N

N

Annotation of Engineering Models by References to
Domain Ontologies
Kahina Hacid, Yamine Ait-Ameur

» To cite this version:

Kahina Hacid, Yamine Ait-Ameur. Annotation of Engineering Models by References to Domain On-
tologies. International Conference on Model and Data Engineering (MEDI 2016), Sep 2016, Almeria,
Spain. pp.234-244. hal-02451004

HAL Id: hal-02451004
https://hal.science/hal-02451004
Submitted on 23 Jan 2020

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-02451004
https://hal.archives-ouvertes.fr

- OATAO

Open Archive Toulouse Archive Ouverte

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

This is an author’s version published in:
http://oatao.univ-toulouse.fr/24897

Official URL
DOl : https://doi.org/10.1007/978-3-319-45547-1 19

To cite this version: Hacid, Kahina and Ait Ameur, Yamine
Annotation of Engineering Models by References to Domain
Ontologies. (2016) In: International Conference on Model and Data
Engineering (MEDI 2016), 21 September 2016 - 23 September 2016
(Almeria, Spain).

Any correspondence concerning this service should be sent
to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

Annotation of Engineering Models
by References to Domain Ontologies

Kahina Hacid®) and Yamine Ait-Ameur

Université de Toulouse, INP,
IRIT Institut de Recherche en Informatique de Toulouse,
Toulouse, France
{kahina.hacid,yamine}@enseeiht.fr

Abstract. Complex engineering systems execute within different con-
texts and domains. The heterogeneity induced by these contexts is usu-
ally implicitly handled in the development cycle of such systems. We
claim that reducing this heterogeneity can be achieved by handling
explicitly the knowledge mined from these domains and contexts. Verifi-
cation and validation activities are improved due to the expression and
verification of new constraints and properties directly extracted from the
context and domains associated to the models. In this paper, we advo-
cate the use of domain ontologies to express both domain and context
knowledge. We propose to enrich design models that describe complex
information systems, with domain knowledge, expressed by ontologies,
provided by their context of use. This enrichment is achieved by annota-
tion of the design models by references to ontologies. Three annotation
mechanisms are proposed. The resulting annotated models are checked
to validate the new minded domain properties. We have experimented
this approach in a model driven engineering (MDE) development setting.

Keywords: Design models - Ontologies - Annotation - Model
engineering

1 Introduction

In general, during system development, the knowledge provided by the engineer-
ing domain is not explicitly taken into account in the different models that result
from this development. The system development process leads to the production
of several heterogeneous models corresponding to different views or analyses of
the same system. In this context, the most important heterogeneity factor, in
addition to the one due to the use of different modelling languages, is related to
information, knowledge and assumptions of the domain (the environment and
context of execution of the systems) that are not explicitly formalised and there-
fore not used in the models of these systems. One of the reasons is the absence of
such domain knowledge in the modelling language. The developer has to handle
this information in the development process. It may happen that the assump-
tions made by the developers are contradictory due to an implicit considera-
tion of domain knowledge. Indeed, although systems are developed according

DOI: 10.1007/978-3-319-45547-1_19

to development standards and good practices, a large part of the knowledge
required to the interpretation and validation of these models of systems remain
implicit. This situation may raise several insufficiencies and drawbacks during
system verification and validation activities. More precisely, a system assumed
to be sound after verification and validation may loose some of its properties if
information related to its domain, context and environment are integrated to the
model. Indeed, general knowledge information expressed as properties may be no
longer valid in the developed model. For example, the addition of two variables
X and Y, occurring in a design model, may not be valid if domain information
states that X is measured in meters and Y in mailes, although the modelling
language allows such addition. The objective of our work is to propose a sound
and operationalised approach to strengthen design models with domain knowl-
edge resources carried out by the engineering domain associated to the designed
models. We consider that on the one hand, ontologies are good candidates for
describing and making explicit such knowledge [1], and on the other, annota-
tion of model resources by references to ontologies makes it possible to handle
domain knowledge in design models. More precisely, to reach this objective, we
propose a solution involving in a first step the use of ontologies to clarify and
formalise the domain knowledge. As a second step, annotation mechanisms are
defined and set up to link both design models and ontologies. It becomes possible
to express and verify new properties of the enriched design models. This paper
is structured as follows. Section 2 recalls basic definitions of domain ontologies.
Section 3 presents the NoseGear case study [2] illustrating the work developed in
this paper. Our approach for strengthening models through an annotation based
method, the developed annotation mechanisms and details of the implementa-
tion on the basis of a model driven engineering (MDE) approach are presented
in Sect. 4. Application of the proposed approach to the case study is given in
Sect. 5. Finally, Sect. 6 overviews different approaches promoting annotation and
semantic enrichment of models. A conclusion ends this paper and identifies some
research directions.

2 Domain Ontologies as Models for Domain Knowledge

Gruber defines an ontology as an explicit specification of a conceptualisation
[3]. In our work, a domain ontology is considered as a formal and consensual
dictionary of categories and properties of entities of a domain and the relation-
ships that hold among them [4]. In this definition, entity represents any con-
cept belonging to the studied domain. The term dictionary emphasises that any
entity and any kind of domain relationship described in the domain ontology
may be referenced directly, for any purpose and from any context, indepen-
dently of other entities or relationships, by a symbol (URI i.e. unique resource
identifier). Ontology design requires to express a set of basic concepts related to
structure (class, relationships, etc.), description (properties, attributes, etc.) and
behaviour (derivation expression, labelled transitions systems, etc.). An ontol-
ogy modelling language is required to describe such ontologies. Several ontology

modelling languages have been developed so far. OWL [5], PLIB [6,7], RDFS [§]
are some examples of such languages. These languages describe ontology enti-
ties using different modelling artefacts like hierarchies, properties, relationships,
instances and individuals, constraints, etc. According to [4], a domain ontology
is a domain conceptualisation that obeys to the three fundamental criteria: being
formal, consensual and offering references capabilities.

Formal. An ontology is a conceptualization based on a formal theory to check
consistency properties and to perform some automatic reasoning over concepts.

Consensual. An ontology is a conceptualization agreed upon by a community
larger than the members involved in one particular application development (one
design model). Ontology standards are good supports for such agreements.

Capability to be referenced. Each ontological concept is associated with
an URI. References to this concept become possible, using this identifier, from
any environment, independently of the ontology where this concept was defined.
In this paper, we do not address the ontology design process, we suppose that
ontologies already exist. This section is voluntarily made concise. The literature
related to ontology engineering is full of definitions, approaches, work, tools, etc.

3 The NoseGear Case Study

The NoseGear [2] is a sub-component of the landing gear of an airplane. The
objective of the case study addressed in this paper is to estimate the speed
of a grounded airplane. Speed is estimated by measuring the time taken by
the NoseGear wheel to achieve a turn. An interruption is triggered each time
a round is completed. This interruption increments two counters: a counter
which calculates the number of turns the wheel made, and another recording
the current time value. Then, a function operates to calculate the speed of the
plane from the recorded values of both counters. The complete description of the
NoseGear case study is given in [2]. This case study involves several independent
views of the same system (physical, computing, etc.). We assume that multiple
ontologies are used to express knowledge and properties associated to each view.
Since these views relate to the same engineering area, implicit relationships may
exist between the different views and therefore between the related ontologies.
Through this case study, our goal is, first, to identify and to formalise these
implicit relations existing between ontologies. Then, we use them to link multi-
ple system components of the NoseGear design model. Constraints are used to
express invariants defining properties mined from different ontologies.

4 Our Approach

4.1 Methodology

We propose a stepwise methodology to establish a formal explicit link between
these two models. Figurel shows the overall schema of the approach involv-
ing four steps. Concepts, properties and constraints of the studied domain are

represented and formalised within a knowledge model (domain ontologies) at
step 1. Specific design models are defined at step 2. At step 3, relationships
between design model entities and the corresponding knowledge concepts are
identified. Three different kinds of relationships can be set up, they are dis-
cussed in Sect. 4.2. Finally, at step 4, the annotated model is analysed to deter-
mine whether the constraints associated to the knowledge domain, carried out
by the annotations, can be expressed in the new enriched design model. More
details about the developed approach can be found in [9].

4.2 Model Annotation: Three Cases

Relations, formalized as model annotations, are established between design
model entities and ontology concepts. Three annotation mechanisms are
identified.

Annotation by inheri-

Domain Knowledge
Formalization

4

oy o

Domain Ontology
A

“use”

Model Specification and
Design

Model Annotation

Annotated Model

g

Property Verification

&

. 5

Design Model
A

“use”

ce. (Figure2(a)) is defined
by the Is_a relationship (sub-
sumption relationship [10]).
In this case, a concept of the
ontology subsumes an entity
of the design model. The
mapping relationship is the
subsumption (is_a). Proper-
ties, attributes, rules and
constraints that apply to
the ontological concept are

also applicable to the design
model entity. This annota-
tion maintains the ontologi-
cal reasoning and preserves
it at the design model level.
This relationship is usually
set up in an a priori set-
ting where the ontology is
designed before the design
models are defined.

Enriched Design
Model

Fig.1. A four steps methodology for handling
domain knowledge in design models.

Annotation by partial inheritance. (Figure 2(b)) is defined by the Is_case_of
relationship. It is also a subsumption relationship. It defines a partial inheritance
[10]. This relation behaves like the Is_a relationship, except that it does not
require the inheritance of all the ontological properties. In fact, only some of
the relevant properties and constraints of the ontology class are imported. The
annotation mechanism is in charge of selecting which properties and constraints
are imported. The main advantage of this approach is flexibility, it can be set
up in any situation (a priori and a posteriori).

£ OntologyClass

o attributel : Eint 4

£ ModelClass

o attribute2 : EStri
o attribute3 : Eint -

Selected Properties:
attribute1

Expression <algebraic>:
attribute1 = attribute3 + 1

[} OntologyClass

= attributel : Ent 4
attribute3

1

5 ModelClass

o attribute2 : EStri
o attribute3 : EInt =

Propoerties Annotation:
attribute1 (associatedTo)

Expression <algebraic>:
attribute1 = attribute3 +

[ontologyClass
= attributel : EInt

[1..1] annotatingClass
[ClassAnnotation

1..1] annotatedClass
[ModelClass

= attribute2 : EStri
= attribute3 : EInt -

inheritance
(Is_case_of).

(a) Inheritance (b) Partial
(Is_a).

(c) Association.

Fig. 2. Annotations mechanisms.

Annotation by association. (Figure2(c)) Is_a and Is_case_of relationships
are based on relationships that preserve subsumption reasoning. It may happen
that an annotation needs specific relationships defined by the users. These rela-
tionships are themselves described in ontologies. This annotation enables the
connection of ontological classes with model classes by association. In this case,
subsumption reasoning contained in the ontology is not preserved at the anno-
tated design model level. But, the properties borrowed from the association to
the design model can be used to express properties.

Annotation meta-models. The annotation mechanisms described above need
to be described in the modelling language in order to get a uniform modelling
setting (here UML). A consequence of the choice of UML, is that the Is_a rela-
tionship is built-in and does not need to be defined. The Is_Case_of and Asso-
ciation annotation relations need to be defined within the modelling language.
Two meta-models (one for each type of annotation) describing these mechanisms
are introduced (Fig.3). They link design model entities and ontology concepts
at the meta-model level.

[AnnotationModel

= name : EStrin

[0..¥] annotations

[] OntologyClass [ClassAnnotation

[] ModelClass

[1..1] annotatedClass

[1..1] annotatingClass

= name : EStrin

i [0..¥] propertyAnnotations

[] PropertyMapping

[0..#] constraints [0..#] properties

[0..#] properties

ModelPropert;
[1..1] annotatedPropert = Y

[BOntologyConstraint [{-]OntologyProperty
L l [1..1] annotatingProperty| = hame : EStrin

[[1..1] expression

[} Expression

% ExpressionType|

type : - :
= ExpressionType constraint
constraint ~algebraic

= value : EStrin = discret

Fig. 3. Annotation by Association meta-model.

AnnotationModel: the entry point of the annotation models.

ClassAnnotation: an association of ontology concepts and design model classes.
PropertyMapping: relations between properties of design model and of ontology.
Expression: algebraic expressions to compose properties (constraint, derivation).

4.3 Properties Expression and Verification

The last step of the approach analyses the obtained annotated design models.
The annotation process leads to the enrichment of the original design model
with new relations, properties, constraints and rules. Ontological properties and
classes are considered to be available (or expressible) in the enriched model
if they have been explicitly selected or linked to model properties during the
annotation process (third step of Fig.1). It may happen that these relations,
properties and constraints could not be expressed at the design model level
and thus not valuable at instantiation level due to the absence of attributes to
express them or of the values of these attributes (instances). These constraints
become meaningless. At this level, an analysis of the obtained annotated model
is necessary after an annotation by Is_Case_Of or by association because these
two types of annotation offer the possibility of having only some ontological
properties in the enriched design model. The annotation by Is_a does not suffer
from this drawback since all ontological constraints in the design model can be
expressed (all the properties of the annotating ontological classes are inherited
in the design model). The proposed analysis procedure is depicted on Fig. 4. The
process begins by selecting an annotated class in the model and analyse it to
retrieve the ontological class that annotates it. Each constraint of the annotating
class is then analysed to decide if it is expressible in the model. The expressible
constraints are integrated into the model, the other ones are discarded.

BEGIN
For (an annotated model)
begin
Select a new annotated class;
Select the corresponding onology class;
For (all ontology class constraints)
begin
Select a new constraint;
if (constraint is expressible in the design model) then
Integrate to the domain model;
else
Add an error message;
endif;
end;
end;
END;

Fig. 4. Algorithm of the verification process.

5 Application to the NoseGear Case Study

5.1 Step 1. a Domain Ontolgy

Figure 5 depicts the ontology used to annotate the NoseGear design model. It is
composed of two parts defining specific modelled domain knowledge: an avionic
ontology PlaneOntology and a devices ontology DevicesOntology composed of
classes and properties. Constraints are defined on the ontology model Ontology
(Fig. 5).

Constraints. We present two constraints: N,,.. and Fopy. They express
implicit relations that may exist between different views of the NoseGear mod-
els (e.g. computation and physical views). Formalized within ontologies, these
constraints describe implicit links between domain ontologies. They link the com-
ponents of the design model after making explicit the knowledge in the model.

N,,,. of the wheel.

£ Ontology This constraint deter-
mines the optimal

memory size Stor-
I DevicesOntology ageCapacity) of the

landing gear’s lap
[0.+] devices counter (StorageDe-
vice in the ontol-
ogy). We calculate
the maximum num-

| [Plane |

(]

] Device

= uri : EString

= modelNumber : EFloat = 0.(
= wheelDiameter : EFloat = 0.
= take_of_speed: EFloat = 0.

ber of laps (Niuaz)
r#l | QStorageDevice} |E]CalculationDevice1

that can be made by

= uri: EString
= description : EString

| £ PrivatePlane | | £] CommercialPlane ‘ o StorageCapacity:J ‘ o CpuPower:EFloatJ
| | | | Eint =00 the wheel on the takg
off track. N,,ez IS
obtained by dividing
Fig. 5. Overview of the ontology of the NoseGear. the maximum dis-

tance that can be
travelled (i.e. length of the take off track) by the distance travelled in one turn
(circumference of the wheel). N,,00 = Dinas/Cuneer is obtained.

The maximum memory size of the laps counter can then be deduced by
bounding Njaz: 271 < Nyea < 2F, k being the number of bits needed to
represent N,,... As a consequence, we have been able to exploit the topology
knowledge to determine the optimal size of the register encoding the N,,, ... value.

Fcopy. The second con-
straint determines which
kind of CPU processor (the
I ’ CPU frequency Fepy) is

~ needed to support calcula-

£l NoseGearModel

H ModelPlane tions related to the num-
o WheelD :EFloat = ber of laps of the NoseGear
D(t)f‘g‘EOFS’EF‘OEt: wheel. To be responsive,

x “ the CPU frequency must

5 Plane_mot | be adjusted to be able to

detect at best every lap
of the wheel. It involves

h . 2 . . .
; : : - \I/ having at least a rising

] Ticker | (] TimeCounter [] NoseGear edge Clock.vvhenever a com-
{: MemorySize:EIntJ © Value : EInt { = CPU:EFIoat:0.0J plet.e lap is 'done.. The fol-
lowing relationship: Feopy

= take_of _speed/Cypeer is
obtained. Here, cinematic
theory specifies the required
frequency of a calculator.

These two constraints are defined in the presented ontologies. They help to
explicit existing relations between different knowledge domains of the NoseGear
model.

Fig. 6. Overview of the NoseGear design model.

5.2 Step 2. Design Models

The design model of the NoseGear describes a simple architecture of an air-
craft. An overview of the Ecore model is given in Fig. 6. Note that the NoseGear
architecture is usually represented by several models, each one describing a spe-
cific view. These models are not given here due to space limitation but may
be obtained from [11]). The NoseGear model is defined by the abstract sys-
tem ModelPlane. Plane_Impl implements the Plane system. It is composed of
the Nosegear (calculator to detect and calculate the number of laps the wheel
makes), the Ticker (the counter to store the value of the number of laps) and
TimeCounter (the time counter).

5.3 Step 3. Annotation Process

In Fig. 7, annotation by association is established between Plane ontological class
and ModelPlane of the model using ClassAnnotation (bullet 1). Annotations are
also established between StorageDevice and Ticker and between Calculation-
Device and NoseGear. A correspondence is established between take_of _speed
of the ontology and takeOfS of the model using PropertyAnnotation (bullet
2). Correspondences are also established between: wheelD and wheelDiameter,
CpuPower property of the ontological CalculationDevice and CPU property of
NoseGear, and finally, between StorageCapacity property of StorageDevice and
memorySize property of the Ticker model.

4 < Annotation Model 4 ¢ Annotation Model 4 4 Annotation Model

4 4 Class Annotation 4 4 Class Annotation 4 4 Class Annotation
4 4 Property Annotation 4 |4 Property Annotation 4 4 Property Annotation
4 Expression discret < Expression discret < Expression discret
selection | Parent | List| Tree | Table| Tree with C¢ lection| Parent List| Tree| Table | Tree with Columns lection | Parent | List | Tree| Table | Tree with Columns

8) A

£ Tasks | [Properties 52) Tasks [Properties 33 \\2/ ks [Properties 2

Property Value ™ ‘operty Value ‘operty Value .
Annotated Class H Plane Annotated Attribut © takeOfS : EFloat Type U= discret
Annotating Class £ ModelPlane Annotating Attribut = take_of_speed : EFloat Value I= take_of_speed <=> takeOfS

Fig. 7. Overview of the annotation process of the NoseGear design model.

A discrete typed expression states that take_of_speed is equivalent to takeOfS
(bullet 3). Other expressions are defined for the other mapped properties.
wheelD and wheelDiameter. Algebraic expression wheelD = wheelDiameters
100 is defined. wheelD is measured in centimeters and wheelDiameter in meters.
Cpu and CpuPower. A discrete expression CpuPower < CPU is established.
memorySize and StorageCapacity. StorageCapacity < memorySize is set.

5.4 Step 4: Property Verification

The werification step consists in analysing the obtained annotated NoseGear
design model. A constraint analysis is trigged according to the algorithm of
Fig. 4. This analysis shows that the ontologicalconstraints N, ., and Fopy link-
ing different views of the system are expressible within the enriched model.
Indeed, all the ontological properties they are related to are retrieved within the
NoseGear model. Thus, they are included in the final NoseGear design model to
ease the plane speed computation.

6 Related Work

Many researchers studied the issue of semantic enrichment of models. [12] pro-
posed informal annotations for business models in an interoperability context.
Annotations are classified according to their type (decoration, linking, instance
identification etc.), their content and artefacts models. In [13], the authors pro-
pose an annotation method which promotes mapping UML class’s attributes
with domain ontology concepts. It shows the corresponding relations with a
markup language and UML itself. [14], presented a semantic annotation method
allowing the annotation of templates, process model fragments and modelling
languages. General Process Ontology (GPO) is used as a reference in the ontol-
ogy modelling process. [15] propose a semantic annotation framework for the
management of heterogeneous process models according to four perspectives:
basic description of process models (profile annotation), process’s modelling lan-
guages (meta-model annotation), process model (model annotation) and pur-
poses of process models (annotation goal). In [16], a reasoning phase is based on
the output of the annotation phase. Reasoning rules produce inference results:
(1) suggestion of semantic annotation, (2) detection of inconsistencies between
semantic annotations and (3) conflict identification in annotated objects.

Compared to our work, the approaches cited above, propose informal and
restrictive annotations to improve the common understanding of models and to
address interoperability issues. They do not deal with the formal correctness of
models with respect to domain properties and constraints.

7 Conclusion and Future Work

The work achieved in this paper starts from the general observation that domain
knowledge related properties are not handled nor formalised during the system
development. It focuses on making explicit domain knowledge. It shows how the
integration of domain knowledge in design models handles the expression and
the verification of new properties and constraints that emerge from the explicit
expression of domain specific knowledge. In order to allow such properties expres-
sion and verification, we proposed an incremental model oriented approach to
enrich and strengthen design models thanks to references to domain knowledge
resources. This stepwise approach is based on model engineering techniques and
is composed of four steps. First, ontologies are set up in order to make explicit
and formalise domain knowledge using concepts like classes, properties, con-
straints, relations etc. To get a uniform model for all the resources involved in
our approach, we have characterised these ontologies using a meta-model. Then,
as a second step, we have defined and used annotations to explicitly estab-
lish a link between the domain ontologies and the design models. Three types
of annotations have been defined for this purpose: annotation by inheritance
Is_a, annotation by partial inheritance Case_of and annotation by association.
Finally, the last step checks if the ontological constraints can be expressed and
interpreted within the annotated design model before they can be integrated to
the final enriched design model obtained after annotation. A prototype imple-
menting this approach has been built on top of the EMF Eclipse platform. This
approach has been developed as part of the IMPEX-ANR project [17] and has
been deployed within formal methods based on refinement and proof using the
Event-B method. It has been applied to several case studies of the engineering
domain [9)].

Several other research directions to pursue our work can be envisaged. First,
we are interested in promoting our approach to handle, during the annotation
process of design models, instances of ontologies. Design models could be anno-
tated by both classes and instances of an ontology. Then, the capability to anno-
tate behavioural resources in design models (like state-transition systems, events,
etc.) is another open issue. Finally, we are interested in moving forward towards
the formalisation of an ontological language in an upper level within a formal
context based on proof using Event-B [18] theories.

References

10.

11.

12.

13.

14.

15.

16.

17.
18.

. Ait Ameur, Y., Méry, D.: Making explicit domain knowledge in formal system

development. Sci. Comput. Program. 121, 100-127 (2016)

The NoseGear Case Study. http://www.cl.cam.ac.uk/mjcg/FMStandardsWork
shop/NoseGear.html

Grube: toward principles for the design of ontologies used for knowledge sharing
(1993)

Jean, S., Pierra, G., Ait Ameur, Y.: Domain ontologies: a database-oriented analy-
sis. In: Filipe, J., Cordeiro, J., Pedrosa, V. (eds.) WEBIST 2005/2006, LNBIP, vol.
1, pp. 238-257 (2006)

Ontology web language. http://www.w3.org/2001/sw/wiki/OWL

ISO: Parts library - part 42: Description methodology: Methodology for structuring
parts families, ISO ISO13584-42 (1998)

ISO: Parts library - part 25: Logical resource: Logical model of supplier library
with aggregate values and explicit content, ISO ISO13584-25 (2004)

RDF Schema. http://www.w3.org/TR/rdf-schema/

Hacid, K., Ait Ameur, Y.: Strengthening MDE and formal design models by refer-
ences to domain ontologies, a model annotation based approach. In: ISOLA (2016,

to appear)
Jean, S.: OntoQL, an exploitation language for ontology-based databases, Theses
(2007)

The NoseGear Case Study. http://www.cl.cam.ac.uk/mjcg/FMStandardsWork
shop/sampleCode.pdf

Boudjlida, N., Panetto, H.: Annotation of enterprise models for interoperability
purposes. In: IWAISE, April 2008

Wang, Y., Li, H.: Adding semantic annotation to UML class diagram. In: ICCASM
(2010)

Lin, Y., Strasunskas, D.: Ontology-based semantic annotation of process templates
for reuse. In: CAiSE (2005)

Lin, Y., Strasunskas, D., Hakkarainen, S., Krogstie, J., Solvberg, A.: Semantic
annotation framework to manage semantic heterogeneity of process models. In:
CAIiSE (2006)

Carvalho, V.A., Almeida, J.P.A., Guizzardi, G.: Using reference domain ontologies
to define the real-world semantics of domain-specific languages. In: CAiSE (2014)
Consortium: Formal models for ontologies, Technical report (2015)

Abrial, J.R.: Modeling in Event-B - System and Software Engineering. Cambridge
University Press, New York (2010)

