
HAL Id: hal-02451048
https://hal.science/hal-02451048v1

Submitted on 23 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Negotiable Votes: Pre-Vote Negotiations in Binary
Voting with Non-Manipulable Rules

Umberto Grandi, Davide Grossi, Paolo Turrini

To cite this version:
Umberto Grandi, Davide Grossi, Paolo Turrini. Negotiable Votes: Pre-Vote Negotiations in Binary
Voting with Non-Manipulable Rules. Journal of Artificial Intelligence Research, 2019, 64, pp.895-929.
�10.1613/jair.1.11446�. �hal-02451048�

https://hal.science/hal-02451048v1
https://hal.archives-ouvertes.fr


  

 

 

Any correspondence concerning this service should be sent 

to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr 

This is an author’s version published in: 
http://oatao.univ-toulouse.fr/24933 

 
 
 

To cite this version: Grandi, Umberto and Grossi, Davide and Turrini, 

Paolo Negotiable Votes: Pre-Vote Negotiations in Binary Voting with Non-

Manipulable Rules. (2019) Journal of Artificial Intelligence Research, 64. 

895-929. ISSN 1076-9757 

Official URL 

DOI : https://doi.org/10.1613/jair.1.11446 

Open  Archive  Toulouse  Archive  Ouverte 

OATAO is an open access repository that collects the work of Toulouse 
researchers and makes it freely available over the web where possible 



Negotiable Votes

Pre-Vote Negotiations in Binary Voting with Non-Manipulable Rules

umberto.grand@irit.fr

d.grossi@rug.nl

p.turrini@warwick.ac.uk

Umberto Grandi
Institut de Recherche en Informatique de Toulouse (IRIT) 
University of Toulouse
2 rue du Doyen Gabriel-Marty, 31042 Toulouse, France

Davide Grossi
Bernoulli Institute for Mathematics,
Computer Science and Artificial Intelligence
University of Groningen
Bernoulliborg, Nijenborgh 9, 9747 AG Groningen, The 
Netherlands

Paolo Turrini
Department of Computer Science
University of Warwick

CV4 7AL Coventry, United Kingdom

Abstract

We study voting games on binary issues, where voters hold an objective over the out-
come of the collective decision and are allowed, before the vote takes place, to negotiate
their ballots with the other participants. We analyse the voters’ rational behaviour in
the resulting two-phase game when ballots are aggregated via non-manipulable rules and,
more specifically, quota rules. We show under what conditions undesirable equilibria can
be removed and desirable ones sustained as a consequence of the pre-vote phase.

1. Introduction

Group decision-making is a topic of increasing relevance for Artificial Intelligence (AI).
Addressing the problem of how groups of self-interested, autonomous entities can take the
“right” decisions together is key to achieve intelligent behaviour in systems dependent on the
interaction of autonomous entities. Against this backdrop, social choice theory has by now
an established place in the toolbox of AI and, especially, multi-agent systems (henceforth,
MAS), see, e.g., Shoham and Leyton-Brown (2008), Brandt, Conitzer, Endriss, Lang, and
Procaccia (2016). Voting in particular has been extensively studied as a prominent group
decision-making paradigm in MAS. Despite this, only a recent body of literature is starting
to focus on voting as a form of strategic, non-cooperative, interaction, see, e.g., Desmedt
and Elkind (2010), Xia and Conitzer (2010), Obraztsova, Markakis, and Thompson (2013),
Meir, Lev, and Rosenschein (2014), Elkind, Grandi, Rossi, and Slinko (2015), Obraztsova,
Rabinovich, Elkind, Polukarov, and Jennings (2016).1

1. This research direction was given particular momentum by the organisation of the Dagstuhl Workshop
on Computation and Incentives in Social Choice in 2012, and the COST IC1205 Workshop on Iterative
Voting and Voting Games, University of Padova, 2014.



More specifically—and this is the focus of the current contribution—no work with the 
notable exception of the literature on iterative voting (Meir, 2017, is a recent survey on 
this topic) has ever studied how voting behavior in rational agents is influenced by strategic 
forms of interaction that precede voting, like persuasion, or negotiation. Literature in social 
choice has recognised that interaction preceding voting can be an effective tool to induce 
opinion change and achieve compromise solutions (Dryzek & List, 2003; List, 2011) while 
in game theory pre-play negotiations are known to be effective in overcoming inefficient 
outcomes caused by players’ individual rationality (Jackson & Wilkie, 2005).

1.1 Rational, Truthful, but Inefficient Votes

Consider a multiple referendum, where a group of voters cast yes/no opinions on a number 
of issues, which are then aggregated independently in order to obtain the group’s opinion 
on those issues. An instance of this situation is represented in the following table:

Issue 1 Issue 2 Issue 3

Voter 1 1 0 0
Voter 2 0 1 0
Voter 3 0 0 1

Majority 0 0 0

In the example above, three voters express their binary opinions on each of three issues 
(1 for acceptance, 0 for rejection), which are aggregated one by one using the majority rule. 
Voters typically approach such a referendum with some preference over its outcomes. So, 
enriching the example, let us assume that each voter i is interested in having the group 
accept issue i, and is indifferent about the remaining two issues. Given these goals, it is 
rational for each voter to cast a truthful vote, that is a vote in which each voter i accepts 
issue i: if the voter is not pivotal its vote will not count, but if it is pivotal, casting a truthful 
vote will make its own opinion become majority.

The example—which is also an instance of the so-called multiple election paradox 
(Brams, Kilgour, & Zwicker, 1998)—shows a situation in which truthful voting leads to 
an inefficient majority. That is, the outcome of the majority rule rejects all issues, and in 
so doing fails to meet the goal of each voter. Importantly, in the example above there are 
a number of profiles that would lead to an efficient majority (e.g., the profile where each 
voter accepts every issue). Even when sincere voting is rational, its outcome may turn out 
to be inefficient. As we will see, this is not a feature of the majority rule alone, but of a 
large class of well-behaved aggregation rules. Understanding mechanisms which can resolve 
such inefficiencies is, we argue, an important step towards the development of human-level 
group decision-making capabilities in artificial intelligence.

1.2 Contribution and Scientific Context

In this paper we study pre-vote negotiations in voting games over binary issues, where 
voters hold a simple type of lexicographic preference over the set of issues: they hold an 
objective about a subset of them while they are willing to strike deals on the remaining 
ones. Voters can influence one another before casting their ballots by transferring utility



in order to obtain a more favourable outcome in the end. We show that this type of pre-
vote interaction has beneficial effects on voting games by refining their set of equilibria, 
and in particular by guaranteeing the efficiency of truthful ones. Specifically, we isolate 
precise conditions under which ‘bad’ equilibria—i.e., truthful but inefficient ones—can be 
overcome, and ‘good’ ones can be sustained. Our work relates directly to several on-going 
lines of research in social choice, game theory and their applications to MAS.

Binary Aggregation Aggregation and merging of information is a long studied topic in 
AI (Konieczny & Pino Peréz, 2002; Chopra, Ghose, & Meyer, 2006; Everaere, Konjeczny, & 
Marquis, 2007) and judgment aggregation has become an influential formalism in AI (En-
driss, 2016). The basic setting of binary voting is also known as voting in multiple referenda 
(Lacy & Niou, 2000), and can be further enriched by imposing that individual opinions also 
need to satisfy a set of integrity constraints, like in binary voting with constraints (Grandi & 
Endriss, 2013) and judgment aggregation proper (Dietrich & List, 2007a; Grossi & Pigozzi, 
2014). Standard preference aggregation, which is the classical framework for voting theory, 
is a special case of binary voting with constraints (Dietrich & List, 2007a). The intro-
duction of constraints will be touched upon towards the end of the paper. Research in 
binary voting and judgment aggregation focused on the (non-)manipulability of judgment 
aggregation rules (Dietrich & List, 2007c; Botan, Novaro, & Endriss, 2016) and its com-
putational complexity (Endriss, Grandi, & Porello, 2012; Baumeister, Erdélyi, Erdélyi, & 
Rothe, 2015), but a fully-fledged theory of non-cooperative games in this setting has not 
yet been developed and that is our focus here.

Election Control and Bribery The field of computational social choice has extensively 
studied decision problems that capture various forms of election control (see Faliszewski 
and Rothe 2016, for a recent overview) such as adding and deleting candidates, lobbying 
and bribery, modelled from the single agent perspective of a lobbyist or briber who tries 
to influence voters’ decisions through monetary incentives, or from the perspective of a 
coalition of colluders (Bachrach, Elkind, & Faliszewski, 2011). Here we study a form of 
control akin to bribery, but where any voter can ‘bribe’ any other voter. Our work can be 
seen as an effort to develop a game-theoretic model of this type of control, and given our 
focus on equilibrium analysis we sidestep issues of computational complexity in this paper.

Equilibrium refinement Non-cooperative models of voting are known to suffer from 
a multiplicity of equilibria, many of which appear counterintuitive, not least because of 
their inefficiency. Equilibrium selection or refinement is a vast and long-standing research 
program in game theory (Meyerson, 1978). Models of equilibrium refinement have been 
applied to voting games in the literature on economics (Gueth & Selten, 1991; Kim, 1996) 
and within MAS especially within the above-mentioned iterative voting literature (Meir, 
2017), which offers a natural strategy for selecting equilibria through the process of best 
response dynamics that starts from a profile of truthful votes. Our model tackles the same 
issue of refinement of equilibria in the context of binary voting, and focusing on those 
equilibria that are truthful and efficient. Unlike in iterative voting, our model is a two-
phase model where equilibria are selected by means of an initial pre-vote negotiation phase, 
followed by voting.



Boolean Games We model voting strategies in binary aggregation with a model that 
generalises the well-known boolean games model (Harrenstein, van der Hoek, Meyer, & 
Witteveen, 2001; Wooldridge, Endriss, Kraus, & Lang, 2013): voters have control of a 
set of propositional variables, i.e., their ballot, and have specific goal outcomes they want 
to achieve. In our setting the goals of individuals are expressed over the outcome of the 
decision process, thus on variables that—in non-degenerate forms of voting—do not depend 
on their single choice only. Unlike boolean games, where each actor uniquely controls a 
propositional variable, in our setting the control of a variable is shared among the voters 
and its final truth value is determined by a voting rule. A formal relation with boolean 
games will be provided towards the end of the paper.

Pre-play Negotiations We model pre-vote negotiations as a pre-play interaction phase, 
in the spirit of Jackson and Wilkie (2005). During this phase, which precedes the play of 
a normal form game—the voting game— players are entitled to sacrifice part of their final 
utility in order to convince their opponents to play certain strategies, which in our case 
consist of voting ballots. In doing so we build upon the framework of endogenous boolean 
games (Turrini, 2016), which enriches boolean games with a pre-play phase. We abstract 
away from the sequential structure of the bargaining phase, modelled in closely related 
frameworks (Goranko & Turrini, 2016).

The use of side-payments for equilibrium refinement is not novel in Artificial Intelligence. 
Notably Monderer and Tennenholtz’s (2004) k-implementation and “strong mediated equi-
librium” (Monderer & Tennenholtz, 2009) employ side-payments by an external third party 
to drive the choices of self-interested agents. While both their models allow for game trans-
formations through side-payments, the equilibrium refinement is mediated by an interested 
third party. Our model of side-payments and equilibrium refinement stems from Jackson 
and Wilkie’s endogenous approach, which analyses the effect of negotiation through side-
payments without exogenous interventions.

1.3 Outline of the Paper

The paper is organised as follows. In Section 2 we present the setting of binary aggregation, 
defining the (issue-wise) majority rule as well as a general class of aggregation procedures, 
which constitute the rules of choice for the current paper. In Section 3 we define voting 
games for binary aggregation, specifying individual preferences by means of both a goal and 
a utility function, and we show how undesirable equilibria can be removed by appropriate 
modifications of the game matrix. In Section 4 we present a full-blown model of collective 
decisions as a two-phase game, with a negotiation phase preceding voting. We show how 
the set of equilibria can be refined by means of rational negotiations. Section 5 relaxes 
assumptions we make on voters’ goals in the basic framework showing the robustness of our 
results. Section 6 discusses related work in some more detail. Finally, Section 7 concludes.

2. Preliminaries: Binary Aggregation

The study of binary aggregation dates back to Wilson (1975), and was recently revived 
both within economics (Dokow & Holzman, 2010) and AI (Grandi & Endriss, 2013). This 
section is a brief introduction to the key notions and definitions of the framework.



p q r

A 1 0 1
B 1 1 0
C 0 0 0

maj 1 0 0

Table 1: An instance of binary aggregation

2.1 Basic Definitions

In binary aggregation a finite set of agents (to which we will also refer as voters and,
later on, players) N = {1, . . . , n} express yes/no opinions on a finite set of binary issues
I = {1, . . . ,m}, and these opinions are then aggregated into a collective decision over each
issue. This is analogous to voting over a simple (binary) combinatorial domain (Lang & Xia,
2016). Issues can be seen as queries to voters in a multiple referendum (Lacy & Niou, 2000),
or seats that need to be allocated to candidates—two per seat—in assembly composition
(Benôit & Kornhauser, 2010), or candidates of which voters approve or disapprove of (Brams
& Fishburn, 1978).

In this paper we assume that |N | ≥ 3, i.e., there are at least 3 individuals. We denote
by D = {B | B : I → {0, 1}} the set of all possible binary opinions over the set of issues
I and call an element B ∈ D a ballot. B(j) = 0 (respectively, B(j) = 1) indicates
that the agent who submits ballot B rejects (respectively, accepts) the issue j. A profile

B = (B1, . . . , Bn) ∈ DN is the choice of a ballot for every individual in N . Given a profile
B, we use Bi to denote the ballot of individual i within a profile B. We adopt the usual
convention writing −i for N\{i} and thus B−i to denote the sequence consisting of the
ballots of individuals other than i. Thus, Bi(j) = 1 indicates that individual i accepts issue
j in profile B. Furthermore, we denote by NB

j = {i ∈ N | Bi(j) = 1} the set of individuals
accepting issue j in profile B.

Given a set of individuals N and issues I, an aggregation rule or aggregator for N
and I is a function F : DN → D, mapping every profile to a binary ballot in D, called the
collective ballot. F (B)(j) ∈ {0, 1} denotes the value of issue j in the aggregation of B
via aggregator F . The benchmark aggregator is the so-called issue-wise strict majority

rule, which we will refer to simply as (issue-wise) majority (in symbols, maj). The rule
accepts an issue if and only if a majority of voters accept it, formally maj(B)(j) = 1 if and

only if |NB

j | ≥ |N |+1
2 . Table 1 depicts a ballot profile with three agents (rows A,B and

C) on three issues (columns p, q and r) and the aggregated ballot (fourth row) obtained by 
majority.

Other examples of aggregation rules include quota rules, which we discuss below, and 
degenerate rules such as dictatorships, for which there exists i ∈ N such that on every 
issue j, and for all profile B, F (B)(j) = Bi(j).

2.2 Types of Aggregators of Interest

In this paper we focus specifically on two classes of aggregators: the class of non-manipulable 
aggregators, an its subclass consisting of all quota rules.
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2.2.1 Non-Manipulable Aggregators

In binary aggregation, an aggregator F is said to be non-manipulable if there exists 
no profile B such that for some issue j ∈ I and agent i ∈ N , Bi(j) 6= F (B)(j) and 
Bi(j) = F (B′, B−i)(j) for some ballot B′ 6= Bi (Dietrich & List, 2007c). That is, no agent 
accepting (resp., rejecting) an issue while the issue is collectively rejected (resp., accepted) 
can change its ballot in order to force the issue to be collectively accepted (resp., rejected).2

The class of non-manipulable aggregators is the baseline class for the analysis of binary 
voting games developed in the paper. This is, we argue, a natural class of aggregators to 
focus on for our purposes, as we will be concerned with the analysis of strategic behavior 
that arises in a pre-vote negotiation phase. In a sense our models show how rich strategic 
behavior can be supported even by aggregators that make vote manipulation impossible.

It is known (Dietrich & List, 2007c, Th. 1) that the class of non-manipulable aggregators 
corresponds to the class of aggregators which are independent and monotonic, so we will be 
referring to the two classes interchangeably. An aggregator F is said to be: independent 
if for all issue j ∈ I and any two profiles B, B′ ∈ DN , if Bi(j) = B′(j) for all i ∈ N , 
then F (B)(j) = F (B′)(j); monotonic if for all issue j ∈ I, x ∈ {0, 1} and any two 
profiles B, B′ ∈ DN , if Bi(j) = x entails B′(j) = x for all i ∈ N , and for some ℓ ∈ N 
we have that Bℓ(j) = 1 − x and B′ (j) = x, then F (B)(j) = x entails F (B′)(j) = x. 
Intuitively, an aggregator is independent if the decision of accepting a given issue j does 
not depend on the judgment of the individuals on any issue other than j.3 It is monotonic 
if increasing (respectively, decreasing) the support on one issue when this is collectively 
accepted (respectively, rejected), does not modify the result.

The class of non-manipulable aggregators includes the majority rule, as well as any quota 
rule, to which we will turn next. The minority rule, i.e., the rule that always selects the 
opposite of the majority rule, satisfies independence, but fails monotonicity. Dictatorships, 
oligarchies, and similar non-anonymous aggregation rules4 do satisfy independence and 
monotonicity. Rules that fall out of the class, and that have been studied in the literature, 
are also the so-called distance-based rules, which output the ballot that minimises the overall 
distance to the profile for a suitable notion of distance.5

2.2.2 Quota Rules

While the core of our results are proven for independent and monotonic aggregators, we 
will sometimes restrict ourselves to the class of quota rules and establish stronger claims 
for that class. Quota rules accept an issue if the number of voters accepting it exceeds 
a given positive quota, possibly different for each issue. Formally, if a quota rule Fq is 
defined via a function q : I → {1, . . . , n}, associating a quota to each issue, by stipulating

2. This notion of non-manipulability is a preference-free variant of the one used in the preference aggregation
literature.

3. When the aggregator is independent, the process of aggregation is also referred to as proposition-wise
voting in the literature on multiple referrenda (Ozkai-Sanver & Sanver, 2006), or seat-by-seat voting in
the literature on assembly composition (Benôit & Kornhauser, 2010), or as simultaneous voting in the
literature on voting over combinatorial domains (Lang & Xia, 2016).

4. See definition of anonymity below.
5. See Grossi and Pigozzi (2014) and Endriss (2016) for a more detailed exposition of aggregation rules.



Fq(B)j = 1 ⇔ |NB

j | ≥ q(j).6 Fq is called uniform in case q is a constant function.

Issue-wise majority is a uniform quota rule with q =
⌈

|N |+1
2

⌉

.

In our results we will make use of known axiomatic characterizations of quota rules.
The class of quota rules corresponds to the class of independent, monotonic, responsive and
anonymous aggregators (Dietrich & List, 2007b, Theorem 1).7 The class of uniform quota
rules corresponds to the class of aggregators that are, in addition, neutral (Endriss, 2016,
Corollary 17.5). An aggregator F is said to be: neutral if for any two issues j, k ∈ I and
any profile B ∈ D, if for all i ∈ N we have that Bi(j) = Bi(k), then F (B)(j) = F (B)(k);8

responsive if for all issue j ∈ I there exist two profilesB andB
′ such that F (B)(j) = 1 and

F (B′)(j) = 0; anonymous if for all two players i, j ∈ N and any two profiles B,B′ ∈ DN ,
if Bi = B′

j , B
′
i = Bj and, for each k ∈ N \{i, j}, we have that Bk = B′

k, then F (B) = F (B′).
Intuitively, an aggregator is responsive if it is not a constant function. It is neutral if all
issues are treated in the same way, and anonymous if all voters are treated in the same way.

2.3 Winning and Veto Coalitions

Given an aggregator F , we call a set of voters C ⊆ N a winning coalition for issue j ∈ I
if for every profile B we have that if Bi(j) = 1 for all i ∈ C and Bi(j) = 0 for all i 6∈ C

then F (B)(j) = 1. 9 The notion of winning coalition is closely related to the independence
property defined above:10

Fact 1. An aggregator F is independent if and only if for all j ∈ I there exists a set of
subsets Wj ⊆ P(N ) such that, for each ballot B, F (B)j = 1 if and only NB

j ∈ Wj.

That is, F is independent if and only if it can be defined in terms of a family {Wj}j∈I
of sets of winning coalitions. Furthermore, we call a set of voters C ⊆ N a veto coalition

for issue j ∈ I if for every profile B we have that if Bi(j) = 0 for all i ∈ C and Bi(j) = 1
for all i 6∈ C then F (B)(j) = 0. Clearly,

C ∈ Wj iff N\C 6∈ Vj . (1)

Observe that by the above relation and Fact 1 an independent aggregator can equivalently be
defined by a set {Vj}j∈I of veto coalitions, consisting of the complements of those coalitions
that do not belong to Wj . Let us fix intuitions by a few examples. The sets of winning and

veto coalitions for issue-wise majority are, for every issue j: Wj =
{

C ⊆ N
∣

∣

∣
|C| ≥ |N |+1

2

}

and Vj =
{

C ⊆ N
∣

∣

∣
|C| ≥ |N |

2

}

. When |N | is odd, this is the only quota rule for which

Wj = Vj .
11 For a constant aggregator which always accepts all issues, that is, a quota rule

6. Note that we exclude from our definition of quota rules constant functions, that is, quota rules with
quota equal to 0 or larger than n.

7. See also Endriss (2016), Proposition 17.4.
8. Independent and neutral aggregators are often called systematic.
9. The definitions from this section are well-known from the literature, except for the notion of veto and

resilient coalitions treated below. See, for instance, Dokow and Holzman (2010).
10. This and the following facts are assumed to be well-known, for a proof in the setting of judgment

aggregation we refer to Endriss (2016), Lemma 17.1.
11. This property is known as unbiasedness.



with q = 0, the sets of winning and veto coalitions are, for each issue j: Wj = 2N , i.e., any 
coalition is winning, and Vj = ∅, i.e., no coalition is a veto coalition.

Additional properties imposed on an independent aggregator F induce further structure 
on winning (and veto) coalitions:

Fact 2. An independent aggregator F is monotonic if and only if for each j ∈ I and for 
any C ∈ Wj (respectively, C ∈ Vj ), if C ⊆ C ′ then C ′ ∈ Wj (resp., C ′ ∈ Vj ), i.e., winning 
(and veto) coalitions are closed under supersets. It is neutral if and only if for each j, k ∈ I 
we have that Wj = Wk (equivalently, Vj = Vk for all j, k ∈ I). It is anonymous if and 
only if for each j ∈ I we have that C ∈ Wj (resp., C ∈ Vj ) implies that D ∈ Wj (resp., 
D ∈ Vj ) whenever |C| = |D|, i.e., coalitions are winning (resp., veto) only depending on 
their cardinality.

We conclude this preliminary section with one last important definition. We call C a 
resilient winning coalition (respectively, a resilient veto coalition) for issue j ∈ I if 
C is a winning (resp., veto) coalition for j and, for every i ∈ C, C \ {i} is also a winning 
(resp., veto) coalition for j.12 For every issue j, the set of resilient winning (resp., veto)
coalitions for j is denoted W+

j (resp., V+
j ).

Given a neutral aggregator F , such as a uniform quota rule, we denote with W (resp.,
V) the set of winning (resp., veto) coalitions for F , and with W+ (resp., V+) the set
of resilient winning (resp., veto) coalitions for F . In the case of the majority rule we

have W+ =
{

C ⊆ N | |C| ≥ |N |+1
2 + 1

}

, i.e., all winning coalitions exceeding the majority

threshold of at least one element are resilient winning coalitions. For a uniform quota rule
Fq, the set of resilient winning coalitions is W+ = {C ⊆ N | |C| ≥ q + 1}. Observe also
that if F is dictatorial on every issue, then W+ = ∅.

3. Games for Binary Aggregation

In this section we present a model of a strategic interaction played among voters involved
in a collective decision-making problem on binary issues. Players’ strategies consist of all
binary ballots on the set of issues, and the outcome of the game is obtained by aggregating
the individual ballots by means of a given aggregator. Players’ preferences are expressed in
the form of a simple goal that is interpreted on the outcomes of the aggregation (i.e., the
collective decision), and by an explicit payoff function for each player i, yielding to player
i a real number at each profile and encoding, intuitively, the utility i would receive, should
that profile of votes occur. We study the existence of equilibria of these games, paying
particular attention to the truthful and efficient ones.

3.1 Main Definitions

Before defining aggregation games we need a last piece of notation. To each set of issues
I, we associate the set of propositional atoms PS =

{

p1, . . . , p|I|
}

containing one atom for
each issue in I. We denote by LPS the propositional language constructed by closing PS
under a functionally complete set of boolean connectives (e.g., {¬,∧}).

12. This definition adapts the notion of resiliency of equilibria studied by Halpern (2011) to the notion of
winning and veto coalition proper of binary aggregation.



3.1.1 Aggregation Games, Goals and Preferences

Definition 1. Let I and N be given. An aggregation game (for I and N ) is a tuple
A =

〈

N , I, F, {γi}i∈N , π
〉

where:

• F is an aggregator for N and I;

• each γi is a cube, i.e. a conjunction of literals from LPS,
13 which is called a goal;

• π : N →
(

DN → R
)

is a payoff function assigning to each agent and each strategy
profile a real number representing the utility that player i gets at that profile. For each
player i, the payoff function π(i) of player i will be denoted simply by πi.

Note that a strategy profile in an aggregation game is a profile of binary ballots, and
will therefore be denoted with B. In the context of aggregation games we will use the term
“strategy profile” and “ballot profile”, or even just “profile”, interchangeably.

Goals, intuitively, represent properties of the outcome of the aggregation process that
voters are not willing to compromise about. By making the assumptions that goals are cubes
we assume that each voter has a simple incentive structure: she can identify a specific set of
atoms that she wants to be true at the outcome, another set of atoms that she wants to be
false, and she is indifferent about the value of the others. When comparing two outcomes,
one of which satisfies her goal and one of which does not, a voter will choose the outcome
satisfying her goal. Thus, the first degree of preference of agents is dichotomous (Elkind &
Lackner, 2015). If then two outcomes both satisfy her goal, or both do not, then the voter
will look at the value she obtains at those outcomes through her payoff function.

This, we argue, is a very natural class of preferences for binary aggregation. They
are technically known as quasi-dichotomous preferences and have been studied in the
context of Boolean games (Wooldridge et al., 2013). Henceforth we employ the satisfaction
relation |= (respectively, its negation 6|=) to express that a ballot satisfies (respectively, does
not satisfy) a goal. The preference relation induced on ballot profiles by goals and payoff
functions is defined as follows:

Definition 2 (Quasi-dichotomous preferences). Let A be an aggregation game. Ballot
profile B is strictly preferred by i ∈ N over ballot profile B

′ (in symbols, B ≻π
i B

′) if and
only if any of the two following conditions holds:

i) F (B′) 6|= γi and F (B) |= γi;

ii) F (B′) |= γi if and only if F (B) |= γi, and πi(B) > πi(B
′).

The two ballot profiles are equally preferred whenever F (B′) |= γi if and only if F (B) |= γi,
and πi(B) = πi(B

′). The resulting weak preference order among ballot profiles is de-
noted �π

i .

In other words, a profile B is weakly preferred by player i to B
′ if either F (B) satisfies

i’s goal and F (B′) does not or, if both satisfy i’s goal or neither do, but B yields to i at

13. Formally, each γi is equivalent to
∧

j∈K
ℓj where K ⊆ I and ℓj = pj or ℓj = ¬pj for all j ∈ K.



least as good a payoff as B′. Individual preferences over ballot profiles are therefore induced 
by their goals, by their payoff functions, and by the aggregation procedure used.

Finally, goals relate in a clear way to the structure of winning and veto coalitions of an 
independent aggregator. One can identify for every goal which are the sets of agents that 
can force the acceptance of such goal:

Definition 3. For an independent aggregator F and a cube γ we say that C is winning for 
γ if and only if C ∈ Wj for each j such that γ logically entails pj , and C ∈ Vj for each j 
such that γ logically entails ¬pj . We write Wγ for the set of winning coalitions for γ. The 
set of resilient winning coalitions for γ (denoted Wγ

+) is defined in the obvious way.

In words, a coalition is winning for a goal whenever it is winning for all the issues that 
need to be accepted for γ to be satisfied, and veto for all the issues that need to be rejected 
for γ to be true. An obvious adaptation of the definition yields the notion of veto coalition 
for a given goal.

3.1.2 Classes of Aggregation Games

A natural class of aggregation games is that of games where the individual utility only 
depends on the outcome of the collective decision:

Definition 4. An aggregation game A is called uniform if for all i ∈ N and profiles B it 
is the case that πi(B) = πi(B′) whenever F (B) = F (B′). A game is called constant if all 
πi are constant functions, i.e., for all i ∈ N and all profiles B we have that πi(B) = πi(B′).

Clearly, all constant aggregation games are uniform. Games with uniform payoffs are 
arguably the most natural examples of aggregation games. The payoff each player receives 
is only dependent on the outcome of the vote, and not on the ballot profile that determines 
it. For convenience, we assume that in uniform games the payoff function is defined directly 
on outcomes, i.e., πi : D → R. Constant games are games where players’ preferences are 
fully defined by their goals, and are therefore dichotomous.

We call a strategy B i-truthful if it satisfies the individual’s goal γi. Note that in the 
case in which γi is a cube that specifies in full a single binary ballot—that is, the agent’s goal 
is a ballot—our notion of truthfulness coincides with the classic notion used in judgment 
aggregation and binary voting where only one ballot is truthful, and all other ballots are 
available for strategic voting.

Let us introduce some further terminology concerning strategy profiles:

Definition 5. Let C ⊆ N . We call a strategy profile B = (B1, . . . , Bn):

(1) C-truthful if all Bi with i ∈ C are i-truthful, i.e., Bi |= γi, for all i ∈ C;

(2) C-goal-efficient (C-efficient) if F (B) |=
∧

i∈C γi;
14

(3) totally C-goal-inefficient (totally C-inefficient) if F (B) |=
∧

i∈C ¬γi.

An aggregation game is called C-consistent, for C ⊆ N , if the conjunction of the goals of
agents in coalition C is consistent, i.e., if the formula

∧

i∈C γi is satisfiable.

14. Observe that since each γi is a cube,
∧

i∈C
γi is also a cube.



Observe that while the notion of truthfulness is a property of the ballot itself, with goals 
interpreted on the individual ballots to check for truthfulness, the two notions of efficiency 
are instead properties of the outcome of the aggregation.

3.2 Equilibria in Aggregation Games

In this section we study Nash equilibria (NE) in aggregation games and specific classes 
thereof. Our focus is the existence of ‘good’ NE, that is, NE that are truthful and efficient.

3.2.1 Inexistence of Equilibria in (General) Aggregation Games

First of all, it is important to observe that aggregation games may not have, in general,
(pure stragegy) NE.

Fact 3. There are aggregation games that have no NE.

Proof. Define an aggregation game as follows. Let I = {p}, N = {1, 2, 3}, and let γ1 = 
γ2 = γ3 = ⊤. Assume also that the payoff function is defined as follows: for any ballot 
profile B, we have that π1(B) = 1 if and only if B1 = B2, and 0 otherwise; π2(B) = 1 if 
and only if B1 6= B2, and 0 otherwise; finally, π3 is constant. That is, agent 1 wants 1 and 
2 to agree on issue p while agent 2 wants them to disagree, and agent 3 is indifferent among 
any two outcomes of the interaction.15 It is easy to see that the aggregation game encodes 
a matching-pennies type of game between 1 and 2 and, therefore, the resulting aggregation 
game does not have a NE.

We will come back to the issue of the inexistence of NE in Section 4.

3.2.2 Equilibria in Constant Aggregation Games

Recall that a strategy Bi is weakly dominant for agent i if for all profiles B we have that
(B−i, Bi) �

π
i B. We begin with an important result showing that in constant aggregation

games with aggregators that are non-manipulable (i.e., independent and monotonic), the
truthfulness of a strategy is a sufficient condition for it to be weakly dominant.

Proposition 4. Let A be a constant aggregation game with F non-manipulable, and let
i ∈ N be a player. If a strategy Bi is truthful then it is weakly dominant for i.16

Proof. Let Bi be a truthful strategy, i.e., Bi |= γi. We want to show that Bi is weakly
dominant, that is for every B

′ ∈ DN , F (B′) |= γi implies F (B′
−i, Bi) |= γi. We proceed

towards a contradiction and assume that, for some profile B
′ we have that F (B′) |= γi

and F (B′
−i, Bi) 6|= γi. Since by Definition 1 individual goals are cubes, we have that

γi =
∧

j∈I ℓj , where ℓj is a literal built from PS. Hence there exists a k ∈ I such that
F (B′

−i, Bi) 6|= ℓk but F (B′) |= ℓk. Assume w.l.o.g. that ℓk is positive, i.e., ℓk = pk. Since
Bi is assumed to be truthful, Bi |= ℓk (that is, Bi(k) = 1). Now, F is independent so the
value of issue k in the output of F depends only on the values of k in each individual ballot
in the input profile. Moreover, since F (B′) |= ℓk and Bi |= ℓk, by the monotonicity of F
we conclude that F (B′

−i, Bi) |= ℓk. Contradiction.

15. Note that this game is not uniform.
16. This proposition can also be obtained as corollary of a result by Dietrich and List (2007c). We are

indebted to Ulle Endriss for this observation.



Intuitively the proposition tells us that independent and monotonic aggregators, as far 
as only the satisfaction of individual goals is concerned, guarantee that players are always 
better off by casting a truthful ballot. A first immediate consequence is that computing 
weakly dominant strategies in constant aggregation games takes a polynomial amount of 
time, since it boils down to finding a satisfying assignment to the individual goal, which 
in our model is a conjunction of literals. Other consequences are stated in the following 
corollary:

Corollary 5. Let A be an aggregation game with F non-manipulable:

(i) any profile B such that Bi |= γi for all i ∈ N is a NE;

(ii) if for all i ∈ N the formula γi is consistent, then A has at least one NE.

∧

i

j

i i

i i

For the subclass of non-manipulable aggregators consisting of quota rules, the converse 
of Proposition 4 holds, showing that for quota rules the truthfulness of a strategy is also a 
necessary condition for it to be weakly dominant.

Proposition 6. Let A be a constant aggregation game with F a quota rule. Then all weakly 
dominant strategies for i ∈ N are truthful.

Proof. Recall that quota rules correspond to the class of independent, monotonic, responsive 
and anonymous aggregators. Consider a weakly dominant strategy Bi for i, and assume 
towards a contradiction that Bi 6|= γi, i.e., Bi is not truthful. Since goals are cubes, there 
exists a k such that Bi 6|= ℓk, where γi = j∈I ℓj . W.l.o.g., assume that ℓk = pk and let 
us argue towards the acceptance of k. By responsiveness there exist B and B′ such that 
F (B)(k) = 1 and F (B′)(k) = 0. By anonymity, collective acceptance and rejection of k 
depends only on the cardinality of the set of agents accepting k in a given profile. So, by 
monotonicity there exists an integer q ( 6= 0, by responsiveness) such that F accepts k if 
and only if the cardinality of the set of agents accepting k is at least q. Therefore there 
exist B and B′ such that F (B)(k) = 1 and F (B′)(k) = 0 and such that B−i = B′

−i and 
Bi(k) = 1 6= B′(k). Furthermore, exploiting independence, let us assume that for any j 6= i 
and t 6= k, Bj (t) = B′ (t) and F (B) |= γi. That is, there exist two profiles such that the first 
satisfies i’s goal and the second does not, because the first meets the threshold for accepting 
k while the second does not. And the reason for the second not meeting the threshold is i’s 
ballot to reject k. In other words, i is pivotal in B′ for the acceptance of k and therefore 
for the acceptance of its goal. It follows that for any strategy B′ such that B′ |= ℓk we have 
that F (B−i, B′) |= γi, i.e., Bi is dominated by B′, against the assumption that Bi is weakly 
dominant in A.

So quota rules are a subclass of non-manipulable aggregators for which weak dominance 
and truthfulness are equivalent conditions on players’ strategies:

Corollary 7. Let A be a constant aggregation game with F a quota rule. A strategy Bi is 
weakly dominant if and only if it is i truthful.

It is worth to observe that Proposition 4 ceases to hold if we allow the goals of the voters 
to be propositional formulas more complex than a cube:
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Example 1. Let F = maj, N = {1, 2, 3} and let I = {1, 2}. Let then γ1 = p1 ∨ p2 and 
γ2 = γ3 = ⊤. That is, agent 1 is interested in having at least one of the two issues accepted, 
while the rest of the agents are indifferent. We show that in this game not all truthful ballots 
of 1 are weakly dominant. Consider the profile B = (B1, B2, B3) where 1 votes the truthful 
ballot B1 = (0, 1), 2 votes B2 = (0, 0) and 3 votes B3 = (1, 0). We have that F (B) 6|= γ1. 
Clearly, 1 has a best response B′ = (1, 0) 6= B1 in that profile as F (B′ , B2, B3) |= γ1.

Example 2. Let F = maj, N = I = {1, 2, 3} and let agent 1’s goal be that of having 
an odd number of accepted issues, while agents 2 and 3 have no specific goals. Formally, 
let γ1 = (p1 ∧ p2 ∧ p3) ∨ (p1 ∧ ¬p2 ∧ ¬p3) ∨ (¬p1 ∧ p2 ∧ ¬p3) ∨ (¬p1 ∧ ¬p2 ∧ p3). As 
above we show that not all truthful ballots of 1 are weakly dominant. Consider the profile 
B = (B1, B2, B3) where B2 = (1, 0, 0) and B3 = (0, 1, 0) and where 1 votes a truthful ballot 
B1 = (0, 0, 1). This profile results under the majority rule in (0, 0, 0). So the (non-truthful) 
ballot B′ = (1, 0, 1) 6= B1 is a better response in B for 1 and yields the collective ballot 
(1, 0, 0), which satisfies γ1.17

In fact, cubes guarantee that players’ preferences in constant aggregation games satisfy 
a property known as separability,18 which has been shown in other voting frameworks to 
guarantee that truthful strategies are undominated (Benôit & Kornhauser, 2010).19

3.2.3 Equilibria, Truthfulness and Efficiency

Proposition 4 establishes the existence of truthful equilibria. However, as the example in the 
introduction has shown, truthfulness does not guarantee efficiency in constant aggregation 
games. We show now that this does not only hold for constant aggregation games based on 
majority, but for constant aggregation games based on uniform quota rules in general:

Proposition 8. For every uniform quota rule, there exist constant aggregation games with 
truthful and totally inefficient NE in weakly dominant strategies.

Proof. Recall that uniform quota rules correspond to the class of aggregators which are 
independent, monotonic, neutral, anonymous and responsive.20 The proof is by construc-
tion of a constant aggregation game A with the desired property. Let F be anonymous, 
systematic and monotonic, let N = I = {1, 2, 3}. First we will construct two games and 
show that at least one of the two admits a truthful and totally inefficient profile. We can 
then apply Proposition 4 to show that such profile ought to be a NE in weakly dominant 
strategies. The games are built on the same aggregator F and differ only on their goals. 
Game A Let, for each i ∈ N , γi = pi. Each γi is therefore, trivially, a cube. Note also

17. We are indebted to Edith Elkind for this example.
18. Cf. Lang and Xia (2016) for separability in combinatorial domains.
19. Separability is normally defined over strict orders (but cf. Hodge (2002) for a general treatment of the

notion). In our setup separability can be defined as follows: �i is separable if and only if for all j ∈ I,
if B �i B

′ for two profiles such that F (B)(k) = F (B′)(k) for all k 6= j, then B
′′ �i B

′′′ for all profiles
such that F (B′′)(k) = F (B′′′)(k) for all k 6= j, F (B)(j) = F (B′′)(j), and F (B′)(j) = F (B′′′)(j). If
�i is a dichotomous preference induced by a cube (i.e., a conjunction of literals), then �i is separable
under the above definition.

20. Responsiveness does not play a role in the proof and could be dispensed with. Concretely, this means
that the claim holds also for trivial quota rules, that is, constant aggregators.



that
∧

i∈N γi is satisfiable, so Game A is N -consistent. Game B Let, for each i ∈ N , the
goal be defined as χi = ¬pi. Each χi is therefore, again, a trivial cube and Game B is also
N -consistent. Now construct a ballot profile B in Game A and a ballot profile B′ in Game
B as follows, for i ∈ N and j ∈ I:

Bi(j) =

{

1 if pj = γi
0 otherwise

B′
i(j) =

{

0 if ¬pj = χi

1 otherwise
(2)

That is, in B each voter votes 1 only on the issues which coincides with its goal. Vice
versa, in B

′ each voter votes 0 only on the issues whose rejection coincides with its goal. By
construction, B and B

′ are both truthful. Now assume that B is not totally inefficient, and
we prove that B′ is totally inefficient. So there exists i ∈ N such that F (B) |= γi and since
by construction γi = pi, F (B)(i) = 1. By anonymity and systematicity, B must actually
be efficient, that is F (B) |=

∧

i∈N γi as by construction the individual positions on each
issue are identical, modulo permutations. More precisely, by construction for all j 6= i ∈ N ,
Bj(pi) = 0, that is, i is the only voter accepting pi in B. By independence and monotonicity
it follows that {i} ∈ Wpi , that is, if i accepts pi so does F . However, {i} 6∈ Vpi for otherwise
i would be a dictator for pi, against the assumption of anonymity for F . From {i} 6∈ Vpi and
Equation (1) it follows that N\{i} ∈ Wpi from which we obtain that F (B′)(pi) = 1 and
hence that F (B′) |= ¬χi. By the anonymity and systematicity of F it therefore follows that
F (B′) |=

∧

i∈N ¬χi as by construction the individual positions on each issue are identical,
modulo permutations. B′ is therefore a truthful but totally inefficient ballot profile. Since
B

′ is, by construction, a profile where each voter is truthful, by Proposition 4, B′ is also a
NE in weakly dominant strategies. This completes the proof.

π
3

3.2.4 Equilibria in Uniform Aggregation Games

Since constant payoffs are special cases of uniform ones, negative results such as Proposi-
tion 8 still hold for uniform aggregation games. As to truthful voting, the positive result of 
Proposition 4 does not generalise to uniform aggregation games:

Proposition 9. There exist uniform aggregation games for a non-manipulable aggregator 
in which truthful strategies are not dominant.

Proof. Define the uniform aggregation game as follows. Let I = {p, q, t}, N = {1, 2, 3} and 
F = maj. Let γ1 = ¬p ∧ q ∧ ¬t, γ2 = ¬p ∧ ¬q ∧ ¬t, and γ3 = ¬p ∧ ¬q ∧ t. Define the payoff 
functions as follows, let πi(B) = 1 for i = 3 and B = (0, 1, 0), and 0 otherwise. Take the 
following profiles: B1 = ((0, 1, 0), (0, 0, 0), (0, 0, 1)) and B2 = ((0, 1, 0), (0, 0, 0), (0, 1, 0)). 
Since maj(B1) = (0, 0, 0) and maj(B2) = (0, 1, 0), we have B2 ≻ B1 and B1, unlike B2, 
contains a truthful strategy by 3.

The fact that truthful voting is not always a dominant strategy for aggregation games 
with simple goals might seem counterintuitive, especially when the payoff is required to be 
uniform across the profiles that lead to the same outcome. The reason for this lies in the 
effect of the payoff function. When a player is in the position of changing the outcome of 
the decision in a certain profile, this does not necessarily imply she has the power to make 
the collective decision satisfy her goal. She may only be able to lead the group to a decision 
which, even though still not satisfying her goal, yields a better payoff for her.



∧
Γ

Despite the negative result in Proposition 9, we can still prove the existence of truthful 
and efficient equilibria in a uniform aggregation game if we assume the mutual consistency 
of the individual goals of a resilient winning coalition.

Proposition 10. Every C-consistent uniform aggregation game for non-manipulable F has 
a NE that is C-truthful and C-efficient, if C ∈ W+ where Γ = {γi | i ∈ C}.

Proof. Take a C-consistent uniform aggregation game. Note that since each goal γi is a
cube, also

∧

Γ is a cube, so that Definition 3 applies. There exists then a ballot B∗ such
that B∗ |=

∧

Γ. Take now any ballot profile B
∗ such that B∗ is the ballot of all and only

the voters in C while all agents in N\C vote the inverse ballot B∗ (that is, for any issue j,
B∗(j) = 1 if and only if B

∗
(j) = 0). Since C ∈ W∧

Γ (by the assumption that C ∈ W+∧
Γ)

we have that F (B∗) satisfies the conjunction of the goals of the individuals in C, and each
individual in C votes truthfully. We show that B

∗ is a NE, by showing that (a) no agent
in N\C has a profitable deviation, and (b) no agent in C has a profitable deviation. As to
(a), since F is monotonic, any change in the ballot B

∗
(j) by some voter in N\C does not

change the outcome F (B∗) = B∗. As to (b), any change in the ballot B∗ by some voter in
C does not change the outcome because C ∈ W+∧

Γ.

3.2.5 Discussion

Let us recapitulate the findings of this section. We have shown, for a well-behaved class 
of aggregators—the non-manipulable ones—, that aggregation games with constant payoffs 
have many NE, since truthful ballots are weakly dominant strategies in such games (Propo-
sition 4) and that, for the subclass of non-manipulable aggregators known as quota rules, 
truthful ballots are exactly the set of weakly dominant strategies (Proposition 6).

We then showed that such results do not carry over to uniform aggregation games 
(Propositions 9 and 8), but that in such games, however, the existence of truthful and effi-
cient equilibria can be guaranteed whenever a resilient winning coalition has non-conflicting 
goals (Proposition 10).

Finally, Proposition 8 has highlighted a key issue of aggregation games: truthful equi-
libria may be totally inefficient in the sense of failing to satisfy the goals of all voters, even 
when all such goals are consistent. The purpose of the following section is to introduce an 
endogenous pre-play negotiation mechanism which, in equilibrium, allows players to select 
truthful and efficient NE of the underlying aggregation game, thus resolving the tension 
between truthfulness and efficiency.

4. Pre-vote Negotiations

This section presents endogenous aggregation games: aggregation games augmented with 
a pre-vote negotiation phase. In a nutshell voters will now be allowed, before the vote 
takes place, to sacrifice a part of their expected gains in order to influence the other voters’ 
decision-making. We show that allowing such negotiations: (i) guarantees the selection 
of efficient equilibria for all individuals when one such equilibrium exists (ii) discards all 
equilibria that are inefficient for the voters of any winning coalition.



4.1 Endogenous Aggregation Games

Endogenous aggregation games consist of two phases:

• A pre-vote phase, where, starting from a uniform aggregation game, players make
simultaneous transfers of utility that may modify each others’ payoffs in the game;

• A vote phase, where players play the aggregation game resulting from the original
game after payoffs are updated according to the tranfers made in the pre-vote phase.

As usual, it is assumed that the players have common knowledge of the structure of the game
(including their goals and payoffs). A key assumption is furthermore that the transfers made
in the pre-vote phase be binding, for instance through a central authority.21 The authority
would, besides running the election in the vote phase, also collect and enforce the transfers
announced in the pre-vote phase.

Pre-vote strategies are modelled as transfer functions of the form:

τi : D
N ×N → R+

where i ∈ N . These functions encode the amount of payoff that player i commits to give
to player j should a given ballot profile B be played, in symbols, τi(B, j). The set of all
transfer functions is denoted by T , and a transfer profile is a tuple of transfer functions
τ ∈ T |N |. We denote by τ0 the ‘void’ transfer where at every profile every player gives 0 to
the other players.

The aggregation game induced by the transfer profile τ from A is denoted τ(A) =
〈

N , I, F, {γi}i∈N , {τ(π)i}i∈N
〉

where, for any i ∈ N :

τ(π)i(B) = πi(B) +
∑

j∈N

(τj(B, i)− τi(B, j)) (3)

So the payoff of player i at profile B once τ is played, consists of the old payoff that i was
receiving at B, plus the money that i receives from the other players at B, minus what i

gives to them at B. Notice that transfers do not preserve the uniformity of payoffs: even
though A is always assumed to be uniform, τ(A) is not necessarily so,22 and may lack a
NE (recall Fact 3).

It is important to notice that while our pre-vote phase is based on Jackson and Wilkie’s
(2005) endogenous transfer functions, their effect on the resulting games, and therefore the
resulting equilibria, is fundamentally different. In particular: our voting games are based on
lexicographic preferences and are therefore not reducible to strategic games (Turrini, 2016),
which are instead the object of study of Jackson and Wilkie; our equilibrium analysis will
moreover not rely on mixed strategies, which guarantee the existence of equilibria in the
strategic games studied by Jackson and Wilkie, but are somewhat harder to interpret in a
voting context.

Endogenous aggregation games are defined formally as follows:

21. The existence of such authority is a common assumption in work on election control and bribing (Fal-
iszewski & Rothe, 2016), as well as persuasion (Hazon, Lin, & Kraus, 2013). It is often referred to as
‘chair’ or ‘election organiser’.

22. In fact it is easy to see that there always exists a transfer that turns a uniform aggregation game into a
non uniform one.



Definition 6 (Endogenous aggregation games). An endogenous aggregation game is a tuple 
AT = 〈A, {Ti}i∈N 〉 where A is a uniform aggregation game, and for each i ∈ N , Ti = T . 
A constant endogenous aggregation game is an endogenous aggregation game AT where A 
is assumed to be constant.23

In an endogenous aggregation game, each player i selects first a transfer τi (pre-vote 
phase). The resulting transfer profile τ yields the new aggregation game τ(A). Then each 
player selects a ballot Bi (vote phase) in τ(A). The resulting ballot profile B yields the 
collective ballot F (B), where F is the aggregator of A.

4.2 Equilibrium Selection via Pre-vote Negotiations

In this section we first provide the definition of the solution concept we use for analysing 
endogenous games as two-stage extensive form games, and we then present our main results 
on the selection of efficient equilibria via pre-vote negotiations.

4.2.1 Solving Endogenous Aggregation Games

Endogenous aggregation games are (perfect information) extensive form games with two 
stages of simultaneous choices. So in an endogenous aggregation game AT , a strategy 
of player i is a pair σi ∈ T × DT N 

, that is, a choice of a transfer τi in the pre-vote 
phase (first element), followed by the choice of a ballot Bi in each aggregation game that
results from some possible transfer profile (second element). A profile σ =

〈

σ1, . . . , σ|N |

〉

∈
(

T × DT N
)N

has the following important characteristics. First of all, it selects a unique

transfer profile and a unique ballot profile—transfer-ballot profile in short—(τ,B) that
will be played if σ is chosen by the players. We refer to such transfer and ballot profiles
as being induced by σ. Secondly, for any transfer profile τ , a strategy profile σ uniquely
determines a ballot profile, which we denote σ(τ). We refer to such ballot profile as the
ballot induced by σ after τ is played. The latter aspect of strategy profiles in endogenous
aggregation games is worth stressing. Each strategy profile does not only determine a
specific choice of transfers and ballots, but also a choice of ballots that would be played
if other transfers were to be chosen, i.e., the counterfactual choices that would be made if
other transfers were chosen by the players in the pre-vote phase of the game.

Given the above, it would seem natural to resort to (pure strategy) subgame perfect Nash
equilibrium (SPE) to solve endogenous aggregation games. There is a complication however.
As we observed earlier, the aggregation game resulting from a transfer profile may not be
uniform and, therefore, may not necessarily have a NE. This makes SPE inapplicable as
some subgames of the initial extensive game may, therefore, be unsolvable. Also notice how
resorting to mixed strategy equilibria would not help addressing this issue, as lexicographic
preferences are well-known for not being representable in terms of utility functions, therefore
making Nash’s NE existence theorem unavailable (Rubinstein, 2012).

What we do instead is to analyse endogenous aggregation games by assuming that, if the
game resulting from a transfer profile does not have a NE, players play a maxmin strategy
and resort to their maxmin value, or security level,24 to evaluate the resulting aggregation

23. Constant endogenous aggregation games will be discussed in Section 5.
24. See Shoham and Leyton-Brown (2008) for an extensive exposition of the notion.



game.25 In our quasi-dichotomous setup a maxmin strategy (ballot) is defined as:

argmax
�π

i

Bi
min

�π
i

B−i
{F (B) | B = (Bi,B−i)} , (4)

i.e., a (not necessarily unique) ballot that maximises the minimum, with respect to �π
i

(Definition 2), outcome for i. If the maxmin strategy Bi guarantees that γi is satisfied no
matter what the other players do, then we say that Bi is safe for γi. The minimum payoff
guaranteed by i’s maxmin strategies is i’s security level.

We can now move to the definition of the solution for an endogenous aggregation game.
To do that, however, we first need the following auxiliary definition:

Definition 7 (Transfer game). Let AT be an endogenous aggregation game and fix a
strategy profile σ. The transfer game induced by σ is the game in normal form Aσ =
〈

N , {Ti}i∈N , {�σ
i }i∈N

〉

where Ti = T and each �σ
i ⊆ T 2 is the preference over transfer

profiles defined as follows. Given a strategy profile σ, a transfer profile τ is said to satisfy
goal γi (in symbols, τ |= γi) if either the ballot profile σ(τ) = (B1, . . . , B|N |) induced by σ

after τ is a NE of τ(A) and F (σ(τ)) |= γi, or Bi is safe for γi in τ(A), and Bi is a maxmin
strategy of i. The payoff πi of profile τ is either τ(π)i(σ(τ)) if σ(τ) is a NE of AT , or i’s
security level in τ(A) otherwise. Given the above, for any i ∈ N , τ ≻σ

i τ ′ if and only if any
of the two following conditions hold:26

i) F (σ(τ ′)) 6|= γi and F (σ(τ)) |= γi;

ii) F (σ(τ ′)) |= γi if and only if F (σ(τ)) |= γi, and πi(σ(τ)) > πi(σ(τ
′)).

The two transfer profiles are equally preferred whenever F (σ(τ ′)) |= γi if and only if
F (σ(τ)) |= γi, and πi(σ(τ)) = πi(σ(τ

′)). The resulting weak preference order among trasfer
profiles is denoted �σ

i .

Observe that the preferences �σ
i over transfer profiles are therefore quasi-dichotomous.

Intuitively, a transfer game is the game that a σ needs to solve in the negotiation phase
of an endogenous aggregation game, once the continuations σ(τ) have been fixed for any
transfer profile τ . We are now in the position to state formally our definition of a solution
concept for endogenous games:

Definition 8 (Solutions). Let AT be an endogenous aggregation game. A strategy profile

σ ∈
(

T × DT N
)N

of AT is a solution of AT if and only if:

(1) Voting phase. The ballot profile σ(τ) ∈ DN induced by σ after τ is a NE of the
aggregation game τ(A), if such equilibrium exists, or a profile of maxmin ballots of
τ(A), otherwise.

25. A game with no NE should be seen as an unstable game, i.e., a situation in which the players do not have
any reason to believe that some specific outcome will be realised. Measures such as the security level
therefore compensate for this uncertainty. We could have adopted a number of alternative solutions,
e.g., taking the value of the minimum outcome for each player, or considering such games never to be
profitable deviations. Ultimately, all these assumption have the effect of ruling out profitable deviations
to games with no NE.

26. Cf. earlier Definition 2.



(2) Negotiation phase. The first element in pair σ is a transfer profile τ , which is a NE
of the transfer game Aσ.

We refer to the transfer-ballot profile induced by a solution σ as the solution outcome

of AT . So, intuitively, a solution outcome is obtained by constructing a profile σ through
a backward induction procedure that starts with the voting phase, and then moves to the
negotiation phase:

• Voting phase In the aggregation game resulting after each transfer profile, a NE is
selected where at least one such equilibrium exists, or a maxmin profile is selected
otherwise; the value of such NE, if it exists, or the players’ security levels, otherwise,
are used to evaluate transfer profiles in the next phase (negotiation phase) of the
procedure.

• Negotiation phase A transfer profile is selected, such that no profitable deviation exists
to another transfer profile, for any player, given the continuations that were selected
in the first phase (the voting phase) of the procedure.

4.2.2 Surviving Equilibria

This section provides existence results for solutions of endogenous games. We actually
provide stronger results, showing not only that solutions exist, but also (in the next sections)
necessary and sufficient conditions for them to enjoy desirable properties in terms of the
‘quality’ of the equilibria that negotiation enables. In other words, we study endogenous
aggregation games as endogenous mechanisms for the refinement of the equilibria of their
underlying aggregation games.

Definition 9. Let A be a uniform aggregation game, and B a NE of A. B is a surviving
Nash equilibrium (SNE) of A if there exists a transfer profile τ such that (τ,B) is a solution
outcome of the endogenous aggregation game AT .

Intuitively, SNE identify those voting outcomes that can be rationally sustained by an
appropriate pre-vote negotiation. Clearly, not all NE of the initial game will be surviving
equilibria but, crucially, it can be shown that NE with good properties are of this kind, as
we set out to show in this section. Let us first establish the following lemma.

Lemma 11. Let A be a uniform aggregation game for a non-manipulable aggregator F .
Then, for every N -efficient and N -truthful ballot profile B of A, there exists a transfer
profile τ such that B is a weakly dominant strategy equilibrium in τ(A).

Proof. Let B be an N -efficient and N -truthful ballot profile of A. We construct a transfer
profile τ such that for any i ∈ N the strategy Bi is a strictly dominant strategy for i in
τ(A), that is: for any profile B

′, (Bi,B
′
−i) �

π
i B

′ and for some B
′, (Bi,B

′
−1) ≻

π
i B

′. The
construction goes as follows.27 Consider now the quantity:

M = 1 +max
({

z | ∃B,B′and i ∈ N s.t . z = πi(B)− πi(B
′)
})

(5)

27. Our construction is an adaptation of the one in Jackson and Wilkie (2005), Theorem 4. We however
point out once more how our proofs do not rely on the existence of NE in each aggregation game.



that is, M exceeds by one unit the maximal difference between the payoff received at any
two outcomes by any agent. We are now ready to define a transfer function. For all i, j ∈ N :

τi(B
′, j) =

{

2M if B′
i 6= Bi

0 otherwise.
(6)

In words, each player i commits to pay each other player the sum 2M in case he deviates
from the ballot Bi. By the definition of the preference relation �π

i (Definition 2), in order to

prove the claim we need to show that: A For any B
′ if F (B′) |= γi then F (Bi,B

′
−i) |= γi,

that is, under no circumstance i’s goal would become falsified by playing Bi. B For any
B

′ if F (B′) |= γi if and only if F (Bi,B
′
−i) |= γi (that is both profiles satisfy i’s goals), then

τ(π)i(Bi,B
′
−i) ≥ τ(π)i(B

′), and for some B
′, τ(π)i(Bi,B

′
−i) > τ(π)i(B

′).

Claim A Assume that F (B′) |= γi. There are two cases. First, B′
i |= γi. Since B is

i

i

N -truthful we know that Bi |= γi. Now γi is assumed to be a cube (Definition 1) so B′ and 
Bi can differ only on the evaluation of issues on which the truth of γi does not depend. By 
the independence of F we conclude that F (Bi, B′

−i) |= γi. Second, B′ 6|= γi. But, as above, 
Bi |= γi. By the assumption F (B′) |= γi, so in profile (Bi, B′

−i) voter i is changing the 
evaluation of at least one of the atoms that was falsifying γi in B′ (recall that γi is a cube) 
to the evaluation given by F (B′). By the monotonicity of F we can therefore conclude that 
F (Bi, B′

−i) |= γi.
Claim B Given the definition of payoffs in endogenous games (3), the claim follows 

directly from the construction of τ . This completes the proof.

Intuitively, the lemma establishes that whenever a truthful profile exists that satisfies all 
players’ goals, that profile can be turned into a dominant strategy equilibrium by means of a 
suitable combination of pre-vote transfers which, in essence, make the players’ commitment 
to that equilibrium credible.

We finally give two examples of what happens if the assumptions behind the lemma 
are not satisfied. First, we describe a uniform aggregation game A for a non-manipulable 
F , and ballot profiles B that are either not N -efficient or not N -truthful, for which there 
exists no transfer profile τ such that B is a weakly dominant strategy equilibrium in τ(A).

Example 3. Let A be such that N = {1, 2, 3}, I = {p}, γi = p, for each i ∈ N , and let 
F = maj. Let π be arbitrary. Consider now any profile B where for at least one agent 
i, Bi(p) 6= 1. Each such profile is not N -truthful, and note that all profiles that are not 
N -efficient are among those. It is easy to see that, no matter the utility function π, there is 
no transfer τ which would make the profile a weakly dominant strategy equilibrium of τ(A).

Second, we show a uniform aggregation game A for an aggregator that is manipulable—

specifically, that is not monotonic—, and an N -efficient and N -truthful ballot profile B 
for which there exists no transfer profile τ such that B is a weakly dominant strategy 
equilibrium in τ(A).

Example 4. Let A be such that N = {1, 2, 3}, I = {p}, γi = p, for each i ∈ N and let π be 
arbitrary. Let F be such that F (B)(p) = 1 whenever Bi(p) = 1 for all i ∈ N , or whenever 
Bi(p) = 0, for all i ∈ N , and let F (B) = maj(B), otherwise. Observe that in such a



i

game, for no agent a truthful ballot is also a weakly dominant strategy. Independently of the 
choice of π, there is no transfer profile τ such that the N -efficient and N -truthful profile 
B = (1, 1, 1) becomes a weakly dominant strategy equilibrium in τ(A).

4.2.3 Good Equilibria Survive

Lemma 11 establishes the existence of a suitable transfer profile sustaining ‘good’—that is, 
truthful and efficient—equilibria. We now show that endogenous aggregation games have 
solutions which require precisely the transfer profile constructed in the proof of Lemma 11 
to be played in the negotiation phase of the game, and which therefore lead the voters to 
play ‘good’ equilibria in the voting phase.

Theorem 12. Let A be a uniform aggregation game for a non-manipulable aggregator F . 
Every N -efficient and N -truthful NE of A is a SNE.

Proof. Let B be a N -efficient and N -truthful NE of A. By the assumptions on the aggre-
gator and Lemma 11, we can construct a transfer profile τ according to formula (6) such 
that B is a weakly dominant strategy equilibrium of τ(A). We have to show that (τ, B) is 
a solution outcome of AT . Suppose towards a contradiction that this is not the case, that 
is, that there exists a profitable deviation by player i from the strategy profile that induces 
the transfer-ballot profile (τ, B). Since B is a dominant strategy equilibrium in τ(A) such 
deviation has to involve a different transfer τ∗ by player i in the pre-vote phase. We identify
two cases:

Case 1 The deviation induces a new transfer profile τ ′ = (τ∗i , τ−i) such that τ ′(A) has
no NE. By Definition 7 a deviation to τ∗i would yield i his security level in τ ′(A). We show
that τ �π

i τ ′, and hence the deviation cannot be profitable for i. Since B |= γi we have, by
Definition 8, that if τ ′ |= γi then τ |= γi, that is, it cannot be the case that τ ′ leads i to
satisfy its goal while τ does not. As to the payoffs, observe that πi(τ) is the payoff yielded
by the NE B of τ(A), and that given the construction of τ ′ no agent transfers any utility
to i in τ ′: for all j ∈ N \ {i}, τ ′j(B

′, i) = 0 whenever B′
j = Bj . It follows that for every

ballot profile B
′ in τ ′(A) i’s payoff is at most as much as what it obtains from B in τ(A).

Hence, τ �π
i τ ′.

Case 2 The deviation induces a new transfer profile τ ′ = (τ∗i , τ−i) such that the game
τ ′(A) has a NE. We show that τ∗i cannot be a profitable deviation for i. Since the strategy
profile inducing (τ,B) is assumed to be a solution, i’s deviation determines a transfer-ballot
profile (τ ′,B′) where B

′ may or may not be a NE. However, if i’s deviation toward (τ ′,B′)
where B

′ is not a NE is profitable, i must have another at least as profitable deviation
determining the transfer-ballot profile (τ ′, (B∗

i ,B
′
−i)), where (B∗

i ,B
′
−i) is a NE of τ ′(A).

This, notice, has to be the case, as τ ′(A) has a NE and thus the other players are necessarily
playing in equilibrium. We therefore assume w.l.o.g., that the transfer-ballot profile (τ ′,B′)
determined by i’s deviation is such that B

′ is a NE of τ(A). Observe now that in order
for (τ ′,B′) to be profitable for i there must exist a j 6= i such that B′

j 6= Bj , that is, there
exists at least another agent j besides i who contributes to deviating from B to B

′. This
is because B is an N efficient NE and by construction of τ ′,we have that τ ′j(B

′, i) = 0

j jwhenever B′ = Bj . So let there be k ≥ 1 players j 6= i for which B′ 6= B and consider some 
such j. We have two subcases:



Case 2a B
′ 6|= γj . Note that since B

′ is a NE, we have that no B′′
j is such that

F (B′′
j ,B

′
−j) |= γj , so B′

j is a best response only by virtue of j’s payoff. By the construction
of τ ′, playing B′

j gives j the following payoff:

τ ′(π)j(B
′) = πj(B

′)− (|N | − 1)2M + 2M(k − 1) + τ ′i(B
′, j).

If j plays Bj instead, then j’s payoff is:

τ ′(π)j(Bj ,B
′
−j) = πj(Bj ,B

′
−j) + 2M(k − 1) + τ ′i(Bj ,B

′
−j , j).

Now since B
′ is a NE by assumption and j does not have a better response that can

satisfy her goal, we have that τ ′(π)j(B
′) ≥ τ ′(π)j(Bj ,B

′
−j) and therefore:

τ ′i(B
′, j)− τ ′i(Bj ,B

′
−j , j) ≥ πj(Bj ,B

′
−j)− πj(B

′) + (|N | − 1)2M.

Now we use this inequality to compare i’s payoff in (τ,B) vs. (τ ′,B′). Given the defini-
tion of M in Formula (5) and given the fact that |N | − 1 ≥ 2 it follows that τ ′i(B

′, j) −
τ ′i(Bj ,B

′
−j , j) ≥ 3M , which in turn implies that τ ′i(B

′, j) ≥ 3M . Therefore i’s payoff
τ ′(π)i(B

′) in the new NE B
′ is at most:

πi(B
′)− k3M + k2M.

In contrast, by the construction of τ in formula (6), τ(π)i(B) = πi(B). So from the fact that
k ≥ 1 it follows that πi(B

′)−k3M+k2M ≤ πi(B) and therefore that τ ′(π)i(B
′) ≤ τ(π)i(B).

Since B is N -efficient, by Definition 8, τ �π
i τ ′ and the constructed deviation τ∗i cannot be

profitable.

Case 2b F (B′) |= γj . Notice that from this it follows that F (Bj ,B
′
−j) |= γj , for

otherwise there would be a ballot profile (i.e., (Bj ,B
′
−j)) where B′

j is a better response for
j making γj true. From this we would conclude that B in τ(A) would not be a dominant
strategy equilibrium, against our assumption. We can then proceed as in Case 2a, showing
that τ ′(π)i(B

′) ≤ τ(π)i(B). Since, as just noticed, both B and B
′ satisfy γj , by Definition

8, τ �π
i τ ′ and the constructed deviation τ∗i cannot be profitable. This completes the

proof.

By combining Theorem 12 with Proposition 10, we also get the following corollary:

Corollary 13. Let F be a non-manipulable aggregator. Every N -consistent uniform aggre-
gation game for F , where N ∈ W+∧

Γ with Γ = {γi | i ∈ N}, has a SNE that is N -truthful
and N -efficient.

That is, in constant aggregation games where the grand coalition is resilient, there exists 
a SNE in which every agent votes truthfully and all goals are satisfied.

Finally, we show that the assumption of non-manipulability of the aggregator F in 
Theorem 12 is necessary.

Proposition 14. There exist uniform aggregation games with F manipulable, for which 
there exists an N -efficient and N -truthful NE that is not a SNE.



Proof. The proof is by construction. Let A be a uniform aggregation game with N = 
{1, 2, 3}, I = {1, 2}, γi = p1, for each i ∈ N . Let moreover, for each i ∈ N , πi(B) = 1 
whenever F (B) = (1, 1), and πi(B) = 0 otherwise. Let now F be such that F (B) = (1, 1) 
whenever Bi = (0, 0), for each i ∈ N , and F (B) = (maj(B)(1), 0), otherwise. That is, F 
always rejects issue p2 except when everybody rejects it, and accepts p1 whenever either 
there is a majority accepting it or everybody rejects it. This game is clearly uniform and 
goals are cubes, F is independent but it is not monotonic and is therefore manipulable.

Consider now the profile B
∗ such that B∗

i = (1, 1), for each i ∈ N . This profile
is an N -efficient and N -truthful NE of A. However it is not a SNE. To see this, we
proceed towards a contradiction and assume that B

∗ is a SNE. So there exists a solution
outcome (τ∗,B∗) of the endogenous aggregation game. By the way we defined π, for all
j we have that πj(B

∗) < πi(B
′), where B

′ is the profile at which B′
j = (0, 0), for each

j ∈ N . By the definition of transfer function, for any transfer function τ and any profile B,
∑

j∈N πj(B) =
∑

j∈N πτ
j (B). From these two facts we conclude that for some player i we

have that πτ∗

i (B∗) < πτ∗

i (B′). Observe that in B
′ i’s goal is still satisfied. We show that i

can deviate from τ∗ in such a way that the resulting voting game after such deviation, i)

B
′ is a NE, and ii) it is unique. This would be a profitable deviation for i thereby showing

that (τ∗,B∗) cannot be a solution outcome. So we show how to construct a deviation from
τ∗ which satisfies the two above constraints.

i) To make sure that B′ remains a NE in the voting game after the new transfer profile

it suffices for the deviation τi of i to be such that (τi, τ
∗
−i)(B

′) = τ∗(B′). That is payoffs
for B′ remain as in the original game A.

ii) Now we have to show how the deviation τi of i can be constructed so that no

other profile exists which is a NE in (τi, τ
∗
−i)(A) and which satisfies i’s goal (as otherwise

the deviation we are trying to construct would not be profitable for i). To do this we set
i’s transfer deviation to guarantee that, in any profile that satisfies his goal, but where
any agent’s ballot is different from (0, 0), some agent has an incentive to deviate from his
current ballot to another one, that is, has a better response. Such deviation τi can be built
as follows. W.l.o.g., below we assume i = 1.28

(1) Profiles in which p1 is satisfied and 1 is not pivotal to p1 being satisfied (i.e., 2 and 3
both accept p1). Transfer strategy τ1 should be set so that: (τ1, τ

∗
−1)(B

′) = τ∗(B′);

and for any B
′′ and B

′′′, π
(τ1,τ∗−1

)

1 (B′′) > π
(τ1,τ∗−1

)

1 (B′′′) whenever, by interpreting
the ballot profiles as two-bits binary numbers, B′′

1 < B′′′
1 , that is according to the

ordering, (0, 0) < (0, 1) < (1, 0) < (1, 1). Observe that such transfer strategy commits
1 to always play (0, 0) whenever his goal is satisfied and he is not pivotal for the goal
to be satisfied.

28. The construction we propose bears similarities with the concept of hard equilibrium induction studied in
Harrenstein, Turrini, and Wooldridge (2014, 2017).



(2) Profiles in which p1 is satisfied, 1 is not pivotal and B1 = (0, 0). Transfer strategy τ1
should be set so that:

π
(τ1,τ∗−1

)

2 ((0, 0), (1, 1), (1, 1)) < π
(τ1,τ∗−1

)

2 ((0, 0), (1, 0), (1, 1))

π
(τ1,τ∗−1

)

3 ((0, 0), (1, 1), (1, 0)) < π
(τ1,τ∗−1

)

3 ((0, 0), (1, 1), (1, 1))

π
(τ1,τ∗−1

)

2 ((0, 0), (1, 0), (1, 0)) < π
(τ1,τ∗−1

)

2 ((0, 0), (1, 1), (1, 0))

π
(τ1,τ∗−1

)

3 ((0, 0), (1, 0), (1, 1)) < π
(τ1,τ∗−1

)

3 ((0, 0), (1, 0), (1, 0))

Observe that such transfer strategy guarantees that whenever 1 plays (0, 0) and he is
not pivotal for his goal to be satisfied, 2 and 3 always have better responses (preserving
the satisfaction of their goal, but guaranteeing a higher payoff) to voting strategies
which are different from (0, 0).

(3) Profiles in which p1 is not satisfied, no player is pivotal and B1 = (0, 0). Transfer
strategy τ1 should be set so that:

π
(τ1,τ∗−1

)

3 ((0, 0), (0, 1), (0, 1)) < π
(τ1,τ∗−1

)

3 ((0, 0), (0, 1), (0, 0))

π
(τ1,τ∗−1

)

2 ((0, 0), (0, 1), (0, 0)) < π
(τ1,τ∗−1

)

2 ((0, 0), (0, 0), (0, 0))

π
(τ1,τ∗−1

)

3 ((0, 0), (0, 0), (0, 1)) < π
(τ1,τ∗−1

)

3 ((0, 0), (0, 0), (0, 0))

Observe again that such transfer strategy guarantees that whenever 1 plays (0, 0) and
no player is pivotal for his goal to be satisfied, 2 and 3 always have better responses
(not reaching the goal, but guaranteeing a higher payoff) to voting strategies which
are different from (0, 0).

(4) Profiles in which p1 is satisfied, 1 is pivotal and B1 = (1, 0). Transfer strategy τ1
should be set so that:

π
(τ1,τ∗−1

)

2 ((1, 0), (0, 0), (1, 0)) < π
(τ1,τ∗−1

)

2 ((1, 0), (0, 1), (1, 0))

π
(τ1,τ∗−1

)

3 ((1, 0), (0, 1), (1, 0)) < π
(τ1,τ∗−1

)

3 ((1, 0), (0, 1), (1, 1))

π
(τ1,τ∗−1

)

2 ((1, 0), (0, 1), (1, 1)) < π
(τ1,τ∗−1

)

2 ((1, 0), (1, 1), (1, 1))

π
(τ1,τ∗−1

)

3 ((1, 0), (1, 0), (0, 0)) < π
(τ1,τ∗−1

)

3 ((1, 0), (1, 0), (0, 1))

π
(τ1,τ∗−1

)

2 ((1, 0), (1, 0), (0, 1)) < π
(τ1,τ∗−1

)

2 ((1, 0), (1, 1), (0, 1))

π
(τ1,τ∗−1

)

3 ((1, 0), (1, 1), (0, 1)) < π
(τ1,τ∗−1

)

3 ((1, 0), (1, 1), (1, 1))

Observe that such transfer strategy guarantees that whenever 1 plays (1, 0) and he is
pivotal for his goal to be satisfied, 2 and 3 always have better responses (preserving
the satisfaction of their goal, but guaranteeing a higher payoff) to voting strategies
which are different from (0, 0).
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It should be clear that the above four cases cover all profiles of relevance for the construc-
tion, and that constructing a transfer that meets the above constraints is easy: since the 
goals of all players remain unchanged throughout, and players can always transfer enough 
incentives, it suffices for i to transfer ǫ to the agent he wants to sway from her current
strategy. After (τ1, τ−∗ 

1), B′ is therefore the only NE of the resulting game. The transfer 
strategy τi is therefore a profitable deviation for i, from which follows that B∗ is not a SNE. 
Contradiction.

4.2.4 Only Good Equilibria Survive

We now turn to necessary conditions for equilibria to survive, and observe that for an 
equilibrium to survive, it has to be efficient. This can be regarded as a converse statement 
of Theorem 12, and it holds true in a general form concerning winning coalitions (and not 
just the coalition N ) with internally consistent goals:

Theorem 15. Let A be a C-consistent uniform aggregation game for a non-manipulable 
aggregator F , and such that C ∈ W∧ 

Γ where Γ = {γi | i ∈ C}. Then, every SNE of A is 
C-efficient.

Proof. We proceed by contraposition. Let B be a NE that is not C-efficient, i.e., such that 
F (B) 6|= γi for some individual i ∈ C, and assume towards a contradiction that B is a 
SNE. Therefore there exists a transfer profile τ such that (τ, B) is a solution outcome of 
the endogenous game AT . We proceed towards a contradiction and construct a profitable 
deviation for a player i from τ , that is a τ ′ such that τ ′ ≻i τ . By C-consistency of A there 
exists a ballot B′ such that B′ |= Γ, hence in particular B′ |= γi. Let now i deviate to 
any transfer profile τ ′ = (τ ′, τ−i) s ch that she offers to all other players in C more than
their payoff difference if they switch to vote for ballot B′ while everybody else in C does
so, i.e.,

τ ′i((B
′
C ,B

′′
−C), j) > τ(π)j(B

′
C−{j}, B

′′
j ,B

′′
−C)− τ(π)j(B

′
C ,B

′′
−C)

for each j ∈ C, each B′′
j , and each B

′′
−C , and where B

′
C = (B′

j)j∈C . By the fact that
B′ is C-efficient, F independent and monotonic, and C is a winning coalition for

∧

Γ, this

j ny

π

transfer makes each B′ , with j ∈ C a best response in profiles (B′
C , B

′
−
′ 
C ), for a B

′
−
′ 
C .
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The proof of Theorem 12 provides every agent with a simple algorithm to compute a 
negotiation strategy that will guarantee the emergence of an efficient equilibrium in the 
resulting game. Note that the use of cubes sidesteps the intractability of the satisfiability 
problem for the conjunction of the goals.

Observe also that Theorem 15 implies the existence of uniform aggregation games where 
no equilibrium is surviving, which in turn implies that Theorem 12 cannot be weakened from 
N -efficiency to C-efficiency. This is the case when distinct but overlapping coalitions have 
incompatible goals, as the following example shows:

Example 5. Let there be five players in N , and let F be the majority rule. Let γ1 = 
p ∧ ¬r, γ2 = γ3 = γ4 = ⊤ and let γ5 = r ∧ ¬p. Both coalitions C1 = {1, 2, 3, 4} and 
C2 = {2, 3, 4, 5} are resilient winning coalitions, and the game is both C1-consistent and



C2-consistent. Hence, by Theorem 15 any surviving equilibria must be both C1-efficient and 
C2-efficient, which is impossible given that the conjunction of the goals of the two coalitions 
is inconsistent.

4.2.5 Summary

Results such as Theorems 12 and 15 suggest that pre-vote negotiations are a powerful 
tool players have to overcome the inefficiencies of aggregation rules. More specifically, 
when the goals of all players can be satisfied at the same time, pre-vote negotiations allow 
players to engineer side-payments—essentially as devices for credible commitments—leading 
to equilibrium outcomes that satisfy them, and ruling out all the others. We stress that 
in solving endogenous aggregation games, even when the game ends up sustaining efficient 
outcomes, players’ strategies are individually rational and the game remains non-cooperative 
throughout. This differentiates our work from approaches to equilibrium selection with 
coalitional games, such as the one developed by Bachrach et al. (2011).

5. Lifting the Cube Assumption on Goals

An inspection of our main results of Section 4 should make it immediately clear that we 
have crucially relied on the assumption that agents’ goals are propositional formulas known 
as cubes (Definition 1). Cubes guarantee a clear relation between truthfulness and weak 
dominance in aggregation games (recall Examples 1 and 2). While a direct generalisation 
of our main results is out of reach, in this section we show that a larger class of goals still 
support useful, albeit weaker, conclusions in the form of guaranteeing the existence of at 
least one surviving “good” equilibrium.

5.1 Monotonic Goals

As shown in Examples 1 and 2, when goals are not cubes it is possible to construct constant 
aggregation games in which truthful strategies are not dominant. In this section we find 
sufficient conditions on the class of goals for which there exists a truthful strategy that is 
weakly dominant, and we build further on this result by showing that, in constant aggre-
gation games where players’ goals are ‘aligned’ in a precise sense, we can still construct a 
truthful SNE that is also efficient (Theorem 18). Up until now we referred to aggregation 
games assuming players’ goals were cubes (Definition 1). In this section we need to drop 
such constraint in the definition and, when referring to aggregation games, we make explicit 
what type of goal formulas we are considering.

We first need some additional notation and a definition. Let B be a valuation over PS, 
denote by B−j the restriction of B to PS \ {pj }.

Definition 10. A formula ϕ ∈ LPS is:

positively monotonic in pj , where pj occurs in ϕ, if for all B, B′ ∈ D such that B |= ϕ,
B−j = B′

−j, and B′ |= pj then B′ |= ϕ.

negatively monotonic in pj if for all B,B′ ∈ D such that B |= ϕ, B−j = B′
−j, and

B′ 6|= pj then B′ |= ϕ.



i i

A formula ϕ is monotonic if for every pj occurring in ϕ, it is either positively or negatively 
monotonic in pj .

Let us mention a few examples. Formulas that are satisfied by only one model are 
monotonic. Similarly, cubes (i.e., conjunctions of literals) are monotonic. Not all mono-
tonic formulas are, however, cubes: disjunctions of literals, which were used to construct 
Example 1, are monotonic but are not cubes in general. Again, Example 2 provides a good 
example of formulas which are not monotonic in the above sense. When viewed as char-
acteristic functions, monotonic constraints correspond to the widely studied class of unate 
boolean functions (McNaughton, 1961).

5.2 Existence of Truthful and Efficient SNE

We have shown (Proposition 4) that when goals are cubes, every truthful strategy in a 
constant aggregation game is weakly dominant. Although this fails to be true when goals 
are monotonic (Example 1 offers a counterexample to such claim), we can still establish the 
following weaker result:

Lemma 16. Let A be a constant aggregation game with monotonic goals, defined for a 
non-manipulable aggregator F . For each player i ∈ N , if γi is consistent then there exists 
a truthful strategy for i that is weakly dominant in A.

Proof. The proof is by construction. Recall Definition 2. We build a ballot Bi such that 
Bi |= γi and show that for any ballot B′ 6= Bi and profile B, we have that if F (B−i, B′) |= γi 
then F (B−i, Bi) |= γi. Let ballot Bi be as follows. For any variable pj occurring in γi, let:

Bi(j) =







1 if γi is positively monotonic in pj
0 if γi is negatively monotonic in pj
0 if pj does not occur in γ

By the assumption of monotonicity of γi, together with its consistency, the above construc-
tion guarantees that Bi |= γi. To simplify the proof, since variables not occurring in γi
do not play a role in its satisfaction, we can safely assume that all variables pj for j ∈ I
occur in γi. We now show that for any B′

i 6= Bi we have that if F (B−i, B
′
i) |= γi then

F (B−i, Bi) |= γi as well, for any ballot profile B, thereby establishing the claim. So take
such a ballot B′

i and assume that F (B−i, B
′
i) |= γi. Now let n be the Hamming distance29

between B′
i and Bi and consider the sequence B′

i = B0
i , . . . , B

n
i = Bi such that for all

1 ≤ k ≤ n, Bk+1
i is equal to Bk

i except for the value of one of the issues (that is, the se-
quence consisting of a minimal number of value swaps to turn B′

i into Bi). By construction
of Bi, each Bk

i is the result of swaps 0 7→ 1 for issues in which γi is positively monotonic, and
1 7→ 0 for issues in which γi is negatively monotonic, and possibly other swaps on variables
not occurring in γi.

We now prove that F (B−i, B
k
i ) |= γi for all 0 ≤ k ≤ n. We proceed by induction over

k. For k = 0 the claim is true by assumption. Assume the claim is true for k (IH), i.e.,
F (B−i, B

k
i ) |= γi. By the observation above, Bk+1

i can be obtained from Bk
i in only two

29. We recall that the hamming distance H(B,B′) between two valuations (vectors) B and B′ is defined as
follows: H(B,B′) =

∑
j
|B(j)−B′(j)|.



ways: a by a swap 0 7→ 1 for some issue j in which γi is positively monotonic; or b by a
swap 1 7→ 0 for some issue j in which γi is negatively monotonic. If a is the case then in
profile (B−i, B

k+1
i ) there is one more voter, namely i, who supports pj . We distiguish two

cases:

a1 If F (B−i, B
k
i ) |= pj , by independence and monotonicity of F , we can infer that also

F (B−i, B
k+1
i ) |= pj and therefore F (B−i, B

k+1
i ) = F (B−i, B

k
i ) |= γi by IH.

a2 If F (B−i, B
k
i ) 6|= pj , then either i is not pivotal on issue j, and therefore F (B−i, B

k+1
i ) =

F (B−i, B
k
i ) |= γi by IH. Or i is pivotal at step k, and then F (B−i, B

k+1
i ) |= pj . We

now need to observe that by the assumption we have that γi is positively monotonic
in pj to conclude that, also in this case, maj(B−i, B

k+1
i ) |= γi.

This proves the claim for the first case. If b is the case, we reason in a symmetric fashion
to conclude that that F (B−i, Bi) |= γi, as claimed.

A direct consequence of Lemma 16 is the existence of a truthful NE in weakly dominant
strategies for constant aggregation games with monotonic goals. However, in order to obtain
results analogous to Theorem 12 in the context of monotonic goals we need first to establish
sufficient conditions for the existence of truthful and efficient NE.

Let us first introduce some auxiliary terminology. Two monotonic goals γ1 and γ2 are
aligned if they are positively monotonic on the same set of issues and negatively monotonic
on the same set of issues. We establish the following result:

Lemma 17. Let A be a constant aggregation game with monotonic goals, for a non-
manipulable aggregator F . Assume moreover that A is C-consistent, that C ∈ W∧

Γ where
Γ = {γi | i ∈ C}, and that all goals of agents i ∈ C are aligned. Then, A has a truthful and
C-efficient NE (in weakly dominant strategies).

Proof. Let B′′ be a ballot such that B′′ |=
∧

i∈C γi. B′′ exists by assumption of C-
consistency. B′′ can be used in the proof of Lemma 16 to construct a truthful NE in
weakly dominant strategies. Now observe that, since all goals of agents in C are aligned,
the weakly dominant equilibrium so constructed is composed by a unanimous ballot choice
for individuals in C, which we shall call B∗. Since C is a winning coalition for

∧

i∈C γi, we
have that F (B) |=

∧

i∈C γi and the equilibrium is therefore also C-efficient as claimed.

Everything is now in place to prove a variant of Theorem 12 for constant aggregation 
games where players hold monotonic goals.

Theorem 18. Let A be a constant N -consistent aggregation game with monotonic goals, 
for a non-manipulable aggregator F . Assume that all individual goals are aligned, and that 
N ∈ W∧ 

Γ for Γ = {γi | i ∈ N }. Then, there exists an N -truthful and N -efficient NE of A 
which is also a SNE of A.

Sketch of proof. Let B be an N -truthful and N -efficient NE of A, which exists by Lemma 
17. We can therefore construct a transfer profile τ such that B is a weakly dominant strategy 
equilibrium of τ(AT ). The construction proceeds in the same way as the construction, for 
a transfer profile of the same type, given in the proof of Lemma 11. We then have to show



that B is a SNE of AT . To do so we proceed towards a contradiction and suppose that
there exists a profitable deviation τ∗i for some player i in AT . The argument used in the
proof of Theorem 12 to the effect that no such profitable deviation exists can be applied
directly, thereby establishing the claim.

The assumption of monotonicity cannot be further weakened. If goals are allowed to
be non-monotonic, then it is possible to construct (constant) aggregation games where, for
some player, no truthful strategy is weakly dominant as witnessed by Example 1.

6. Discussion and Related Work

In this section we discuss our results from two points of view. First, we show how our
results can be applied to the preservation of logical consistency when aggregation occurs on
logically interconnected issues, which is the key problem of judgment aggregation. Second,
we relate aggregation games to the influential notion of boolean game.

6.1 Pre-vote Negotiations and Collective Consistency

We showcase an application of endogenous aggregation games to binary aggregation with
constraints, or judgment aggregation (Endriss, 2016; Grossi & Pigozzi, 2014), where in-
dividual ballots need to satisfy a logical formula, the integrity constraint, in order to be
considered feasible or admissible. In case each individual provides an admissible ballot, the
obvious question is whether the outcome of a given aggregation rule will be admissible, as
well. Here is an instance of this problem.

Example 6. Consider the scenario in Table 1. Suppose we impose the integrity constraint
p → (q∨ r), making ballot (1, 0, 0) inadmissible. All individual ballots in the example satisfy
this requirement but the majority ballot does not.

Paradoxical situations as those in Example 6 can be viewed as undesirable outcomes
of aggregation games. Building on the example, assume that each agent has the following
goals: γ′A = p, γ′B = q, γ′C = ¬r. Let πA = πB = πC be constant payoff functions. Observe
that parties’ goals are all consistent with the integrity constraint r → (p ∨ q), and that the
admissible ballot (1, 1, 0) satisfies all of them. Given these goals, the profile in Table 1 shows
a truthful NE that, however, does not satisfy neither the goal of party B nor the integrity
constraint p → (q∨r). However, this equilibrium is not surviving because, intuitively, party
B could transfer enough utility to party C for it to vote for q.

But the key question is whether we can guarantee that inadmissible equilibria do not
survive.30 It is easy to see that if the integrity constraint is implied by some player’s
goal—intuitively, the player internalises consistency itself as a goal—then N -truthful and
N -efficient equilibria will satisfy the integrity constraint and, by our results, they will be
surviving in games with well-behaved aggregators (Theorem 12). Vice versa, since only
equilibria survive which are efficient for some winning coalition, with some extra assump-
tions on the aggregator (Theorem 15), only collectively consistent outcomes are generated
by the aggregation.

30. That voting paradoxes can be studied from an equilibrium refinement perspective is an old but rather
underexplored idea (Gueth & Selten, 1991).



6.2 Boolean Games

Boolean games (Harrenstein et al., 2001) are a logic-based representation of strategic interac-
tion, where a set of individuals A = {1, 2, . . . , m} is assigned control of a set of propositional 
variables P = {p1, p2, . . . , pk}. Specifically, propositions are partitioned among the agents,
i.e., each agent is assigned unique control over a subset of them, and each agent can decide 
to set the propositional variables he or she controls to true or false, in such a way that the 
final outcome of the boolean game is determined by the agents’ truth value assignment on 
the variables each of them controls. Finally, each agent is equipped with a goal formula, 
i.e., a formula of propositional logic over the set of variables P . Typically, although agents 
have control over some propositional variables, they might not be able to realise their goal 
formula on their own.

Boolean games as aggregation games Boolean games can be seen as a special case of 
aggregation games, where each indiviudal is a dictator for the variables he or she controls. 
That is, a boolean game B, defined over A and P S, can be seen as an aggregation game

of the following form: AB =
〈

NB, IB, FB,
{

γBi
}

i∈N
,
{

πB
i

}

i∈N

〉

where: NB = A is the set

of players, IB = PS is the set of issues, FB is a dictatorship on issue j by i, for any issue
j ∈ I controlled by i ∈ N , i.e., FB(B)(j) = Bi(j), γ

B
i is the goal formula for i in B, and

each πB
i is constant.

Thanks to the above reduction we are able to import the following complexity bounds
from the boolean games literature:

Proposition 19. Let A be an aggregation game with arbitrary goals γi for each i ∈ N and
B a ballot profile.

(1) The problem of verifying whether, for some transfer profile τ , B is a NE of τ(A) is
co-NP-hard;

(2) The problem of verifying whether there exists a transfer function τ and a ballot profile
B

′ that is a Nash equilibrium of τ(A) and such that F (B′) |=
∧

i∈N γi is Σ2
p-hard;

(3) The problem of verifying whether there exists a transfer function τ such that for all
ballot profiles B

′ that are a Nash equilibrium of τ(A) we have that F (B′) |=
∧

i∈N γi
is Σ2

p-hard.

Proof. The results follow from (Wooldridge et al., 2013, Proposition 1), (Wooldridge et al., 
2013, Proposition 6) and (Wooldridge et al., 2013, Proposition 14) respectively, together 
with the translation given above.

Boolean games have been extended in a number of ways, some of which will be dealt with 
next. It is however worth mentioning the extension by Gerbrandy (2006) and Belardinelli, 
Grandi, Herzig, Longin, Lorini, Novaro, and Perrussel (2017) to structures where coalitions 
are able to share the control of a propositional variable. Although the purpose is to study 
the logical properties of shared control and not the property of social choice functions, 
Gerbrandy (2006) basically works with aggregation games with arbitrary aggregators, but 
without goals and without payoff function. The work of Belardinelli et al. (2017) takes 
instead a verification approach, showing that games with shared control can be simulated by



classical boolean games for what concern the model-checking of alternating-time temporal 
logic formulas. They do not, however, study the game-theoretic structure of these models.

Boolean games and incentive engineering A class of boolean games that is relevant 
to our framework is boolean games with arbitrary payoffs, i.e., aggregation games of the
form AB =

〈

NB, IB, FB,
{

γBi
}

i∈N
,
{

πB
i

}

i∈N

〉

where the payoff is not necessarily constant.

These boolean games have been introduced to account for efforts (or costs) in performing 
actions (Grant, Kraus, Wooldridge, & Zuckerman, 2011; Wooldridge et al., 2013; Turrini, 
2016; Harrenstein et al., 2014). When comparing two outcomes, a player will prefer the 
ones satisfying the goal, but will otherwise look at minimising the effort. This amounts to 
the same idea of having a payoff that is taken into account only in case goal satisfaction 
cannot discriminate between outcomes.

Boolean games with costs have been looked at from the point of view of incentive engi-
neering, allowing payoffs to be manipulable, either by exogenous taxation mechanisms as in 
the work of Wooldridge et al. (2013) and Harrenstein et al. (2014), or by endogenous negoti-
ation as in the work of Turrini (2016). In the exogenous setting, an external system designer 
can impose taxes on players’ actions, by effectively influencing their decision-making towards 
the realisation of her own goal formula. In the endogenous setting, individuals undergo a 
pre-play negotiation phase and try to improve upon their final payoff using side-payments. 
This has lead to the discovery of the existence of hard equilibria (Harrenstein et al., 2014), 
i.e., pure Nash-equilibria that cannot be removed by external incentives. Note that their 
presence is even more frequent in endogenous settings, due to the fact that side-payments 
are a weaker form of manipulation than external intervention, as observed by Turrini (2016). 
Endogenous boolean games are essentially endogenous aggregation games applied to a re-
stricted setting. However the idea of hard equilibrium does carry over to aggregation games 
in general. Think for instance of a situation in which there is only one issue, p, and only 
one winning coalition, N . If everyone wants p to be true, then the profile in which everyone 
votes for p is an equilibrium that is impossible to remove by manipulating payoffs.

7. Conclusions

The paper has proposed a model of pre-vote negotiation for games of binary aggregation. 
Although a number of papers in the literature on voting games have focused on the prob-
lem of avoiding undesirable equilibria, no model studying strategic behaviour in a pre-vote 
negotiation phase has so far been proposed. We used our model to show how pre-vote ne-
gotiations can restore the efficiency of truthful voting in such games. More specifically we 
established the following main results. In uniform aggregation games for non-manipulable 
(i.e., independent and monotonic) aggregators where voters’ goals are cubes, if an equilib-
rium is truthful and efficient it will be selected by equilibrium behaviour in the pre-vote 
negotiation phase (Theorem 12). We also showed that the ‘only if’ variant of this claim 
holds with respect to the efficiency alone of the equilibria (Theorem 15). For larger classes 
of goals we were able to show the existence of a truthful and efficient equilibrium that will 
be selected by equilibrium behaviour in the pre-vote negotiation phase (Theorem 18, for 
monotonic goals) and that this assumption cannot be further relaxed (Example 1).



Our work is a first step towards the development of a body of theoretical results on how 
strategic interaction preceding voting influences the outcomes of group decision-making. 
While classical social choice theory analyses individual preferences as independent inputs 
for an aggregation problem, we have shown how the introduction of an explicit negotiation 
phase preceding the vote has a fundamental impact in equilibrium selection. In particular, 
we have seen how the mere possibility of pre-vote negotiation rules out the selection of 
unintuitive and undesirable equilibria in which voters have aligned motives but choose to go 
against them together. A number of directions are possible to further enrich our framework, 
with two main ones. First, the analysis of further co-dependence among individuals, by 
for instance studying interactions constrained in a social network (Jackson, 2008), where 
individuals can actively incentivise their connections only. Second, the elaboration of an 
even more realistic model of pre-vote negotiation, studying resource-bounded individuals 
that have an upper bound, in the form of an endowment, on the amounts they can transfer 
in order to influence each other’s behaviour.
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