in a partially synchronous context, and then translated in Scala
to run on their runtime environment. The Heard-Of machine is semi-automatically verified by stating inductive invariants
which are checked by SMT provers.

7. Conclusion

This paper proposes an approach to the verification of asynchronous distributed systems that considers the influence of
each individual property of the communication medium on the peers of the system. The first contribution is a verification
framework in TLA+ that offers to build communication models by combining individual communication properties we call
micromodels. It benefits from the T LA+ tools, and especially the model checker TLC. This makes it possible to cover a wide
range of possible asynchronous communication variants while existing verification tools usually stick to a few particular
cases and seldom offer much control over the features of the communication medium. Each specification of a micromodel
follows a simple yet generic template allowing for easy expansion. Among them, we distinguish physical micromodels that
specify when a message is removed from the whole communication model, and non-physical micromodels that provide
additional properties among message ordering, cap on the number of messages in transit, or applicative priorities. The
second contribution is a physical micromodel that encompasses both point-to-point and multicast communication thanks
to a notion called the interest. The interest is an indirection on the usual notion of destination group in multicast com-

munication: a message is proposed for delivery as long as some peers are or may later be interested in receiving it. By
tweaking this rule with two parameters MIN and MAX that respectively prevent or force the removal of a message from
the communication model depending on the current number of deliveries, we describe the whole spectrum of multicast
communication spanning from point-to-point to one-to-all communication. This is complemented by a physical micromodel
for convergecast communication, which acts as a dual of multicast communication. The last contribution is a comparison of
several message-ordering models in multicast and convergecast settings as well as a study of totally-ordered multicast.

Ongoing work aims at specifying a micromodel for totally-ordered multicast communication. This ordering policy hap-
pens not to integrate as easily as other classic ordering policies with the notion of interest. Knowledge on the future
behavior of the peers is necessary to check whether a delivery violates the ordering. Further thinking is thus required. In
the meantime, this paper identifies the weakest classic ordering policy that provides totally-ordered multicast in a ready-to-
use micromodel. Considering fault models among message loss, duplication, or crash of a peer, is another perspective. More
generally, we do not specify the behavior of classic ordering policies after a loss or duplication of a message, or any other
failure. The two challenges involve adapting existing micromodels and studying how the very notion of fault models can be
integrated in the framework: it may require small adaptations or deeper refactoring.

References

[1] Robert Allen, David Garlan, Formalizing architectural connection, in: 16th International Conference on Software Engineering, ICSE ’94, IEEE Computer
Society Press, 1994, pp. 71–80.

[2] Rajeev Alur, Gerard J. Holzmann, Doron Peled, An analyzer for message sequence charts, in: International Workshop on Tools and Algorithms for
the Construction and Analysis of Systems, in: LNCS, vol. 1055, Springer, 1996, pp. 35–48.

[3] Alessandro Aldini, Modeling and verification of trust and reputation systems, Secur. Commun. Netw. 8 (16) (2015) 2933–2946.
[4] Jos C.M. Baeten, Jan A. Bergstra, Jan Willem Klop, Syntax and defining equations for an interrupt mechanism in process algebra, Fundam. Inform. IX

(1986) 127–168.

[5] Samik Basu, Tevfik Bultan, Meriem Ouederni, Deciding choreography realizability, in: 39th Symposium on Principles of Programming Languages,
POPL ’12, ACM, 2012, pp. 191–202.

[6] Antonio Brogi, Carlos Canal, Ernesto Pimentel, Antonio Vallecillo, Formalizing web service choreographies, Electron. Notes Theor. Comput. Sci.
105 (December 2004) 73–94.

[7] Daniel Brand, Pitro Zafiropulo, On communicating finite-state machines, J. ACM 30 (2) (April 1983) 323–342.
[8] Bernadette Charron-Bost, Friedemann Mattern, Gerard Tel, Synchronous, asynchronous, and causally ordered communication, Distrib. Comput. 9 (4)

(February 1996) 173–191.
[9] Bernadette Charron-Bost, André Schiper, The heard-of model: computing in distributed systems with benign faults, Distrib. Comput. 22 (1) (April 2009)

49–71.

[10] Rance Cleaveland, Matthew Hennessy, Priorities in process algebras, Inf. Comput. 87 (1/2) (1990) 58–77.
[11] Florent Chevrou, Aurélie Hurault, Philippe Quéinnec, On the diversity of asynchronous communication, Form. Asp. Comput. 28 (5) (September 2016)

847–879.

[12] Florent Chevrou, Aurélie Hurault, Philippe Quéinnec, TLA+ modules for a modular framework for verifying versatile distributed systems, http://vacs.
enseeiht. fr/ vacs2/, 2019.

[13] Juanito Camilleri, Glynn Winskel, CCS with priority choice, Inf. Comput. 116 (1) (1995) 26–37.
[14] Cezara Drăgoi, Thomas A. Henzinger, Damien Zufferey Psync, A partially synchronous language for fault-tolerant distributed algorithms, in: 43rd

Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’16, ACM, 2016, pp. 400–415.
[15] Francisco Durán, Meriem Ouederni, Gwen Salaün, A generic framework for n-protocol compatibility checking, Sci. Comput. Program. 77 (7–8) (July

2012) 870–886.
[16] André Engels, Sjouke Mauw, Michel A. Reniers, A hierarchy of communication models for message sequence charts, Sci. Comput. Program. 44 (3)

(2002) 253–292.
[17] David Garlan, Robert Monroe, David Wile Acme, An architecture description interchange language, in: CASCON’97, 1997, pp. 169–183.
[18] Jason J. Hickey, Nancy Lynch, Robbert van Renesse, Specifications and proofs for Ensemble layers, in: Fifth International Conference on Tools

and Algorithms for the Construction and Analysis of Systems (TACAS’99), in: LNCS, vol. 1579, Springer-Verlag, 1999, pp. 119–133.
[19] Gerard J. Holzmann, The Spin Model Checker: Primer and Reference Manual, Addison-Wesley, 2004.
[20] M. Elizabeth C. Hull, Occam - a programming language for multiprocessor systems, Comput. Lang. 12 (1) (1987) 27–37.
[21] Ajay D. Kshemkalyani, Mukesh Singhal, Distributed Computing: Principles, Algorithms, and Systems, Cambridge University Press, March 2011.
[22] Leslie Lamport, Time, clocks and the ordering of events in a distributed system, Commun. ACM 21 (7) (July 1978) 558–565.
[23] Leslie Lamport, Specifying Systems, Addison Wesley, 2002.
[24] Leslie Lamport, The PlusCal algorithm language, in: Theoretical Aspects of Computing - ICTAC 2009, 6th International Colloquium, in: Lecture Notes in

Computer Science, vol. 5684, Springer, 2009, pp. 36–60.
[25] Xiaoming Liu, Christoph Kreitz, Robbert van Renesse, Jason J. Hickey, Mark Hayden, Kenneth Birman, Robert Constable, Building reliable,

high-performance communication systems from components, in: 17th ACM Symposium on Operating Systems Principles (SOSP’99), in: Operating
Systems Review, vol. 33(5), ACM Press, December 1999, pp. 80–92.

[26] Xiaozhou Li, Jayadev Misra, C. Greg Plaxton, Active and concurrent topology maintenance, in: Distributed Computing, 18th International Conference,
in: Lecture Notes in Computer Science, vol. 3274, Springer, 2004, pp. 320–334.

[27] Nancy A. Lynch, Distributed Algorithms, Morgan Kaufmann Publishers Inc., 1996.
[28] Sjouke Mauw, Michel A. Reniers, An algebraic semantics of basic message sequence charts, Comput. J. 37 (4) (1994) 269–277.
[29] Robbert van Renesse, Kenneth P. Birman, Mark Hayden, Alexey Vaysburd, David Karr, Building adaptive systems using Ensemble, Softw. Pract.

Exp. 28 (9) (August 1998) 963–979.
[30] Robbert van Renesse, Kenneth P. Birman, Silvano Maffeis Horus, A flexible group communications system, Commun. ACM 39 (4) (April 1996) 76–83.
[31] A. Segall, Distributed network protocols, IEEE Trans. Inf. Theory 29 (1) (1983) 23–35.
[32] Gerard Tel, Introduction to Distributed Algorithms, second edition, Cambridge University Press, 2000.
[33] R.N. Taylor, N. Medvidovic, K.M. Anderson, E.J. Whitehead, J.E. Robbins, K.A. Nies, P. Oreizy, D.L. Dubrow, A component- and message-based

architectural style for GUI software, IEEE Trans. Softw. Eng. 22 (6) (June 1996) 390–406.
[34] James R. Wilcox, Doug Woos, Pavel Panchekha, Zachary Tatlock, Xi Wang, Michael D. Ernst, Thomas Anderson Verdi, A framework for

implementing and formally verifying distributed system, in: 36th ACM Conference on Programming Language Design and Implementation, June 2015,
pp. 357–368.

