
HAL Id: hal-02451007
https://hal.science/hal-02451007

Submitted on 23 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

B-PERFect - Applying the PERF Approach to B Based
System Developments

Alexandra Halchin, Abderrahmane Feliachi, Neeraj Kumar Singh, Yamine
Aït-Ameur, Julien Ordioni

To cite this version:
Alexandra Halchin, Abderrahmane Feliachi, Neeraj Kumar Singh, Yamine Aït-Ameur, Julien Ordioni.
B-PERFect - Applying the PERF Approach to B Based System Developments. International Con-
ference Reliability, Safety, and Security of Railway Systems. Modelling, Analysis, Verification, and
Certification (RSSRail 2017), Nov 2017, Pristoia, Italy. pp.160-172. �hal-02451007�

https://hal.science/hal-02451007
https://hal.archives-ouvertes.fr

Official URL
DOI : https://doi.org/10.1007/978-3-319-68499-4_11

Any correspondence concerning this service should be sent

to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in:
http://oatao.univ-toulouse.fr/24894

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

To cite this version: Halchin, Alexandra and Feliachi, Abderrahmane

and Singh, Neeraj and Ait Ameur, Yamine and Ordioni, Julien B-

PERFect - Applying the PERF Approach to B Based System

Developments. (2017) In: International Conference Reliability, Safety,

and Security of Railway Systems. Modelling, Analysis, Verification, and

Certification (RSSRail 2017), 14 November 2017 - 16 November 2017

(Pristoia, Italy).

B-PERFect

Applying the PERF Approach to B Based

System Developments

Alexandra Halchin1,2(B), Abderrahmane Feliachi1, Neeraj Kumar Singh2,
Yamine Ait-Ameur2, and Julien Ordioni1

1 RATP, ING/STF/QS, 54 Rue Roger Salengro, 94724 Fontenay-sous-Bois, France
{alexandra.halchin,abderrahmane.feliachi,julien.ordioni}@ratp.fr

2 INPT-ENSEEIHT/IRIT, 2 Rue Charles Camichel, 31071 Toulouse, France
{Alexandra.Halchin,nsingh,yamine}@enseeiht.fr

Abstract. An independent safety assessment of railway software systems
is performed by RATP (Régie Autonome des Transports Parisiens) for all
safety-critical systems before their deployment in its network. Whenever
possible, this activity is performed using the PERF approach (Proof Exe-
cuted over a Retro-engineered Formal model). PERF is a methodology
which handles formal verification of already developed software. This app-
roach is applied to a variety of software systems, developed using languages
such as SCADE, Ada or C. It provides an alternative verification that can
be applied for the independent safety assessment of critical systems used by
RATP. In this paper, we propose the B-PERFect method to generalize the
application of the PERF approach for critical systems which are based on
the B method. In particular, this paper focuses on transformation strategy
from B language to the pivot language of PERF: HLL. HLL is a synchro-
nous data-flow language equipped with formal verification techniques. The
differences between B and HLL are pointed out and the translation process
is presented in this regard.

Keywords: PERF · B method · HLL · Safety assessment · Translation

1 Introduction

For several years, RATP has been involved in the application of formal ver-
ification techniques to assess the safety level of railway systems. RATP pays
a lot of attention to the safety of its deployed systems. This safety regime is
implemented through a mandatory internal independent safety assessment of all
safety-critical railway systems. It gave birth to a formal verification methodology
called PERF [3]. It is an independent assessment that helps to double-check the
safety of the developed software in addition to the verification performed by the
software supplier.

PERF was designed to be applicable to any software system independently
of their development processes and languages. By taking the source code of
the developed software as the target of the verification, it ensures a complete

_https://doi.org/10.1007/978-3-319-68499-4 11

language-agnostic and non-interference with the software supplier which dras-
tically reduces any possible bias. It also allows for applying formal verification
techniques to the safety assessment activity, which is not always achieved by the
software supplier in its safety verification.

In order to support the different solutions of all RATP’s suppliers, a number
of translators were developed and integrated into PERF. These translators give
a formal representation of the targeted source code in the PERF’s pivot language
HLL, a synchronous data-flow language, similar to Lustre, allowing to express, in
the same formalism, the system behavior as well as safety requirements. The role
of the translators is to give a semantics-preserving formalization of the software
to be analyzed in HLL. Currently, translators for SCADE, Ada and C languages
are integrated in the PERF tool chain.

In a similar vein, the B-PERFect project was initiated in order to investigate
the applicability of PERF on software systems developed using the B method
[1]. Software systems developed using B are valid by construction with respect
to safety requirements. The idea behind the B-PERFect project is not to replace
the formal verification process of B but to propose a verification alternative to
be used for the internal independent safety assessment. This will not question
the proof process of B. However, it may eventually reveal any error in the initial
formalization of safety requirements.

This paper describes a new approach for software safety verification and
gives an overview of a translation process from B0 (a subset of B language close
to imperative programs) to HLL, the pivot language of PERF. Moreover, it
shows the general architecture of the code generation process, including technical
challenges related to tool development. Section 2 introduces the context of this
work and motivates the proposed approach. The required background related
to the B method and HLL is described in Sect. 3. Section 4 presents the general
translation strategy. In Sect. 5, we present some related works. Finally, Sect. 6
concludes our work along with future directions.

2 Context

RATP operates one of the most complex urban multi-modal public transporta-
tion networks in the world. In the Parisian region, its network includes 16 metro
lines, 2 RER (intercity trains) lines, 7 tramway lines and more than 300 bus
lines; transporting not less than 10 Million passengers each day. RATP has built,
throughout the years, a rich expertise not only in operating transportation net-
works, but also in the engineering of railway transportation systems. This exper-
tise made RATP one of the world pioneers in metro automation and one of the
experts in automating existing lines.

The growing demand of transportation capacity coupled with continuous
advances in computer technology accelerates the obsolescence of existing sys-
tems. These factors, added to the improvement and modernization desires, have
led RATP to upgrade its network by adopting integrated and upgradeable solu-
tions, through partially or fully automated transportation systems. The coexis-
tence of these different systems brings additional difficulties, particularly related

to the safety assessment of the railway systems which depend on the automation
level of these systems. One major concern of RATP is to ensure the safety of
any deployed system on the network during all the project phases.

In order to guarantee a better and more extensive safety analysis, RATP’s
engineering department (ING) relies, whenever possible, on rigorous verification
methodologies based on formal methods. One of the first application of formal
methods in an RATP project goes back to the late eighties were the Z method
revealed a number of safety critical bugs for the SACEM system (RER A) which
already passed the tests campaign. This successful application of formal methods
led RATP to require their use by all safety-critical software systems suppliers. As
a consequence, the development of the first driverless metro line in Paris (Line
14) in 1998 was realized using the B formal method. The safety of the system
was proven by the construction which helped to remove all testing phases while
guaranteeing a complete coverage.

The use of formal methods cannot be required by RATP anymore because,
according to the regulations, this would promote some suppliers over the others.
However, the use of a formal development method is still highly recommended
by RATP to all its suppliers. In addition, an independent safety assessment is
performed internally by RATP. RATP’s opinion is that using formal methods
independently of the supplier reveals usually more bugs than the simple verifica-
tion of the supplier’s testing campaign. Since the 2000s, RATP is working with
different suppliers, using different development methods and languages. This
heterogeneity requires RATP to master all its supplier methods and languages,
which introduced a skill management difficulty with regards to the assessment
process. The solution was to use a unified verification approach, pointed as an
“ex post facto” proof, for the different projects which allows for the application
of formal verification independently of the supplier’s development language or
method.

This situation was the starting point of the PERF (Proof Executed over
a Retro engineered Formal model) methodology and its supporting team. The
technique has been successfully used on Thales, Ansaldo and Alstom (ex-Areva
TA) products, in charge of the Computer Based Interlocking Lines 1, 4, 8 &
12, the wayside and the on-board equipment of CBTC (Communication Based
Train Control) Line 3, 5, 9 & 13 projects. PERF is now applied in every project,
whenever possible, meaning essentially when the source language of the software
is supported. This is currently the case for projects developed using C, Ada
or Scade languages. The general workflow of the PERF methodology is given
in Fig. 1. The real strength of PERF is its supporting tool chain, composed of
translators, counter-example analyzers and SAT-based proof engines [17].

A number of projects keep using the B method for the development of safety-
critical systems. In this case, the independent assessment is a bit more com-
plicated and might be intrusive in some situations. Even though the formal
verification performed by the B proof engines can be trusted, the validation
of the safety properties can only be performed by cross-reading which, besides
being a tedious task, may not be very effective. The idea of the B-PERFect
project is to provide an independent alternative for the verification of the safety

Software
(source code, for-

mal model ...)

Front End
(Translator)

Formal execution
model

System
environment

(assumptions)

Formal envi-
ronment model

Safety
requirements

Proof Obligations

Proof engine

Counter
examples

Proof

certificate

Counter exam-
ple analyzer

Fig. 1. The PERF verification workflow

properties on systems developed using the B method. The B code is transformed
in a HLL formal execution model. To this model, the safety requirements targeted
by the verification are added and the entire model is passed to the prover. By
doing so, one can prove initial system properties which are expressed in natural
language. The idea behind this is not to prove again the existent B code but to
check if safety properties were modeled correctly in the initial code. The PERF
approach makes this verification non intrusive and also supports the verifica-
tion of the code generation process if needed. It will also help, in the context of
heterogeneous systems, to apply a unified verification to all system components.

3 Background

B Method. The B method is a formal method based on first-order logic and
set theory. It can handle a complete critical-software development process from
specification to code [1]. The B development process is layered. Each layer corre-
sponds to an abstraction level and the refinement provides the relation between
layers. This method has proven its feasibility for large-scale industrial applica-
tions, particularly in railway domain [2].

Models are represented in B as machines. A machine contains state variables,
instances of other machines, a state invariant, an initialization clause and oper-
ations acting on the defined variables. Generally, B project models represent a
state transition system in which the initialization clause sets the initial values of
variables and the operation clause specifies how variables are modified from one
state to another. The invariant describes the safety properties of the model and
is specified using predicate logic. The highest level of abstraction is the specifica-
tion, a representation of functional requirements and the lowest one corresponds to
the implementation where only programming-like constructs are allowed [7]. The
refinement is the process of transformation from an abstract model into a con-
crete model specified in a subset of the B language: the B0 language, which can

be automatically translated into executable code [5,14,18,19]. Last level of refine-
ment called implementation must be deterministic. For instance, parallel substitu-
tions are not allowed, the type of variables must be scalar and modules are written
in a procedural style. The advantage of using the B method is that it supports a
correct by construction development approach which implies that each step of the
development process can be proved if the target is a zero bug development.

B Development Example. As an example, the below implementation
describes a simplified B machine which reads the input values from an external
machine and computes the minimum of two variables. This example contains two
B machines: Utils i defines auxiliary operations and Main i defines the main
program. The Main i machine represents an entry point of the execution. Main
is an operation to select an order of the execution using defined operations in the
imported machine. In the example, firstly, the operation computeSum is called
that changes the state of the machine Utils i as a side effect. The variable xx
is initialized using the output of the operation readVar. This operation returns
the value of a variable which is modified when computeSum is called. Finally,
the minimum of two variables is computed using the operation minimum.

1 IMPLEMENTATION Main_i REFINES Main IMPORTS Utils

2 CONCRETE_VARIABLES xx,yy,rr

3 INVARIANT xx ∈ NAT ∧ yy ∈ NAT ∧ rr ∈ NAT

4 INITIALISATION xx := 0 ; yy := 0 ; rr := 0

5 OPERATIONS

6 Main =

7 computeSum ; xx <-- readVar ; rr <-- minimum (xx , yy)

8 END

9 END

Listing 1. Main Implementation of B Machine

1 IMPLEMENTATION Utils_i REFINES Utils

2 CONCRETE_VARIABLES sum

3 INVARIANT sum ∈ NAT

4 INITIALISATION sum := 0

5 OPERATIONS

6 rr <-- minimum (aa, bb) =

7 IF aa >= bb THEN rr := bb ELSE rr := aa END ;

8 computeSum =

9 VAR ii IN ii := 0 ;

10 WHILE ii < 2 DO

11 ii := ii + 1 ; sum := sum + ii ;

12 INVARIANT ii ∈ NAT ∧ ii ≤ 2

13 VARIANT 2 - ii

14 END

15 END ;

16 rr <-- readVar =

17 rr := sum

18 END

Listing 2. Utils Implementation of B Machine

HLL, the Pivot Language of PERF. The PERF approach is built around
HLL (High Level Language), a formal declarative and synchronous data flow
language in the tradition of LUSTRE [11]. Models are defined by typed streams
that can be composed using either temporal or data operators. Temporal oper-
ators can be used to describe clock-dependent expressions. The data operators,
such as arithmetic, logical and array operators, are used to manipulate streams
values. The declarative nature of the language makes it suitable for the definition
of formal models as well as safety properties.

An HLL model is described by a number of sections containing type defini-
tions, constant definitions, stream declarations and definitions, proof obligations,
constraints and namespaces definitions. Streams can have integer or boolean val-
ues and they are interpreted in the mathematical sense, without any notion of
side effects. The notion of sequentiality is absent, which means that the order of
the items does not affect the meaning of the HLL model. A HLL project is orga-
nized in namespaces sections. Streams are declared in declarations blocks with
type checking information, and their values are given in the definitions blocks.
The proof obligations block contains a set of properties related to streams for
verification purpose. Constraints expressions are used to reduce the domain def-
inition of unbound input streams.

HLL Development Example. This section describes the HLL model that
would result from translating the B example given above. The produced HLL
model contains two namespaces, one corresponding to the translation of the
Main i machine and another for the translation of the imported machine
Utils i. For each B operation, a corresponding HLL namespace section is cre-
ated, such as "Main" which contains the translation of the B operation Main.

1 Namespaces: "Main_i"{ // B: Main_i implementation

2 Declarations:

3 int "xx"; int "yy"; int "rr"; int "xx<0>"; int "yy<0>";int "rr

<0>";

4 Definitions: "xx<0>" := 0; "yy<0>" := 0; "rr<0>" := 0;

5 "xx" := "Main"::"xx<1>"; // B: xx <-- readVar;

6 "yy" := "Main"::"yy<0>";

7 "rr" := "Main"::"rr<1>"; // B: rr <-- minimum(xx,yy)

8 Namespaces: "Main"{ // B: Main operation

9 Declarations: int "xx<0>"; int "yy<0>"; int "rr<0>";

10 Definitions:

11 "xx<0>" := "Main_i"::"xx<0>"; // Maps the initial values of

variables

12 "yy<0>" := "Main_i"::"yy<0>";

13 "rr<0>" := "Main_i"::"rr<0>";

14 "xx<1>" := "Utils_i<0>"::"readVar<0>"::"rr"; // Operation call

15 "rr<1>" := "Utils_i<0>"::"minimum<0>"::"rr"; // Operation call

16 }}

Listing 3. HLL Translation of Main Machine

HLL is an SSA language (Single State Assignment) since, in a model, a stream
can be assigned only once. As stated in [8], when converting from a programming
language to SSA form, assignments of a program variable are replaced with

assignments to new versions of the variable. Each B assignment will thus be
translated to an HLL assignment with a new version of the modified variable.
The value of the original variable is replaced by the value of the last known
version of this variable.

17 Namespaces: "Utils_i<0>"{ // B:Utils_i implementation

18 Declarations: int "sum<0>"; int "sum<1>";

19 Definitions: "sum<0>" := 0;

20 "sum<1>" := "computeSum<0>"::"sum";

21 Namespaces: "computeSum<0>"{ // First call of B: computeSum

operation

22 Declarations:

23 int "sum<0>"; int "ii<0>"; int "ii<1>"; int "ii<2>"; int "sum";

24 Definitions:

25 "sum<0>" := "Utils_i<0>"::"sum<0>"; "ii<0>" := 0;

26 // While Loop - iter 0

27 "ii<1>" := "ii<0>" + 1;

28 "sum<1>":= "sum<0>" + "ii<1>";

29 "ii<2>" := if "ii<0>" < 2 then "ii<1>" else "ii<0>";

30 "sum<2>" := if "ii<0>" < 2 then "sum<1>" else "sum<0>";

31 //... Repeat the loop code with new index

32 "sum" := "sum<4>";

33 }

34 "readVar<0>"{ // First call of B: readVar operation

35 Declarations: int "rr";

36 Definitions: "rr":= "Utils_i<0>"::"sum<1>";

37 }

38 "minimum<0>"{ // First call of B: minimum operation

39 Declarations:

40 int "aa<0>";int "bb<0>";int "rr";int "rr<0>";int "rr<1>";int"rr

<2>";

41 Definitions:

42 "aa<0>" := "Main_i":":Main"::"xx<1>"; //Mapping of input

parameters

43 "bb<0>" := "Main_i"::"Main"::"yy<0>";

44 "rr<0>" := "bb<0>"; // IF block substitution

45 "rr<1>" := "aa<0>"; // ELSE block substitution

46 "rr<2>" := if "aa<0>" >= "bb<0>" then "rr<0>" else "rr<1>";//IF

block

47 "rr" := "rr<2>";

48 }}

Listing 4. HLL Translation of Utils Machine

Line 3 defines the variables used for the translation of the machine Main i

with their corresponding type. Line 4 and lines 8–16 represent the computation
done in blocks INITIALISATION and OPERATIONS of the B machine, respec-
tively. In line 14, the output of the operation readVar is assigned to the local
variable "xx<1>". Note that state variables are necessary to memorize the final
values of variables after the execution of the operation Main (lines 5–7). As
the operation call computeSum, does not modify the state of variables in the
machine Main i, its translation is not present in the Main namespace. Lines
21–35 represent the translation of the first call of computeSum.

4 Translation Principles

Our work consists in translating concrete formal models based on B0 language
in HLL. We propose a transformation strategy, allowing to obtain an equivalent
HLL code which is further used for verification purposes. The goal of this work
is to obtain HLL models which are behaviorally equivalent to B modules.

The semantic-preserving translation from B to HLL is not straightforward.
The first issue to handle is the semantic mismatch between the two paradigms.
Thus, a particular attention has to be given to several notions like variable
values evolution and updates or loops behaviors. An example of such problems
is illustrated in Listing 1. There, a B machine may have operations with side-
effects, implicitly affecting the state of another B machine. For Main i machine,
the changes that occur to the variables in order to compute the value of the
sum are transparent and not explicit. If the translation process does not follow
the correct sequence of the variable changes, the generated HLL model may be
erroneous. This kind of scenarios is very tricky to handle. It leads to incorrect
HLL models and may hide problems related to safety. Figure 2 illustrates the
general translation process made of three main steps: B parsing, preprocessing
and code generation. In this paper, we focus on the code generation phase.

The first step of our approach generates an intermediate tree representa-
tion AST (Abstract Syntax Tree) of an input code by analyzing it syntactically
and semantically. B0 is close to an imperative programming language and han-
dles deterministic B instructions: concrete data (variables and constants), SEES,
USES and IMPORTS clauses, and operation calls. Due to the semantics of the
HLL language, the preprocessing step annotates the abstract syntax tree with
additional information useful for variables evolution or loop transformation. This
annotation defines an environment used and updated on the fly by each applica-
tion of a translation rule. The last part of the process is the HLL code generation.
Below, we give the relevant elements related to the code generation process we
have set up. We have limited this description due to space limitation.

General Concepts. At the present time, we are interested in translating the
IMPLEMENTATION module, the lowest level of a B project, in HLL. Since
HLL proposes constructs to divide models in small units and to avoid naming
conflicts, the initial B component structure can be preserved in the translation.

B Model B Parsing Preprocessing HLL Generation HLL Model
Env

Update Environment

Translator

Fig. 2. Translation Workflow from B to HLL

Therefore, we propose to model B machines as HLL namespaces because both
have a notion of variable scoping and structuring facilities which lead to a certain
data encapsulation. Dependent machines obtained from IMPORTS, USES and
SEES clauses must also be translated into HLL namespaces.

The language used in B expressions is essentially predicate logic and set
theory. A B arithmetic expression is a mathematical formula that can con-
tains constants, variables and operators. The supported arithmetic operators
are: +,−,×,÷. A predicate expression is evaluated to be true or false in B0 as
branching conditions of if substitutions or in while loops. Except for division, the
translation of B expressions and B predicates is straightforward because HLL
provides the same quantifiers as B [15].

Sequence. In B0, a sequence represents an action which leads to the next action
in a predetermined order. All B variables are translated in HLL variables with
equivalent types. The link between B0 variables and HLL variables is very crucial
for semantics preservation of the translation. This link is not very obvious. In B,
variables may evolve during the execution of operations, whereas, in HLL, they
correspond to data streams without memory and having a unique value during a
cycle. However, our goal is to maintain memory state consistency between B and
HLL representation. The HLL equivalent representation of a B variable xx is
"xx<i>" for each occurrence i of this variable in left-hand side of an assignment.
A new HLL variable is defined by the concatenation of the B variable name and
its state evaluated in the translation context. While applying this renaming
process, the following properties must be preserved: (i) all value changes of a
variable shall be traced and (ii) generated code shall preserve the semantics of
the B language. Therefore, the context in which a variable modification occurs
is stored and associated to a variable.

Operations. In B language, the dynamic parts of the components are modeled
by substitutions, which allow the modification of the data space of a model.
Substitutions are used in INITIALISATION and OPERATIONS clauses of a B
machine. The proposed transformation of B0 substitutions is based on the under-
standing of the semantic differences between HLL and B. The general form of
an operation is: out ← op name(in) where in and out can be variables or lists of
variables representing the parameters of the operation op name. Each B oper-
ation is translated in HLL as follows: inside the namespace associated to the
translation of a machine we define a new namespace section which contains the
translation of an operation. This namespace will have the same name as the
original operation appended to an index, counting the different calls of the lat-
ter. Parameter passing is one of the crucial points for the semantics preservation
when translating programs [4]. In the B language, parameters are passed by ref-
erence when calling operations. HLL does not support functions with non scalar
types as it is used in common programming languages. In order to preserve the
B semantics when transforming to HLL, the translation of B operation call is
realized in two steps by separating the operation body substitutions translation

and the parameter mapping translation. Extra assignments are introduced in
order to map the effective input parameters to formal input ones in an opera-
tion call namespace. This situation is illustrated in Listing 4, lines 42–43 where
variables "aa<0>","bb<0>" have the role of formal input parameters of the
namespace. The operation output it is transformed in a new assignment as shown
in Listing 3, line 15.

If Conditions. Both languages provide IF construction with the difference that
in HLL it is an expression where in B language it is a statement. In order to
merge the information issued from different control flow branches, the translation
is performed in two steps. First, the blocks of instructions of each branch are
translated (Listing 4, lines 44–45), second, extra conditional HLL assignments
are introduced taking into account the condition evaluated initially and the
previous substitutions. In the example of minimum operation, this corresponds
to line 46 of Listing 4.

While Loops. Unlike the B language, HLL does not support loop structures.
Therefore, B loops should be flattened in the HLL model. The general form of
a loop construct in B0 is WHILE C DO S INVARIANT I VARIANT V END,
where S is a substitution, C is a boolean expression, I is a loop invariant and V is a
variant that guarantees the loop termination. In B, while loop is a shorthand
for writing the same block of instructions many times. A while loop must
end after a finite number of iterations a variant is required. We propose to
translate while loop as HLL if expressions repeated as many times as
the maximum number of iterations needed to exit the loop. This information is
extracted using the VARIANT clause. The substitution S is translated using HLL
constructs. The translation of invariant is not explicitly required in the HLL code,
but it could be modeled as HLL Proof Obligations or Constraints. In the example
presented in Listing 2 the maximum number of iterations of the loop is 2, so the
HLL translation process repeats according to it. In Listing 4, lines 26–30 show
the translation of the first loop iteration. The fact that variables are expressed
in function of condition and their previous value guarantees the correctness of
the translation by value propagation even if the number of iterations is an over-
approximation.

5 State of the Art

There are several works [4,18,19] focusing on code generation in many pro-
gramming languages (i.e. C, Ada and Java) from B specifications. In [13], the
authors present a set of translation rules from B to Java/SQL studied in the
database domain. To increase the use of formal methods, a tool B2Jml [6] was
developed to produce JML specifications from B models. Bonichon et al. [5]

have developed LLVM-based code generator that provides llvm executable code
for B specification. Moreover, they have also developed a tool b2llvm to auto-
mate the code generation process. Furst et al. [10] proposed a code generator
to produce C code from Event-B models. In Singh et al. [14], a tool supported
code generator, namely EB2ALL, producing source code in many programming
languages from verified Event-B specifications is described. Following similar
principles, Ge et al. [15] have proposed an approach for translating Event-B
models into HLL models. In fact, the main objective of this work is to produce
C code from Event-B specification using an intermediate HLL representation.
To our knowledge, the proposed translation approach from Event-B to HLL is
not automated yet. Similarly, Petit-Doche et al. [16] reported an a posteriori
approach for applying formal methods on the developed software, in which a
translation strategy is proposed to transform SCADE code to HLL code. In [12],
the authors present an approach based on the synchronous language SIGNAL [9]
to validate system designs. SIGNAL formal models are generated from C/C++
programs using an SSA intermediate representation. Moreover, translators from
C, ADA to HLL already exist. The used translation strategy is not a direct one.
An intermediate imperative language is used as a pivot language. There, the
goal is to avoid multiple translation steps and to master the whole translation
process. It is important to observe that our approach is in similar vein in order to
increase confidence in the generated code and promote the use of formal meth-
ods in industrial practices. In our work, we propose a translation strategy to
produce HLL code from B specification covering the whole B project. Moreover,
our approach also highlights the process of translation from a tool development
point of view.

6 Conclusion

We study the applicability of PERF, an industrial toolset which allows the formal
verification of systems independently of their development process, on software
developed in B. This paper presents our approach to generate verifiable HLL
code from an implementation described as B0 code. We focus on the core con-
cepts to ensure semantics preservation when translating B0 implementations to
HLL data-flow language. The semantic differences between the two studied lan-
guages are pointed out and a general translation scheme is proposed. We describe
a translation process as well as a set of translation principles for the constructs
that require a particular attention. Our initial ideas are already under develop-
ment on a prototype tool for automatic translation. In this perspective, we have
investigated the existing B parsers and BCompiler1, an open source tool that
offers complex parsing features for syntactical and semantical analysis.

Our future work consists in providing a formalization of the translation rules
which shall cover the whole B components and constructs. The correctness of

1 https://sourceforge.net/projects/bcomp/.

the translation is not studied in this paper. A possible starting point could be
the definition of the semantics of both B and HLL in a unified framework and
then check semantics preservation. Another possible extension of this work is to
handle higher abstraction levels of the B developments in order to enrich the
HLL model with lemmas or hints that might help the proof of properties.

References

1. Abrial, J.R.: The B-book: Assigning Programs to Meanings. Cambridge University
Press, New York (1996)

2. Behm, P., Benoit, P., Faivre, A., Meynadier, J.-M.: Météor: a successful appli-
cation of B in a large project. In: Wing, J.M., Woodcock, J., Davies, J. (eds.)
FM 1999. LNCS, vol. 1708, pp. 369–387. Springer, Heidelberg (1999). doi:10.1007/
3-540-48119-2 22

3. Benaissa, N., Bonvoisin, D., Feliachi, A., Ordioni, J.: The PERF approach for
formal verification. In: Lecomte, T., Pinger, R., Romanovsky, A. (eds.) RSS-
Rail 2016. LNCS, vol. 9707, pp. 203–214. Springer, Cham (2016). doi:10.1007/
978-3-319-33951-1 15

4. Bert, D., Boulmé, S., Potet, M.-L., Requet, A., Voisin, L.: Adaptable translator
of B specifications to embedded C programs. In: Araki, K., Gnesi, S., Mandrioli,
D. (eds.) FME 2003. LNCS, vol. 2805, pp. 94–113. Springer, Heidelberg (2003).
doi:10.1007/978-3-540-45236-2 7

5. Bonichon, R., Déharbe, D., Lecomte, T., Medeiros, V.: LLVM-based code genera-
tion for B. In: Braga, C., Mart́ı-Oliet, N. (eds.) SBMF 2014. LNCS, vol. 8941, pp.
1–16. Springer, Cham (2015). doi:10.1007/978-3-319-15075-8 1

6. Cataño, N., Wahls, T., Rueda, C., Rivera, V., Yu, D.: Translating B machines to
JML specifications. In: SAC 2012, pp. 1271–1277. ACM (2012)

7. ClearSy: Atelier B user manual version 4.0 (2009)
8. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Efficiently

computing static single assignment form and the control dependence graph. ACM
Trans. Program. Lang. Syst. 13(4), 451–490 (1991)

9. Espresso: Polychrony tool. http://www.irisa.fr/espresso/Polychrony
10. Fürst, A., Hoang, T.S., Basin, D., Desai, K., Sato, N., Miyazaki, K.: Code genera-

tion for Event-B. In: Albert, E., Sekerinski, E. (eds.) IFM 2014. LNCS, vol. 8739,
pp. 323–338. Springer, Cham (2014). doi:10.1007/978-3-319-10181-1 20

11. Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous data flow
programming language LUSTRE. Proc. IEEE 79(9), 1305–1320 (1991)

12. Kalla, H., Talpin, J.P., Berner, D., Besnard, L.: Automated translation of C/C++
models into a synchronous formalism. In: ECBS 2006. pp. 9–436, March 2006

13. Mammar, A., Laleau, R.: From a B formal specification to an executable code:
application to the relational database domain. Info. Soft. Technol. 48(4), 253–279
(2006)

14. Méry, D., Singh, N.K.: Automatic code generation from EVENT-B models. In:
SoICT 2011, pp. 179–188. ACM (2011)

15. Ge, N., Dieumegard, A., Jenn, E., Voisin, L.: Correct-by-construction specification
to verified code. Ada-Europe 2017 (2017)

16. Petit-Doche, M., Breton, N., Courbis, R., Fonteneau, Y., Güdemann, M.: Formal
verification of industrial critical software. In: Núñez, M., Güdemann, M. (eds.)
FMICS 2015. LNCS, vol. 9128, pp. 1–11. Springer, Cham (2015). doi:10.1007/
978-3-319-19458-5 1

17. Prasad, M.R., Biere, A., Gupta, A.: A survey of recent advances in SAT-based
formal verification. Int. J. Softw. Tools Technol. Transf. 7(2), 156–173 (2005)

18. Storey, A.C., Haughton, H.P.: A strategy for the production of verifiable code using
the B Method. In: Naftalin, M., Denvir, T., Bertran, M. (eds.) FME 1994. LNCS,
vol. 873, pp. 346–365. Springer, Heidelberg (1994). doi:10.1007/3-540-58555-9 104

19. Tatibouët, B., Requet, A., Voisinet, J.-C., Hammad, A.: Java card code generation
from B specifications. In: Dong, J.S., Woodcock, J. (eds.) ICFEM 2003. LNCS, vol.
2885, pp. 306–318. Springer, Heidelberg (2003). doi:10.1007/978-3-540-39893-6 18

