
Any correspondence concerning this service should be sent

to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in:
http://oatao.univ-toulouse.fr/24921

To cite this version: Coppers, Sven and Luyten, Kris and Vanacken,

Davy and Navarre, David and Palanque, Philippe and Gris, Christine

Fortunettes: Feedforward about the Future State of GUI Widgets. (2019)

Proceedings of the ACM on Human-Computer Interaction, 3 (20). 1-20.

ISSN 2573-0142

Official URL

DOI : https://doi.org/10.1145/3331162

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

Fortune!es: Feedforward about the Future State of GUI

Widgets

SVEN COPPERS, Hasselt University - tUL - Flanders Make, Expertise Centre for Digital Media

KRIS LUYTEN, Hasselt University - tUL - Flanders Make, Expertise Centre for Digital Media

DAVY VANACKEN, Hasselt University - tUL - Flanders Make, Expertise Centre for Digital Media

DAVID NAVARRE, University of Toulouse, ICS - IRIT

PHILIPPE PALANQUE, University of Toulouse, ICS - IRIT and Eindhoven University of Technology,

Department of Industrial Design

CHRISTINE GRIS, Airbus Operations SAS

Fig. 1. Feedforward at the widget level to provide an answer to the what if question “What will happen if I
click this checkbox?”.

Feedback is commonly used to explain what happened in an interface. What if questions, on the other hand,
remain mostly unanswered. In this paper, we present the concept of enhanced widgets capable of visualizing
their future state, which helps users to understand what will happen without committing to an action.
We describe two approaches to extend GUI toolkits to support widget-level feedforward, and illustrate the
usefulness of widget-level feedforward in a standardized interface to control the weather radar in commercial
aircraft. In our evaluation, we found that users require less clicks to achieve tasks and are more confident
about their actions when feedforward information was available. These findings suggest that widget-level
feedforward is highly suitable in applications the user is unfamiliar with, or when high confidence is desirable.

Keywords: Feedforward, Intelligibility, User Interface Widgets

Authors’ addresses: Sven Coppers, Hasselt University - tUL - Flanders Make, Expertise Centre for Digital Media, Diepenbeek,
Belgium, sven.coppers@uhasselt.be; Kris Luyten, Hasselt University - tUL - Flanders Make, Expertise Centre for Digital
Media, Diepenbeek, Belgium, kris.luyten@uhasselt.be; Davy Vanacken, Hasselt University - tUL - Flanders Make, Expertise
Centre for Digital Media, Diepenbeek, Belgium, davy.vanacken@uhasselt.be; David Navarre, University of Toulouse, ICS -
IRIT, Toulouse, France, navarre@irit.fr; Philippe Palanque, University of Toulouse, ICS - IRIT, Toulouse, France, Eindhoven
University of Technology, Department of Industrial Design, Eindhoven, The Netherlands, palanque@irit.fr; Christine Gris,
Airbus Operations SAS, Toulouse, France, christine.gris@airbus.com.

https://doi.org/10.1145/3331162

ACM Reference Format:

Sven Coppers, Kris Luyten, Davy Vanacken, David Navarre, Philippe Palanque, and Christine Gris. 2019.

Fortunettes: Feedforward about the Future State of GUIWidgets. In Proceedings of the ACM on Human-Computer

Interaction, Vol. 3, EICS, Article 20 (June 2019). ACM, New York, NY. 20 pages. https://doi.org/10.1145/3331162

1 INTRODUCTION

Considering their ever-growing variety and complexity, applications can be hard for users to
understand. Complexity, however, should not be avoided, but rather tamed with well-designed user
interfaces [42]. One key aspect of UI design is feedback, as it informs the user about the outcome
of an action after it has been completed [55]. Feedback essentially provides an answer to what

happened questions and has been identified as a critical step to cross the Gulf of Evaluation in
Norman’s Stages of Action model [43]. Feedback is widely supported by GUI toolkits, since they
provide means to display both inherent feedback (e.g. the new application state that results from an
user action, such as a window disappearing from the screen when closing it), and explicit feedback
(e.g. error messages, such as “Username already exists” or “Invalid password”).

Providing answers to what if questions is less prevalent. Undo, redo and history mechanisms
can be used to explore what the result of an action will be [41], but such strategies are cumbersome
and time consuming [23]. A more convenient approach is the use of feedforward, which shows
what the result of an action will be before that action is performed [18]. Feedforward helps to cross
Norman’s Gulf of Execution [55] and enables the user to explore, understand and directly assess
alternatives [27], which results in improved confidence and awareness. This is particularly useful
for novices, since they can be characterized by little planning and relying on the order in which
actions come to mind [23, 48]. Despite the clear benefits, feedforward is usually limited to cognitive
affordances such as labels and tooltips. In some cases, custom feedforward is provided such as
previewing markup options for rich-text in Microsoft Office applications, or direct manipulation
tasks such as drag and drop. Rich, informative feedforward, however, is not nearly as established
as feedback and support for it is largely absent in GUI toolkits.

In this paper, we present an approach to provide rich widget-level feedforward about the future
state of widgets. Figure 1 shows a small example of this kind of widget-level feedforward: when the
user hovers the checkbox, the button visualizes its future state in terms of availability (the button
will become enabled when the user clicks), while the checkbox visualizes its future state in terms
of value (the checkbox will become selected when the user clicks). With this information, the user
knows that to enable the ‘Confirm registration’ button, the ‘I agree to the terms’ box needs to be
checked first. Thus, widget-level feedforward provide an answer to what if questions like “What
will happen if I click this checkbox?”, by presenting what the result of the user action will be before
that action is performed. In this paper, we put forward the following contributions:

(1) the concept of enhanced GUI widgets capable of visualizing their future state;
(2) a set of exemplary widgets, called ‘Fortunettes’, capable of visualizing their future state;
(3) a description of two complimentary approaches to provide toolkit-level support for such

feedforward;
(4) examples that illustrate the usefulness of Fortunettes in applications with varying levels of

complexity;
(5) a comparative evaluation between Fortunettes and identical widgets without a feedforward

layer.

2 RELATEDWORK

In this section, we highlight the importance of intelligibility, describe earlier research regarding
relevant mechanisms such as feedback and feedforward, and provide an overview of approaches to
generate feedforward.

2.1 Intelligibility, Feedback and Feedforward

Having a limited understanding of an application’s behavior can be frustrating [6, 28], and causes
users to lose trust [3, 36]. Making matters worse, previous work points out that users are reluctant
to devote time exclusively to learn and understand an application, and prefer to learn on-the-
fly instead [13, 14]. Intelligibility and scrutability, however, can improve the understanding of
an application by providing in-situ explanations [1, 5, 11, 31]. Lim et al. describe different types
of explanations, including why, what, and what if explanations [30]. They also put forward a
set of guidelines for explanations, such as providing explanations automatically and supporting
combinations of explanations [30, 45]. Most applications already provide some kind of feedback to
explain what the result of an action is after that action has been completed. In cases where users
fail to notice, feedback mechanisms such as Phosphor [10] can be used to add afterglow effects on
top of UI widgets to provide feedback that fades over time.

What if explanations are less common, with users mainly using undo, redo and history mecha-
nisms to explore what the result of an action will be [41]. If users find results unexpected, insufficient
or wrong, they simply revert to the previous state. This strategy is usually cumbersome and time
consuming. Providing feedforward to inform the user about the result of an action before the action
becomes final [18, 51] can drastically decrease the need for such strategies, and at the same time
support in-situ learning by answering what if questions [30]. The design space of feedforward
resembles the design space of feedback [17], and the information they present can be very similar.

2.2 How to Provide Feedforward

Although equally important as feedback, feedforward is rarely explicitly supported by UI toolk-
its [55]. As a result, feedforward is usually either very basic, limited to certain WYSIWYG elements
or special purpose. Basic feedforward is already present in interfaces in the form of labels and icons,
such as “open in new tab” . However, they convey a limited amount of information and ignore the
dynamic needs of the user. Hence, more informative and interactive feedforward is desirable [27].
Simple hover effects and tooltips are often used for this purpose. More comprehensive examples
include Balloon help [20], ToolClips [24], and Stencils [25], which greatly increase the amount of
information that can be conveyed.

Several graphical interfaces already include custom designed feedforward. In the Microsoft Office
package, for example, some of the markup changes can be previewed through hovering a markup
option without activating it. Side Views [53] are enhanced tooltips that move beyond previewing
a single future state by visualizing multiple future states at the same time. Side Views provide
previews for one action or multiple actions chained together, and when hovering over a set of
parameters shows what effect the parameter will have on the resulting state. However, Side Views
do not scale well when feedforward is needed about multiple objects that might be affected by an
action.
Some applications embed special-purpose feedforward tailored to their specific use cases. In

gestural interfaces, for example, the gestures are often hard to discover and learn. To accommodate
in-situ learning, OctoPocus [9] and Gestu-Wan [49] dynamically visualize the possible paths a
user can follow to complete specific gestures. Similarly, TouchGhosts [54] facilitate discovering

and learning multi-touch interactions by visualization not only the necessary actions, but also the
effects of those actions on the current system state.

Complementary to the above-mentioned forms of feedforward, there is great potential for adding
feedforward about the future state at the level of GUI widgets, since these widgets are the primary
channel for communicating the application logic.

2.3 Generating Feedforward

To provide feedforward that is representative of an action’s actual outcome, a model of the applica-
tion logic is required. A large body of literature on model-based design already exists, including
notations such as task models [33, 34], finite state machines [56], Petri nets [8], interface description
languages [32], and user manual markup languages [37]. For ad-hoc implementations, a formal
behavioral model can be reconstructed using external tools that observe and analyze the interface
behavior [12, 26, 52]. Not only are there many ways to model application logic, but also many
paradigms to implement this logic, which is infamously difficult [38]. The most common approach is
the event-callback system, which is widely adopted by toolkits. Unfortunately, this tends to produce
error-prone spaghetti code, because the implementation is spread across many locations [35, 40].

With many ways to model and implement application logic, it can be challenging to integrate and
align the model and implementation with one another. Interaction designers and programmers often
think in terms of states [29, 39, 50] instead of modules. With ConstraintJS [46] and InterState [47],
Oney et al. provide tools to model application logic in terms of states, and UI events are mapped
onto transitions between those states. SwingStates add support for Finite State Machines (FSMs)
to the widely used Java Swing Toolkit [4]. All existing approaches use the single state principle,
requiring an application to be in exactly one state at any point in time [53].

3 THE CONCEPT OF WIDGET-LEVEL FEEDFORWARD

In this section, we illustrate the concept of widgets that are capable of presenting their future state
as feedforward, and we present the interaction pattern that is required to use them.

3.1 Proof of Concept Widget-level Feedforward Visualization
To provide answers to what if questions about an action that is under consideration, widgets
need to be able to present their future state in addition to their current state. We considered a
number of designs, such as copying the entire widget or integrating the cues inside the widget. As
a proof of concept, we decided to condense the feedforward information into a feedforward layer
stacked behind the widget itself, although other ways of integrating and visualizing feedforward
are definitely possible.

Figure 2 presents the anatomy of our proof of concept visualization. The border of the feedforward
layer expresses future availability (Figure 2a): a dashed gray line indicates that the widget will
become disabled in the future, while a full black line indicates the widget will become enabled. The
inside region of the feedforward layer presents the future value (Figure 2b). For a checkbox or radio
button, for instance, a white background indicates that it will not be selected in the future, whereas
a darker background indicates that it will be selected. This kind of feedforward about selections is
particularly useful for listboxes, as they typically support multiple selection through modifier keys
(e.g. ‘CT RL’ or ‘SHIFT ’). The feedforward changes dynamically when a modifier key is pressed,
thereby clarifying the effect it will have on the future selection. The future selection can be shown
in the feedforward layer for all options in the listbox, including options that are currently outside
the viewport controlled by the scrollbar.

The proof of concept visualization is not without limitations. It is only conveys information about
future availability and value, and feedforward can only be perceived when the corresponding widget

Fig. 2. Widgets capable of providing feedforward about their future state in terms of (a) availability and (b)
value. Availability is presented through the markup of the border of the feedforward layer: a dashed gray
border indicates that the widget will become disabled, a full black border that the widget will become enabled.
The future value is shown in the inside region of the feedforward layer, for instance through the background
color.

itself is visible. These limitations can be addressed by more elaborate or alternative visualizations,
which are beyond the focus of this paper.

3.2 Interacting with Widget-level Feedforward

When users perform an action in a GUI without feedforward, such as clicking on a widget, the
interface simply transitions from the current state to the future state (Figure 3a). The new state
is only presented to the users after the action has been performed. When including feedforward
in the GUI, the feedforward information does not need to be presented permanently, but should
be triggered by the user on a by-need basis [17], when users show an intention to interact with a
part of the GUI. To facilitate such widget-level feedforward, a mediation process is needed that
between intention to perform an action (i.e. action samples) and confirming that action (i.e. final
actions) [51]. In our approach, this process requires an intermediary feedforward phase, as well as
three intermediary events (Figure 3b): (1) start showing feedforward when the user is considering
to perform an action, (2) stop showing feedforward when the user is not longer considering that
action, or (3) confirm and actually execute the considered action.

(a) Without feedforward (b) With feedforward

Fig. 3. (a) A traditional interaction model in which the next state is triggered immediately. (b) Widget-level
feedforward presents a glimpse of the future without commi!ing to an action, by inserting an intermediary
feedforward phase and three intermediary events that detect the intention to interact.

When and how widget-level feedforward should be triggered is an important decision, since
these triggers need to be transient and reversible [51]. Detecting when a user starts to consider an
action can be achieved in various ways: hovering over a widget with the mouse cursor, a long press
on a touch screen, or gazing at a widget when eye tracking is available, for example. Detecting
when a user is no longer considering an action can be achieved in the opposite manner: when
the mouse cursor leaves the widget, when the widget looses focus, or when the user is no longer
gazing at the widget.

Widget-level feedforward is not limited to the widget that is acted upon by the user, but covers
all widgets that are affected by that action (e.g. in the example of Figure 1, both the checkbox
and the button provide feedforward). To reduce ‘noise’ and make changes detectable at a glance,
only affected widgets are enhanced with a feedforward layer. The absence of a feedforward layer
thus communicates that the state of a particular widget will not change. This behavior can be
customized, for instance only showing feedforward for actions that are less likely to be understood
by a user, or using a separate trigger to activate feedforward (e.g. long hover or holding ‘CTRL’ on
the keyboard).

4 PROVIDING TOOLKIT SUPPORT FOR FEEDFORWARD

To support widget-level feedforward for an action, three intermediary events need to be handled,
as described in Section 3.2: start showing feedforward, stop showing feedforward, and confirming
the action. In this section, we describe two approaches to extend GUI toolkits to support these
events: automated toolkit-driven feedforward and implementing feedforward manually using the
toolkit. We demonstrate both approaches using the example presented in Figure 4: when the user
is logged in, a message can be written in the textbox or the user can log out. If the textbox is not
empty, the message can be sent. Sending the message clears the textbox. Figure 4b presents the
dialog model [22] of this example, including preconditions between square brackets, similar to the
semantics of Augmented Transition Networks [56].

(a) GUI without Fortune!es

Logged

Out

Message

Edited

Logged

In

Click Login Button

Click Logout Button

Click Logout Button

Change Value [Not ValueElmpty()]

Change Value [ValueEmpty()]

Click Send Button

Change Value [Not ValueEmpty]

Change Value [ValueEmpty()]

(b) Corresponding dialog model

Fig. 4. In this example without feedforward, typing something in the textbox will immediately enable the
“Send and reset” bu!on.

4.1 Toolkit-driven Feedforward

Feedforward for an action can only be presented to the user if the outcome of that action is known
beforehand. The implementation of this dialog is usually already encapsulated in event handlers,
which are typically used by GUI toolkits to map user commands to system actions. These event
handlers might invoke more formal models, such as Petri nets [7] or Finite State Machines [44]. In
our toolkit-driven approach, we reuse existing event handlers to deduce the outcome of an action.
To this end, the event that is used as a trigger to start feedforward (e.g. hovering the ‘Send and
reset’ button) can also be used as an alias for performing the action that is under consideration (e.g.
clicking the ‘Send and reset’ button). In other words, to deduce what feedforward to show when
hovering the ‘Send and reset’ button, the event handler that handles a click on the ‘Send and reset’
button is called to determine the future state.
To achieve this, both events are sent to the toolkit, along with the desired mode (‘feedforward’

or ‘execute’), as depicted in Figure 5. The toolkit routes both types of events to the same event
handler in the application, which returns the future state of each affected widget to the toolkit. This
is an important prerequisite for our approach: the event handlers need to return those future states,
instead of actually modifying the widgets themselves. Next, depending on the mode, the toolkit
either presents that state as feedforward (e.g. the textbox will become empty) or sets it as the new
state (e.g. the textbox is emptied) by modifying the corresponding properties of the widgets.

Fig. 5. When event handlers are used for both handling actions and providing feedforward about those
actions, the toolkit decides whether their outcome is set as the new state or shown as feedforward.

Figure 6a presents a screenshot of the interface of our example when the application is in the
‘Message Edited’ state. When hovering the ‘Send and Reset’ button, the toolkit predicts a transition
to the ‘Logged In’ state, and therefore provides feedforward about the textbox becoming empty
and the ‘Send and Reset’ button becoming disabled. Figure 6b shows how the dialog model is
extended by the toolkit to support feedforward. The original states (solid black circles) are no
longer connected through events directly, but through intermediary feedforward phases and events
(dashed green circles and arrows).

(a) GUI using Fortune!es

Logged

Out

Message

Edited

Logged

In

Change Value

Future

Login

Future

Logout

Future

Send

Future

Logout2

Hover Logout Button

Leave Logout Button

Hover Send Button

Leave Send Button

Click Logout Button

Hover Login Button
Click Login Button

Leave Login Button

Hover Logout Button

Click Logout Button Leave Logout Button

Confirm Value [ValueEmpty()]

Click Send Button
Future

Value

Changed

Change Value

Confirm Value [Not ValueEmpty()]

Change Value

(b) Dialog model with toolkit-driven feedforward

Fig. 6. (a) In this screenshot of the example, feedforward shows that clicking the ‘Send and reset’ bu!on
will empty the textbox and disable the ‘Send and reset’ bu!on. (b) The toolkit automatically inserts an
intermediary feedforward phase and three intermediary events for every action in the original dialog model,
without any effort from the developer.

4.2 Specifying Feedforward Manually

Toolkit-driven feedforward avoids that developers have to implement all feedforward manually
and ensures that feedforward is representative for the actual outcome of an action. It cannot
be used, however, when feedforward is undesirable or when custom feedforward is required. In
addition, toolkit-driven feedforward is unsuitable for event handlers that invoke irreversible be-
havior. In such cases, custom feedforward handlers such as startFeedforwardWidgetClicked(),
stopFeedforwardWidgetClicked(), and confirmWidgetClicked() can be specified to emulate
the behavior of their event handler counterparts or to provide custom feedforward.

Fig. 7. When the developer writes custom feedforward handlers, both the current state and next state of a
widget can be modified.

An example of irreversible behavior can be found in Figure 6: hovering ‘Send and reset’ would
actually send the message to its destination, because the event handler that handles a click on
that button is used to determine the future state for the purpose of feedforward. To avoid this,
the developer can provide a custom feedforward handler that emulates the existing event handler,
without actually sending the message. These custom feedforward handlers override the toolkit-
driven feedforward and are shown in orange in Figure 8 and Figure 9. In contrast to our example,
which is focused on the UI behavior, real-world examples are likely to have more irreversible event
handlers, and will thus require developers to specify more feedforward handlers based on existing
code.

Logged

Out

Message

Edited

Logged

In

Change Value

Future

Login

Future

Logout

Future

Send

Future

Logout2

Hover Logout Button

Leave Logout Button

Hover Send Button

Leave Send Button

Click Logout Button

Hover Login Button
Click Login Button

Leave Login Button

Hover Logout Button

Click Logout Button Leave Logout Button

Confirm Value [ValueEmpty()]

Click Send Button
Future

Value

Changed

Change Value

Confirm Value [Not ValueEmpty()]

Change Value

Fig. 8. Automated toolkit-driven feedforward (green dashed states and transitions) can be overridden by the
developer by implementing custom feedforward handlers (orange dashed transition).

 1 class LoginController extends Controller {

 2 initState(newWindowState) { … }

 3

 4 loginButtonClicked(event, newWindowState) { … }

 5 logoutButtonClicked(event, newWindowState) { … }

 6 messageValueChanged (event, newWindowState) { … }

 7

 8 sendButtonClicked (event, newWindowState) {

 9 this.sendMessage(value); // Actually send the message

10

11 newWindowState.getWidgetState("message").value = "";

12 newWindowState.getWidgetState("send_and_reset").enabled = false;

13 }

14

15 previewSendButtonClicked (event, newWindowState) {

16 newWindowState.getWidgetState("message").futureValue = "";

17 newWindowState.getWidgetState("send_and_reset").enabled = false;

18 }

19 }

Fig. 9. An overview of all event and preview handlers to implement the login example. Green event handlers
are existing event handlers that can be reused for feedforward. The developer only needs to implement
the orange feedforward handler, because the black event handler irreversibly calls sendMessage() and can
therefore not be reused by the toolkit.

4.3 Proof of Concept Implementations

We implemented both aforementioned approaches to extend two different types of GUI toolkits:
the Java Swing library, and HTML + JavaScript. Figure 10 depicts a button in various states in
both toolkits. The extended version of Java Swing was used to develop the example of the weather
radar (Section 5), while the web toolkit was used for various examples of our online evaluation
(Section 6).

Fig. 10. An example of feedforward for bu!ons in each of our implemented toolkits.

Both toolkits use the Decorator design pattern [21] to add feedforward rendering capabili-
ties to the widgets. The basic idea is to decorate the original widget with an additional feedfor-
ward layer within a single container, as shown in Figure 10. Similar to accessors to modify the
state, such as setEnabled(boolean x) and setValue(String s)), we added accessors such
as setFeedforwardEnabled(boolean x) and setFeedforwardValue(String s) to modify the
state of the feedforward layer, which can be used by both the toolkit (as described in Section 4.1)
and the developer (as described in Section 4.2). This approach is reflected in the domain model in
Figure 11, as the WidgetView needs to be able to visualize the combination of exactly two instances
of WidgetState: the instance that represents the current state, and the instance that represents
the future state.

Fig. 11. Each WidgetView is capable of visualizing two instances of WidgetState simultaneously: the current
and the future state.

Some widgets can be decomposed in ‘subwidgets’ that are closely related. For instance, when
selecting a radio button in a radio group, all other radio buttons in that group will be deselected. Thus,
for these type of widgets WidgetBehavior needs to be able to manipulate its own WidgetState
directly for feedforward purposes as well (Figure 11).

5 THE COCKPIT WEATHER RADAR CASE
To demonstrate the usefulness of widget-level feedforward in more complicated applications, we
used our toolkits to replicate a standardized interface to control the weather radar in commercial
aircraft.

5.1 Context and Use
Cockpits of commercial aircraft are equipped with a wide variety of interfaces to support pilots
during their flight. One of these interfaces is the weather radar, which is used to increase awareness
of meteorological phenomena, for example to avoid storms or heavy precipitations. Figure 12a
presents the interface to control it, as well as the output it produces (colored forms that show the
position, thickness and size of the clouds ahead of the aircraft). The control interface complies with
the ARINC 661 standard [2] that specifies, among others, widget properties and communication

protocols for cockpit applications. The dialog [8, 22] of such applications is complex, as it merges
the pilots’ needs (to perform their mission) and the behavior of aircraft systems (that is controlled
by these applications).

(a) Cockpit interface without feedforward

Mode

Selection

Click off

Click tst

Click on

Click Wxa

Click Wxon

AutoStab

On

ManStab

On

AutoStab

Off

ManStab

Off

Editing

Angle

Click manual Click auto Click manual Click auto

Click off

Click on

ValueChanged

Timeout

Confirm angle

Focus angle

Escape

(b) Dialog model without feedforward

Fig. 12. (a) The output and controls of an existing cockpit weather radar interface used in commercial aircra#.
(b) Dialog model describing the behavior of the cockpit weather radar interface.

The control interface (right-hand side of Figure 12a) provides two functions to the crew. The
first one is the mode selection of the weather radar: the five radio buttons at the top of the pane
show the current status of the radar and can be used to switch from one mode to another. The
second function, in the lower part of the pane, is dedicated to the orientation (or ‘tilt angle’) of the
physical radar. The tilt angle needs to be adjusted when the aircraft is changing altitude, as the pilot
might want to check the weather condition at the targeted altitude. Weather radars, however, have
physical constraints that (usually) do not allow them to vary more than 15 degrees from the aligned
position. For this reason, the application ‘clamps’ the tilt angle between +15 and −15 degrees. If
the crew sets an angle larger than +15 or smaller than −15 degrees, the upper or lower bound will
be selected instead. To set a tilt angle, the tilt selection must be in manual mode and stabilization,
which aims at keeping the radar beam stable even in case of turbulence, must be off.

The buttons in the lower part of the window influence each other, which is modelled in the
dialog model in Figure 12b. The initial state corresponds to the user interface in Figure 12a. In that
state (AutoStabOn), the only available action is to click on the ‘Manual’ button, which disables the
autonomous behavior of the weather radar and sets it to manual mode (ManStabOn). Next, clicking
on the ‘OFF’ button disables stabilization (ManStabOff), making it possible to enter a value for the
tilt angle. The corresponding textbox employs the principle of ‘caging’, which means that all other
widgets are disabled while editing its value. The new tilt angle is confirmed by pressing ENTER, or
discarded after a timeout.

5.2 Adding Feedforward to the Weather Radar

To illustrate the use of widget-level feedforward, we replicated the weather radar interface using
Fortunettes. Consider the three steps in Figure 13. We start in the ‘ModeSelection’ state, with the
‘OFF’ mode selected. (Step 1) When hovering the ‘WXA’ radio button, the feedforward layers reveal
that ‘WXA’ mode will become selected and ‘OFF’ will become deselected, based on the default
behavior of a radio button group. In addition, the lack of other feedforward layers indicates that no
other widgets are affected by the mode change, in accordance to the application model. Steps 2 and 3
demonstrate behavioral dependencies in the dialog of this application and how Fortunettes can
support users in identifying them. (Step 2) While hovering the ‘MANUAL’ button, the feedforward

layers show that the stabilization ‘OFF’ button will become available and that tilt selection can be
reverted to automatic, as the ‘AUTO’ button will become available. (Step 3) After clicking on the
‘MANUAL’ button, the ‘OFF’ button becomes available. Hovering ‘OFF’ shows that the textbox for
the tilt angle will become available.

Fig. 13. A replicated version of the cockpit weather radar using Fortune!es. (Step 1) Hovering the ‘WXA’
radio bu!on shows that changing mode does not impact widgets outside of the radio bu!on group. (Step 2)
Hovering the ‘MANUAL’ bu!on reveals that the stabilization ‘OFF’ bu!on will become available. (Step 3)
Hovering ‘OFF’ reveals that the tilt value will become editable.

AutoStab

On

ManStab

On

AutoStab

Off

ManStab

Off

Click manual

Hover auto

Hover manual

Hover auto

Hover On Timeout

Confirm angle

Future

manual
Future

auto

Click auto

Hover manual

Leave manual

Leave auto

Future

auto

Future

manual

Click manual

Click auto

Leave manual

Leave auto

Future

off

Mode

Selection

Future

tst

Future

wxon

Future

wxa

Future

on

Click on

Leave on
Hover on

Hover off

Leave off

Click off

Hover tst

Leave tst

Click tst

Hover wxon

Leave wxon

Click wxon

Hover wxa

Leave wxa

Click wxa

Future

On
Leave On

Click On

Future

Off

Click Off Hover Off

Leave Off

Focus angle

Editing

Tilt

Change Value

Escape

Fig. 14. Dialog model describing the behavior of the cockpit weather radar interface extended with feedfor-
ward. The green dashed states and transitions are toolkit-driven and do not require any developer effort. The
orange dashed state and transition represent custom feedforward, which is implemented manually by the
developer.

Following the pattern presented in Section 3, the addition of feedforward results in the dialog
model in Figure 14. The left-hand side represents the extended behavior of the lower part of the
pane, while the right-hand side represents the extended behavior of the mode selection at the top of
the pane. We only have to specify one custom feedforward handler (shown in orange in Figure 14

 1 class WXRController extends Controller {

 2 initState(newWindowState) { … }

 3

 4 modeOffSelected(event, newWindowState) { … }

 5 modeStdbySelected(event, newWindowState) { … }

 6 modeTstSelected(event, newWindowState) { … }

 7 modeWxonSelected(event, newWindowState) { … }

 8 modeWxaSelected(event, newWindowState) { … }

 9 tiltManualClicked(event, newWindowState) { … }

10 tiltAutoClicked(event, newWindowState) { … }

11 stabilizationOnClicked(event, newWindowState) { … }

12 stabilizationOffClicked(event, newWindowState) { … }

13

14 // Caging behavior

15 tiltAngleFocussed(event, newWindowState) { … }

16 tiltAngleEscaped(event, newWindowState) { … }

17 tiltAngleTimeout(event, newWindowState) { … }

18

19 tiltValueChanged(event, newWinowState) {

20 int tiltAngle = min(15, max(-15, newWinowState.getWidgetState("tilt").value));

21 newWinowState.getWidgetState("tilt").value = tiltAngle;

22

23 this.physicalRadar.setTiltAngle(tiltAngle); // Start physical motion

24 }

25

26 previewTiltValueChanged(event, newWinowState) {

27 int tiltAngle = min(15, max(-15, newWinowState.getWidgetState("tilt").value));

28 newWinowState.getWidgetState("tilt").value = tiltAngle;

29 }

30 }

Fig. 15. An overview of all event and preview handlers to implement the cockpit weather radar. Green
event handlers are existing event handlers that can be reused for feedforward. The developer only needs to
implement the orange feedforward handler, because the black event handler is irreversible and cannot be
reused by the toolkit.

and Figure 15) for manipulating tilt, because reusing the existing event handler would actually
manipulate the physical part of the weather radar. As a result of adding feedforward, pilots get a
preview of the new tilt angle, which might be clamped between +15 and −15, before confirming
the tilt angle.
As the example shows, the feedforward information increases awareness, which in turn can

contribute to the overall safety [19]. Implementing this feedforward requires little effort from the
developer: only a single custom feedforward handler needs to be implemented, whereas all other
feedforward is toolkit-driven by reusing existing event handlers.

6 EVALUATION

We performed a comparative study to evaluate the impact of Fortunettes on the user experience.
The study contained a wide range of demo applications to explore the limits of our approach and
to find out what kind of applications benefit the most from feedforward.

6.1 Participants

We recruited 104 participants via social media and mailing lists. 10 did not participate in all steps of
the experiment and were therefore discarded. Participants were randomly assigned to two groups
for our mixed-design experiment. The first group had 16 female and 33 male participants (5 aged
18-20; 29 aged 21-29; 8 aged 30-39; 3 aged 40-49; 4 aged 50-59), with varying backgrounds (e.g.
students, researchers, education, health, administration and government). The second group had
15 female and 30 male participants (1 aged 18-20; 30 aged 21-29; 9 aged 30-39; 1 aged 40-49; 4 aged

50-59), with varying backgrounds as well (e.g. students, researchers, engineering, business, art,
logistics). All participants had experience with using computers to browse the web, handle e-mails
and/or create documents.

6.2 Procedure

We opted for an online survey for higher response rates and convenience. To alleviate the effects
of participating in an uncontrolled environment [15], we recruited a large number of participants
and performed standard outlier removal1. Moreover, we limited the number of tasks to keep the
experiment short (17 minutes on average) and ensure a low drop-out rate [16].
The procedure of the survey is outlined in Figure 16. Participants were first briefed about the

study’s purpose and our data policy, based on the GDPR legislation2. After giving their informed
consent, participants completed a short demographic survey (DEM) and a three-minute tutorial
(TUT) on how to interpret widget-level feedforward. Both groups of participants then performed a
short task (TSK in Table 1) in each of the five different interfaces shown in Figure 17. The tasks
had varying levels of difficulty in terms of minimum number of clicks required and familiarity with
the domain. For quantitative between-subject comparison, the first group of participants received
widget-level feedforward during these tasks, whereas the second group used ordinary widgets
without feedforward. After completing the tasks, both groups switched conditions and performed
new tasks (TSK ′ in Table 1) that required (partial) re-exploration of the interface. Due to possible
learning effects, this second set of tasks is not used for any quantitative comparisons, but is only
intended to allow for qualitative remarks in a closing survey that compares the two sets of widgets
(COM).

Fig. 16. The online survey started with a demographic survey (DEM) and tutorial (TUT). Each group performed
five short tasks in one condition (TSK), followed by five tasks in the opposite condition (TSK ′). The study
ended with a comparative survey (COM).

6.3 Measurements and Analysis
Participants were explicitly instructed to click as few times as possible to achieve each task. We
expect that the number of clicks will decrease when users have a better understanding of the
impact of their interactions. Without knowledge of the domain or feedforward, participants need
trial-and-error, and will thus click more often to find the solution. Therefore, the number of clicks
becomes an indicator of user understanding. Besides logging the actual number of clicks and hovers,
we also logged the time to completion of the task. After each task, participants filled in a short
survey about their perceived performance, the perceived difficulty, understanding of the application,
confidence, and their strategy to find the solution to the task.
In our statistical analysis, we only consider results of the (TSK) phase (i.e. only the first time a

participant encounters an application) to eliminate training effects. Since half of the participants
1yatani.jp/teaching/doku.php?id=hcistats:outlierdetection
2https://ec.europa.eu/commission/priorities/justice-and-fundamental-rights/data-protection/

2018-reform-eu-data-protection-rules_en

received feedforward, and the other half did not, we looked for between-subject differences. We
used for Chi-square and Mann-Whitney U tests to determine the significance of those differences,
since Shapiro tests found our data does not follow a normal distribution. We removed outliers from
each condition when their number of clicks or completion time differed more than two times the
standard deviation from the mean of the other participants in the same condition. On average, 4.5
participants (< 10%) were removed from each condition (group × task).

Fig. 17. Screenshots of the five use cases in which each participant performed a task with and without the
feedforward.

TSK TSK’

Pizza Create pizza with exactly 3 toppings and price = 12 Create pizza with exactly 3 toppings and price = 14,5

Cockpit Set tilt value to 15 Set tilt value to 25 [with different application behavior]
Conferences Select keywords so CHI and EICS are the suggested conferences Select keywords so UIST and DIS are the suggested conferences
Volunteering Set bidding priority for Videographer at 3 Set bidding priority for Registration at 2 and 3

Cars Configure car with self-driving capabilities and basic suspension Configure car with smart air suspension and autopilot

Table 1. For each of the tasks in our experiment, participants were asked to click as few times as possible.

6.4 Results and Discussion

Table 2 and Figure 18 provide an overview of the between-subject comparison. Participants with
the feedforward layer clicked significantly less often to achieve their tasks compared to participants
without (U = 13368,Z = −7.37,p < 0.001, r = 1.90). Completion times, on the other hand, tend to
increase in the condition with the feedforward layer. Only for the ‘Cars’ interface, the increase
is significant (U = 1220.5,Z = 3.58,p < 0.001, r = 0.92). An increase is to be expected, since
participants were asked to perform tasks with the least amount of clicks possible (i.e. low error
rate) instead of in the shortest time (i.e. high speed of performance). 6 participants confirmed that
they required more time to process the additional feedforward information, while P21 (WO→W)
“wanted to discover all the possibilities [...] when the second layer was present”. Regardless of their
measured performance, 71.3% of all participants perceived that the feedforward layer helped them
to achieve tasks more quickly.
The measured performance aligns well with the self-reported strategies: significantly more

participants used a “trial-and-error” strategy (χ 2(1,N = 446) = 66.30,p < 0.001,ϕ = 0.38) when
the feedforward layer was not available (70.7%) compared to when it was available (32.6%). P10
(WO→W), P18 (W→WO) and P26 (WO→W) complained that the impact of their choices was
unclear, while P2 (W→WO) stated: “I used mostly trial-and-error if I didn’t know what the buttons

Average Number of Clicks Average Time (s)

Optimum Without With p-value Without With p-value

Pizza 3 9.9 7.0 < 0.005 47.5 64.0 > 0.05
Cockpit 3 7.1 4.2 < 0.001 31.6 35.7 > 0.05

Conferences 2 9.2 2.6 < 0.001 35.3 39.9 > 0.05
Volunteering 2 3.1 2.3 < 0.001 24.8 30.3 > 0.05

Cars 2 3.3 3.7 > 0.05 22.3 33.9 < 0.001

Global (avg) 2.4 6.5 4.0 < 0.001 32.2 41.0 < 0.001

Table 2. Between-subject comparison of performance between conditions with (W) and without (WO)
feedforward layer in terms of the number of clicks and completion time. Only tasks in the TSK phase are
considered, to eliminate possible training effects. The ‘Optimum’ represents the minimum number of clicks
required to solve the task.

were about to do”. When feedforward was available, however, participants relied significantly less
on their own interpretation of the application domain (U = 18807,Z = −4.15,p < 0.001, r = 1.01)
and more on the feedforward itself. It helped them in finding the solution (P31,W→WO) and made
them more confident (P79,W→WO ; P75,W→WO). Although we did not measure any significant
difference in perceived difficulty (Figure 18), these findings suggests that widget-level feedforward is
highly suitable for applications that are unfamiliar to the user or when high confidence is desirable.
In the closing survey (COM), 79.8% of the participants confirmed that widget-level feedforward
would be useful for unfamiliar software. In contrast, only 17.0% believe widget-level feedforward
would be useful for software they already know well. When asked in what kind of applications
they would (not) want to have the feedforward layer, multiple participants stated that they would
like to have feedforward in forms with constraints on their input, such as online tax declarations
or configuration interfaces for cell phone subscriptions.

Fig. 18. A#er completing each task, participants responded to Likert-scale questions about the perceived
ease of use, performance, understanding of the application and confidence.

7 LIMITATIONS AND FUTURE WORK

The current implementation and proof-of-concept visualization of Fortunettes have a few constraints
that present interesting opportunities for future work.
Feedforward about a single action. In our concept, feedforward information only reveals the

outcome of the next action that the user is considering, whereas multiple actions can be required to
achieve a task. More advanced mechanisms that guide users through these actions, such as widget-
level feedforward about consecutive actions or automatically generating step-by-step instructions,
are compelling directions of future work.

A limited number of properties is visualized.Our proof-of-concept visualization is currently
limited to visualizing the immediate future in terms of availability and value of a widget. The
visualization could support other widget properties that might be useful to the user as well, such as
position, visibility, or the appearance of a new window/tab/dialog.

Widgets must be visible. Feedforward information about the future state of a widget cannot
be perceived by the user when the widget itself is invisible (e.g. due to the current scroll position,
or because it is positioned inside a different tab or window). In some cases, a more elaborate visual-
ization in the visible parent container widget could include aggregated feedforward information
(e.g. the tab bar can show some feedforward information about what is inside the other tab pages).
In other cases, new approaches to explore feedforward information are needed.

8 CONCLUSION

In this paper, we introduce the concept of GUI widgets capable of providing feedforward about
their own future state, based on an event that might happen in the interface. To enable designers
and developers of interactive systems to integrate feedforward, we describe a proof-of-concept
visualization and two complimentary approaches to provide toolkit support. The first approach is
to allow the GUI toolkit to generate feedforward automatically, by reusing existing event handlers.
While this approach saves developers from implementing all feedforward manually, it is inadequate
when feedforward is irrelevant, when custom feedforward is needed, or when the event handlers
are irreversible and cause side effects. The second approach allows refinement of the behavior
by specifying custom feedforward handlers that emulate the behavior of existing event handlers.
We implemented two feedforward toolkits that apply these approaches: one toolkit extends Java
Swing, whereas the other adds feedforward capabilities in HTML + JavaScript. To demonstrate
the applicability of these toolkits in more complicated applications, we successfully replicated an
interface that controls the weather radar in commercial aircraft.
A comparative evaluation with 94 participants shows that Fortunettes lead to less clicks to

achieve specified tasks. As predicted by the trade-off between error rate and speed of performance,
the completion times were negatively affected, in contrast to the increased perceived performance.
After 3 minutes of training, 80.8% of the participants relied on feedforward when confronted with
unfamiliar applications. Feedforward makes GUIs more predictable and improves the confidence
users have in their actions, especially when confronted with new interfaces. 79.8% of the participants
confirmed that Fortunettes would be useful for unfamiliar software.

Our results highlight the contrast between feedback and feedforward: while feedback provides
the necessary confirmation about the execution of an action, feedforward is particularly useful to
increase confidence before executing the action. Feedforward is thus particularly important when
the cost of mistakes is high (e.g. in terms of money, safety, or health). Our findings suggest that
widget-level feedforward is highly suitable in applications the user is unfamiliar with, or when
high confidence is desirable.

ACKNOWLEDGMENTS

This research was supported by the Research Foundation - Flanders (FWO), project G0E7317N
End-User Development of Intelligible Internet-of-Things Objects and Applications. We would like
to thank all participants who took part in our study for their time. Special thanks to Gustavo Rovelo
Ruiz for his help in analyzing the data.

REFERENCES

[1] Ashraf Abdul, Jo Vermeulen, Danding Wang, Brian Y. Lim, and Mohan Kankanhalli. 2018. Trends and Trajectories

for Explainable, Accountable and Intelligible Systems: An HCI Research Agenda. In Proceedings of the 2018 CHI

Conference on Human Factors in Computing Systems (CHI ’18). ACM, New York, NY, USA, Article 582, 18 pages.

https://doi.org/10.1145/3173574.3174156

[2] Incorporated (ARINC) Aeronautical Radio. 2016. ARINC661 Cockpit Display System Interfaces to User Systems ARINC

Specification 661, supplement 6. Standard. AEEC - Engineering Standards for Aircraft Systems.

[3] Stavros Antifakos, Nicky Kern, Bernt Schiele, and Adrian Schwaninger. 2005. Towards Improving Trust in Context-

aware Systems by Displaying System Confidence. In Proceedings of the 7th International Conference on Human Computer

Interaction with Mobile Devices and Services (MobileHCI ’05). ACM, New York, NY, USA, 9–14. https://doi.org/10.1145/

1085777.1085780

[4] Caroline Appert and Michel Beaudouin-Lafon. 2006. SwingStates: Adding State Machines to the Swing Toolkit. In

Proceedings of the 19th Annual ACM Symposium on User Interface Software and Technology (UIST ’06). ACM, New York,

NY, USA, 319–322. https://doi.org/10.1145/1166253.1166302

[5] Mark Assad, David J. Carmichael, Judy Kay, and Bob Kummerfeld. 2007. PersonisAD: Distributed, Active, Scrutable

Model Framework for Context-Aware Services. In Pervasive Computing, Anthony LaMarca, Marc Langheinrich, and

Khai N. Truong (Eds.). Vol. 4480. Springer Berlin Heidelberg, Berlin, Heidelberg, 55–72. http://link.springer.com/10.

1007/978-3-540-72037-9_4

[6] Louise Barkhuus and Anind Dey. 2003. Is Context-Aware Computing Taking Control away from the User? Three

Levels of Interactivity Examined. In UbiComp 2003: Ubiquitous Computing: 5th International Conference, Seattle, WA,

USA, October 12-15, 2003. Proceedings, Anind K. Dey, Albrecht Schmidt, and Joseph F. McCarthy (Eds.). Springer Berlin

Heidelberg, Berlin, Heidelberg, 149–156. https://doi.org/10.1007/978-3-540-39653-6_12

[7] Rémi Bastide and Philippe A. Palanque. 1990. Petri Net Objects for the Design, Validation and Prototyping of

User-driven Interfaces. In Proceedings of the IFIP TC13 Third Interational Conference on Human-Computer Interaction

(INTERACT ’90). North-Holland Publishing Co., Amsterdam, The Netherlands, The Netherlands, 625–631. http:

//dl.acm.org/citation.cfm?id=647402.725296

[8] Rémi Bastide and Philippe A. Palanque. 1996. Implementation Techniques for Petri Net Based Specifications of

Human-Computer Dialogues. In Computer-Aided Design of User Interfaces I, Jean Vanderdonckt (Ed.). 285–302.

[9] Olivier Bau and Wendy E. Mackay. 2008. OctoPocus: A Dynamic Guide for Learning Gesture-based Command Sets. In

Proceedings of the 21st Annual ACM Symposium on User Interface Software and Technology (UIST ’08). ACM, New York,

NY, USA, 37–46. https://doi.org/10.1145/1449715.1449724

[10] Patrick Baudisch, Desney Tan, Maxime Collomb, Dan Robbins, Ken Hinckley, Ken Hinckley, Maneesh Agrawala,

Shengdong Zhao, and Gonzalo Ramos. 2006. Phosphor: Explaining Transitions in the User Interface Using Afterglow

Effects. In Proceedings of the 19th Annual ACM Symposium on User Interface Software and Technology (UIST ’06). ACM,

New York, NY, USA, 169–178. https://doi.org/10.1145/1166253.1166280

[11] Victoria Bellotti and Keith Edwards. 2001. Intelligibility and Accountability: Human Considerations in Context-Aware

Systems. Human-Computer Interaction 16, 2 (Dec. 2001), 193–212. https://doi.org/10.1207/S15327051HCI16234_05

[12] Brian Burg, Andrew J. Ko, and Michael D. Ernst. 2015. Explaining Visual Changes in Web Interfaces. In Proceedings

of the 28th Annual ACM Symposium on User Interface Software and Technology (UIST ’15). ACM, New York, NY, USA,

259–268. https://doi.org/10.1145/2807442.2807473

[13] John M. Carroll and Mary Beth Rosson. 1987. Paradox of the Active User.

[14] Richard Catrambone and John M. Carroll. 1987. Learning a Word Processing System with Training Wheels and Guided

Exploration. In Proceedings of the SIGCHI/GI Conference on Human Factors in Computing Systems and Graphics Interface

(CHI ’87). ACM, New York, NY, USA, 169–174. https://doi.org/10.1145/29933.275625

[15] Scott Clifford and Jennifer Jerit. 2014. Is There a Cost to Convenience? An Experimental Comparison of Data

Quality in Laboratory and Online Studies. Journal of Experimental Political Science 1, 2 (2014), 120–131. https:

//doi.org/10.1017/xps.2014.5

[16] Frédéric Dandurand, Thomas R. Shultz, and Kristine H. Onishi. 2008. Comparing online and lab methods in a problem-

solving experiment. Behavior Research Methods 40, 2 (01 May 2008), 428–434. https://doi.org/10.3758/BRM.40.2.428

[17] William Delamare, Céline Coutrix, and Laurence Nigay. 2015. Designing Guiding Systems for Gesture-based Interaction.

In Proceedings of the 7th ACM SIGCHI Symposium on Engineering Interactive Computing Systems (EICS ’15). ACM, New

York, NY, USA, 44–53. https://doi.org/10.1145/2774225.2774847

[18] Tom Djajadiningrat, Kees Overbeeke, and Stephan Wensveen. 2002. But How, Donald, Tell Us How?: On the Creation

of Meaning in Interaction Design Through Feedforward and Inherent Feedback. In Proceedings of the 4th Conference

on Designing Interactive Systems: Processes, Practices, Methods, and Techniques (DIS ’02). ACM, New York, NY, USA,

285–291. https://doi.org/10.1145/778712.778752

[19] Mica R. Endsley. 2011. Designing for Situation Awareness: An Approach to User-Centered Design, Second Edition (2nd ed.).

CRC Press, Inc., Boca Raton, FL, USA.

[20] David K. Farkas. 1993. The role of balloon help. ACM SIGDOC Asterisk Journal of Computer Documentation 17, 2 (May

1993), 3–19. https://doi.org/10.1145/154425.154426

[21] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1995. Design Patterns: Elements of Reusable Object-

oriented Software. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

[22] Mark Green. 1986. A Survey of Three Dialogue Models. ACM Trans. Graph. 5, 3 (July 1986), 244–275. https:

//doi.org/10.1145/24054.24057

[23] T. R. G. Green. 1989. Cognitive Dimensions of Notations. In Proceedings of the Fifth Conference of the British Computer

Society, Human-Computer Interaction Specialist Group on People and Computers V. Cambridge University Press, New

York, NY, USA, 443–460. http://dl.acm.org/citation.cfm?id=92968.93015

[24] Tovi Grossman and George Fitzmaurice. 2010. ToolClips: An Investigation of Contextual Video Assistance for

Functionality Understanding. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI

’10). ACM, New York, NY, USA, 1515–1524. https://doi.org/10.1145/1753326.1753552

[25] Caitlin Kelleher and Randy Pausch. 2005. Stencils-based Tutorials: Design and Evaluation. In Proceedings of the

SIGCHI Conference on Human Factors in Computing Systems (CHI ’05). ACM, New York, NY, USA, 541–550. https:

//doi.org/10.1145/1054972.1055047

[26] Andrew J. Ko and Brad A. Myers. 2010. Extracting and answering why and why not questions about Java program

output. ACM Transactions on Software Engineering and Methodology 20, 2 (Aug. 2010), 1–36. https://doi.org/10.1145/

1824760.1824761

[27] Benjamin Lafreniere, Parmit K. Chilana, Adam Fourney, and Michael A. Terry. 2015. These Aren’t the Commands

You’re Looking For: Addressing False Feedforward in Feature-Rich Software. In Proceedings of the 28th Annual

ACM Symposium on User Interface Software and; Technology (UIST ’15). ACM, New York, NY, USA, 619–628. https:

//doi.org/10.1145/2807442.2807482

[28] Jonathan Lazar, Adam Jones, and Ben Shneiderman. 2006. Workplace user frustration with computers: an exploratory

investigation of the causes and severity. Behaviour & Information Technology 25, 3 (May 2006), 239–251. https:

//doi.org/10.1080/01449290500196963

[29] Catherine Letondal, Stéphane Chatty, Greg Philips, Fabien André, and Stéphane Conversy. 2010. Usability requirements

for interaction-oriented development tools. In PPIG 2010, 22nd Annual Workshop on the Psychology of Programming

Interest Group. 12–16.

[30] Brian Y. Lim and Anind K. Dey. 2010. Toolkit to Support Intelligibility in Context-aware Applications. In Proceedings

of the 12th ACM International Conference on Ubiquitous Computing (UbiComp ’10). ACM, New York, NY, USA, 13–22.

https://doi.org/10.1145/1864349.1864353

[31] Brian Y. Lim, Anind K. Dey, and Daniel Avrahami. 2009. Why and Why Not Explanations Improve the Intelligibility of

Context-aware Intelligent Systems. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems

(CHI ’09). ACM, New York, NY, USA, 2119–2128. https://doi.org/10.1145/1518701.1519023

[32] Quentin Limbourg, Jean Vanderdonckt, Benjamin Michotte, Laurent Bouillon, and Murielle Florins. 2004. USIXML: A

User Interface Description Language Supporting Multiple Levels of Independence.. In ICWE Workshops. 325–338.

[33] Kris Luyten, Tim Clerckx, Karin Coninx, and Jean Vanderdonckt. 2003. Derivation of a Dialog Model from a Task

Model by Activity Chain Extraction. In Interactive Systems. Design, Specification, and Verification, Joaquim A. Jorge,

Nuno Jardim Nunes, and João Falcão e Cunha (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 203–217.

[34] Célia Martinie, David Navarre, Philippe Palanque, and Camille Fayollas. 2015. A Generic Tool-supported Framework for

Coupling Task Models and Interactive Applications. In Proceedings of the 7th ACM SIGCHI Symposium on Engineering

Interactive Computing Systems (EICS ’15). ACM, New York, NY, USA, 244–253. https://doi.org/10.1145/2774225.2774845

[35] Leo A. Meyerovich, Arjun Guha, Jacob Baskin, Gregory H. Cooper, Michael Greenberg, Aleks Bromfield, and Shriram

Krishnamurthi. 2009. Flapjax: a programming language for Ajax applications. ACM SIGPLAN Notices 44, 10 (Oct. 2009),

1. https://doi.org/10.1145/1639949.1640091

[36] Bonnie M. Muir. 1994. Trust in Automation: Part I. Theoretical Issues in the Study of Trust and Human Intervention in

Automated Systems. Ergonomics 37, 11 (Nov. 1994), 1905–1922. https://doi.org/10.1080/00140139408964957

[37] Lars Müller, Ilhan Aslan, and Lucas Krüßen. 2013. GuideMe: A Mobile Augmented Reality System to Display User

Manuals for Home Appliances. In Advances in Computer Entertainment. Vol. 8253. Springer International Publishing,

Cham, 152–167. https://doi.org/10.1007/978-3-319-03161-3_11

[38] Brad Myers, Scott E. Hudson, Randy Pausch, and Randy Pausch. 2000. Past, Present, and Future of User Interface

Software Tools. ACM Trans. Comput.-Hum. Interact. 7, 1 (March 2000), 3–28. https://doi.org/10.1145/344949.344959

[39] Brad Myers, Sun Young Park, Yoko Nakano, Greg Mueller, and Andrew Ko. 2008. How designers design and program

interactive behaviors. In 2008 IEEE Symposium on Visual Languages and Human-Centric Computing. IEEE, 177–184.

https://doi.org/10.1109/VLHCC.2008.4639081

[40] Brad A. Myers. 1991. Separating Application Code from Toolkits: Eliminating the Spaghetti of Call-backs. In Proceedings

of the 4th Annual ACM Symposium on User Interface Software and Technology (UIST ’91). ACM, New York, NY, USA,

211–220. https://doi.org/10.1145/120782.120805

[41] Mathieu Nancel and Andy Cockburn. 2014. Causality: A Conceptual Model of Interaction History. In Proceedings

of the 32Nd Annual ACM Conference on Human Factors in Computing Systems (CHI ’14). ACM, New York, NY, USA,

1777–1786. https://doi.org/10.1145/2556288.2556990

[42] Donald A Norman. 2010. Living with complexity. MIT press.

[43] Donald A Norman. 2013. The design of everyday things: Revised and expanded edition. Basic Books (AZ).

[44] Dan R. Olsen, Jr. 1984. Pushdown Automata for User Interface Management. ACM Trans. Graph. 3, 3 (July 1984),

177–203. https://doi.org/10.1145/3870.3871

[45] Dan R. Olsen, Jr. 2007. Evaluating User Interface Systems Research. In Proceedings of the 20th Annual ACM Symposium

on User Interface Software and Technology (UIST ’07). ACM, New York, NY, USA, 251–258. https://doi.org/10.1145/

1294211.1294256

[46] Stephen Oney, Brad Myers, and Joel Brandt. 2012. ConstraintJS: Programming Interactive Behaviors for the Web by

Integrating Constraints and States. In Proceedings of the 25th Annual ACM Symposium on User Interface Software and

Technology (UIST ’12). ACM, New York, NY, USA, 229–238. https://doi.org/10.1145/2380116.2380146

[47] Stephen Oney, Brad Myers, and Joel Brandt. 2014. InterState: A Language and Environment for Expressing Interface

Behavior. In Proceedings of the 27th Annual ACM Symposium on User Interface Software and Technology (UIST ’14). ACM,

New York, NY, USA, 263–272. https://doi.org/10.1145/2642918.2647358

[48] Robert S Rist et al. 1986. Plans in programming: definition, demonstration, and development. In Empirical studies of

programmers. 28–47.

[49] Gustavo Rovelo, Donald Degraen, Davy Vanacken, Kris Luyten, and Karin Coninx. 2015. Gestu-Wan - An Intelligible

Mid-Air Gesture Guidance System for Walk-up-and-Use Displays. In Human-Computer Interaction - INTERACT 2015,

Julio Abascal, Simone Barbosa, Mirko Fetter, Tom Gross, Philippe Palanque, and Marco Winckler (Eds.). Vol. 9297.

Springer International Publishing, 368–386. https://doi.org/10.1007/978-3-319-22668-2_28

[50] Miro Samek. 2003. Who moved my state. Dr. Dobb’s Journal (2003).

[51] Julia Schwarz, Jennifer Mankoff, and Scott Hudson. 2011. Monte Carlo Methods for Managing Interactive State, Action

and Feedback Under Uncertainty. In Proceedings of the 24th Annual ACM Symposium on User Interface Software and

Technology (UIST ’11). ACM, New York, NY, USA, 235–244. https://doi.org/10.1145/2047196.2047227

[52] Koushik Sen, Swaroop Kalasapur, Tasneem Brutch, and Simon Gibbs. 2013. Jalangi: A Selective Record-replay and

Dynamic Analysis Framework for JavaScript. In Proceedings of the 2013 9th Joint Meeting on Foundations of Software

Engineering (ESEC/FSE 2013). ACM, New York, NY, USA, 488–498. https://doi.org/10.1145/2491411.2491447

[53] Michael Terry and Elizabeth D. Mynatt. 2002. Side Views: Persistent, On-demand Previews for Open-ended Tasks. In

Proceedings of the 15th Annual ACM Symposium on User Interface Software and Technology (UIST ’02). ACM, New York,

NY, USA, 71–80. https://doi.org/10.1145/571985.571996

[54] Davy Vanacken, Alexandre Demeure, Kris Luyten, and Karin Coninx. 2008. Ghosts in the interface: meta-user

interface visualizations as guides for multi-touch interaction. In Proceedings of the 3rd IEEE international workshop on

Horizontal Interactive Human Computer Systems (TABLETOP ’08). IEEE Computer Society, 81–84. https://doi.org/10.

1109/TABLETOP.2008.4660187

[55] Jo Vermeulen, Kris Luyten, Elise van den Hoven, and Karin Coninx. 2013. Crossing the Bridge over Norman’s Gulf

of Execution: Revealing Feedforward’s True Identity. In Proceedings of the SIGCHI Conference on Human Factors in

Computing Systems (CHI ’13). ACM, New York, NY, USA, 1931–1940. https://doi.org/10.1145/2470654.2466255

[56] W. A. Woods. 1970. Transition network grammars for natural language analysis. Commun. ACM 13, 10 (Oct. 1970),

591–606. https://doi.org/10.1145/355598.362773

