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Abstract: Cloud computing is a technology that provides on-demand services in which the 
number of assigned resources can be automatically adjusted. A key challenge is how to choose 
the right number of resources so that the overall monetary cost is minimised. This problem, 
known as auto-scaling, was addressed in some existing works but most of them are dedicated to 
web applications. In these applications, it is assumed that the queries are atomic and each of them 
uses a single resource for a short period of time. However, this assumption cannot be considered 
for database applications. A query, in this case, contains many dependent and long tasks so 
several resources are required. We propose in this work an auto-scaling method based on 
reinforcement learning. The method is coupled with placement-scheduling. In the experimental 
section, we show the advantage of coupling the auto-scaling to the placement-scheduling by 
comparing our work to an existing auto-scaling method.  
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1 Introduction 

1.1 Context 

Since it was launched in the 2000s, the cloud computing 

market continues to evolve. Today’s cloud providers offer a 

variety of information technology services, from basic 

computing resources to complex applications that  aim to 

meet 

the different tenant needs. Cloud services are based on a  
pricing model and Service Level  Agreements (SLAs). The 

pricing model describes how  services are billed. SLAs define 

the performance objectives that  should be met by the provider 

and the measures to be taken in case  of non-compliance with 

the objectives. If requirements are not respected, the provider 
pays penalties to the tenant. 



Among cloud applications, we are interested in those 

concerning querying databases. Data processing has experienced 

in recent years the arrival of frameworks based on the storage 

and processing of partitioned data over a set of machines, 

mainly Hadoop ecosystem. Extensions that propose a syntax 

close to the classical SQL language (Hive) have been added to 

these frameworks in order to make them accessible to users 

who are accustomed to SQL. This syntax is called SQL-like.  

A submitted SQL-like query is transformed into many 

MapReduce jobs (Dean and Ghemawat, 2010), or a single job 

consisting of a Directed Acyclic Graph (DAG) (Saha et al., 

2015), then assigned to available resources (Kllapi et al., 2011; 

Vavilapalli et al., 213). Cloud providers have quickly adapted 

to the new data processing frameworks by offering services 

like Amazon Elastic MapReduce and Microsoft Azure 

HDInsight. 

1.2 Problem position 

Maximising the profit is an important issue for cloud providers, 

but the existing data processing frameworks are not designed in 

a way that takes into account the pricing model and SLAs in 

the resource allocation process. Expenditures can be reduced if 

resource management handles these aspects. The number of 

assigned resources should increase if the load is high and 

decrease if the demand is low. If it is done in an automated 

way, this process is called auto-scaling. 

The questions, in this case, are: when to scale and how 

much resources we should add or remove. Most current cloud 

providers use an intuitive approach based on thresholds for 

virtual machines (VMs) level auto-scaling and several related 

methods are proposed in literature (Khatua et al., 2010; Chieu 

et al., 2011; Simmons et al., 2011; Ghanbari et al., 2011; Han 

et al., 2012; Hasan et al., 2012). The main idea of this 

approach is to add (or remove) resources if a certain metric is 

above (or below) a predefined threshold. The thresholds 

are usually defined by humans in the provider or the tenant 

side. 
The main drawback of the thresholds based approach is 

the fact that it requires a deep understanding of workload 
trends to choose good thresholds, which is not easy to 
achieve. This is why much scientific work was done to 
design human independent auto-scaling methods based 
mainly on reinforcement learning (Dutreilh et al., 2011; Rao 
et al., 2011). The learner is an agent that makes successive 
actions in an environment and receives a reward for each 
taken action. After a set of random trials, he should learn 
how to take good actions which avoid human intervention. 

In practice, there is no general reinforcement learning 

solution that provides an efficient scaling for all possible 

applications and architectures. Each solution must consider the 

environment, the cost objective and constraints of a specific 

application and we notice that the most existing methods focus 

on web querying. A query in these applications can be seen as 

an atomic task assigned to a single resource for a short time 

period. These methods are not suitable for database querying 

applications. Indeed, the structure of a SQL-like query is 

considered complex compared to other common applications. 

The physical execution plan of the query contains many tasks. 

Some of them are parallel, others are linked by a producer-

consumer relation. So parallelism and communication must be 

considered. 

Existing works that use reinforcement learning for auto-

scaling are based on the information about the present to 

define the state description and cost function. This may be 

sufficient for applications in which queries consist of one or 

few tasks with a short execution time but databases queries 

consist of several dependent tasks with relatively long 

execution time. Information about the present may generate 

under or over scaling. Indeed, a query launched at the 
moment t  may end at the moment t t  where t  is not

negligible. This is why it is also important to have some 

knowledge about the future during the scaling decision. 

Moreover, in a database query, if the consumer is not 

launched at the moment the data is generated by the 

producer then the intermediate data can be stored on disk. 

The storage in the cloud has a significant monetary cost. 

1.3 Contribution 

In this work, we propose an auto-scaling method based on 

reinforcement learning for database querying in the cloud. 

In order to satisfy scalability and accelerate learning, the 

method applies a parallel variant of reinforcement learning 

(Kretchmar, 2002; Grounds and Kudenko, 2008; Barrett 

et al., 2013). In this variant, the number of agents is greater 

than one. Agents work independently but share their 

experience to learn quickly. This variant is recommended 

for database querying given the large number of queries and 

resources to manage. 

The main originality of our work is the fact that we 

estimate the resource availability and penalties of a future 

time window in order to provide more accurate state 

description and reward function in the reinforcement learning 

process. These estimations are injected into the reinforcement 

learning algorithm to improve agents learning ability. The 

computation of the estimations is based on the placement and 

scheduling plan. We refer to the overall process (auto-scaling, 

placement, and scheduling) as elastic resource allocation. 

Another originality of our work is the fact that we take 

into account the storage of intermediate data in the reward 

function of the reinforcement learning algorithm. Storage is 

an aspect that characterises database applications. The 

intermediate data can be temporarily stored on disk if the 

consumer is not yet available and storage in the cloud has a 

significant monetary cost. 

The rest of this paper is organised as follows: Section 2 

explains the context and an overview of the elastic resource 

allocation process. We give a detailed explanation of the 

proposed auto-scaling method in Section 3. Section 4 

presents the experimental environment and the results. An 

overview of the existing work on auto-scaling in the cloud is 

provided in Section 5. We conclude in Section 6. 



2 Elastic resource allocation process: an overview 

In this section, we give an overview of the query 

compilation context (2.1). Then, we explain the idea of the 

elastic resource allocation process that we propose and the 

intuition behind the placement-scheduling phases (2.2). 

Finally, we present the performance model (2.3). More 

details about placement and scheduling can be found in 

Appendix A and B. 

2.1 SQL-like query compilation 

Figure 1 shows the SQL-like query compilation process. 

Tenants submit SQL-like queries using the client interface. 

First, the lexical and syntactic analyser verifies that the 

query is syntactically correct. Then, the logical optimisation 

applies some transformation rules in order to reduce the 

volume of manipulated data during the query execution. The 

physical optimisation chooses the join algorithms, defines 

the join order and generates the execution plan. Finally, the 

paralleliser defines the degree of parallelism and generates a 

Directed Acyclic Graph (DAG) of tasks. 

Older versions of parallel data processing framework 

represent this graph by a set of dependent MapReduce jobs 

(Figure 2a). MapReduce (Dean and Ghemawat, 2008) is 

recognised as an efficient parallel programming model. 

Indeed, it allows performing computation on massive data 

partitioned on a large number of nodes. However, the 

classical MapReduce model has some drawbacks. The graph 

is represented by a set of dependent jobs. Between two 

successive jobs, there is a write operation, then a read 

operation on the Distributed File System (DFS). In addition, 

the pipeline is not planned and each job must contain a Map 

and a Reduce phase even if one of them is not necessary. 

Figure 1 SQL-like query compilation process 

Figure 2 Comparison of the graph structure in (a) the multi-job model and (b) the single-job model 



Recently, another model has been proposed and already 

integrated into existing tools, mainly Hive/Tez (Saha et al., 2015) 
and SparkSQL (Armbrust et al., 2015).1 It consists of using a 
single job for the entire query (Figure 2b). The internal structure 
is flexible. Indeed, the query is represented by a set of stages. A 
stage can perform either a Map or Reduce function. Each stage 
has many parallel tasks. The task does the processing on part of 
the data. The pipeline is allowed between the linked stages and 
read/write of intermediate data in DFS is avoided. 

In this paper, we refer to the classical MapReduce as the 
multi-job model and the new representation as the single-job 
model. In Hive/Tez, the query in Figure 1 contains three Map 
Joins (MJ) and a Group Operator (GO). It is represented by a 
DAG with four Map stages and two Reduce stages.  

2.2 Elastic resource allocation process 

The cloud service infrastructure consists of a set of physical 

machines (Figure 4). A hypervisor, whose role is to manage 

VMs, is installed on each physical machine. A VM contains 

a set of logical resources. A logical resource is an abstract 

representation of a certain amount of reserved CPU, 

memory and storage. The system receives DAGs of 

submitted queries. The capacity manager adjusts the number 

of logical resources reserved for the service (auto-scaling). 

The global resource allocation manager performs task 

placement and scheduling given the available logical 

resources. Each elementary task is assigned to a particular 

logical resource for a given time period. 

Figure 3 illustrates the elastic allocation process that we 

propose. This process is a sequence of four steps: (1) auto-

scaling, (2) choice of method, (3) placement and (4) 

scheduling. These steps are performed one after another. A 

complete execution of the four steps is called an iteration. A 

new iteration is performed in each fixed unit of time dt . In 

a given iteration launched at the moment t, the system 

handles the DAGs received between (t – dt) and t. 

Auto-scaling is the process of determining the number 

of logical resources required to meet the load with minimum 

cost. We give more details about the proposed auto-scaling 

method in Section 3. Following the auto-scaling, the agent 

chooses the best method for placement and scheduling of 

tasks based on graph sizes and the number of assigned 

resources. The placement consists of choosing a logical 

resource for each task (Figure 5a). Scheduling allows 

choosing the time window assigned to each task (Figure 5b). 

At the end of each iteration of this process, the final 

placement-scheduling plan, as well as the estimated costs of 

penalties and storage of the intermediate data are injected 

into the capacity manager in order to be used for the scaling 

of the next iteration. 

Figure 3 Parallel elastic allocation process 

Figure 4 Cloud service architecture 



Figure 5 Intuition behind the (a) placement and (b) scheduling 

There are n  agents that work independently. In our 

architecture, only one database querying application is 
considered. Each agent is responsible for multiple queries. 
There are two benefits of using n  agents working in 

parallel: (1) experiences can be shared between agents 
which accelerate the learning, (2) the elastic allocation 
process is faster when there are many agents. To explain the 
second point we consider the following example. We 
assume that at the moment t , there are 50 allocated logical 

resources and 20 queries arriving in the system. Consider 
the first case where we have only one agent, the latter must 
do the placement-scheduling concerning 20 queries on 50 
logical resources. Let’s consider a second case where we 
have five parallel agents. In this case, each agent must do 
the placement-scheduling concerning four queries (20/5) on 
approximately ten logical resources (50/5). The problem is 
less complex in the second case since there are fewer 
queries and logical resources to manage by an agent, so 
placement-scheduling decision algorithms are faster. 

Our auto-scaling solution is dependent on placement and 
scheduling. These latter are optimisation problems. In the 
field of optimisation, there are two main classes of methods: 
approximate and exact methods. Our elastic resource 
allocation process supports the approximate method 
proposed in Kllapi et al. (2011) as well as an exact method 
based on Integer Linear Programming (ILP) that is part of 
our research (Kandi et al., 2018). The ILP formulation is 
presented in Appendices A and B. A choice of the approach 
is made first based on the complexity of the queries received 
and the number of available resources. 

2.3 Performance model 

Since the elastic allocation process is performed before 
running queries, it is essential to estimate the duration of 
tasks. This estimation is based on the size of the data, the 
number of tuples, the selectivity of the operators and some 
system parameters (Table 1). The formula applied to 
estimate task duration depends on the operators executed by 
the task. For example, let’s consider a stage Si  that 

performs a selection on a relation 1R  then a Map Join 
between the result of the selection and a relation 2R . The 
duration ( ET ) of an elementary task of the stage Si  is 

estimated as follows (Yin et al., 2018): 

( ) = (ET Si sum

(| 1 | * | 1 | / ) / ; / /iR S pd db dl read the data from disk

(| 1 | * | 1 | / )*( / ); / /iR S pd ipc cpu execute de select operator

(| ( 1) | * | 1| / )*( / ); / /
i

R S pd iph cpu execute de prob operator

(| 2 | * | 2 | / ) / ; / /iR S pd db dl read the data from disk

(| 2 | * | 2 | / )*( / ); / /i
R S pd iph cpu execute de build operator

(| 12 | * | 12 | / )*( / ); //i
R S pd iph cpu prepare tuples partioning

1 1(| 12 | * | 12 | * / ( * ) / )* ( , )i i i iR S pd pd nb nd max pd pd

/ / )transmit the result to the next stage

Table 1 Cost model parameters (Yin et al., 2018) 

Parameter Signification 

| |Rx  number of tuples in Rx  

| |Sx  size of a tuple in Rx  (Bytes) 

| |Rxy  number of tuples in Rx Ry

| |Sxy  size of a tuple in Rx Ry  (Bytes)

selectivity 

ipd number of tasks in the stage Si  

db disk I/O bandwidth 

dl disk latency 

cpu CPU processing speed 

nb network bandwidth 

nd network delay 

ipc number of instructions for comparing 
two bytes 

iph number of instructions for hashing a byte 

3 Auto-scaling method 

The goal of auto-scaling is to add or remove resources in 

order to respond to load variation. The proposed auto-



scaling method is based on parallel reinforcement learning. 

We explain in this section the reinforcement learning 

principle (3.1), then the modelling of the learning solution 

for the auto-scaling problem (3.2).  

3.1 Reinforcement learning (RL) principle 

The basic idea of reinforcement learning is that we have an 

agent who makes decisions in a complex environment. At each 

moment, the agent knows the current state of the system and 

takes an action that allows moving to another state. When the 

agent takes an action, the environment provides him a reward 

(or a penalty) – Figure 6. After a set of iterations, the agent 

should learn the sequence of actions that maximise the total 

reward (or minimise the total penalty). The operation of such a 

system is modeled by a Markov decision process (MDP). An 

MDP is a mathematical model represented by a state space 
( S ), an action space ( A ), probabilities of transitions between 

states and rewards ( R ). At the moment t , the agent is in a 

state ts , then he chooses an action ( )t ta A s , such that ( )tA s

is the set of possible actions when the system is in the state ts . 

Following the action, the agent receives a reward 1tr R  and

then moves to a state 1ts . The value of the reward and the 

next state follow probability distributions: 1( / , )t t tp r s a , 

1( / , )t t tp s s a . The goal of the agent is to maximise the 

cumulative reward (or minimise the cumulative penalty) in the 

long run. A measure ( , )t tQ s a  is associated with each state 

( ts ) action ( ta ) pair: 

1

1 1 1

11

( , ) = ( / , )

* ( / , )* ( , )max

t t t t t

t t t t t
as tt

Q s a E r s a

P s s a Q s a  (1) 

where 1( / , )t t tE r s a  is the expected value of 1 / ,t t tr s a . 

1( / , )t t tP s s a  is the probability to move to the state 1ts

knowing that we are in the state ts  and we made the action 

ta . 0 < 1  is a discount factor helping the convergence

of Q . The measure ( , )t tQ s a  quantifies the possible 

actions. The best action is the one with the highest value of 
Q  (or the lowest if r  is seen as a penalty). When the MDP 

structure is well known, the values of Q  can be computed 

with the value iteration method (Alpaydin, 2014). However, 

usually the structure of the system and its behaviour are not 

known in advance, and in this case, reinforcement learning 

algorithms, such as Q-learning (described in Alpaydin, 2014 

and Watkins, 1989) is more appropriate. There are several 

variants of Q-learning. A variant called Sarsa is presented in 

Algorithm 1. The algorithm uses learning to find an 

estimated value ( Q̂ ). Q̂  is initialised with an arbitrary 

value (line 1) then improved in each iteration as the agent 

explores the state space (line 13). The strategy to choose the 

next action should make a trade-off between exploring the 

state space and maximising the reward. For this, the agent 
chooses an action randomly with a probability  (lines 8–9)

and chooses the action with the highest ˆ ( , )Q s a  with the

probability 1  (lines 10–11). The parameters ,  and

the function  are defined in advance.

Algorithm 1:  Q-Learning Sarsa (Alpaydin, 2014) 

1:  initialise all ˆ ( , )Q s a  arbitrarily

 2:  initialise s  

3:  choose an action ( )a A s  randomly

4:  1iteration

 5:  repeat 

6:  observe s  (the new state) and ( , )R s a  (the reward)

 7:  generate a random number " "rand  between 0 and 1 

8:  if < ( )rand iteration  then

9:  choose an action ( )a A s  randomly

10:  else 

11:  choose an action ( )a A s  with the highest Q̂

12:  end if 

13:  Update ˆ ( , )Q s a :

ˆ ˆ ˆ ˆ( , ) ( , ) *( ( , ) * ( , ) ( , ))Q s a Q s a R s a Q s a Q s a

14:  s s

15:  a a

16:  1iteration iteration

17:  wait for the next iteration 

18:  until the system stops 

Figure 6 Interaction between the agent and the environment 

3.2 Modelling the learning solution for auto-scaling 

We apply reinforcement learning to ensure that the cloud 
service described earlier has the correct number of logical 
resources. We define the state as a triplet: (1) the number of 
logical resources allocated for each type, (2) the current 
time of the day, and (3) the resource availability level. 

Formally a state = ( , , )s n h d . With 1 2 ( )= ( , ,.... )cardn n n n , 

 is the set of resources types, each type is characterised by its

memory capacity and monetary cost, cn  is the number of 

assigned type c  resources, h  is a discrete representation of the 

current time of the day, 0 1d  define the resource

availability level. 

Unlike web applications, the duration of a database 

query can be long. The resource availability level in our 

method is not just based on the current moment (this is the 

case for most of the work of state-of-the-art work) but also 

on a future time window calculated from the resource 



placement-scheduling plan. The availability level d  is 

computed with the formula (2). With ( )iter  is the set of

potential logical resources in the current iteration ‘iter’, T  

is the number of considered future time windows, ,r tF

indicate whether the logical resource ( )r iter  is free at

the moment t  ( , = 1r tF ) or busy ( , = 0r tF ) according to the 

placement-scheduling plan ( <t T ). 

,

( ) <

(1 )

= ,
* ( ( ))

r t

r iter t T

F

d round nbDigits
T card iter

(2) 

In order to explain the intuition behind formula (2), we 
consider the example of Figure 7. The numerator of the 
formula represents the surface of the grey area (the 
resources are busy). The denominator represents the surface 
of the grey area plus the surface of the white area (the 

resources are busy + they are free). So d  is a number 

between 0 and 1, with d  is close to 0  (resp. close to 1 ) 

when there are many available resources (resp. many busy 
resources) in the considered future time window T . 

nbDigits  is the number of digits from the decimal point 

when we apply the round function. The round function is 
necessary to get a state space with a finite number of states. 

Figure 7 Placement-scheduling plan example 

Possible actions are to keep the same number ( 0 ), add ( 1 )

or release ( 1 ) a resource. An action ( (1), (2),..a a a

( ( )))a card  with ( ) { 1;0;1}a c c  and if 1 ,c

1 1 2( ) = 1 ( ) = 1 ( ) = 0a c a c a c 2 1c c  (i.e. we don’t

add or remove more than one resource in a single iteration). 
The reward following an action a  includes: (1) the cost 

of using physical resources ressC , (2) the cost of assigning 

and releasing resources ajustC , (3) the costs of penalties paid 

by the provider in case of SLA violation penC  and (4) the 

cost of using storage storC : 

( , ) = ( ) ( ) ( ) ( )ress ajust pen storR s a C s C a C s C s (3) 

The cost of using resources includes the processor cost 

procC  and memory memC : 

( ) = ( ) ( )ress proc memC s C s C s (4) 

The processor (resp. memory) cost is calculated as follows: 

( ) = * .proc proc c

c

C s W s n (5) 

( ) = * ( )* .mem mem m c

c

C s W C c s n (6) 

procW  is the processor cost weight, memW  is the memory cost 

weight, . cs n  is the number of logical resources of type c  

when the system is in state s , ( )mC c  is the available 

memory in the type c  resources. 

The adjustment cost depends on the cost of adding 

resources asgC  and the cost of removing resources relC

(1 = 1condition  if the condition is true, = 0  otherwise): 

( )>0 ( )<0( ) = ( )*1 ( )*1ajust asg a c rel a c

c

C a C c C c (7) 

Penalties ( penC ) and storage ( storC ) costs depend on task 

scheduling (Appendix B). Based on the objective function 

of the ILP scheduling model and assuming that the optimal 

solution of this ILP is denoted * * *{ , , }y w , we have (the

notation is described in Table A1):  

*

,

< <

( ) = *pen i i t

i D T t T
i i

C s W (8) 

*

, ,

<

( ) = * *stor s i i m t

i S m T t T
i

C s W q w (9) 

The goal is to minimise the cumulative reward ( R ) in long 
run. The best action is the one with the lowest value of Q  

(formula (1)). In our problem, the behaviour of the MDP is not 
known in advance so, as mentioned in the end on Subsection 
3.1, an algorithm such as Q-learning can be used to learn an 

estimated value Q̂ . The value of Q̂ is improved in each 

iteration based on the observed reward and the state description. 
In reinforcement learning, the number of times a state is 

visited determines the quality of the decision. Indeed, more 
visits imply a better experience. It is therefore interesting to 
adopt methods that accelerate the evolution of the learning 
agent’s experience. We propose to adopt parallel reinforcement 
learning (Kretchmar, 2002) to accelerate learning. The system 
has a set of parallel agents who share their experiences. Each 

agent i  makes his decisions using a measure ˆ iQ  consisting of

his own local experience ˆ i

lQ  and the global experience ˆ i

gQ  that 

the other agents shared with him. 
Algorithm 2 illustrates the parallel reinforcement 

learning applied to our problem and executed by an agent i  

among a set of agents. In this algorithm: ( , )ik s a  is the 

number of times the action a  was taken following a visit to 

the state s . The agent can give more importance to his own 

experience and so, in this case, lW  and gW  are chosen such 

that >l gW W . Algorithm 2 is executed by the capacity 

manager (represented in Figures 3 and 4). 



Algorithm 2: Parallel reinforcement learning (Agent i ) 

1:  initialise all ˆ ( , )i

lQ s a  in an arbitrary way 

2:  initialise all ( , )ik s a  to 1

3:  for each state s S  do

4:  ( ) * .proc proc c

c

C s W s n

 5:  ( ) * ( )* .mem mem m c

c

C s W C j s n

6:  ( ) ( ) ( )ress proc memC s C s C s

7:  for each action ( )a A s  do

 8:  ( )>0 ( )<0( ) ( )*1 ( )*1ajust asg a c rel a c

c c

C a C c C c

  9:  end for 

10:  end for 

11:  initialise s  

12:  choose an action ( )a A s  randomly

13:  repeat 

14:  receive DAGs of the new submitted queries 

15:  execute the action a  (scaling)   

16:  notify the global resource allocation manager that the scaling is done (Figure 3, arrow (a)), the placement and 

scheduling of new queries is therefore launched, 

17:  get the estimated ( )storC s  and ( )penC s  from the resource allocation manager (Figure 3, arrow (b)), 

18: ( , ) ( ) ( ) ( ) ( )ress ajust pen storR s a C s C a C s C s  

19:  observe s  (the new state)

20:  for each action ( )a A s  do

21:  
,

( , )j

j Agents j i

K k s a

22:  ˆ ( , )i

gQ s a
,

ˆ( , )* ( , )j j

l

j Agents j i

k s a Q s a K

23:  ˆ ( , )iQ s a

ˆ ˆ* ( , )* ( , ) * *( 1)* ( , ) * ( , ) * *( 1)i i i i

l l g g l gW k s a Q s a W K nbAgents Q s a W k s a W K nbAgents  

24:  end for 

25:  generate a random number ‘rand’ between 0 and 1 

26:  if < ( )rand iteration  then

27:  choose an action ( )a A s  randomly

28:  else 

29:  choose an action ( )a A s  with the highest ˆ iQ

30:  end if 

31:  update ˆ ( , )i

lQ s a : 



32:  ˆ ˆ ˆ ˆ( , ) ( , ) *( ( , ) * ( , ) ( , ))i i i i

l l l lQ s a Q s a R s a Q s a Q s a

33: ( , ) ( , ) 1i ik s a k s a

34:  share ˆ ( , )i

lQ s a  and ( , )ik s a  with the others agents 

35:  s s

36:  a a

37:  1iteration iteration

38:  wait for the next iteration 

39:  until the system stops   

4 Experimental results 

We present an experimental evaluation of the auto-scaling 

method. In Subsection 4.1, we give a general overview of 

the performed simulation. In Subsection 4.2, we compare 

our method that uses placement-scheduling plan to estimate 

the future resource availability, penalties and storage usage 

with an auto-scaling method that works independently of 

placement-scheduling. We illustrate the advantage of our 

method in terms of monetary cost. In Subsection 4.3, we 

show the impact of experience sharing and how the method 

scale. We assume that some agents exploit the shared 

experience and others not and evaluate the monetary cost 

and allocation duration. In Subsection 4.4, we compare two 

variants of the algorithm: the standard Q-learning and Sarsa. 

The goal is to justify the choice of the Sarsa variant for our 

solution 

4.1 Simulation setup 

We evaluate the proposed solution by simulation. The queries 

are retrieved from the TPC-H benchmark then tested on Hive 

(a version based on Tez) in order to define: (1) the structure of 

DAGs, (2) the number of parallel tasks per stage and (3) the 

estimated size of the intermediate data. ILP models are solved 

with GLPK. We assume that each agent handles 10 simulated 

VMs that contain eight logical resources each. We have 

two types of VMs: type 1 VMs (composed of eight logical 

resources with 256MB of memory each, price: 0.25$/hour) and 

type 2 VMs (composed of eightlogical resources with 512MB 

of memory each: 0.5$/hour). For a given query, the provider 

pays a penalty of 0.1$ for each minute after the deadline 

specified in the SLAs. We assume also that the cost of 

adjusting resources (add or remove a resource) is 0.1$. 

Our simulation was performed on a computing node with 

four AMD processors and 512 GB of RAM. In all experiments, 

the global monetary cost is simulated. The global monetary 

cost at a given iteration is the sum of the following costs: 1) 

used logical resources, 2) penalties caused by violation of 

deadlines, 3) adjusting resources and 4) storage of data of 

consumers are not yet ready. The global monetary computation 

is based on formula (3) – Section 3.2. 

In the simulation, we run Algorithm 2 for a large number 
of iterations (up to 70000 iterations). An iteration is defined 
as a complete execution of lines from 14 to 38 of the 
algorithm. At the beginning of each iteration, we assume the 
arrival of a number of queries represented by their DAG (line 
14 of the algorithm). The number of received queries follows 
a random distribution that depends on the time of day. The 
number of queries received on the day is more important than 
the number received at night. The maximum number of 
queries considered is 540 queries/hour. All these queries have 
a DAG that follows the TPC-H benchmark. It is important to 
mention that a query started at the iteration i  may end later 

(i.e. at iteration i j , > 0j ). In each iteration, a scaling

decision is made (line 25 to 30 of the algorithm). 
We set = 0.5  and = 0.8 . We recall that Algorithm 2

uses the parameter  to make the compromise between the

choice of the right decisions and the exploration of the state 

space. In order to test different scenarios we propose three 

policies:  

 Policy 1 (three steps):

0.999,

0 < 1

0.4,

( ) = 1 < 2

0.2,

2 <

when

iteration endStep

when

iteration endStep iteration endStep

when

endStep iteration endOfSimul

 Policy 2 (two steps):

0.999,

0 < 1

( ) = 0.3,

1 <

when

iteration endStep

iteration when

endStep iteration endOfSimul

 Policy 3 (one step):

0.1, 0 <
( ) =

when iteration endOfSimul
iteration



4.2 Experiment 1: comparison of our method 

and basic reinforcement learning method 

(SQLCloudRL vs. BasicCloudRL) 

In this section, we compare our work with an auto-scaling 

method from the literature. We chose to not compare our 

solution with threshold-based methods. The difference 

between the reinforcement learning approach and the 

threshold approach is discussed in the related work section. 

The advantage of reinforcement learning is the fact that it is 

independent of human intervention. If we compare our work 

with a method based on thresholds we will have to manually 

set the values of the thresholds, so performing a fair 

comparison is not obvious. 

We have therefore compared our work with a method of 

literature also based on reinforcement learning. The baseline 

is similar to the solution presented in Dutreilh et al. (2011). 

The particularity of our work is the dependence between 

the auto-scaling and the placement-scheduling. Indeed, as 

explained in the Subsection 3.2, the output of the 

placement-scheduling is used to give a more precise 

representation of the states of the MDP and the reward 

function. The baseline, contrariwise, uses the Q-learning 

algorithm but assumes that auto-scaling is performed 

independently of the outputs of the placement-scheduling. 

In the following, we call our proposal SQLCloudRL (SQL-

like Queries Cloud Reinforcement Learning). The baseline 

is named BasicCloudRL (Basic Cloud Reinforcement 

Learning). 
In Figure 8 the global cost ($) is cumulative over an 

iteration interval. The value of ‘step’ indicates the length of 
this interval. Three agents are considered in each test and 
the given values in y-axis correspond to the average 
monetary cost per time unit of the three agents. At iteration 1, 
each agent has no knowledge of the environment so the 
monetary cost is high at the beginning. The agent explores 
the environment, stores its experiences and exploits it in the 
decision making which makes the monetary cost decreases. 

Figure 8 Evolution of monetary cost over time (SQLCloudRL vs. BasicCloudRL) 



On the one hand, the scaling decisions for policy 1 and 2 are 

almost random at the beginning ( ( ) = 0.999iteration  when

0 < 10000iteration ). The global costs, therefore, remain

stable and high in this period of time. The random decisions 

allow the agent to explore more possibilities so learning is fast. 

As soon as we change the value of  at iteration = 1000, the

agent starts using the stored experience to make the scaling 

decisions so the costs drop sharply. Policy 3, on the other hand,  

uses a progressive approach. The agent makes a trade-off  

between exploration and optimisation from the beginning 

( ( ) = 0.1iteration  iteration ). The cost, therefore, decreases

in a less brutal way than policies 1 and 2. 
The same figure shows the advantage of our formulation 

compared to the existing auto-scaling method in terms of 
monetary cost. The benefit of our proposal is due to the 
consideration of estimate the future resource availability level  
and penalties from the previous placement-scheduling plan. 
The formulation of the baseline can be useful for short queries 
(web applications) but not sufficient for long queries of 
database querying applications. For long queries, considering a 
future estimate allows a more precise definition of a state of the 
MDP. The gain in terms of monetary cost becomes very 
significant in a real cloud with tens or even hundreds of agents 
and after a large number of iterations. 

4.3 Experiment 2: impact of experience sharing 

(no share vs. share) 

We consider three agents who work in parallel and share their 

experiences. Agents 2 and 3 use the shared experience (share) 

while agent 1 uses only its own experience (no share). Table 2 

and Figure 9 show the results. We note the same remarks as the 

previous experiment 1 regarding the overall trend  of the 

curves. In addition, the cost values for the agents  who benefit 

from the shared experience (agents 2 and 3) are lower than 

those who do not (agent 1). Indeed, sharing experience allows 

agents 2 and 3 to learn faster than agent 1. 

Table 2 Average monetary cost ($) per iteration for Q-learning 
without (agent 1) and with (agents 2 and 3) experience 

sharing (phase 1: 0 < 10000iteration , phase 2:

10000 < 20000iteration , phase 3: 2000  iteration

policy 1 

phase 1 phase 2 phase 3 

No share – cost 0.1522 0.1285 0.1224 

Share – cost 0.1517 0.1178 0.1170 

Gain 5.4% 

policy 2 

phase 1 phase 2 phase 3 

No share – cost 0.1513 0.1245 0.1175 

Share – cost 0.1517 0.1123 0.1119 

Gain 6.1% 

policy 3 

phase 1 phase 2 phase 3 

No share – cost 0.1322 0.1204 0.1092 

Share – cost 0.1216 0.1110 0.1037 

Gain 5.8% 

Figure 9 Evolution of monetary cost over time (no share vs. share) 



Then we vary the number of agents and observe the 
evolution of the monetary cost and allocation duration: 
scaling+placement+scheduling (Figure 11). On the one 
hand, the monetary cost decreases with the increase in the 
number of agents. Indeed, more there are agents sharing 
their experience, faster is the learning and therefore the 
auto-scaling is done in a more efficient way. On the other 
hand, the increase in the number of agents implies more 
messages exchanged and therefore more allocation duration. 
To limit the allocation duration when the number of agents 
is very large, it is possible to group the agents into clusters 
such that each agent shares its experience only with the 
agents of his cluster. Another solution is not to exchange at 
each iteration but rather after a certain number of iterations. 

4.4 Experiment 3: comparison of the standard 

Q-learning algorithm and the Sarsa variant

(standard Q-learning vs. Sarsa)

We show in this experiment why we chose the Sarsa variant 

as a learning algorithm. The difference between the standard 

Q-learning algorithm and Sarsa is the way to update the 

values of ˆ ( , )Q s a . Standard Q-learning uses the best action

a  of the next state s  to update ˆ ( , )Q s a  while Sarsa first

chooses an action a  using the current policy and then

returns to update ˆ ( , )Q s a . The two algorithms combine the

exploration and the optimisation in the decision making but 

the standard Q-learning considers that the agent takes always 

the optimal policy when updating the values of Q̂  whereas 

Sarsa considers the fact that actual policy combines the 

exploration and the optimisation (i.e. Sarsa allows the agent 

to learn that some of his decisions are random). The stored 

experience in Sarsa is, therefore, more accurate than the 

standard Q-learning. We consider only one agent in this 

experiment. Table 3 and Figure 10 confirm that Sarsa is more 

efficient than Standard Q-learning in terms of monetary cost. 

Table 3 Average monetary cost ($) per iteration for standard  

Q-learning and Sarsa (phase 1: 0 < 20000iteration ,

phase 2: 20000 < 40000iteration , phase 3:

40000 < 70000iteration )

policy 1 

phase 1 phase 2 phase 3 

Standard QL – cost 0.1518 0.1304 0.1208 

Sarsa – cost 0.1519 0.1232 0.1182 

policy 2 

phase 1 phase 2 phase 3 

Standard QL – cost 0.1522 0.1256 0.1163 

Sarsa – cost 0.1525 0.1176 0.1133 

policy 3 

phase 1 phase 2 phase 3 

Standard QL – cost 0.1344 0.1228 0.1089 

Sarsa – cost 0.1269 0.1108 0.1029 

Figure 10 Evolution of monetary cost over time (standard Q-learning vs. Sarsa) 



Figure 11 Monetary cost vs. average allocation time 

4.5 Discussion 

The performed experiments concern three aspects: 

 First, reinforcement learning and its applicability to

the auto-scaling problem for SQL-like queries. A 

comparison of our auto-scaling method and an existing 

method showed the benefit of using the placement-

scheduling output. The state definition of the MDP is 

more precise so the monetary cost is lower.  

 Then, the collaboration between agents. We observed

that exploiting the shared experience allows agents to 

learn faster and reduce costs but the allocation time is 

more important because of the communication between 

agents.  

 Finally, the performance of Sarsa learning. Sarsa variant

is more efficient than the standard Q-learning. This can 

be explained by the fact that Sarsa is based on more 

precise calculations of Q̂ . Indeed, Sarsa allows the agent 

to learn that some of his decisions are random.  

5 Related work 

The existing methods that deal with auto-scaling are diverse in 
regards to the decision making approach. Each work has been 
designed with particular goals and focusing on a target 
architecture. State-of-the-art methods can be classified in 
different ways. In this section, we give a brief overview of 
existing methods and focus on two approaches: (1) threshold 
based and (2) reinforcement learning. On the one hand, because 
of its intuitive appearance, the threshold based approach is 
adopted by the current cloud providers. On the other hand, 
reinforcement learning is currently experiencing interest from 
the scientific community and its adoption for different cloud 
applications and architectures is a promising trend. 

5.1 Threshold based approach 

Using threshold rules is a well-known approach for auto-

scaling in the cloud. The idea is to add new resources when a 

certain metric exceeds an allocation threshold and to release 

resources when the metric is below a release threshold. 

Existing work can be classified into two categories. Some 

works are based on the observed values of the metric (Han 

et al., 2012; Hasan et al., 2012) while others apply prediction 

techniques (Khatua et al., 2010). Han et al. (2012) claim that 

scaling resources does not always require to add or remove 

VMs constantly. Modifying VM’s capacity (CPU and 

memory) can be conducted to achieve scaling with fewer 

costs and less time. They introduced a lightweight algorithm 

to enable scaling at the level of underlying CPU and memory. 

The solution uses separate thresholds for the processor and 

the memory. The considered metrics are based on observation 

and not predictions. Moreover, communication costs are not 

considered. 

The communication aspect has been considered in some 

works. Hasan et al. (2012) use link load, jitter, and delay as 

metrics. They focus on the relation between compute and 

network. They emphasise the fact that these three domains are 

often considered separately for scaling. To address this 

limitation, they proposed a threshold mechanism that 

combines metrics from computing and network domains. 

This work also considers only observed values to compute 

metrics. 

Some other works propose to associate the approach of 

thresholds with a voting process (RightScale). Each VM votes 

for a scaling action (add or remove resources). The vote is 

based on one or more rules managed by metrics and thresholds. 

The scaling action is triggered if the majority of VMs agree. 

This solution was adopted by Chieu et al. (2011) and Simmons 

et al. (2011). There are also works that combined the threshold-

based approach with other scaling approaches. Ghanbari et al. 

(2011) propose an elasticity policy using both control theory 

and threshold based approaches. Unlike the use of thresholds 

which is more intuitive, the control theory is based on 

mathematical modeling. RightScale was used in this work as a 

threshold based management cloud system. 

All the works cited above use the observed values to 

calculate the metrics. Other studies have considered the 

prediction of future values. We mention, for example, 

Khatua et al. (2010) who uses time series theory (Mills, 

1991) to predict future values. If any of the predicted values 

exceeds the predefined threshold then an event is triggered. 

The intuitive nature of threshold rules attracted cloud 

providers. However, the choice of metrics to consider and 

the setting of thresholds in an efficient manner requires 

human intervention and a deep understanding of the current 

workload trends which is not easy to achieve. Another 

approach independent of human intervention interests the 

scientific community. It is based on reinforcement learning 

5.2 Reinforcement learning approach 

Reinforcement learning has been adopted for auto-scaling in 

some cloud work. Existing methods can be differentiated by 

the scaling mode, the learning algorithm and the technique 

used to accelerate learning. 



Scaling mode in the cloud can be horizontal or vertical. 

In the horizontal scaling, possible actions are to add or 

remove resources (Dutreilh et al., 2011). In the vertical 

scaling, contrariwise, the number of resources is fixed and 

possible actions consist to adjust their configuration in terms 

of CPU and memory (Rao et al., 2009, 2011). 

The typical reinforcement learning algorithm is standard 

Q-learning but some works use a variant called Sarsa

(Tesauro et al., 2006). The two variants were considered and

compared in the experimental section. More details on the

difference between standard Q-learning and Sarsa can be

found in Alpaydin (2014).

Despite their advantages, reinforcement learning 

algorithms have certain problems including the large 

learning time and the size of the state space. Dutreilh et al. 

(2011) introduce a greedy policy to find a good initialisation 

of learning values, a convergence speedup technique, and 

performance model change detection. Rao et al. (2009) 

propose initially to adopt a global reinforcement learning 

model for vertical scaling. In this model, the state is 

described by the amount of CPU/memory of all VMs in the 

cloud. This approach gives rise to a very large number of 

states and therefore a lot of time to sufficiently explore the 

model. Then, Rao et al. (2011) consider that each VM has 

its own local model and in this case, the state is defined 

by the amount of CPU/memory of this VM only so the 

complexity is reduced. 

Barrett et al. (2013) use a parallel version of learning but 

the level of generality is limited to the VM level (not logical 

resource level), the auto-scaling is independent of 

placement-scheduling and the specificities of databases 

querying are not considered in the state description and 

reward function). 

5.3 Discussion 

Few works for auto-scaling in the cloud are dedicated to 

database querying. There are some works that proposed auto-

scaling solutions for databases in the cloud but they focused 

on specific technologies, for example, MongoDB (Huang 

et al., 2013) or Hadoop (Gandhi et al., 2016). These works 

made performances (not monetary) metrics in their proposals. 

Some work focuses on NoSQL databases. For example, 

TIRAMOLA is an open-source framework to perform auto-

scaling of NoSQL clusters according to user-defined policies 

(Konstantinou et al., 2012; Angelou et al., 2012; Tsoumakos 

et al., 2013). Decisions on adding or removing workers are 

modelled as MDPs. There is also existing work on cost-aware 

horizontal scaling of NoSQL databases (Naskos et al., 2015, 

2017, 2018). These proposals are based on MDPs as well and 

they use probabilistic model checking as the main decision 

mechanism. In our work we focus on more complex and 

long-running queries. 

The level of granularity in most existing work on auto-

scaling is limited to the VM level and queries are seen as 

atomic entities. In our work, we consider a finer granularity 

level. Indeed, a VM contains a set of logical resources and 

each query is decomposed into a job (or stage) graph with 

dependencies. Each logical resource uses a specific amount 

of physical resources (CPU, memory, and disk) on a 

specific machine. A job (or stage) contains a set of parallel 

tasks. The problem is therefore much more complex if we 

compare it to web applications. 

Finally, the management of intermediate data is 

generally neglected in the existing work. This is an 

important feature for data processing applications. Indeed, if 

the next consumer of intermediate data is not available 

immediately, then this data might be stored. The use of 

storage capacity in the cloud has a monetary cost that cannot 

be ignored. Disks on Amazon S3, for example, are billed 

according to the size and duration of storage. 

6 Conclusion 

We addressed in this paper the resource allocation problem 

for database querying in the cloud. We proposed an auto-

scaling method coupled with placement-scheduling. The 

auto-scaling is based on parallel reinforcement learning and 

experience sharing. The results show that: (1) considering 

placement and scheduling plan to describe the MDP is more 

suitable to long queries than the reinforcement learning 

methods proposed in previous work, (2) using experience 

sharing reduces the monetary cost but generates exchanges 

that increase the allocation duration, (3) the Sarsa variant of 

Q-learning brings a lower monetary cost compared to the

standard Q-learning.
In future work, we will focus more on placement and 

scheduling problems. So far, we proposed a static method 
based on estimates (Appendices A and B). The real values 
may not match those of the estimates at execution time 
which will generate additional costs. We plan to design a 
dynamic allocation strategy that detects estimation errors 
during execution time and change the allocation plan to 
reduce the impact of these errors. 
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1 There are some differences between Hive/Tez and SparkSQL 
on the technical side but the output of query complication is 
similar. In both tools, the query is represented by a Directed 
Acyclic Graph (DAG) that contains stages and parallel tasks. 



Appendix A Task placement ILP model 

Table A1 shows the sets, parameters, and variables of the 

placement ILP model. The linear constraints are the following. 
The memory amount needed for a task of the stage i  

must not exceed the available memory amount in the chosen 

logical resource r :  

*

, ,( )* ( ( )), , ,m i m r m y iC i x C T r i m r (A1) 

Each task is placed on one and only one logical resource: 

, , = 1, ,i m r i

r

x i m (A2) 

In order to ensure intra-stage parallelism, two tasks 

belonging to the same stage cannot be placed in the same 

resource:  

, , 1, ,i m r

m
i

x i r (A3) 

We recall that ,a bv  is the maximum amount of data 

transferred between the tasks placed on the resource a  and 

the task placed on the resource b . This definition satisfies 

the statement (A4).  

, , , , , ,
1 2 1 2

1 2 ,

= 1 = 1

, , , , , , > 0

i m r j r r r r i j

i j i j

x and x v Q

i j m r r r Q
(A4) 

The statement (A4) can be expressed linearly with: 

, , , , , , , ,

,

* * ,

, , , , , , > 0

i j i m a i j j r b a b i j

i j i j

Q x Q x v Q

i j m r a b Q
(A5) 

We add the constraint (A6) to improve the fair distribution 

of tasks between resources. Without this constraint, we 

noticed that tasks are not distributed in a balanced way on 

the resources. Tasks are more likely to be on the same 

resource. This reduces communication costs but there is a 

risk to be in situations where we have some too busy 

resources (risk of exceeding deadlines) and other resources 

underexploited. Adding the constraint (A6) makes it 

possible to take into account the balanced distribution of 

tasks on the available resources. The compromise between 

load balancing and communication costs is expressed 

in the objective function. We introduce the variable 

{0,1...., }T . The objective function we present later

includes  as a variable to minimise.

, , ,

<

* (1 ) ,i i m r r t

i m t T
i

T x F r (A6) 

The following objective function f  takes into account the 

processor, memory, and network cost. It also takes into 
account load balancing:  

, ,

1 2 ,
1 2

1 2

= ( )* *

( , )* *

i i m r

i m r
i

com r r rep

r r

f C r T x

C r r v W

The ILP formulation of the placement problem is: 

, ,

, 1 2
1 2

minimise

subject to (A1), (A 2),(A 3),(A5),(A6)

{0,1}, , ,

{0,1...., }, ,

{0,1...., }

i m r i

r r

f

x i m r

v UpperBound r r

T

In the experimental section, the optimal solution of the 
placement ILP is found with GLPK software using Branch-
and-Bound algorithm (Lawler and Wood, 1966; Hromkovi ,
2013). 

Table A1 Notation used in the ILP placement and scheduling models 

Sets 

Set of stages of all submitted queries 

i Set of tasks of the stage i

Set of resources types, each type is characterised by its memory capacity and monetary cost 

Set of potential logical resources 

The set of final stages of the submitted queries 

Parameters 

( )yT r  the type of the resource r , ( )Ty r

* ( )mC i The memory amount needed for a task of the stage i

( )mC c the available memory amount in a type c  resource c

,i jQ The amount of data transferred between a task of the stage i  and a task of the stage j

iT The local response time of a task from stage i

T The number of considered future time windows 

,r tF Indicate whether the resource a  is initially available at the moment t  ( = 1 ) or not ( = 0 ), r



Table A1 Notation used in the ILP placement and scheduling models (continued) 

Parameters 

1 2( , )Dist r r The distance between the resource 1r  and the resource 2r

procW The processor cost weight 

memW The memory cost weight 

comW Load communication weight 

repW repartition weight 

( )C r The cost of the logical resource r  ( ( ) = * ( ( ))proc mem m yC r W W C T r ) 

1 2( , )comC r r The cost of communication between the logical resources 1r  and 2r   ( 1 2 1 2( , ) = * ( , )com comC r r W Dist r r ) 

,i jS indicates whether the stage i  and j  are linked by non-pipeline, ,i j , ,i jS  {0,1}  ("non-pipeline"

means that the task j  can start from the moment the task i  ends completely) 

,i jP indicates whether the stage i  and  are linked by pipeline, , {0,1}i jP  ("pipeline" means that the task j

can start as soon as the task i  generates its first output) 

,i mA indicates the logical resource in which the task im  of the stage i  was placed following the placement

phase 

iD the deadline for the query to which the stage i  belongs

iW the penalty weight associated with each run time window after the deadline of the stage 

sW the weight associated with the storage cost of intermediate results 

iq the estimated amount of data generated by the stage i  tasks

Variables 

, ,i m rx Define whether the task im  of stage i  is placed on the resource r  ( = 1 ) or not ( = 0 ),

, , {0,1}i m rx  

,1 2r brv The maximum amount of data transferred between the task placed on the resource 1r  and the task placed on

the resource 2r

fictive variable used in constraint (15), {0,1...., }T

, ,i m ty defines whether the task im  of the stage i  started before, at ( = 1 ) or after ( = 0 ) the moment

0,...,t T , , , 0,1i m ty

, ,i m tw Defines whether the intermediate results of the task im  of the stage i  are stored at the moment

{0,..., }t T  ( = 1 ) or not ( = 0 ), , , 0,1i m tw

,i t fictive variable, i , {0,..., }t T

Appendix B Task scheduling ILP model 

The output of the placement model is considered as an input 
to the scheduling ILP model that we present in this section. 
Table A1 shows the sets, parameters, and variables of the 
scheduling model. The linear constraints are as follows. 

We can deduce from the definition of the family of 
variables y  that:  

, , , , 1, , , <i m t i m t iy y i m t T (B1) 

The intermediate results of a task are maintained on the 
local storage space until all successive tasks begin:  

, , , , , ,
1 2 1

1 2 , ,

= 1 = 0 = 1

, , , , = 1 = 1

i m t j m t i m t

i j i j i j

y and y w

i j m m S or P
(B2) 

This constraint can be expressed linearly as follows: 

, , , , , , , ,
1 2 1

1 2 ,

* *(1 ) 1,

, , , , < , > 1

i j i m t i j j m t i m t

i j i j

S y S y w

i j m m t T S
(B3) 



, , , , , , , ,
1 2 1

1 2 ,

* *(1 ) 1,

, , , , < , > 1

i j i m t i j j m t i m t

i j i j

P y P y w

i j m m t T P
(B4) 

A resource cannot run more than one task at a time (exclusivity 
constraint). From the definition of the family of variables y and 
knowing that a task cannot be interrupted before its end, we can 

deduce that: , , , , = 1i m t i m t T
i

y y  if the task m  of the stage i

uses the resource r  at moment t ; = 0  otherwise. The linear 

formulation of the exclusivity constraint is as follows: 

, , , ,

1
=

,

, , ,

<1
=

,

( )

, , <

i m t i m t T
i

mi t Ti i
A r
i m

i m t r t
mi t Ti i

A r
i m

y y

y F r t T
(B5) 

We propose the following formulation for the precedence 
between tasks constraint. We recall that ‘pipeline’ means that 
the task j can start as soon as the task i generates its first output. 
‘non-pipeline’ means that the task j can start from the moment 
the task i ends.  

, , , , ,1 ,

, , , , 1

j r t i m t T i j
i

i j i

y y S

i j m r t T
(B6) 

, , ,1 , , , , < 1j r t i j j iy S i j r t T  (B7) 

, , , , ,1 ,

, , , , <

j r t i m t i j

i j

y y P

i j m r t T
(B8) 

The economic costs that influence the scheduling of tasks 

are penalties and storage of intermediate results. The goal is 

to find the combination of y and w that minimises this 

cost. Each query has a deadline specified in SLAs. The 

accumulation of penalties begins when the execution of the 

query exceeds the deadline. The objective function to 

minimise is the following. The first (resp. second) line 

represents the penalty cost (resp. storage cost):  

, ,

< <

, ,

<

= * (1 )max

* *

i i r t
ri D T t T ii i

s i i m t

i m t T
i

g W y

W q w
(B9) 

This objective function is non-linear. To have a linear form, 
we introduce the family of variables  such as:

, , ,1 , , <i r t i t iy i r t T (B10) 

The objective function can be expressed linearly as follows: 

,

< <

, ,

<

= *

* *

i i t

i D T t T
i i

s i i m t

i S m T t T
i

g W

W q w
(B11) 

The ILP formulation for the scheduling problem is: 

, ,

, ,

,

minimise

subject to (B1), (B3), (B4), (B5), (B6), (B7), (B8), (B10)

{0,1}, , , <

{0,1}, , , <

{0,1}, , <

i m t i

i m t i

i t

g

y i m t T

w i m t T

i t T

The optimal solution of the scheduling ILP is found with 

GLPK software using Branch-and-Bound algorithm (Lawler 

and Wood, 1966; Hromkovi , 2013).




