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Proof-Based Approach to Hybrid Systems
Development: Dynamic Logic
and Event-B

Guillaume Dupont®™), Yamine Ait-Ameur, Marc Pantel,
and Neeraj Kumar Singh

INPT-ENSEEIHT/IRIT, University of Toulouse, Toulouse, France
{guillaume.dupont,yamine,marc.pantel,nsingh}@enseeiht.fr

Abstract. The design of hybrid systems controllers requires one to han-
dle both discrete and continuous functionalities in a single development
framework. In this paper, we propose the design and verification of such
controllers using a correct-by-construction approach. We use proof-based
formal methods to model and verify the required safety properties of the
given controllers. Both Event-B with Rodin, and hybrid programs and
dynamic differential logic with KeYmaera are experimented on a com-
mon case study related to the modelling of a car controller. Finally, we
discuss the lessons learnt from these experiments and draw the first steps
towards a generic method for modelling hybrid systems in Event-B.

Keywords: Hybrid systems + Event-B - Hybrid programs
Differential dynamic logic + Proofs : Refinement

1 Introduction

Hybrid systems are present in many safety-critical applications. Thus, the formal
verification of hybrid systems is a key issue in system engineering. Contrary to
classical discrete systems, the formal specification and verification of hybrid sys-
tems require taking into account continuous features like differential equations
to characterise plant behaviours and the appropriate logic and proof system.
Several research works addressed the formal verification of hybrid systems [4].
Hybrid model-checking, proof based approaches, program analysis and simula-
tion have been proposed. These approaches consider a hybrid system as the tight
integration of discrete and concrete features defining models for controllers and
for the plant to be controlled.

However, addressing formal verification at the model level allows for the
abstraction of some implementation details, and in particular floating point
arithmetic. The verification of the defined models and the synthesis of controllers
guarantees the satisfaction of system requirements independently of any imple-
mentation. Only implementation requirements like floating point computation
will remain to be addressed once code is obtained from the verified models.

https://doi.org/10.1007/978-3-319-91271-4_11



Our paper deals with correct-by-construction approaches with refinement
and proof-based techniques. We propose to handle the integration of continu-
ous and discrete behaviours in Event-B [1] and in the Rodin [2] platform to
develop hybrid systems models. This approach requires the modelling of contin-
uous mathematical concepts which are not currently available in Event-B. For
this purpose we use the Theory plug-in developed for Rodin [13] to define a the-
ory for continuous functions and differential equations that we need to handle
in our Event-B models.

In order to position our work, we select the approach of Platzer as a second
formal development technique. This choice is motivated by the defined proof-
based approach and the availability of a tool. Hence, we show how dynamic
differential logic [15] and KeYmaeara [16] are set up for the same objective as
ours. A case study of a car controller, borrowed from Platzer’s work, is used to
illustrate both approaches. As a second step, we present a generalisation of our
approach with Event-B in order to reduce the effort needed for feasibility proofs
during model instantiation.

This paper is organised as follows. The next section presents the case study
we have chosen to illustrate our approach. Event-B and dynamic differential logic
are summarised in Sect. 3 and their use for the development of the case study is
described in Sect. 4. The methodological lessons learnt from these developments
are discussed in Sect. 5. Finally, the last section is devoted to concluding remarks
and a research agenda.

2 Case-Study

The chosen case study deals with a stop sign controller proposed by Quesel
et al. in [17] (Sect.5.3). It consists in modelling a car controller that automati-
cally stops a car at a stop-sign (SP).

Behavioural Requirements. The car is modelled through its horizontal posi-
tion and behaves according to three modes, each of which corresponds to a
particular acceleration. The given accelerations are constant and, as a matter of
simplification, wrap every potential physical phenomena (air and road friction
for instance). These modes are defined as follows.

— Accelerating: the car increases its velocity. In this case, the associated accel-
eration, denoted by A, is positive.

— Braking: the velocity of the car decreases. In this case, the associated accel-
eration is — B, where B denotes the braking power (positive).

— Stabilizing: the velocity of the car does not change. In this case, the associ-
ated acceleration is 0.

The system is modelled by its position (p), velocity (v) and acceleration (a),
which evolve according to the differential equation: p = v, = a, where the dot
stands for time derivative.

At initialisation, the system is in stabilizing mode. The car is given an arbi-
trary initial position and velocity denoted as py and vg, respectively.



Safety Requirements. The system shall observe two invariant properties.

— SAF1. The velocity of the car cannot be negative.
— SAF2. The position of the car never exceeds the stop sign position SP.

Note that the two safety requirements are of different nature. SAF1 has a
purely physical origin whereas SAF2 is a behavioural system requirement.

3 Two Proof-Based Methods

To address the case study presented in Sect.2 we considered two different
approaches. A first one is based on differential logic (d£) and KeYmaera to
express and prove an hybrid controller, and the second one uses Event-B and
Rodin to express the system using events and invariants.

3.1 Hybrid-Programs/Dynamic Logic with KeYmaera

The seminal work of [15] led to the definition of a rigorous method to model con-
trollers for hybrid systems integrating both continuous and discrete behaviours.
The approach revolves around three components: hybrid programs to model
system behaviours, differential dynamic logic d£ to specify properties and the
KeYmaera tool that supports system behaviour specification and verification
using a theorem prover for d£. Below we give the required information to under-
stand the development conducted in this paper. More details can be found in
the abundant bibliography published by the authors.

Modelling: Hybrid Programs. According to Platzer [15], hybrid programs
(HP) define a program notation for hybrid systems. These HP offer a structural
decomposition to support d£ reasoning. Additionally to classical programs, HP
support the definition of variables that evolve along a differential equation. Some
basic constructs of such programs are discrete assignments (:=), sequential com-
position (;), choice (U), state assertion or condition (7H), iteration (*) and con-
tinuous evolution of a continuous variable along differential equation (x’=t &
H) in an evolution domain H (optional).

Property Specification and Verification: Differential Dynamic Logic.
Differential dynamic logic d£ is a first order logic with built-in statements deal-
ing with hybrid systems. Similarly to first order logic which supports reasoning
on classical programs using weakest precondition or substitution calculi, d£ sup-
ports reasoning on hybrid programs. Operators of first order logic together with
the modalities || and () are defined in d£. [a] ¢ and («) ¢ assert respectively that
¢ holds after all runs and after at least one run of the HP a.

For example, Init — [plant] (req) defines an uncontrolled system where
plant is a HP, Init is the dL predicate characterising the initial state and
req is a dL predicate defining a safety property. Init — [(ctrl; plant)*] (req)



defines another system where the HP is made of instantaneous control events
ctrl sequentially composed with the plant HP with a possible modification of
its behaviour. The definitions of ctrl and plant are built using the constructs of
HP, and req is again a safety property. We will use this template to model our
case study.

Tool: KeYmaera. KeYmaera [16] is the theorem prover associated with dif-
ferential logic. It supports proof of properties of hybrid programs. Additionally
to the classical proof rules associated to first order logic, KeYmaera implements
a set of specific proof rules defined for dZ, including differential invariants, dif-
ferential auxiliary and ODE-related tactics. In particular, differential invariants
give an induction proof principle on differential equations.

3.2 Event-B with Rodin

Event-B [1] is a correct-by-construction approach to design an abstract model
and a series of refined models for developing any large and complex system.

Modelling: Event-B Machines. The Event-B language uses set theory and
first order logic. It has two main components, context and machine, to charac-
terise systems. A context describes the static structure of a system using carrier
sets s, constants c, axioms A(s, c) and theorems T.(s, c), and a machine describes
the dynamic structure of a system using variables v, invariants I(s,c,v), theo-
rems Ty, (s, c,v), variants V (s, c,v) and events evt. A list of events can be used
to model possible system behaviour to modify the state variables by provid-
ing appropriate guards in a machine. A set of invariants and theorems can be
used to represent relevant properties to check the correctness of the formalized
behaviour. To define the convergence properties, variants can be used.

Refinement of Event-B Models. Refinement decomposes a model (thus a tran-
sition system) into another transition system containing more design decisions
while moving from an abstract level to a less abstract one. It supports the mod-
elling of a system gradually by introducing safety properties at various refine-
ment levels. New variables and new events may be introduced. These refinements
preserve the relation between the refining model and the refined one while intro-
ducing new events and variables to specify more concrete behaviour of the sys-
tem. The defined abstract and concrete state variables are linked by introducing
gluing invariants.

Property Verification: Proof Obligations (PO). To verify the correctness
of an Event-B model (machine or refinement) the generated POs (issued from
the calculus of substitutions) need to be proved. A proof system allows to prove
the POs. The main proof obligations are listed in Table 1, in which the prime
notation is used to denote the value of a variable after an event is triggered.



These POs require to Table 1. Proof obligations
demonstrate that the theo-  Theorems 2523 f%(i f))) T (s, 0, 0)
rems hold, each event pre- variant A(s,c) A(s,¢,0) AG(s,c,v,z) ABA(s, ¢, v, z,0)
serves the invariant (induc-  preservation =1 e
tive), each event can be Bvent
triggered (feasibility) and feasibility
if a variant is declared, it
shall decrease.

Regarding refinement, two more relevant proof obligations need to be dis-
charged. First, the simulation PO to show that the new modified action in the
refined event is not contradictory to the abstract action and the concrete event
simulates the corresponding abstract event. Second, in the refined events, we can
strengthen the abstract guards to specify more concrete conditions. More details
on proof obligations can be found in [1].

A(s,c) NI(s,c,v) N G(s,c,v,x)
=3v .BA(s,c,v,z,v")

A(s,c) AN1I(s,c,v) A G(s,c,v,z) A BA(s,c,v,x,v")

Variant
aran =V(s,c,v') < V(s,c,v)

progress

Tool: Rodin Platform. Rodin [2] is an open source tool based on the Eclipse
framework for developing Event-B models. It is a collection of different tools
including project management, model development, refinement and proof assis-
tance, model checking, and code generation.

The Theory Plug-In. A recent development of the Event-B language allows
to extend it with theories [3] similar to algebraic specifications. In the Rodin
Platform, this development is provided by the Theory plug-in [13]. In our work,
we extend the theory of Reals, written by Abrial and Butler®, for developing the
required theories for modelling hybrid systems. In particular, all the relevant
definitions, theorems and proof rules related to continuous functions, Ordinary
Differential Equations (ODEs), Cauchy-Lipschitz conditions, etc. are defined in
the developed theories.

4 Development of the Case Study

In this section, we describe how the approaches presented in Sect. 3 can be used
to address the case study exposed in Sect.2. As for the section presenting the
tool, we first describe what has been done by Quesel et al. to design a solution
using d£ and KeYmaera, and then we move on to how we dealt with this problem
using Event-B and Rodin.

4.1 HP/dL/KeYmaera

Model. Table2 shows the d£ formula (Eq. (1)) specifying the behaviour and
requirements of the system described in the case study of Sect. 2. In Eq. (2), an
initial condition is defined for velocity v, acceleration A and breaking power B. It
also describes the safe condition which defines the safety envelope (or evolution
domain) for the car regarding the stopping point SP.

! http://wiki.event-b.org/index.php/Theory_Plug-in#Standard_Library.



Equation (1) states that given the initial condition and after any run of non-
deterministic iteration composing sequentially the controller (4) and the plant
(5) hybrid programs, the safety requirement req (6) stating that the position is
always ([ ]) before the stopping point SP. Finally two equations define con-
troller and plant. Equation (4) models the control.

First, when the safe con- Table 2. Hybrid program for the self-driven car

dition holds, the accelera- init — [(ctrl; plant)”] (req) 1)
tion is unchanged, otherwise =~ = v20NA>O0AB>0Asafe (2)
it is set to —B for break- i(;{"i ; ??_:a?z; ;:iPA) U (v =0;a:=0)U (a:=—DB) EZ%
ing. Second, Eq. (5) sets up  piant = (p' =v,v' = a&v > 0Ap+ 2= < SP) (5)
the ODEs associated to the U =uv,0" =a&v>0Ap+ 22 > SP)

req = p <SP (6)

position and velocity with
respect to the reachability of the stopping point SP.

Property Verification. The hybrid program of Table2 is given to the KeY-
maera prover. The user must then prove the global formula (1), and the proof
is conducted by applying inference rules in a natural deduction style. Simi-
larly to other provers, several proof rules and tactics are available. Figure 1
shows an extract of the proof tree associated to the df formula init —

[(ctrl; plant)™] (req).

o obE . e
1 init = J J = [(etrl; plant)] J J Freq
oop
init = [(ctrl; plant)*] (req)
Finit — [(ctrl; plant)™] (req)

02
2B

Fig. 1. Example of KeYmaera proof tree (J=v>0Ap+ < SP)

The power of the KeYmaera prover resides in the availability of several proof
rules and tactics dealing with continuous aspects, ODEs and induction using
differential equations (loop proof rule in Fig. 1).

4.2 Event-B/Rodin

Model. To build our Event-B model of the case study, our approach encodes a
classical hybrid automaton [4,5] where transitions are events and states are sim-
ply stored as variables. Similar to the approach of [8], two types of variables are
considered: (1) control variables (discrete) used for the controller (e.g. to record
mode changes) and (2) variables (continuous) recording continuous state of the
plant (e.g. to record the physical state of the plant). However, this is not enough
to address all the complexity of hybrid systems. Namely, nothing is done to con-
vey the “internal” evolution of the system (the time-step transitions), to handle
the changes of the continuous variables with respect to time. So, additionally,
we introduce events to reflect the overall continuous progress of the system.



Last, the core Event-B modelling language is not equipped with the formal
material related to the definition of continuous mathematics required to model
the physics of the controlled plant. To overcome this drawback, instead of re-
designing a language, we used the so-called Event-B theories. Several theories
have thus been defined and used for the development of the case study. The
remainder of this section describes the whole Event-B development which can
be downloaded from yamine.perso.enseeiht.fr/HS_eventb_models.pdf.

The Derivative Global Context to Manipulate Continuous Functions.
Concept such as continuous functions, derivative, differential equations etc.
required to model the physics of a plant are introduced in a generic context
Derivative holding various (axiomatic) mathematical definitions. In particu-
lar, it gives the sets of continuous, once- and twice- differentiable functions as
well as a basic “derivation” operator.

Beside that, we also defined a weak and simple version of the Cauchy-
Lipschitz theorem, in order to be able to express the condition of existence of a
solution to the given differential equation. Observe that the derivation operator

D is used to define time derivation operation of the form %.
CONTEXT Derivative
AXIOMS
axml: D € (R - R) - (R — R)) -- derivative operator
axm2: CO(R"T) C (RT — R) -- continuous functions
axm3: D*(RT) C (RT — R) -- once-differentiable functions
axm4: D?(RT) € (RT — R) -- twice-differentiable functions

axm5: DH(RT) c CO(RT)
axm6: D?(RT) ¢ D} (RT)

cauchy_lipschitz:
Vi to,zo-f € RT - R)AfFECORY)ALg ERT Azg ER
=3z-z€  RT =R)AD()=foxAz(ts) = xo

The Car_Context_C1 Context for Car Behaviours. It extends Derivative and
declares the required concepts needed to build the Event-B model of the stud-
ied system. The constants defining the states of the controller (acceleration,
braking, stabilizing, nearing stop and stopped) are introduced together
with A (acceleration), B (breaking power), vy (initial velocity) and SP (stop-
ping point) used in the differential equations throughout the model.

This context also introduces the particular structure Plant for the character-
istics of the plant (i.e.: the car). It is a 7-tuple with a differential equation (with
its initial condition) for a (acceleration), v (velocity) and p (position) functions
on time. They represent the state of the plant. £ denotes the constant value
of the acceleration, ¢;, v; and p; represent the initial condition (v(¢;) = v; and
p(t;) = p;). axm10 defines the Plant structure, which holds every properties the
elements of the model should satisfy with regards to the plant behaviour (type
of the functions and differential equation). It also enforces SAF2 (by indicating
that whenever the velocity v becomes 0, the acceleration becomes 0 as well). Last,
CL_extension entails the Cauchy-Lipschitz condition for this specific plant.



CONTEXT Car_-Context_-C1
EXTENDS Derivative
SETS STATES
CONSTANTS B, A, vo, SP, Plant
AXIOMS
axml: partition(STATES, {accelerating}, {braking}, {stabilizing}, {nearing_stop},
{stopped})
axm2.9: AERABERAOKAANOSBASPERAOSSPAvg ERAOD<wg
axm10: Va, v, p, k,ti,vi,pi -a €ERT 5 RAvERT S RApeRT —RAEERAL € RT
Av; ERAp; €ERA (a,v,p, k,t;,vi,pi) € Plant
S WeD'ApeED > ADW) =aAD(p) =vAv(t;) =vi Ap(ti) = piA
(3to - to € RT Aw(tg) =0
= (Vt-t €ERT = ((t <to = a(t) =k)A(t>to = a(t) =0))))A
(Vto -to ERT Aw(to) #0 = (Vt-t € RT = a(t) = k))
)
CL_extension: Vk,t;,v;,p; -k €E RAt; € Rt Av;, €R Ap; €ER =
(Ja,v,p-a eRT = RAveERT S RApeRT = RA (a,v,p, k, t;, v, p;) € Plant)
END

The Plant structure is handled as a whole in the Event-B model. From a
methodological point of view, it shall be defined for each modelled plant.

invl 2 :t € RT A current_state € state Variables and Invariants.
inv35:a € RT 5 RAveERT - RApeRT - R We use the relevant contexts
inv6.7 : Vt0 € R1+ : p(t0) > 0AVt0 € RT : p(t0) < SP and model the system’s state
inv81l:v €D ApE DT AD() =anDlp)=v with five variables. A read
only variable ¢ for time is introduced. current_state defines the current state
of the controller, and the three variables are associated to the controlled plant
(p position, v speed and a acceleration).

Initialisation. The initialisation

o INITIALISATION =
event defines the initial state and THEN
the starting read time value as acg 1 g“”g"t—sme := stable

ey ac : =
well as the initial values of each act3 :a,v,p: o’ € RT - RAv €RT — RA
variables. act3 defines, using the '€ H§+ — RA
. v, p’,0,t, 0, Plant

Plant structure, the initial condi- END (@’ v'sp vo, po) € Plan
tions and the differential equation

governing the evolution of the variables p, v and a. It sets the acceleration a to
0 and initialises the position and velocity with pg and vg.

Progress = Time Handling: The Progress Event. In order

THEN to model the progress of time independently of any
actl:t: |t/ eRT At <t/ . .

END other event (i.e. for the other events, time can only

be read), the Progress event is introduced. This
event occurs continuously in parallel with the other model events. A before-after
predicate describes strictly increasing time using a positive real variable t.

Behaviour of the Plant. The remainder of the model contains two categories
of events: sensing and actuating events. Sensing events are split into command
events (user or driver orders) and the actual sensing (coming from the envi-
ronment through sensors) events. To keep the paper at a reasonable length,
we only describe one event of each category. The whole model is available on
yamine.perso.enseeiht.fr /HS_eventb_models.pdf.



Command_Sensing Events. The ctrl_sense_usr_input_stabilize =

command-sensing events observe, through WHERE (1)

sensing, the state of the car (plant) and Tg};(]{;ll\} Pt} + S5 < 5P
trigger state changes on the controller E;f{gicuwentstate := stabilizing
(state-transition system). For example, ctrl_sense_usr_input_accel = . ..
under the condition that the veloc- ctrl_sense_usr_input_brake = ...

ity is positive, the ctrl_sense usr_
input_stabilize records that the driver
decided to stabilize her speed.

ctrl_actuate_stabilize =
ctrl_sense_near_stop = WHERE
WHERE ) grdl : current_state € {stabilizing, stopped}
grdl s p(t) + 385 > S THEN
THEN actl : a,v,p: |’ €RT = RAv € Rt = RA
actl : current_state p’ /6 Elv_ o RA
:= nearing_stop (a’,0",p",0,t,v(t), p(t)) € Plant
END END
ctrl_sense_stopping = ... ctrl_actuate_accelerating = . ..
ctrl_actuate_brake = ...

Control-Sensing Events. These events are triggered when information from
the external environment (typically: coming from sensors) is available. For exam-
ple, the ctrl_sense near_stop event is triggered when the stop sign needs to be
taken into account. The physics of the car provides the model with the relevant
trigger condition, used as a guard (grdl).

Control-Actuating Events. Whenever the controller changes state, it sets
the right actuation on the car (plant). Using a before-after predicate, it changes
the differential equation characterizing the plant behaviour (car) to a new one
(change of acceleration a), ensuring that the past behaviour is preserved. This
change occurs at the current time and holds until the next actuation. For exam-
ple, the ctrl_actuate_stabilze event modifies the variables a, v and p in act1l
when the controller is in either stabilizing or stopped mode.

Property Verification. The theory defined for continuous features and ODEs
generated several proof obligations, in particular those related to the theorems
and thus to the proof rules. Then, other proof obligations are generated from
the Event-B model. Due to our extensive use of the theory plug-in, most of
these proofs have numerous manual steps, particularly the ones related to the
continuous features. Even simple proofs, such as well-definedness, need to access
real type operators via interactive theorem instantiation.

Obtained Results. The Event-B development of Sect. 4.2 shows that it is pos-
sible to model both continuous and discrete behaviours, using an event-based
modelling style, within Event-B on the Rodin platform. It also shows that Event-
B can handle modelling of hybrid systems modelled by hybrid automata.



5 A Development Method for Hybrid Systems

Taking the development carried out in Sect. 4.2 one step further, we present, in
this section, the methodological lessons learnt from this development.

5.1 The Approach

The development of Sect. 4.2 is a direct formalisation of the requirements pre-
sented in the case study. However, when observing how the events are defined
in the Event-B machine, one can identify a set of methodological rules that help
to produce such models in a systematic way.

Required Theories. First, the global set of axioms and theorems, CONTEXT
Derivative, related to the manipulation of continuous functions (derivation,
Lipshitz condition, etc.) is used for all the Event-B developments. Second, the
specific context with all the concepts needed to model the specific case study
shall be introduced. This context defines the control states of the mode automa-
ton associated to the control together with the continuous functions associated
to the plant to be controlled. It also defines the global structure representing
both continuous and discrete elements manipulated by the behavioural model
through variables and events (definition of the Plant 7-tuple structure). Regard-
ing the case study developed in this paper, this context corresponds to the
Car_Context_C1 context.

xs : Ctri_State

zp : Plant_State
INVARIANT

Inv : Inv_Exp(zs,xp)

INITIALISATION

Ts, Tp ¢ |Init_Pred(zs, zp, :v;,m/s)

Modeling Hybrid Systems. The next steps concern the design of the model
itself using an Event-B machine. First, state variables are declared. x5 and z,, are
the variables associated to the controller and to the plant respectively. They shall
conform to the invariant defined by the Inv_Exp predicate. They are initialised
with initial conditions defined by the predicate Init_Pred. Two categories of
events are needed to handle sensing and actuation. They are defined by two
templates. CTRL_Sense events for the sensing events (user commands or plant
sensing) that may modify the state (Fxzp_Next_for_s before-after predicate)
of the controller while CTRL_Actuate defines the actuation events to modify
(Exzp_Next_for_p before-after predicate) the plant behaviour.

EVENT CTRL_Sense EVENT CTRL_Actuate
WHEN WHEN
grd : Cond_Exp_p(x,) grd : Cond_Exp_s(xs)
THEN THEN
act : ¢, : |[Exp_Next_for_s(xzs,zp) act : xp : |Exp_Next_for_p(zp,xs)
END END

The steps described above have been followed, in Sect.4.2, to develop the

Event-B models of the case study.




5.2 Deep Modelling: Generalisation

As mentioned previously, the approach described in the previous section sets up
some methodological steps without any restriction on the resulting development.
Encoding the previous steps in a generic deep Event-B model makes it possible
to introduce more oversight and rigour into the design of models for hybrid
systems.

In this section, we present a generalisation of the previous approach. We pro-
pose a generic Event-B model that explicitly formalises the different methodolog-
ical steps defined in the previous section. We also show that a particular system
can be modelled by instantiating this generic model and supplying witnesses.

A Theory for ODEs. Continuous functions, ODEs together with their relevant
properties are defined with an Event-B theory. Listing 1.1 shows an extract of the
theory of ODEs with ode as a constructor for differential equations. The oper-
ators solutionOf, Solvable and CauchyLipschitzCondition define predicates
that states respectively that a given function is a solution of an ODE (with
initial conditions), that an ODE admits a solution and that the given equation
fulfill a Cauchy-Lipschitz condition. The bind operator returns an expression
that links generic plant variables to a pair of variables associated to a particular
plant. It has been introduced to ease instantiation.

Listing 1.1. Elements of the differential equations theory

TYPE PARAMEIERS E, F, G

DATATYPES
DE(F)
Constructors
ode(f : PRY xFxF), fo : F, to : R")
OPERATORS

solutionOf <predicate> (eta : RT — F, eq : DE(F))
WHEN eq = ode(f,fo,to) THEN
eta € RT — F Aeta € DY(RT, F) A D(eta) = f(eta) A eta(to) = fo
Solvable <predicate> (eq : DE(F))3z -z € (RT — F) A (z solutionOf eq)
CauchyLipschitzCondition <predicate> (eq : DE(F))
WHEN eq = ode(f,fo,to) THEN
fo€EFAtgeRYAFE(RT X F — F)AfeCORY x F,F)A
(Vt* - t* € RT = lispchitzContinuous(F, F,( Ay -y € F | f(t*,y)))
bind <expression> (A:P(E), B:P(F), C:P(G), far:A— B, faoc:A—C)
Az -z € Al (far(2), gac(x)))

AXIOMATIC DEFINITIONS
¢, ¢, pt, D™,

lipschitzContinuous <predicate> (A : P(E), B : P(F), fap : A— B)

THEOREMS
CauchyLipschitz: Veq-eq € DE(F) A CauchyLipschitzCondition(eq) = Solvable(eq)

A Generic Model. The following model elements defined in MACHINE System
gives a generalisation of the approach. We consider that the plant variable z,



belongs to S = RxR. It is indexed on time (2, € R™ — S) and evolves according
to any ODE e in the actuate event. The controller models state transitions

belonging to the set of states STATES using the Transition event.

MACHINE System Actuate =
ce ANYe,s
INVARIANTS WHERE
invl : t € RT grdl : e € DE(S)
inv2:x, € RT - S grd2 : Solvable(e)
EVENTS grd3 : s = current_state
INITIALISATION = THEN
THEN actl : zp : |z, € RT — SA
actl :t:=0 (:c; solutionOf e)
act2 : 2, :€ RT — S END
act3 : Transition =
current_state :€ STATES ANYs
END WHERE
Progress = grdl : s € STATES
THEN THEN
actl : t: |t € RY AL >t actl : current_state := s
END END

Instantiation of the Generic Model: Two Steps. To get the specific model
associated to the system corresponding to the case study of Sect. 2, two steps
are required.

The first step consists of defining the Event-B context for the relevant infor-
mation of the system by introducing acceleration, velocity etc. and the different
ODEs describing plant evolution. It uses the constructors defined in the theory
presented in Listing 1.1. The CONTEXT Car_CO shows such instantiation.

CONTEXT Car_CO
CONSTANTS B, A,vg, SP, Plant
AXIOMS
axml: partition(STATES, {stabilizing}, {braking}, {accelerating},
{nearing_stop}, {stopped}

axml2: ferapie € RT xS — 8
axm13: fstapie = (M, (p,v) -t € RT A (p,v) € S|(v,0))

axml6: Vig - tg € RT = lipschitzContinuous(S, S, (Ax - fstavie (to, x)))

The second step consists of supplying witnesses to the actuating and sensing
events. The MACHINE Car_MO shows a witness for the plant variable x and v
evolving according to an ODE for function fgiqpe. It also shows an actuating
event ctrl_actuate_stabilize where the actuation sets the plant variables to
evolve according to the defined ODE.



MACHINE Car-MO0
REFINES ControlledSystem

.Il'\iVARIANTS ctrl_actuate_stabilize =
invl v € RT =R REFINES Actuate
: WHERE

inv2:z € Rt - R

inv3 : triggers C STATES grdl : current.state €

{stabilizing, stopped}

invd : x), = bind(R+,R, R, v, x) WITH
EVENTS
N e d , t t ,t
INITIALISATION= Z . z = zt;gzjzz?;i; ey
WITH gt = bind(R ' a!
o = bind(R+ R.R. v’ ZC’) CL'p : xp - blnd(R >R7R7U , X )
p p b b b b THEN
THEN. B actl 1 v,z : |
Zig Zl;J;’I"gTLt state := stabilizing 2 eRT S RAV e RT — RA
: _ = . + T
act3 1 v, x | bind®",R,R, v, x')

solutionOf ode(fstabie, (v(t) — x(t)),t)

/ + / +
r €ERT - RAv € RT — RA END

bind(RT, R, R,v", z")
solutionOf ode(fstabie, (vo,0),0)
END

The previous models are extracts of a generic development that can be down-
loaded from yamine.perso.enseeiht.fr/HS_eventb_models.pdf.

5.3 About KeYmaera and Rodin: Assessments

The case study presented in Sect.2 has been developed in both differential
dynamic logic with KeYmaera and Event-B with Rodin. In both cases, the model
of the system has been designed and the requirements have been proved. How-
ever, we have observed several differences in the use of these two modelling
techniques.

KeYmaera supports the definition and verification of hybrid systems models
expressed using d£ and hybrid programs. The logic is built-in and fixed once
and for all and the proof rules are hard-coded into the KeYmaera prover. The
advantage of such an approach is the availability of very powerful proof rules
associated to the manipulation of differential equations (see Fig. 1), and in par-
ticular the differential invariant rule that defines an inductive proof schema (loop
rule in Fig. 1) for differential equations.

To model hybrid systems in Event-B, we define the operational behaviour
using the events. Invariants and other properties are defined at the same time.
The model is seen as a set of events that perform either sensing or actuations.
Proof by induction is obtained by proving invariant preservation by each event
while KeYmaera advocates proof of invariant preservation on the whole hybrid
program without a possibility of decomposing this hybrid program (as Event-
B does for events). The specific proof rules for ODEs (like Cauchy-Lipschitz
theorem) need to be added in the defined theories while they are built-in in
KeYmaera. This task is cumbersome but should only be done once.

Our experiments with Event-B have been conducted in two manners. First,
we have encoded directly the case study as an Event-B model in the spirit of dC
and KeYmaera. Contrary to KeYmaera, this process requires the definition of
all the material related to the manipulation of continuous functions and ODEs.



Compared to KeYmaera, this process may be time-consuming due to the impor-
tant proof effort just to set up the different functions and ODEs.

Secondly, we have developed an abstract model that generalises the theory
of hybrid controllers. This model is designed and proved once and for all. It
may be instantiated, using Event-B refinement, for specific cases by providing
witnesses and proof of existence. Indeed, these feasibility proof obligations convey
a technical point of differential equation theory; that is: the existence of solutions
to a given problem. However, KeYmaera proofs seem to rely on the ad hoc
existence of those solutions.

The definition of the generic model makes explicit definitions of all the con-
cepts manipulated by the model. These definitions can be customised for specific
kinds of controllers and ODEs (for example, we can add more constraints on
ODEs to admit only linear ones). The Rodin theory plug-in helps to define the
proof rules associated to the use of these definitions.

Finally, some issues still need to be solved. For example, the difficulty to
define inductive Cartesian products (S x --- x S or 8™ for an arbitrary n) to
define vectors of state variables. We have to use an inductive structure for this
purpose and thus rewrite the bind generic operator. Secondly, the definition of
a condition to assert the non-zeno property of the system described by ODEs
must be addressed. This can be done by adding a condition on the existence
of a piecewise decomposition of an ODE in a finite set of arbitrary intervals.
KeYmaera makes this assumption but does not make it explicit.

Other Proof-Based Approaches. Here we briefly review three main contri-
butions in formal modelling and proof based verification of hybrid systems.

As described above, differential dynamic logic using KeYmaera and KeY-
maeraX tool suite have been used to model several cases of hybrid systems.

Additionally to the approach presented in this paper, other Event-B contri-
butions can be mentioned. [12,18] use Event-B and the Rodin Platform [14] to
model hybrid systems in a closed-loop model. Time is explicitly modelled using a
specific state variable. The authors consider continuous functions and they define
discrete and continuous transitions preserving invariants which characterise the
correct behaviour of the described hybrid system.

[9] proposes the Hybrid Event-B extension of Event-B with built-in concepts
for continuous behaviours, differential equations discrete and continuous (pliant)
events. Several hybrid systems models (e.g. [8]) have been developed. A similar
approach has been proposed to define continuous abstract state machines in [10].
For both approaches, there is no available supporting tool.

Last, we mention the work of [11] using a proof-based approach with COQ
for the analysis of C hybrid systems programs. The approach uses formal anno-
tations on discrete and continuous program elements as input to a set of provers.

Finally, we recall that several other approaches based on model checking of
hybrid systems modelled as hybrid automata [5]. Due to space limitations these
approaches are not discussed in this paper.



6 Conclusion and Future Work

The formal development of hybrid systems requires modelling of both discrete
and continuous behaviours. In this paper, we have presented two formal devel-
opments of a case study related to a stop-sign controller of a car. The first one
is based on differential dynamic logic with KeYmaera and the second one uses
Event-B and Rodin. Both approaches proved useful to model such a system and
refer to interactive proofs involving proof rules on differential equations. Besides,
using the theory plug-in to extend Rodin’s capabilities, Event-B proved to be
well adapted for generalisation.

This work opens several research paths. First the generalisation we have pre-
sented in Sect.5.2 can be improved in order to formally handle more features
like invariants, guards or different kinds of ODEs. Offering such a possibility will
allow us to produce generic templates of hybrid models that correspond to dif-
ferent types of hybrid systems (for example a non-linear system, or a polyhedral
invariant). The ultimate objective is to hide the development details through
the definition of development/proof patterns. Second, following our preliminary
results in [6,7], the synthesis of a discrete controller from hybrid models similar
to those presented in this paper is also a key issue. Last, we will address the
simulation aspect related to the modelling of hybrid systems.

Finally, we advocate that Event-B together with the plug-in associated to
powerful provers will allow us to achieve these goals.
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Rodin’s Theory plug-in.
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