Kahina Hacid
email: kahina.hacid@enseeiht.fr

Yamine Ait-Ameur
email: yamine@enseeiht.fr

Strengthening MDE and Formal Design Models by References to Domain Ontologies. A Model Annotation Based Approach

Keywords: Domain ontologies, Model annotation, Property verification, MDE, Proof and refinement, Event-B

Critical systems are running in heterogeneous domains. This heterogeneity is rarely considered explicitly when describing and validating processes. Handling explicitly such domain knowledge increases design models robustness due to the expression and validation of new properties mined from the domain models. This paper proposes a stepwise approach to enrich design models describing complex information systems with domain knowledge. We use ontologies to model such domain knowledge. Design models are annotated by references to domain ontologies. The resulting annotated models are checked. It becomes possible to verify domain-related properties and obtain strengthened models. The approach is deployed for two design model development approaches: a Model Driven Engineering (MDE) approach and a correct by construction formal modeling one based on refinement and proof using Event-B method. A case study illustrates both approaches (This work is partially supported by the French ANR-IMPEX project.).

Introduction

As part of the system engineering and complex system design, the models designed by engineers are placed at the center of the development process of the understudied system. Engineers use them to describe, reason, analyse and verify systems operating in different environments, domains and contexts. In addition, these models correspond to partial views of the studied system (e.g. functional, real-time, energy, mechanics, reliability, architecture, etc.). This leads to the production of several heterogeneous models corresponding to the same system which we qualify as "design models".

In this context, the most important heterogeneity factors, in addition to the modeling languages, are those related to information, knowledge and assumptions of the underlying studied domain (environment and context of implementation and execution of designed systems). Domain knowledge information is usually not explicitly handled and therefore not included in the models associated to the systems under design that may be critical systems. In fact, although these models are developed in accordance with the standards and good practices, some knowledge, required for model interpretation and validation, remain implicit. As a consequence, a system may be considered as correct with respect to the initial requirements but, it can miss some of its relevant properties if the information related to its application domain are not black handled by the modeling activity. Therefore, the verification and validation activities are partially covered since domain requirements and constraints are themselves partially included in the designed models. Handling domain knowledge and properties requires the availability of (1) models for such knowledge and properties and (2) of a relationship to link both design models and domain knowledge models. Ontologies are good candidates for describing such domain knowledge. In particular, they are well suited for the characterization of engineering domains.

In order to handle domain knowledge in design models, our approach advocates (1) the use of conceptual ontologies to model and make explicit the domain knowledge and properties. These ontologies are designed from domain concepts. They represent the basic concepts of a domain together with their relationships and properties. Then, [START_REF] Jean | Domain ontologies: a database-oriented analysis[END_REF] we propose a reasoned, based on model annotation, approach to integrate knowledge mined from the studied application domain to the design models.

The objective of this paper is to increase the quality of engineering models by handling new hypotheses and properties entailed by making explicit the engineering knowledge.

Our proposal consists in annotating models by explicit references to ontologies. We propose a four-steps methodology. First, ontologies are used to clarify and formalize domain knowledge concepts, relationships and constraints. Then, the specific defined design models produced from given requirements and specifications are annotated by references to ontologies. These annotations link design models concepts with the corresponding ontology concepts. These ontology concepts offer an explicit semantics to the design model concepts. As a consequence, new design models overloaded by explicit references to ontologies are obtained. It becomes possible to express and verify new domain related properties on the obtained annotated design models.

This paper is structured as follows. Section 2 presents a didactic case study illustrating our approach. Section 3 gives a global definition of domain ontologies. Our approach for strengthening models through an annotation based method is presented in Sect. 4. Sections 5 and 6 give details of the implementation within MDE and a correct-by-construction approaches. Section 7 overviews different approaches promoted for annotation and semantic enrichment of models. A conclusion ends this paper and identifies some research directions.

A Case Study

In order to illustrate our proposal, we have chosen a didactic case study describing a simple information system. This information system results from requirements and is described through a set of concepts, actions and constraints as it is the case for applications in the engineering domain. The defined case study deals with the management of students diplomas and registration in the European higher education system. This system offers two kinds of curricula: first the Bachelor (Licence), Master and Phd, LMD for short, and second the Engineer curriculum. Each diploma of the LMD curricula corresponds to a given level: Bachelor/ Licence (high school degree + 6 semesters/180 ECTS credits), Master (Bachelor + 4 semesters/120 credits) and PhD (Master + 180 credits). Engineer curricula offers the engineer diploma five years after high school degree. Both Master and Engineer diplomas are obtained five years after high school degree.

Additional Requirements for Students Registration

In the studied information system, students register to prepare their next expected diploma. This registration action takes into account the last hold academic degree (or last diploma) as a pre-requisite to register for the next diploma. Constraints on the registration action require that the information system does not allow a student to register for a new diploma if he/she does not have the necessary qualifications. Therefore, the designed information system must check the logical sequence of obtained diplomas before allowing a student to register. For example, Phd degree registration is authorized only if the last obtained degree corresponds to a Master degree. The studied information system prescribes the necessary conditions for registering students for preparing diplomas.

The Domain Knowledge for Diplomas

Diplomas and their characteristics represent a central knowledge for the previously defined case study (but also for other possible applications). A knowledge model to describe the diploma knowledge through diplomas characteristics, rules and constraints can be defined as an ontology. This ontology shall model the whole concepts, properties and constraints associated to the description of diplomas. It shall cover the diplomas descriptions beyond their usage in the previously described information system, independently of any context of use. Several candidate ontologies are possible. We shall use a consensual ontology for this purpose. Reaching consensual agreements is out of scope of this paper. This activity is usually carried out by standards or users communities.

Domain Ontologies as Models for Domain Knowledge

Gruber defines an ontology as an explicit specification of a conceptualization [START_REF] Gruber | A translation approach to portable ontology specifications[END_REF]. In our work, a domain ontology is considered as a formal and consensual dictionary of categories and properties of entities of a domain and the relationships that hold among them [START_REF] Jean | Domain ontologies: a database-oriented analysis[END_REF]. In this definition, entity represents any concept belonging to the studied domain. The term dictionary emphasizes that any entity and any kind of domain relationship described in the domain ontology may be referenced directly by a symbol (URI i.e. unique resource identifier). This referencing mechanism is the ground model for the annotation process. An ontology modeling language is required to describe such ontologies. Several ontology modeling languages have been developed so far. OWL1 [START_REF] Bechhofer | Owl web ontology language reference[END_REF], PLIB [START_REF]ISO: Industrial automation systems and integration -parts library -part42: description methodology: methodology for structuring parts families[END_REF][START_REF]ISO: Industrial automation systems and integration -parts library -part25: logical resource: logical model of supplier library with aggregate valuesand explicit content[END_REF], RDFS [START_REF] Brickley | RDF vocabulary description language 1.0: RDF schema[END_REF] are some examples of such languages. They describe ontology entities using different modeling artifacts like class hierarchies, properties, relationships, instances and individuals, constraints, etc. According to [START_REF] Jean | Domain ontologies: a database-oriented analysis[END_REF], a domain ontology is a domain conceptualization that shall obey to the three fundamental criteria: being formal, consensual and offering references capabilities.

1.

Formal. An ontology is a conceptualization based on a formal theory which allows to check consistency properties and to perform some automatic reasoning over the ontology-defined concepts and individuals. 2. Consensual. An ontology is a conceptualization agreed upon by a community larger than the members involved in one particular application development (one design model). Ontology standards are good supports for such agreements.

3. Capability to be Referenced. Each ontological concept is associated with an identifier or URI. References to this concept becomes possible, using this identifier, from any environment, independently of the particular ontology where this concept was defined.

One other important characteristic is related to the design process. In the case of the engineering domain, ontologies are built from canonical (primitive) concepts, then non canonical (derived) concepts are defined from canonical ones by composition of derivation operators (restriction, union, intersection, algebraic operators, etc.) available in the ontology modeling language. Note that terms are associated to each concept. In this paper, we do not address the ontology design process, we suppose that ontologies already exist.

This section is voluntarily made concise. The literature related to ontology engineering is full of definitions, approaches, work, tools, applications etc. In this section we just reviewed some basic definitions and characteristics of ontologies that are relevant to set up our proposal described in the remaining sections.

Strengthening Design Models Using Domain Models: An Annotation Based Approach

The work presented in this paper addresses the case of design models described in an engineering context, where structured models are designed within specific design languages being either semi-formal or formal modeling languages. By strengthening design models, we mean enriching these models with relevant properties mined from domain knowledge models expressed by ontologies. Annotation based techniques are set up in order to link design models to ontologies. A four-steps methodology is proposed for this purpose.

A Stepwise Methodology

Our approach advocates the exploitation of domain knowledge, carried out by conceptual ontologies, in design models. This approach is stepwise, it is made of different steps. Figure 1 shows the overall schema of the approach. 1. Domain Knowledge Formalization. This step consists in making explicit the domain knowledge with a formalized knowledge model. So, information of the domain (concepts, links between these concepts, properties or these concepts and rules and constraints) are explicitly described in a knowledge model. Formal ontologies are used for this purpose. The choice of this modelling language depends on the kind of reasoning to be performed. Note that this ontology shall be described independently of any context of use. It may also be built from existing ontologies (e.g. standard ontologies). 2. Model Specification and Design. Specific design models corresponding to a given specification are defined. They are formalized within a specific modelling language supporting different analysis, classically performed at the design modelling level. 3. Model Annotation. In this step, the relationships between design model entities and the corresponding knowledge concepts are made explicit. They correspond to model annotation and these relationships are themselves described with a modelling language. 4. Properties Verification. The annotated model obtained at the previous step is enriched by domain properties borrowed from the ontology. The annotated model is analysed to determine whether, on the one hand, the properties and/or the constraints expressed on the annotated model are still valid and, on the other, new properties entailed by the annotation are valid.

Finally, a new design model enriched with new domain information is obtained. Verification and validation of this model (step 4) are required to check if the former properties and/or domain ones, resulting from annotation still hold.

Some Remarks

The languages used to model ontologies, design models and annotation relationships may differ, semantic alignment between these modeling languages may be required. This topic is out of the scope of this paper, we consider that these languages have the same ground semantics. A single and shared modeling language for the description of both ontologies, design models and annotations is used in this work. Furthermore, the engineering application domain uses modeling languages with classical semantics using closed world assumption (CWA) [START_REF] Aït Ameur | Making explicit domain knowledge in formal system development[END_REF].

The annotation step (step 3) described above requires the definition of annotation mechanisms. Different kinds of annotation mechanisms can be set up (inheritance, partial inheritance and algebraic relationships) [START_REF] Silveira Mastella | Semantic exploitation of engineering models: an application to oilfield models[END_REF][START_REF] Belaid | An ontology and indexation based management of services and workflows application to geological modeling[END_REF]. The details and choice of the right mechanism are also out of the scope of this paper.

Next two sections show the deployment of this methodology on two different modeling techniques. The first one is based on model driven approaches where constraint checking is performed and the second one is based on a refinement and proof formal modeling technique with the Event-B method.

First Deployment: Integration in a Model Based Development

We show below how the proposed stepwise methodology can be deployed in an MDE setting.

Model Driven Engineering (MDE) Based Developments

MDE brought several significant improvements to the development cycle of complex systems allowing system developers to focus on more abstract levels than classical programming level. MDE is a form of generative engineering [START_REF] Schmidt | Model-driven engineering[END_REF] in which all or part of an information system is generated from models. A system can be described by several models corresponding to several views or abstraction levels. These models are often described using either graphical or textual notations supported by semi-formal modeling languages. These languages support the description and representation of both structural, descriptive and behavioral aspects of a system. The capability to define constraints that limit the interpretation domain of models is offered using constraints definition languages. In this context, UML [START_REF]OMG: OMG Unified Modeling Language (OMG UML)[END_REF], the MOF [START_REF]OMG: Meta Object Facility (MOF) Core Specification Version 2[END_REF] and OCL [START_REF]OMG: OMG Object Constraint Language (OCL)[END_REF] play the role of standard, they are widely and commonly used by the MDE community. Moreover, MDE handles models at different development stages of a system development life-cycle. MDE offers several techniques to automate different development steps. Indeed, model operationalization for code generation, documentation and testing, validation, verification, implementation, model analysis are available. These techniques use the capability to transform source models either to other target models in order to get benefits from the available analysis techniques offered by the target modeling technique or to source code in a given language. Transformations are defined by means of transformation rules describing the correspondence between the entities in the source model and those of the target model. This transformation process is automated as much as possible by means of processing programs, which are in most cases developed in general purpose languages (e.g. Java) or in dedicated transformation modeling languages (e.g. ATL2 , Kermeta3 , QVT [START_REF]OMG: Meta Object Facility (MOF) 2.0 Query/View/TransformationSpecification[END_REF]). In this work, MDE techniques are set up. Meta-models of each manipulated models (ontologies, design models and annotations) are defined in order to build an annotation model in an uniform setting, and ease the prototyping. We have implemented this approach using model driven engineering techniques with the Eclipse modeling Framework (EMF) 4 . The Ecore meta-model being the modeling language.

Step 1. Domain Knowledge Formalization

The deployment of our methodology requires, in its first step, the availability of an ontology formalizing the domain knowledge. The model of the ontology is designed to integrate all the relevant properties of the domain, including its constraints. Concepts and properties are modeled as classes and attributes of the ontology and the ontological constraints are added as OCL constraints. The whole ontological relationships like Equivalence, restriction, etc. are also expressed. As illustration, Fig. 2 gives the definition of the equivalence relationship as a class at the meta-modeling level. The properties related to symmetry, reflexivity and transitivity of the equivalence relationship are formalized as OCL constraints. For example, the formalization of transitivity property is given in Fig. 3.

The defined ontology for diplomas is depicted on Fig. 4. Diplomas and their characteristics represent a central knowledge for the previously defined case study (but for other possible applications as well). A model to describe the diploma knowledge through diplomas characteristics, rules and constraints defines an ontology. It represents a shared knowledge model that can be used beyond the described application. The defined ontology contains a set of inter-related classes and relevant properties as follows.

-A subsumption relationship (represented by the is a relationship on Fig. 4) is used to define hierarchies between categories of diplomas. LMDDiploma and ClassicalDiploma describe respectively the Bachelor, Master and PhD diplomas and other diplomas (e.g. Engineer).

-Several descriptive properties, like title, degree, uri of the Diploma class describe the name, the uri and the level of a given diploma and nbCredit defines the credit number required for each diploma.

-An ontological constraint on the model states that Master is equivalent to Engineer. It is written in the ontology modeling language as EQ o(M aster, Engineer) where EQ o is an instance of the Equivalent Class of the ontology meta-model.

In the ontology, this constraint is represented by an equivalent class linking the left: Master and right: Engineer classes of the same ontology. Another constraint defined as thesisRequirement carried by the requiredDiploma relationship requiredDiplom i property) is added to assert that any master (or any equivalent diploma) is required to prepare a PhD.

Step 2. Model Specification and Design

The design models are defined by the designer according to a given specification. Several design models corresponding to particular designs for a problem requirement may be produced. The designed models include specific design constraints expressed using OCL [START_REF]OMG: OMG Object Constraint Language (OCL)[END_REF]. Obviously, other models can be defined as a solution for the problem requirements. In this model, a student holds a diploma (degree) represented by the last graduation diploma he obtained (previousDiploma relationship). A student, modeled by the Student class with the properties name,studentNumber and school, representing his name, his student number and his school. The Pre-viousDiploma class describes the last diploma hold by a student, with speciality, year and iD properties for the chosen speciality, a year of graduation and the type of diploma (m, e, p and b for master, engineer, Phd and Bachelor respectively). Last, the NextDiploma class describes the next diploma a student intends to prepare. Moreover, a constraint named phdInscription on the student nextDiploma is defined. It asserts that a student registering for a PhD diploma needs to hold a master diploma to be allowed to register for a PhD. It represents a model invariant and it is defined by the OCL constraint of Fig. 6. Similarly, NextDiploma is annotated by PhD of the Diplomas ontology. The non-structural property Equivalent Class and the thesisRequirement constraint can now be accessed and exploited. So, the equivalence between Master and Engineer classes is expressed and made explicit within the design model.

Step 4. Properties Verification

The last step analyses the obtained annotated design models through formally established links with the ontology. This annotation process leads to the enrichment of the original design model with new relations, properties, constraints and rules. Ontological properties and classes are considered to be available in the enriched model if they have been selected or linked to model properties during the annotation process (third step of the approach). The new enriched model is validated by (re-)checking all the constraints (the existing and the new added ones) on the model and all its instances. The equivalence property and the thesisRequirement constraint are now explicit on the annotated student model. The verification process ends with integrating the equivalence domain constraint into the enriched design model since all the properties it is relating to are available. At this level, it becomes possible to conclude that a student can apply for preparing a Phd thesis if he holds an engineer diploma. Thus, the phdInscritpion constraint is modified to integrate the result of annotation. Its formalization is given in Fig. 8. This property became explicit after handling domain knowledge (by annotation) expressed in the ontology. 6 Second Deployment: Integration in the Event-B Formal Method

In this section, we show how the proposed stepwise methodology can be deployed in the case of formal modeling. The refinement and proof Event-B5 [START_REF] Abrial | Modeling in Event-B -System and Software Engineering[END_REF] formal method has been chosen this purpose. It applies the four defined steps (see Sect. 4) and gives the root Event-B models for the case study.

Event-B: A Refinement and Proof Based Formal Method

The Event-B method [START_REF] Abrial | Modeling in Event-B -System and Software Engineering[END_REF] is a stepwise formal correct-by-construction development method. It is based on the refinement of an initial model, a machine by gradually adding design decisions. A set of proof obligations (PO), based on the weakest precondition calculus [START_REF] Dijkstra | A Discipline of Programming[END_REF], is associated to each machine. Development correctness is guaranteed by proving these PO.

An Event-B model [START_REF] Abrial | Modeling in Event-B -System and Software Engineering[END_REF] (see Fig. 9(a)) is defined by aMACHINE. It encodes a state transitions system which consists of: the variables declared in the

CONTEXT MACHINE ctxt id 2 machine id 2 EXTENDS REFINES ctxt id 1 machine id 1 SETS SEES s ctxt id 2 CONSTANTS VARIABLES c v AXIOMS INVARIANTS A(s, c) I(s, cv) THEOREMS THEOREMS T c (s, c) T m (s, c, v) END VARIANT V (s, c, v) EVENTS Event evt = any x where G(s, c, v, x) then v : |BA(s, c, v, x, v ′) end END
(a) Contexts and machines.

Theorems A(s, c) ⇒ T c (s, c) A(s, c) ∧ I(s, c, v) ⇒ T m (s, c, v) Invariant preservation A(s, c) ∧ I(s, c, v) ∧ G(s, c, v, x) ∧BA(s, c, v, x, v ′) ⇒ I(s, c, v ′) Event feasibility A(s, c) ∧ I(s, c, v) ∧ G(s, c, v, x) ⇒∃v ′ .BA(s, c, v, x, v ′) Variant progress A(s, c) ∧ I(s, c, v) ∧G(s, c, v, x) ∧ BA(s, c, v, x, v ′) ⇒V (s, c, v ′) < V (s, c, v)
(b) Generated proof obligations for a model. VARIABLES clause to represent the state; and the events declared in the EVENTS clause to represent the transitions (defined by a Before-After predicate BA) from one state to another. The model holds also INVARIANTS and THEOREMS to represent relevant properties of the defined model. Then a decreasing VARIANT may introduce convergence properties when needed. An Event-B machine is related, through the SEES clause to a CONTEXT which contains the relevant sets, constants axioms, andtheorems needed for defining an Event-B model. The refinement capability [START_REF] Abrial | Refinement, decomposition, and instantiation of discrete models: application to event-b[END_REF], introduced by the REFINES clause, decomposes a model (thus a transition system) into another transition system with more design decisions while moving from an abstract level to a less abstract one. New variables and new events may be introduced at the refinement level. In a refinement, the invariants shall link the variables of the refined machine with the ones of the refining machine. A gluing invariant is introduced for this purpose. It preserves the proved properties and supports the of new ones.

Once an Event-B machine is defined, a set of proof obligations is generated. They are submitted to the embedded prover in the RODIN [START_REF] Abrial | Modeling in Event-B -System and Software Engineering[END_REF] platform. Here the prime notation is used to denote the value of a variable after an event is triggered. More details on the Event-B method can be found in [START_REF] Abrial | Modeling in Event-B -System and Software Engineering[END_REF].

Step 1. Domain Knowledge Formalization

The different concepts describing the main features of an ontology language are defined in an Event-B context. All the basic ontological concepts and relationships are formally described within a general Event-B context. This context can be extended to be specialized for a specific ontology. Listing 1.1 is an extract of the Event-B Ontology Relations context defining relevant finite sets for CLASS, PROPERTIES and INSTANCES. It also defines the basic ontological relationship EQUIVALENCE that may exist between two classes. Other concepts, relations and properties are defined to cover more ontological concepts. They are not given in this paper for space reasons. Note that this context can be extended to be specialized for a specific ontology. The context Ontology Relations (Listing 1.1) is extended by Diplomas Ontology (Listing 1.2). Diplomas are defined as Classes. The equivalences between the different classes are explicitly formalized using the specific equivalence relation EQo belonging to the set EQUIVALENCE of equivalence relationships.

= { Eq| Eq ∈ CLASS ↔ CLASS ∧ (∀ x• (x ∈ CLASS ⇒ x → x ∈ Eq)) ∧ (∀ x, y• (x ∈ CLASS ∧ y ∈ CLASS ∧ x → y ∈ Eq ⇒ y → x ∈ Eq)) ∧ (∀ x, y, z• (x ∈ CLASS ∧ y ∈ CLASS ∧ z ∈ CLASS ∧ x → y ∈ Eq ∧ y → z ∈ Eq ⇒ x → z ∈ Eq)) } ... End
The equivalences between the different classes are explicitly formalized using the specific equivalence relation EQo belonging to the set EQUIVALENCE of equivalence relationships. The correct definition of EQo relationship is guaranteed by proving the theorem in thm3. This proof requirement entailed by the use of formal methods guarantees that used specification relationships like EQo formally fulfill the equivalence relationship properties. In addition, the Diplomas Ontology context describes the set Master, Bachelor, PhD, Engineer as specific diplomas. It also states that an Engineer diploma is equivalent to a Master diploma.

Step 2. Model Specification and Design

Design models are formalized within Event-B using contexts and machines. Static part (constants, types and data) of the design models is defined within contexts and the dynamic part is referred to as a machine which sees the defined contexts (static part). Listing 1.3 depicts a generic context defining the relevant set CONCEPT characterizing the concepts involved in the definition of a design model. This context is extended to define specific applicative contexts. The static part associated to the case study is given in the student Model context (Listing 1.4). DIPLOMS and STUDENTS concepts are introduced.

Context Design Model

Set CONCEPT End Finally, once the different concepts are described, it becomes possible to describe the behavioral part of the model. Indeed, the model considers the case of a student willing to register for a PhD. For the case study, the dynamic part (Listing 1.5) defines the Register event within a machine. An invariant inv1 ensures that a student can register for a PhD only if he/she holds a master degree. Other annotation relationships can be defined, for example to link properties, relationships or constraints etc. Moreover, additional properties may be defined for the annotation. They have not been given in this paper due to space limitations. Listing 1.7 defines annotations for the m and e concepts manipulated at the design model level. The defined annotation states that m and e are annotated by the M aster and Engineer ontological concepts respectively. It becomes possible to reason on the equivalence of these concepts (or any other ontological relationship that may exist between M aster and Engineer concepts).

Once the annotations are achieved, they can be integrated into the design model and enrich it. Annotations are exploited to access to the ontological concepts and properties in design models. When the annotation relation is established on the design model (Listing 1.5) the annotated student design model is obtained. Listing 1.8 depicts the Student Register machine after the annotation process. The invariant inv1 is rewritten to integrate the annotations. Indeed, it states that any student holding a previous diploma that is equivalent to the inverse annotation of m can be registered for preparing a P hD. Thus, the equivalence ontological relationship can now be exploited to enrich the model.

Step 4. Properties Verification

The property verification step is achieved trough discharging all the PO. The capability to annotate design models concepts independently of their usage in design models allows developers to express new properties acting on ontology concepts just by annotating the design models with new properties. The new definition of invariant inv1 of Listing 1.8 uses explicitly the defined annotation relationship. As a result, the design models can be questioned, verified or checked with regards to new properties exploiting annotations that borrow ontology concepts and properties to the design models. Invariants similar to inv1 are defined using the annotation relationship. For our case study, the correctness of the new enriched model is proven. The new POs generated by the annotation are discharged by proving that invariant inv1 still holds after the Phd Register event is triggered. All the POs associated to the Student Register machine have been proved for all values of dip that are equivalent to Master.

Related Work

Semantic enrichment of models has drawn the attention of several research communities. Different methods and techniques emerged with the aim to enrich the semantics of models using annotation mechanisms. We distinguish three main categories of semantic annotations.

In [START_REF] Bontcheva | Evolving gate to meet new challenges in language engineering[END_REF][START_REF] Cunningham | Text Processing with Gate[END_REF][START_REF] Despres | Terminae method and integration process for legal ontology building[END_REF][START_REF] Handschuh | Annotation for the deep web[END_REF], the authors use ontologies for raw data annotation in an informal context. Web pages and documents are annotated with semantic information formalized within linguistic ontologies. Once annotations achieved, formal reasoning is performed. This category of annotation is out of the scope of this paper.

In the second category of approaches ontologies are used for the semantic enrichment of models in a semi-formal context. [START_REF] Bellatreche | An a priori approach for automatic integration of heterogeneous and autonomous databases[END_REF] propose a fully automated technique for integrating heterogeneous data sources called "ontologybased database". This approach assumes the existence of a shared ontology and guarantees the autonomy of each source by extending the shared ontology to define its local ontology. In [START_REF] Boudjlida | Annotation of enterprise models for interoperability purposes[END_REF][START_REF] Wang | Adding semantic annotation to UML class diagram[END_REF][START_REF] Lin | Ontology-based semantic annotation of process templates for reuse[END_REF][START_REF] Lin | Semantic annotation framework to manage semantic heterogeneity of process models[END_REF][START_REF] Zouggar | Semantic enrichment of enterprise models by ontologies-based semantic annotations[END_REF] annotations are made in an interoperable context and aim to improve the reading, common understanding and re-usability of the models and thus enabling unambiguous exchange of models. In [START_REF] Liao | Formal semantic annotations for models interoperability in a PLM environment[END_REF], a reasoning phase is performed based on the output of the annotation phase. The reasoning rules produce inference results: (1) Suggestion of semantic annotation, (2) Detection of inconsistencies between semantic annotations and (3) Conflict identification between annotated objects. These approaches addressing interoperability issues focused on improving the common understanding of models. They do not deal with the formal correctness of models with respect to domain properties and constraints.

The third category of approaches is related to the semantic enrichment of design models related to an application domain using formal annotations. Annotations are directly set up inside the models. Examples of such approaches are the classical pre and post-conditions of Hoare pre-conditions [START_REF] Hoare | An axiomatic basis for computer programming[END_REF] or program annotation tools like Why3 [START_REF] Filliâtre | Why3 -where programs meet provers[END_REF]. In [31], the authors introduce real-world types to document the programs with relevant characteristics and constraints of the real-world entities. Real-world types are connected to entities of the programs (variables, functions, etc.). The reasoning and checking of the correctness of programs in regards to real-world types becomes possible by type checking. These approaches seem close to ours, but, to the best of our knowledge, they do not use explicitly modeled ontologies.

Always in the context of formal methods, other approaches use annotations with expressions that make explicit references to ontologies. Indeed, in [START_REF] Ait-Ameur | On implicit and explicit semantics: integration issues in proof-based development of systems[END_REF][START_REF] Méry | Integrating domain-based features into eventb: a nose gear velocity case study[END_REF][START_REF] De Carvalho | Using reference domain ontologies to define the real-world semantics of domain-specific languages[END_REF], the authors argue that many problems in the development of correct systems could be better addressed through the separation of concerns. [START_REF] Ait-Ameur | On implicit and explicit semantics: integration issues in proof-based development of systems[END_REF][START_REF] Méry | Integrating domain-based features into eventb: a nose gear velocity case study[END_REF] advocate the re-definition of design models correctness as a ternary relation linking the requirements, the system and application domains. Domain concepts are then explicitly modeled as first-class objects as we did in our approach. Furthermore, similarly to our approach, they propose the formalization of ontologies by Event-B contexts. The formalized information can then be integrated incrementally and directly in the behavioral requirements using refinements. In [START_REF] De Carvalho | Using reference domain ontologies to define the real-world semantics of domain-specific languages[END_REF] a DSL abstract syntax and references to domain ontologies are axiomatized into logic theories. These two models are related using a third logical theory. The authors use the Alloy formal method to check the consistency of the unified theory.

Compared to our approach, the approaches cited above use, through annotations, domain information and knowledge directly (i.e. as built in concepts) in the design model. Our approach improves these approaches. It suggests to first separate the ontology and the design model and second to make the annotation explicit using an annotation model. In this way, models are separated from the domain model and thus ontologies and models can evolve asynchronously.

Conclusion and Future Work

The integration of domain knowledge and information during the system specification and design phases allows the developers to handle axioms, hypotheses, theorems or properties mined from the application domain. This requirement is a major concern in system engineering where different standards provide system designers with relevant domain knowledge information not explicitly handled by the design models.

In this paper, we have proposed a stepwise methodology allowing system designers to explicitly handle domain knowledge in their design models. Ontologies have been chosen to express the knowledge models describing explicitly the domain knowledge. Depending on the chosen modelling language, these ontologies modelled through concepts, relationships between concepts and associated constraints on the one hand and domain axioms and theorems on the other hand. We have shown that both ontologies and design models can be integrated in a single modelling language. The interest of such integration is semantic alignment where both ontologies, annotations and design models are described in a common shared modelling language.

We have shown, using a toy case study, the deployment of this approach in the case of model driven engineering techniques and formal methods based on refinement and proof using the Event-B method. We have used the Eclipse modelling framework and the Rodin platform to operationalize our proposal. In both cases, the approach proved powerful enough to enrich design models with knowledge domain properties. We have noticed that when used in design models, by annotation, ontologies strengthen with axioms and theorems that were not explicitly defined in the design models. In our case, thanks to the enrichment provided by the annotation mechanisms we have been able to enrich the design models with an equivalence property attached to concepts of the design models.

The proposed approach has been developed as part of the IMPEX-ANR project [START_REF] Horkoff | Formal models for ontologies[END_REF] and has been applied to several case studies in the engineering domain. Indeed, experiments with MDE based techniques have been conducted on the oilfield engineering models [START_REF] Silveira Mastella | Semantic exploitation of engineering models: an application to oilfield models[END_REF][START_REF] Mastella | Semantic exploitation of engineering models: application to petroleum reservoir models[END_REF] and avionic systems [START_REF] Aït Ameur | Report ame corac-panda project[END_REF][START_REF] Hacid | Explicit definition of prperties by model annotation[END_REF]. Formal methods have been applied in the case of human computer interaction models [START_REF] Chebieb | Formal verification of plastic user interfaces exploiting domain ontologies[END_REF], avionic systems [START_REF] Ait-Ameur | On implicit and explicit semantics: integration issues in proof-based development of systems[END_REF] and in system engineering [START_REF] Méry | Integrating domain-based features into eventb: a nose gear velocity case study[END_REF][START_REF] Simon-Zayas | A framework for the management of heterogeneous models in Systems Engineering[END_REF][START_REF] Zayas | Knowledge models to reduce the gap between heterogeneous models: application to aircraft systems engineering[END_REF].

The work presented in this paper opened several new research directions. The whole coverage of available ontology languages like OWL or Plib and the associated annotation mechanisms is currently under study. We are designing meta-models in the MDE setting and generic contexts in the Event-B setting. Then, the case of semantic mismatch, where ontologies and design models are not described in the same modeling language, needs to be addressed. Semantic alignment shall be studied. Finally, the integration of more than one design model addressing different aspects or view of a single system sharing a common ontology needs to be handled as well. Indeed, our idea is to offer to the designer the capability to use validated properties of a given model as hypotheses and axioms as hypotheses in another design model.

Fig. 1 .

 1 Fig. 1. A four steps methodology for handling domain knowledge in models.

Fig. 2 .

 2 Fig. 2. The Equivalence Relationship.

Fig. 3 .

 3 Fig. 3. Equivalence relationship: transitivity property expressed OCL.

Fig. 4 .

 4 Fig. 4. The Diplomas ontology.

Fig. 5 .

 5 Fig. 5. Engineering student model.

Figure 5

 5 Figure5depicts one possible UML class diagram describing a part of the information system related to the management of students. Obviously, other models can be defined as a solution for the problem requirements. In this model, a student holds a diploma (degree) represented by the last graduation diploma he obtained (previousDiploma relationship). A student, modeled by the Student class with the properties name,studentNumber and school, representing his name, his student number and his school. The Pre-viousDiploma class describes the last diploma hold by a student, with speciality, year and iD properties for the chosen speciality, a year of graduation and the type of diploma (m, e, p and b for master, engineer, Phd and Bachelor respectively). Last, the NextDiploma class describes the next diploma a student intends to prepare. Moreover, a constraint named phdInscription on the student nextDiploma is defined. It asserts that a student registering for a PhD diploma needs to hold a master diploma to be allowed to register for a PhD. It represents a model invariant and it is defined by the OCL constraint of Fig.6.

Fig. 6 .

 6 Fig. 6. Formalization of phdInscritpion constraint.

Figure 7

 7 shows how the PreviousDiploma class of the students design model is annotated by the Master class of the Diplomas ontology.

Fig. 7 .

 7 Fig. 7. Annotation of Student model.

Fig. 8 .

 8 Fig. 8. The OCL constraint phdInscritpion after annotation.

Fig. 9 .

 9 Fig. 9. Basic definitions: contexts, machines and proof obligations.

Listing 1 . 3 .

 13 Generic design model context.

Listing 1 . 4 .

 14 Student design model context. Context Student Model Extends Design Model Constants m, p, e, b, titi, toto, DIPLOMS, STUDENTS //Master, PhD, Engineer and Bachelor diplomas Axioms axm1 : CONCEPT = DIPLOMS ∪ STUDENTS axm2 : DIPLOMS ∩ STUDENT = ∅ axm3 : partition(DIPLOMS, {e},{m},{p},{b}) axm4 : partition(STUDENTS, {toto},{titi}) axm5 : finite(CONCEPT) End

 Listing 1.1. Ontological relationship formalization context.

	Context Ontology Relations Sets CLASS, PROPERTIES,
	INSATANCES Constants EQUIVALENCE Axioms
	axm1: EQUIVALENCE

 Listing 1.2. Diplomas ontology. EQo = {Bachelor →Bachelor, Engineer →Engineer, PhD →PhD, Master →Master, Master →Engineer, Engineer →Master} thm3: EQo ∈ EQUIVALENCE Theorem End

	Context Diplomas Ontology
	Constants Master, Engineer, Bachelor, PhD
	Axioms
	axm1: partition(CLASS, {Master}, {PhD}, {Bachelor}, {Engineer})
	axm2:

 Listing 1.5. Student design model machine.∀ x (x ∈ STUDENTS ∧ x → p ∈ phd register ⇒ previousDiplom[{x}] ⊆ {m})An annotation model is defined within a general context as a generic relationship ANNOTATION CLASS linking design models to ontologies (see Listing 1.6).

	Machine Student Register
	Invriants	
	inv1 : Events	
	Phd Register	Any Dip
		Where	grd1: dip ∈ {m}
			grd2: previousDiplom[{student}]={dip}
		Then	act1: phd register = phd resgite ∪ {student → p}
	End	
	6.4 Step 3. Model annotation
	Listing 1.6. Annotation relationship	Listing 1.7. Annotation model con-
	formalization context.	text.
	Context Annotation Relationship	Context Annotation Model
	Extends Ontology Relations, Student Model	Extends Annotation Relationship
	Axioms		Axioms
	axm1: ANNOTATION CLASS =	axm1: annotation ∈ ANNOTATION CLASS
		CLASS ↔ CONCEPT	axm2: annotation = {Master →m, Engineer →e}
	End		End

 Listing 1.8. Annotated Student Register machine.

	Machine Student Register
	Invariants	inv1 : ∀ x (x ∈ STUDENTS ∧ x → p ∈ phd register ⇒ ((previousDiplom[{x}] ⊆ {m})
	∨ (previousDiplom[{x}] ⊆ annotation[EQo[annotation -1 [{m}]]])))
	Events	
	Phd Register	Any Dip
			Where	grd1: dip ∈ {m,e}
			grd2: previousDiplom[{student}]={dip}
			Then	act1: phd register = phd resgite ∪ {student → p}
	End	

http://www.w3.org/2001/sw/wiki/OWL.

ATLAS Transformation Language: http://www.eclipse.org/atl/.

Kermeta: http://www.kermeta.org/.

Eclipse modeling framework: https://www.eclipse.org/modeling/emf/.

http://www.event-b.org/.