
HAL Id: hal-02451012
https://hal.science/hal-02451012

Submitted on 23 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Requirements Driven Data Warehouse Design: We Can
Go Further

Selma Khouri, Ladjel Bellatreche, Stéphane Jean, Yamine Aït-Ameur

To cite this version:
Selma Khouri, Ladjel Bellatreche, Stéphane Jean, Yamine Aït-Ameur. Requirements Driven Data
Warehouse Design: We Can Go Further. International on Symposium Leveraging Applications of
Formal Methods, Verification and Validation (ISoLA 2014), Oct 2014, Corfu, Greece. pp.588-603.
�hal-02451012�

https://hal.science/hal-02451012
https://hal.archives-ouvertes.fr

Official URL
DOI : https://doi.org/10.1007/978-3-662-45231-8_49

Any correspondence concerning this service should be sent

to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in:
http://oatao.univ-toulouse.fr/24902

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

To cite this version: Khoury, Selma and Bellatreche, Ladjel and Jean,

Stéphane and Ait Ameur, Yamine Requirements Driven Data Warehouse

Design: We Can Go Further. (2014) In: International on Symposium

Leveraging Applications of Formal Methods, Verification and Validation

(ISoLA 2014), 8 October 2014 - 11 October 2014 (Corfu, Greece).

Requirements Driven Data Warehouse Design:

We Can Go Further

Selma Khouri1,2, Ladjel Bellatreche1, Stéphane Jean1, and Yamine Ait-Ameur3

1 LIAS/ISAE-ENSMA – Poitiers University, France
{selma.khouri,bellatreche,jean}@ensma.fr

2 National High School for Computer Science (ESI), Algiers, Algeria
s khouri@esi.dz

3 ENSEEIHT/IRIT, Toulouse, France
yamine@enseeiht.fr

Abstract. Data warehouses (DW) are defined as data integration sys-
tems constructed from a set of heterogeneous sources and user’s require-
ments. Heterogeneity is due to syntactic and semantic conflicts occurring
between used concepts. Existing DW design methods associate hetero-
geneity only to data sources. We claim in this paper that heterogeneity
is also associated to users’ requirements. Actually, requirements are col-
lected from heterogeneous target users, which can cause semantic con-
flicts between concepts expressed. Besides, requirements can be analyzed
by heterogeneous designers having different design skills, which can cause
formalism heterogeneity. Integration is the process that manages hetero-
geneity in DW design. Ontologies are recognized as the key solution for
ensuring an automatic integration process. We propose to extend the use
of ontologies to resolve conflicts between requirements. A pivot model is
proposed for integrating requirements schemas expressed in different for-
malisms. A DW design method is proposed for providing the target DW
schema (star or snowflake schema) that meets a uniformed and consistent
set of requirements.

Keywords: Data warehouse, semantic heterogeneity, formalism hetero-
geneity, integration, ontology-based design.

1 Introduction

Data warehouses are defined as data integration systems which data are ex-
tracted from a set of heterogeneous sources and materialized in a unified view,
in order to answer business and analysis requirements collected from users and
decision makers. Concept heterogeneity is one of the most critical issues in DW
system design. Heterogeneity is often associated to data. It is caused by syn-
tactic and semantic conflicts occurring between data stored in different sources.
However, same conflicts can occur when gathering requirements from users and
decision makers. For example naming conflicts occur when concept naming
differs between users (eg. synonymy and homonymy conflicts). Scaling con-
flicts arise when different value measures are used when expressing requirements

(for example the price of a product can be given in dollar or in euro). Confound-
ing conflicts occur when concepts used by users seem to have the same meaning,
but differ in reality due to different measuring contexts. For example, a property
price is applied only to new products for user 1, but is applied to all products for
user 2. Representation conflicts arise when designers describe the same concept
in different ways. For example, customer’s name is represented by two attributes
FirstName and LastName for designer 1, and only by one attribute Name for
Designer 2. The projection of requirements on the ontology helps to identify
these conflicts and inconsistencies in order to resolve them.

A second type of heterogeneity concerns formalisms used to define the require-
ments model. Different formalisms can be used by designers for defining user’s
requirements. This situation is particularly observed with the development of
global enterprises having various corporations that can spread over different
states, countries or even continents, where the number of designers may increase
and become strongly heterogeneous. Each designer has its own design habits.
Consequently, they may use different vocabularies and formalisms to represent
their requirements. This brings several challenging issues related to requirements
integration: (i) how to integrate vocabularies, (ii) how to integrate the formalisms
and (iii) how to identify conflicts and inconsistencies between requirements in
an efficient way.

Unfortunately, most DW design methods focus on data integration and omit
requirements integration. This can be explained by the slow evolution of DW
design methods. In the first generation of DW design, dedicated studies have
mainly concerned three phases [9]: logical design phase that defines a unified
view of data, the ETL (Extract-Transform-Load) phase that extracts data from
sources, transforms data if necessary and loads data into the target schema,
the physical design phase that implements the final DW schema and defines
some relevant optimization structures. Issues related to integration were man-
aged in the ETL phase. In the second generation of DW design, two additional
phases were added: requirements definition and conceptual design phase. Kim-
ball’s studies [12] introduced requirements definition in DW design. Different
requirements driven design methods followed proposing to define DWs from a
set of users’ requirements. Other hybrid methods proposed to define DWs from
both sources and requirements. The conceptual design phase has completed the
design cycle in order to provide a DW schema independent of all implementation
issues, which facilitates its validation by users However, integration issues were
not studied for these additional phases, and concerned exclusively managing
conflicts occurring between data sources. There is now a consensus on a typical
DW life cycle that includes the following phases [8]: requirements definition,
conceptual design, logical design, ETL phase and physical design.

Several studies were proposed in the literature related to the problem of data
integration. The major progress toward automatic integration resulted from some
levels of explicit representation of data meaning through ontologies [4]. Ontolo-
gies are defined as consensual and explicit representations of conceptualization.
Some DW design methods have proposed the use of domain ontologies in order

to manage conflicts between sources. The main proposition of this paper is to
extend the use of ontologies in order to manage requirements conflicts. Further-
more, we take advantage of an important ontological skill: reasoning in order
to identify different relationships between requirements, and to obtain a design
schema of better quality. Three main contributions are proposed in this paper:

– Concerning formalism heterogeneity: two feasible scenarios may be offered
to designers: (i) they use a generic formalism (pivot model) to express their
requirements. Pivot model is a solution that reduces the complexity of ex-
changing different models. (ii) Designers keep using their favorite formalism
and a mapping between their model and the pivot one is established. This
scenario is better than the first one since it provides more autonomy to de-
signers. We propose as a first contribution, a pivot model between three
requirements formalisms usually used in DW design (process driven formal-
ism, use case formalism and goal formalism).

– Concerning vocabulary heterogeneity: conflicts occurring between data stored
in sources or between requirements collected from users can be solved if the
meaning of each object (term) used is defined precisely and explicitly. We
thus propose the use of a shared ontology integrating data sources. The sec-
ond contribution consists of connecting the requirements pivot model to this
ontology in order to eliminate all semantic conflicts, and unify the heteroge-
neous vocabularies used during requirements collection.

– Reasoning: Ontological reasoning mechanisms are then used to identify dif-
ferent relationships between requirements, which constitutes the third con-
tribution. Only a set of consistent requirements is recorded to identify the
target DW schema.

In order to realize these contributions, we propose a design method for DW
schema definition, covering the following phases: requirements definition and
analysis, conceptual design, logical design and physical design. This method takes
as inputs: a shared ontology integrating sources and a set of users’ requirements
(collected from heterogeneous users and defined using different formalisms). It
provides a DW schema (star or snowflake) covering a set of consistent require-
ments. We used Lehigh University Benchmark1 (LUBM) ontology to illustrate
our proposal. Figure 1 illustrates the proposed approach.

The rest of the paper is organized as follows: section 2 presents related works.
Section 3 presents the proposed design method. The pivot and the ontology
models are first described. Ontological reasoning mechanisms are used in order to
analyze the given set of requirements. The four design phases are then presented.
Section 4 presents the implementation of our approach. We illustrate how the
analysis of requirements allows obtaining a DW schema of better quality. Section
5 concludes the paper.

1 swat.cse.lehigh.edu/projects/lubm/

Fig. 1. Approach overview

2 Related Work

This section presents different studies related to DW design, we focus on efforts
proposing requirements driven approaches. Then, we present studies using on-
tologies to define a DW schema. Finally, we present studies using ontologies for
analyzing requirements and reasoning on them.

2.1 DW Design: A Requirements Driven Perspective

The purpose of DW design schema is to define a target schema providing a uni-
fied view of data and answering a set of requirements. This schema must handle
multidimensional concepts (facts, dimension, measures, dimensions attributes
and hierarchies). The DW schema can be defined at different abstraction levels:
conceptual, logical or physical. Different methods have been proposed to define
this design schema. The instability of DW life cycle makes most research efforts
concentrate on one or two design phases. Proposed studies usually deal with the
definition of DW schema or the ETL phase populating the schema. The ETL
phase is out of the scope of this study. The definition of the requirements phase
in DW design emerged from different studies proposing: supply driven, demand

driven and hybrid approaches.
Requirements definition plays a crucial role in DW design and determines

its functional behavior and all needed enterprise information. The requirement
engineering process can be divided into four activities: requirements elicitation
and analysis, specification, validation and management. Requirements elicitation
and analysis in DW design literature differ according to the object analyzed.

We distinguish: (1) Process driven analysis [22] that analyzes requirements by
identifying business processes of the organization, (2) User driven analysis that
identifies requirements of target users and unifies them in a global model like
[3,14] that develops use case models to define DW requirements, and (3) Goal

driven analysis [6] that identifies goals and objectives that guide decisions of
the organization at different levels. These requirements can be functional or non
functional.

Lopez et al. [15] classify requirements specification techniques into three cat-
egories: (i) informal techniques using natural language, sometimes with struc-
turing rules, (ii) semi-formal techniques generally based on graphic notations
with a specified syntax like IStar or UML diagrams [14] and (iii) formal tech-
niques based on mathematical or logical notations providing a precise and non-
ambiguous framework for requirements modeling. For example, [11] propose to
use description logic formalism to define requirements.

Several research efforts were proposed to deal with formalism heterogeneity
problem. The work of [21] is an example of these studies, where the authors
propose solutions to integrate semi-formal formalisms (that use diagram and
tabular techniques) and formal formalisms (that use mathematics, logic or alge-
bra). However, this effort has not been made for DW design.

2.2 Ontologies for Designing DWs

Ontologies have been introduced in DW design for integrating heterogeneous
sources. In these studies, a domain ontology is assumed existent. The set of
sources reference this ontology. These references can be defined a priori during
the source design, or a posteriori using matching algorithms that align sources
to the ontology. Bellatreche et al. [1] provide an overview of different integration
scenarios based on ontologies. Ontological methods for designing DWs emerged
recently, following both supply driven and demand driven approaches. The first
two methods are mainly supply-driven, where a domain ontology is used as a
schema integrating data sources: [17] defines the DW multidimensional model
(facts and dimensions) from an OWL ontology by identifying functional depen-
dencies (Functional ObjectProperties) between ontological concepts. Nebot et al.
[16] define a semi-automatic method to build multidimensional tables from se-
mantic data guided by the user requirements. We proposed in [11] a hybrid design
method that extends the use of ontologies for resolving two issues: integration of
sources and for the specification of the requirements model. However, formalism
heterogeneity issue is not studied in this work. Romero et al. proposed in [18]
a hybrid method producing a multidimensional model from an OWL ontology
describing sources. Requirements are then used to identify the ETL operations
needed for mapping sources to target data stores.

2.3 Ontologies for Requirements Engineering

Requirements engineering field has used ontologies since the 80’s and still in re-
cent works to support analysis and reasoning on requirements. Proposed studies

provide solutions dedicated for transactional systems (not decisional ones). As
instance, [10] proposed an ontological method for analyzing requirements, where
a mapping between specified requirements and ontological elements is estab-
lished. This ontology consists of a thesaurus and inference rules. [13] proposed
an approach to improve requirements specified in natural language by the use
of linguistic ontologies. [19] studied the problem of requirements expression and
their refinement. The authors propose the use of goal-oriented analysis language
to describe each requirement that can be refined into sub-goals. The major-
ity of these studies manage heterogeneity of vocabularies, but they ignore the
heterogeneity of the used modeling languages.

Other studies used ontologies for reasoning about requirements. As instance,
Siegemund et al.[20] used ontologies for structuring concepts, requirements and
relationships captured during requirements elicitation. The approach provides :
an ontology-based requirements meta model describing meta data and require-
ments relationships, and a set of consistency and completeness rules for vali-
dating the requirement Specification. Goknil et al.[7] propose a metamodel sup-
porting the common concepts of some requirements modeling approaches. Four
types of requirements relationships are identified: Refines, Requires, Conflicts,
and Contains. Based on this formalization, analysts can perform reasoning on
requirements to detect implicit relations and inconsistencies. The entered re-
quirements and their relations are stored in an OWL ontology.

We notice however that these studies are dedicated for transactional require-
ments. Surprisingly, no effort has been made for exploiting ontological specifi-
cation and its reasoning capabilities for analyzing DW user’s requirements in
order to enhance the DW schema defined. Besides, the main limitation of these
ontological proposals is about the consensuality of their ontologies. The ontology
presented in these studies is not consensual, it is only defined to store a set of
relevant requirements. This limits designers that aim to share and exchange their
models with other project groups referencing the same requirements ontologies.
We assume in our approach the existence of a consensual ontology defined by
domain experts.

3 Preliminaries : Ontology Formalism

OWL is the ontology definition language endorsed by the World Wide Web
Consortium (W3C). OWL language is based on description logic formalism (a
first order logic). DL formalism is defined as the formalism used to define logics
specifically designed to represent structured knowledge and to reason upon. We
used DL concepts definition to formalize the ontology model. The ontology model
is formally defined as follows OM: <C, R, Ref (C), Formalism>

– C: denotes Concepts of the model (atomic concepts and concept descrip-
tions).

– R: denotes Roles (relationships) of the model. Roles can be relationships
relating concepts to other concepts, or relationships relating concepts to
data-values (like Integers, Floats, etc).

Fig. 2. A partial view of LUBM ontology schema

– Ref : C ∪ R → (Operator, Exp(C,R)). Ref is a function defining termino-
logical axioms of a DL TBOX. Operators can be inclusion (⊑) or equality
(≡). Exp(C,R) is an expression over concepts and roles of OM using con-
structors of description logics such as union, intersection, restriction, etc.
(e.g., Ref(Student)→(⊑, Person ⊓ ∀takesCourse(Person, Course))).

– Formalism is the formalism followed by the global ontology model like RDF,
OWL, etc.

In our context, we assume the existence of a shared global ontology. An ontology
is shared when the sources are committed to using its ontological definitions,
which are accepted and eventually standardized. Each contributor of a project
shall reference that ontology ”as much as possible” (i.e. each local class must
reference its smallest subsuming class in the shared ontology) Locally, designers
may extend it by other concepts and properties to fitful his local requirements.
As consequence, each designer will have his own ontology (called local ontology).
The designers may communicate through the common used concepts defined in
the shared ontology.

4 Proposed Method

We present in this section the method we propose to design DW schemas. We
describe our proposal following the design steps: requirements definition, con-
ceptual design, logical design and physical design.

4.1 Requirements Definition

This phase includes three steps: (1) definition of the pivot model, (2) connec-
tion of the pivot model to the ontology model and (3) ontological analysis of
requirements.

Definition of the Pivot Model: in order to identify the different compo-
nents of our pivot model, we deeply studied three important formalisms used
in requirements-driven DW design : Goal-Oriented formalism, Process-Oriented
language (we studied MCT model, a process model of MERISE, a french model-
ing methodology), and UML use case formalism. We proposed in [2] the proposed
pivot model. Let’s take the following requirement example to illustrate the model
concepts: ”the system should analyze attendance of students to courses”.

Threemain components are identified: Actions, Results andCriteria (Fig3.(b)).
Each requirement is designated by one action to accomplish (Analyze Attendance).
If a requirement includes more than one action, it can be decomposed in multi-
ple requirements (one for each action). Each requirements is influenced by one
or many criteria (Student, Course). Each requirement have a result to fulfill (At-
tendance) that can be measured by a formal or semi formal metric (the number of

students attending the course). Each requirement involves one or many actors that
interact with the system to achieve the requirement. Two types of requirement are
distinguished: functional and non-functional. Requirements can be related with
each other through one of the following relationships: (Requires,Refines,Contains
and Conflicts). These relationships will be populated by using reasoning rules on
requirements.

Formally, we define a requirement as follows:
Requirement :< A,R,M, C >, in which:

– A: the action that a system performs to yield an observable result.
– R: the results realized by the system.
– M = {m1,m2,...,mn}, a set of metrics quantifying the result.
– C = {c1,c2,...,cn}, a set of sequence of criteria influencing the requirement’s

result.

Connection of Ontology Model to Requirements Model: the domain
ontology is used in our approach as a formal and consensual domain dictio-
nary, from which the designer can choose the most relevant concepts to express
collected requirements. Requirements are structured using the proposed pivot
model. They are afterwards expressed at the ontological level. In order to achieve
this, we defined a mapping between coordinates of each requirement (Action and
Criteria) and the resources (concepts) of the domain ontology. The connection
between the ontology and requirement pivot model is presented in figure 3, where
part (a) presents a fragment of the ontology metamodel connected to the pivot
model (part (b)). The merged meta-model, calledOntoPivot is defined as follows:

OntoP ivot :< GO,Pivotmodel >, Ontological Pivot, such that:

– GO : < C,R,Ref(C), F ormalism > is the global shared ontology
– Pivotmodel: < Actor,Requirement,Relationship >, such that:

• Requirement:< A,R,M, C >, such that:
∗ A = {a1,a2,...,an}, set of actions. For each a ∈ A,

a∈ 2CU2RU2Ref (ontological domain).
∗ C = {c1,c2,..., cn}, set of criteria. For each c ∈ C, c∈ 2CU2RU2Ref .

• Relationships = {Contains,Refines,Conflicts, Requires}, set of re-
lations between requirements. For each relation ∈ Relationships,
relation∈ 2R.

(b)(a) (b)(a)

Fig. 3. Pivot metamodel connected to the ontology metamodel [2]

Note that each requirement can introduce new concepts to the ontology. For
example, the requirement ”the system should analyze attendance of students to
courses” will be defined as a new concept in the ontology (having action, re-
sult, criteria and metric properties). This concept is defined as an instance of
a meta concept ”owl:Requirement” extending OWL meta model (see figure 4).
This requirement concept can introduce a new concept ”AnalyzeAttendance”,
whereas students and courses are already defined in the shared ontology. Con-
sistency reasoning mechanism is used to identify incoherences and correct them.
This process allows the definition of an application ontology, which combines a
domain ontology and task (requirements) ontology.

Ontological Analysis of Requirements: once requirements are structured
using the pivot model and expressed formally using the ontology model, they
are analyzed to discover hidden relationships between them. As stated in the
literature, four main relationships between requirements can be defined: contains,
refines, requires and conflicts. Some reasoning mechanisms are already supported
by the ontology like the equivalence between requirements concepts, others must
be defined as new rules. Let’s assume that: Subclass(C) is the set of subclasses of

each class c ∈ C, Role(c) is the set of roles having class c as domain, Action(R)
denotes the action class of requirement R, Criteria(R) denotes the set of criteria
classes of Requirement R. If a role is used to define a requirement’s action, its
domain class is returned. If an expression (using Ref function) is used to define
requirement’s action or result, it is considered as a defined class. We formally
defined the following reasoning rules to identify the four relationships between
requirements:

– Refinement relationship: A requirement R refines a requirement R’ if R is
derived from R’ by adding more details to its properties [7]. Formally, refines
relation is defined as follows:
R refines R’ if
Action(R) ⊑ Action(R’) AND
(Criteria(R) ⊂ Subclass(Criteria(R’)) OR Criteria(R) ⊂ Role(Criteria(R’)))

Example 1. R: The system shall analyze messages sent to individuals, teams,
or all course participants at once.
R’: The system shall analyze messages sent.
where: Action(R) and Action(R’): AnayzeMessagesSent,
Criteria (R): {Individual, Team, Participant}, Criteria (R’): {⊤}
We observe that : Action(R) ≡ Action(R’) and Criteria(R) ⊂ Subclass
(Criteria(R’))

– Containment relationship: A requirement R contains a requirement R’ if R’
are parts of the whole R1 (part-whole hierarchy) [7]. Formally, containment
relation is defined as follows:
R contains R’ if
Action(R) ⊑ Action(R’) And
Criteria(R) ⊂ Criteria(R’)

Example 2. R: The system shall allow lecturers to analyze enrollment poli-
cies based on grade, first-come first-serve and department.
R’: The system shall allow lecturers to analyze enrollment policies based on
grade.
where: Action(R) and Action(R’): AnalyzeEnrollment,
Criteria (R): {Grade, Position,Department}, Criteria (R’): {Grade}
We observe that : Action(R) ≡ Action(R’) and Criteria(R) ⊂ Criteria(R’)

– Conflict relationship: A requirement R conflicts with a requirement R2 if the
fulfillment of R1 excludes the fulfillment of R2 and vice versa [7]. Formally,
conflicts relation is defined as follows:
R refines R’ if
Action(R) owl : disjointWith Action(R’) And
Criteria(R) ⊆ Subclass(Criteria(R’)) OR Criteria(R) ⊆ Criteria(R’)

Example 3. R: The system shall allow lecturers to limit the number of stu-
dents subscribing to a course.
R’: the system shall have no maximum limit on the number of course par-
ticipant ever.

where: Action(R): LimitNbStudent and Action(R’): NotLimitNbStudent,
Criteria (R): {Student, Course}, Criteria (R’): {Participant, Course}
We observe that : Action(R) owl : disjointWith Action(R’)
and Criteria(R) ⊂ Subclass(Criteria(R’))

– Require relationship: A requirement R requires a requirement R2 if R1 is
fulfilled only when R2 is fulfilled [7]. We introduce for this relation a new
relation ’owl:Require’ between OWL entities (E1 owl:Require E2) extending
OWL meta model, that denotes that entity E1 is a precondition for entity
E2. Formally, requires relation is defined as follows:

R requires R’ if
Action(R) owl : Require Action(R’) And
Criteria(R) ⊆ Subclass(Criteria(R’)) OR Criteria(R) ⊆ Criteria(R’)

Example 4. R: The system shall allow analyze students notification.
R’: the system shall provide messaging facilities.
where: Action(R): AnalyzeNotification and Action(R’): ProvideMessaging,
Criteria (R): {Student}, Criteria (R’): {⊤}
We observe that : Action(R) owl : Require Action(R’)
and Criteria(R) ⊂ Subclass(Criteria(R’))

4.2 Conceptual Design

A DW ontology (DWO) viewed as a conceptual abstraction of the DW , is
defined from the global domain ontology (GO) by extracting all concepts and
properties used by user requirements. Three scenarios are possible:

1. DWO = GO: the GO corresponds exactly to users’ requirements,
2. DWO ⊂ GO: the DWO is extracted from the GO,
3. DWO ⊃ GO: the GO does not fulfill all users’ requirements.

We defined in [11] different reasoning mechanisms for checking the consistency of
the ontology and for identifying multidimensional concepts. We also proposed an
algorithm that analyses users’ requirements in order to identify the multidimen-
sional role of concepts and properties and store them as ontological annotations.
The multidimensional annotation of DWO is based on user requirement. Follow-
ing Kimball’s definition, we consider that each requirement Result is the fact to
analyze, each of its metrics is a measure candidate for this fact, and each of its
criteria is a candidate dimension. Facts are linked to dimensions by looking for
one-to-many relationships between corresponding ontological concepts. Dimen-
sions hierarchies are formed by looking for many-to-one relationships between
dimensions linked to the same fact. This annotation is validated by the designer.

DWO definition extends DO formalization as follows: <C, R, Ref (C), For-
malism, Multidim> where Multidim : C ∪ R → Role. Multidim is a function
that denotes the multidimensional role (fact, dimension, measure, attribute di-
mension) of concepts and roles.

4.3 Logical Design

The logical model of the DW is generated by translating the annotated DWO

into a relational model. Several works in the literature proposed methods for
translating ontologies described in a given formalism (PLIB, OWL, RDF) to a
relational or object-relational representation. This translation can follow three
possible relational representations: vertical, binary and horizontal. Vertical rep-
resentation is used for RDF ontologies, and stores data in a unique table of
three columns (subject, predicate, object). In a binary representation, classes
and properties are stored in tables of different structures. Horizontal represen-
tation translates each class as a table having a column for each property of
the class. We proposed in [5] a set of translation rules for representing PLIB
and OWL ontology (classes, properties and restrictions) in a relational schema
following the binary and horizontal representations.

4.4 Physical Design

This last phase implements the final DW schema using a chosen DBMS. Both
conventional or semantic data repositories can be used to implement the DW
schema. Semantic data repository stores both the logical and conceptual schema
(in the form of a local ontology). As we extended the ontology with the require-
ments model, even requirements can be stored in the repository. We implemented
the obtained DW schema using two semantic repositories: OntoBD (academic
database) and Oracle semantic database. OntoDB supports a horizontal storage
layout, whereas Oracle supports a vertical storage layout.

5 Implementation

In order to implement our approach, we used LUBM ontology related to univer-
sity domain, and the CMS (course management system) requirements
document2. CMS provides a set of 60 requirements related to teaching and man-
agement of courses including interactions with students taking the course. Re-
quirements have been adapted to a decisional application. We modified actions of
requirements to analysis actions, which are more suitable for DW applications.

The implementation of LUBM ontology is made using Protege framework, de-
fined as free, open-source ontology editor and framework for building intelligent
systems (http://protege.stanford.edu/). The ontology is defined using OWL2

language. The definition of the pivot requirements model at the ontological level
is defined by the extension of OWL ontology meta model. Figure 4 illustrates this
extension. Requirement meta class is defined as a new class instantiating meta
class ’class’, which defines all classes of the ontology. The whole pivot model is
defined. Action, Criteria and Result are defined as properties of Requirement
class, they have owl:Class or owl:Property as a range. Each CMS requirement is
defined as an instance of this Requirement class. Relationships between require-
ments are defined as roles.
2 The full requirements document is available at
http://www.home.cs.utwente.nl/~goknila/sosym/

Fig. 4. OWL meta model extended with the requirement pivot model using Protege
Editor

The set of reasoning rules, identifying relationships between requirements,
are implemented in a java program accessing the ontology using OWL API

(owlapi.sourceforge.net/). Each relationship inferred is stored in the ontology
for the corresponding requirements. The program identified a set of relationships
between defined requirements: 20 refinement relationships, 10 containment rela-
tionships, 12 require relationships and 4 conflict relationships. Figure 5 presents
a set of requirements and discovered relationships between them. The schema is
obtained using Protege plugin OntoGraf 3.

The DWO is defined from LUBM ontology using the modularity method
OWLExtractor. This method is chosen because it is dedicated for OWL ontolo-
gies and it provides a Protege plugin implementing the method. The method
takes as inputs the domain ontology and a signature (set of terms which will
be extracted in the local ontology). In our approach, the signature corresponds
to the set of requirements. We identified a subset of relevant requirements by
analyzing the relationships between them. For example, refinement and con-
tainment relationships allow to eliminate some redundant requirements. When
a requirement contains other requirements, the first requirement is kept, the
contained requirement can be ignored. When a requirement refines another re-
quirement, the first one gives more details (usually more criteria) to the second
one. The second requirement can thus be ignored. Require relationship allow
to identify the set of requirements that must be included in the final schema
as they present necessary prerequisites to other requirements. Conflict relation-
ships allow to identify requirements that cannot be fulfilled together, and cause
inconsistencies. The designer must choose one of these conflictual requirements.
Each requirement has a priority attribute, which can be used to eliminate re-
quirements having the lowest priority. Require relationship can also be used. If
a requirement is required by other requirements, it is more careful to not reject
it.

3 http://protegewiki.stanford.edu/wiki/OntoGraf

Fig. 5. Discovered relationships between requirements

Fig. 6. DW Multidimensional schema obtained

The annotation algorithm is executed to annotate the extracted ontology by
multidimensional annotations. Figure 6 illustrates the obtained multidimensional
schema.

The reasoning rules help us to obtain a DW schema of better quality. Suppose
that step 2 (analysis of requirements) is ignored. This would provide a schema
containing conflict requirements. For example, the schema cannot answer the non
functional requirement stating that the system should ”limit space of storage for
courses”, and another requirement stating that the system should ”maximize
space of specific courses ”. The schema would include redundant concepts due
to the presence of containment and refinement relations between requirements.
In fact, instead of managing and validating 60 requirements, we just have to
manage 40 requirements. The validation of this schema is easier since it has to
be validated by a consistent subset of requirements.

6 Conclusion

VariousDW design methods have been proposed covering different design phases:
conceptual, logical, physical and ETL design phases. Most of these methods
consider integration issues related to data, but ignore requirements integration.
User’s requirements are collected from heterogeneous users, which usually causes
semantic conflicts. Requirements are analyzed and formalized by different de-
signers, which can cause schematic and formalisms heterogeneity. We propose
in this paper to manage requirements integration for DW definition through
an ontology-based design method. The method takes as inputs a set of require-
ments, and a shared ontology integrating sources. For handling formalisms het-
erogeneity, we defined a pivot model between three formalisms usually used for
DW requirements models (process, use case and goal formalisms). The pivot
model is connected to the shared ontology. This connection allows expressing
requirements using ontological concepts which eliminates semantic conflicts. It
also allows reasoning on requirements in order to identify semantic relationships
between requirements (refine, contain, require and conflict relationships). The
DW schema is then defined by following three design stages: conceptual, logical
and physical design. The target DW schema is defined from a set of coherent
and consistent requirements. We illustrated the proposed approach using LUBM
ontology and requirements defined in the CMS requirements document.

There are different open issues that we are currently working on like: the
management of requirements evolution, the completion of the approach with the
ETL process for loading data, and the evaluation of the approach in a large scale
case study in which we evaluate DW quality metrics and get designers feedback.

References

1. Bellatreche, L., Dung, N.X., Pierra, G., Hondjack, D.: Contribution of ontology-
based data modeling to automatic integration of electronic catalogues within en-
gineering databases. Computers in Industry 57(8), 711–724 (2006)

2. Boukhari, I., Bellatreche, L., Khouri, S.: Efficient, unified, and intelligent user
requirement collection and analysis in global enterprises. In: Proceedings of In-
ternational Conference on Information Integration and Web-based Applications &
Services, p. 686. ACM (2013)

3. Bruckner, R., List, B., Schiefer, J.: Developing requirements for data warehouse
systems with use cases. In: Proc. 7th Americas Conf. on Information Systems, pp.
329–335 (2001)

4. Doan, A., Halevy, A.Y., Ives, Z.G.: Principles of Data Integration. Morgan Kauf-
mann (2012)

5. Fankam, C.: OntoDB2 : Un systeme flexible et efficient de Base de Donnees á
Base Ontologique pour le Web semantique et les donnees techniques. PhD thesis,
ENSMA (December 2009)

6. Giorgini, P., Rizzi, S., Garzetti, M.: Goal-oriented requirement analysis for data
warehouse design. In: Proceedings of the 8th ACM International Workshop on
Data Warehousing and OLAP, pp. 47–56. ACM (2005)

7. Goknil, A., Kurtev, I., Berg, K., Veldhuis, J.-W.: Semantics of trace relations in re-
quirements models for consistency checking and inferencing. Softw. Syst. Model. 10,
31–54 (2011)

8. Golfarelli, M.: From user requirements to conceptual design in data warehouse
design a survey. In: Data Warehousing Design and Advanced Engineering Appli-
cations Methods for Complex Construction, pp. 1–16 (2010)

9. Inmon, W.H.: Building the data warehouse. J. Wiley (2002)
10. Kaiya, H., Saeki, M.: Ontology based requirements analysis: Lightweight seman-

tic processing approach. In: Proceedings of the Fifth International Conference on
Quality Software, pp. 223–230. IEEE Computer Society (2005)

11. Khouri, S., Boukhari, I., Bellatreche, L., Jean, S., Sardet, E., Baron, M.: Ontology-
based structured web data warehouses for sustainable interoperability: Require-
ment modeling, design methodology and tool. Computers in Industry, 799–812
(2012)

12. Kimball, R., Reeves, L., Thornthwaite, W., Ross, M., Thornwaite, W.: The Data
Warehouse Lifecycle Toolkit: Expert Methods for Designing, Developing and De-
ploying Data Warehouses, 1st edn. John Wiley & Sons, Inc., New York (1998)

13. Körner, J.S., Torben, B.: Natural language specification improvement with ontolo-
gies. Int. J. Semantic Computing 3, 445–470 (2009)

14. List, B., Schiefer, J., Tjoa, A.M.: Process-oriented requirement analysis supporting
the data warehouse design process a use case driven approach. In: Ibrahim, M.,
Küng, J., Revell, N. (eds.) DEXA 2000. LNCS, vol. 1873, pp. 593–603. Springer,
Heidelberg (2000)

15. López, O., Laguna, M.A., Garćıa, F.J.: Metamodeling for requirements reuse. In:
Anais do WER02-Workshop em Engenharia de Requisitos, Valencia, Spain (2002)

16. Nebot, V., Berlanga, R.: Building data warehouses with semantic web data. Deci-
sion Support Systems (2011)

17. Romero, O., Abelló, A.: Automating multidimensional design from ontologies. In:
Proceedings of the ACM Tenth International Workshop on Data Warehousing and
OLAP, pp. 1–8. ACM (2007)

18. Romero, O., Simitsis, A., Abelló, A.: Gem: Requirement-driven generation of etl
and multidimensional conceptual designs. In: Data Warehousing and Knowledge
Discovery, pp. 80–95 (2011)

19. Saeki, M., Hayashi, S., Kaiya, H.: A tool for attributed goal-oriented requirements
analysis. In: 24th IEEE/ACM International Conference on Automated Software
Engineering, pp. 674–676 (2009)

20. Siegemund, K., Edward, J., Thomas, Y., Yuting, Z., Pan, J., Assmann, U.: To-
wards ontology-driven requirements engineering. In: 7th International Workshop
on Semantic Web Enabled Software Engineering (October 2011)

21. Wieringa, R., Dubois, E.: Integrating semi-formal and formal software specification
techniques. Information Systems 23(3-4), 159–178 (1998)

22. Winter, R., Strauch, B.: A method for demand-driven information requirements
analysis in data warehousing projects. In: Proceedings of the 36th Annual Hawaii
International Conference on System Sciences, 2003, pp. 9–19. IEEE (2003)

