
HAL Id: hal-02450978
https://hal.science/hal-02450978

Submitted on 23 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formal Verification of Plastic User Interfaces Exploiting
Domain Ontologies

Abdelkrim Chebieb, Yamine Aït-Ameur

To cite this version:
Abdelkrim Chebieb, Yamine Aït-Ameur. Formal Verification of Plastic User Interfaces Exploiting
Domain Ontologies. 9th International Symposium on Theoretical Aspects of Software Engineering
(TASE 2015), Sep 2015, Nanjing, China. pp.76-86. �hal-02450978�

https://hal.science/hal-02450978
https://hal.archives-ouvertes.fr

Official URL
DOI : https://doi.org/10.1109/TASE.2015.25

Any correspondence concerning this service should be sent

to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in:
http://oatao.univ-toulouse.fr/24900

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

To cite this version: Chebieb, Abdelkrim and Ait Ameur, Yamine

Formal Verification of Plastic User Interfaces Exploiting Domain

Ontologies. (2015) In: 9th International Symposium on Theoretical

Aspects of Software Engineering (TASE 2015), 12 September 2015 - 14

September 2015 (Nanjing, China).

Formal verification of plastic user interfaces

exploiting domain ontologies

Abdelkrim Chebieb

ESI-LCSI

BP 68M, 16270, Oued-Smar,

Algiers, Algeria

k chebieb@esi.dz

Yamine Ait-Ameur

INPT-ENSEEIHT-IRIT

2, rue Charles Camichel, B.P. 7122,

31071, Toulouse Cedex 7, France

yamine@enseeiht.fr

Abstract—This paper presents a formal model to check the
interaction plasticity on a user interface (UI). An interaction
is seen as an implementation (achievement) of a user task by
means of interaction devices and modes of a given platform.
The interaction plasticity is the ability of UI to support several
interactions to perform the same task. In this work, two task
models, containing different sets of interactions, are observed to
check if they describe interactions that perform the same task.
Each task model is represented by a labelled state-transitions
system (lts). Due to the use of different interaction modes and
devices, the obtained lts have different set of labels. Weak bi-
simulation relationship is revisited to handle these transition
systems by defining a relation on labels. This relation is borrowed
from an ontology of interaction modes and devices. Model
checking techniques are set up to automatically establish such a
bi-simulation. A case study is used to illustrate how the approach
works.

I. INTRODUCTION

When a user interface (UI) is designed to run on several
target platforms1 and to support different interaction modes
and/or devices, it can be considered as satisfying the plasticity
property (qualified to be a plastic UI). Indeed, a plastic UI shall
be able to switch, statically (at design time) or dynamically
(at run time), from a given platform to another. The target
platform may support (exactly, less or more) interaction capa-
bilities than the original one. Plasticity is an important concern
particularly for critical systems (the interaction continuity must
be guaranteed when changes occur on the platform).

Two relevant characteristics relate to plasticity: adaptivity
and adaptability. Adaptivity concerns a UI capable to adapt
itself to a target platform, while adaptability characterizes a UI
that allows a user to adapt it to a target platform. Adaptation of
the UI impacts not only its software part, but also the involved
devices and interaction modes, available for this platform.

A user interface handles a set of possible user tasks,
realized by a given user, when interacting with the system,
through this user interface by means of the available interaction
devices. A task model is commonly defined to describe the
interaction realizing these tasks. It highlights both the tasks to
be achieved (abstract part of the task model) and how these
tasks are effectively realized (concrete part of the model).

The design of a multi-platform interfaces entails building
a task model for each platform. The abstract part of this task

1The word platform is used to characterize the system on which the
described UI is available. It gathers the software part, the hardware devices
and the offered interaction capabilities of this system.

model remains identical for each platform while the concrete
level is adapted to each specific platform according to its
interaction modes and/or devices. The main drawback of this
approach is the need to perform task model verification and
validation for each platform. In other words, check if the
different task models still describe the same task. Adaptation
of task model, due to the variations on the hardware side of
the UI (lose and/or gain of interaction devices in the platform),
is identified as a ”main axis” of the ”design space for UI
adaptation” in [1].

This paper presents a novel approach supporting the formal
verification of the plasticity property of a user interface. This
approach sets up a formal technique to check if two task
models describe the same system interaction. More precisely,
task models are formalized as labelled state-transitions systems
(lts). Then, the equivalence of two task models is checked by
establishing a bi-simulation relationship between their corre-
sponding lts. The novelty of the approach lies in the capability
to handle the comparison of lts with different labels (labels
from interactions, issued from different equivalent devices, for
example) thanks to the definition of a relational bi-simulation
relationship. This relation exploits the relations between labels,
borrowed from an ontology of interaction devices and modes.
These relations make it possible to rewrite the lts to get new
lts, defined on a common set of labels on which it becomes
possible to check classical bi-simulation.

This paper is structured as follows. The next section
presents a synthetic state of the art of the HCI plasticity, related
to our work. We give a vision of the plasticity as a knowledge
domain to justify the use of ontologies. Then our formal model
to handle plasticity, based on the comparison of task models,
modeled as labelled transition systems and the bi-simulation
relationship is presented. Finally a case study, illustrating how
the proposed approach works is sketched.

II. STATE OF THE ART

A. Design of Plastic UI

Studying plasticity of user interfaces has drawn the atten-
tion of researchers. [2] records that several plastic UI design
approaches focused on the software parts of a user interface,
at the expense of interaction and dialogue parts. Below, we
briefly review significant works achieved to handle plasticity.

The earliest approaches to address user interface adapta-
tion, like ACE [3], FRUITS [4] and Multi-modal Widgets [5],

 DOI 10.1109/TASE.2015.25

proposed to implement adaptation capabilities directly at soft-
ware level. The leading idea consists in embedding the various
characteristics of interaction modalities and devices present on
different platforms inside a set of interface components, used
to implement the UI.

Adaptation at runtime was addressed by techniques, han-
dled by ToolGlasses [6] and FACADE [7]. Their objective
is to support adaptation of the UI at runtime without any
modification of its internal code. Adaptation characteristics
were integrated as a feature of the operating system so that
the user can, for example, move a part of the UI, of a given
application, from a window to an other when this application
runs. These approaches propose adaptive UI but not adaptable
ones (users adapt UI at runtime).

Handling plasticity characteristics, at early stages of the
UI development process, was advocated with the emergence
of the reference framework of the CAMELEON project [8].
The leading idea is to design a UI once and apply successive
suitable transformations to fit the characteristics (interactions
techniques, modalities, environment...etc) of various target
platforms. Several techniques and toolboxes resulted from this
approach. The most significant ones are USIXML [9], COMET
[10], WAHID [11] and MultiModel Widgets[12]. USIXML is
an XML-based framework, where a UI is specified once and
multiple implementations, for various target platforms, may be
produced from this description. In the COMET environment
[10], a UI is specified at a logical level and multiple rendering
technologies can be used to implement it, using a variety of
widgets, thanks to a rich toolbox of UI component running in
a wide range of platforms. Similar solutions are also provided
by WAHID [11] and MultiModel Widgets[12].

The rendering adaptation was also studied. In AMF [13],
patterns of interaction techniques are defined in a multi-agent
setting. Each pattern is used to adapt the UI input/output
according to the interaction mode it describes. Similarly, the UI
Module Adaptation approach of [14] allows a user to adapt the
GUI to the context of use (platform, environment, user profile)
by rearranging the application’s user interface. Here, the user
is allowed hide and/or to show elements of the interface, which
match user interaction preferences and requirements.

More recently, taking into account the context of use, has
been addressed, particularly the user profile and environment.
In [15] a UI is adapted, according to user profiles, stored in an
ontology. User profiles are also in the center of nomadic adapt-
able UI design [16][17], exploited in MAGALLEN [18] to
synthesize UI prototypes. In the ubiquitous widgets approach
[19], user interactions are captured and transmitted by spe-
cial components, called IBC (Interactor Business Component)
which are used to implement adaptive UI widgets.

This review of existing work shows that there is a need
to focus on the interaction between the user and the interface
in the plastic UI development process. Moreover, the verifica-
tion of the plasticity property of UI should be formally and
explicitly addressed in the same development process.

B. Making domain knowledge explicit to handle plasticity

According to [2], the rapid evolution of IT technologies
increased the ubiquity of user interfaces (outside its classi-
cal platforms). The diversity of technologies and platforms,
equipped with various interaction devices and modalities, is an

important factor in the design space of plastic user interfaces
[20].

Various approaches in the literature propose to handle this
diversity: model-driven approaches, operating system (run-
time) approaches and toolboxes approaches[21]. A review
of the proposed approaches highlights the need to identify
different technologies (interaction devices, rendering technolo-
gies, implementation techniques and languages etc.) which
equips computing platforms of the market. The most known
are interaction patterns used with AMF [22], directory of UI
development technologies in COMET environment [10] and
user profile-based UI transformation algorithm MAGALLEN
[18]. In AMF different interaction techniques are specified
as patterns and used in adaptation strategies. The COMET
environment proposes to maintain a directory of known ren-
dering technologies. This directory is explored by a COMET
(plastic component) to determine which rendering technology
is suitable to a given target platform. MAGALLEN proposes
to apply a genetic algorithm to implement a user profile-based
transformation mechanisms. In these approaches, the design of
the UI is seen as an exploration of the design space to find a
suitable UI to fit the suited user profile.

Cataloguing devices, interaction modes, platforms, etc. and
the relations that hold among them, helps the designer to
develop plastic interfaces. The first attempt to model this
knowledge is USIXML [9]. A definition of the concepts,
manipulated by different models of a UI design process, is
provided and modelled thanks to an ontological meta-model.
This meta-model drives the generation of a user interface with
various rendering target platforms. However, the ontology is
terminological one, based on words and terms instead of being
a conceptual ontology. We also quote the work of [15], where
the same kind of ontology was used to adapt the user interface
of an information system, according to the user profile in
transportation domain.

Our claim is that user interface adaptation cannot be
achieved without the use of a repository, storing all the
knowledge about existing interaction techniques, devices and
technologies. We believe that conceptual ontologies [23] are
well adapted to support such descriptions.

C. An ontology for plasticity: our view

In our approach, we advocate the use of conceptual domain
ontologies, which rely on the description of concepts charac-
teristics and on ontological reasoning (subsumption compu-
tation), in order to determine whether a given concept or an
expression of concepts may replace (equivalence, subsumption
or entailment) by another concept or expression on concepts.
Therefore, our ontology model includes user-tasks expressions
and interaction devices (See figure 3). Instances of the concepts
(See figure 9) of our ontology are a formalization of task
models, describing interaction techniques similar to those
modeled by the patterns of AMF [22], or by ICON [24], or in
the taxonomy of interaction devices of [25]. The ontology we
propose plays a role of a dictionary of interaction techniques
[26] [27], representing the various ways to perform various
user tasks by various interaction devices. In other words, task
models, stored by the instances of our ontology, describe
patterns of interactions techniques, used to perform almost
known user tasks, in a similar manner with those sketched
in [28] (select, copy, text input ...etc).

Finally, note that the definition of an ontology beside of the
UI design models provides with a loosely coupled approach,
authorizing the evolution of the ontology independently of the
models and vice versa.

III. OUR APPROACH

Our goal is to verify that two task models, describing two
different interactions, are two implementations of the same task
with different interaction devices. In this approach, task models
are represented by labelled state transition systems (lts) and
are compared, using the bi-simulation relationship. If these lts
are bi-similar then the task models they represent describe the
same user task. Because physical actions of these task models
are not the same, due for e.g. to the use of different devices,
labels in the corresponding lts may not be the same. At this
level, ontology reasoning is triggered to check whether the
actions corresponding to these labels have the same semantics.
If so, they are rewritten so as the lts share the same set of
labels and offer the possibility of a bi-simulation checking.
When possible, lts labels are rewritten, thanks to the relations
available in the formalizing part of the HCI knowledge domain,
related to the user interaction devices and techniques.

Our approach is based on a stepwise methodology, involv-
ing the following steps. 1) Build an lts for each task model. 2)
Exploit domain ontology relationships to obtain lts sharing the
same set of labels. 3) Check bi-simulation for the lts obtained
at the previous step. Let us recall some useful definitions.

A. Task modeling with CTT and labelled transition system

CTT [29] notation provides the capability to describe
complex user tasks, combining temporal composition operators
(inspired from LOTOS process algebra [30]), and atomic tasks
(user physical actions on interaction devices). A tree structure
is associated to each CTT task model. Figure 1 shows a CTT
tree with:

Fig. 1. Example of CTTE task model

- Activation (≫): t1 ≫ t2 for t1 followed by t2.
- Choice ([]): t3 [] t4 non-deterministic choice on t3 or t4.
- Order independence (|=|): t7 |=| t8 for (t7 ≫ t8)[](t8 ≫ t7).
- Interleaving (|||): t5 ||| t6 parallel activation of t5 and t6 .
- Iteration T ⋆: T is activated zero or more times.

Definition 1: Labelled Transition System. A Labeled Tran-
sition System (lts) is a structure 〈S, E, −→〉 where S is
a set of states, E is a set of actions (operation labels) and

−→ ⊆ S×E×S is the transition relation. We write s
e
−→ s′

to express the transition from state s to s′ with action e.
Internal actions are hidden with the label τ .

In our approach, an lts describes the behavior of the
interaction between the user and the system, when achieving
a task. Physical actions (leaves) of the task model become
transition labels and temporal operators are compositions of

transitions. Figure 2 shows the automaton, representing the
task model of the figure 1.

0 1

2

4

3

5

6

7

8

t7

t8

t3

t8

t7

t5

t6
t5

t6
t5

t6
Fig. 2. lts corresponding to a task model

B. The bi-simulation relationship

The notion of bi-simulation was initially defined by Milner
[31] to compare processes (called observational equivalence).
This relation defines equivalence on states of lts. Depending on
the kind of considered actions (internal τ or observable), two
kinds of observational equivalence exist: strong bi-simulation,
for observable actions, and weak bi-simulation which considers
both observable and internal τ (stuttering) actions [32].

We consider the definition of bi-simulation for two different
lts. Let lts = 〈S, s0 E, −→〉 and lts′ = 〈S′, s′0 E, −→′〉
be two transition systems with the same set of labels E and
S ∩ S′ = ∅.

Definition 2: Strong bi-simulation. Strong bi-simulation
relation ∼⊆ S × S′, is a bi-simulation equivalence defined

on states. For a given action e, a transition
e
−→ and two states

pi and qi, we say that (pi, qi) ∈ ∼ if

∀pi
e
−→ pj ∈−→: ∃qi

e
−→ ′qj ∈−→

′ ∧(pj , qj) ∈∼
∀qi

e
−→ ′qj ∈−→

′: ∃pi
e
−→ pj ∈−→ ∧(qj , pj) ∈∼

By extension of this definition, two lts are strongly bi-similar,
noted ≃lts, if their initial states are bi-similar i.e. (s0, s

′
0) ∈ ∼

(a strong bi-simulation including initial states can be built).

Definition 3: Weak bi-simulation. Weak bi-simulation re-
lationship noted ≈ ⊆ S × S′, is a bi-simulation equivalence

defined on states. For a given action e, a transition
e
−→ and

two states pi and qi, we say that (qi, qi) ∈ ≈ if

∀pi
e
−→ pj ∈−→ ∃qi

τ⋆.e.τ⋆

−→
′

qj ∈−→
′ ∧(pj , qj) ∈≈

∀pi
τ
−→ pj ∈−→ ∃qi −→

τ⋆

qj ∈−→
′ ∧(pj , qj) ∈≈

∀qi
e
−→

′
qj ∈−→

′ ∃pi
τ⋆.e.τ⋆

−→ pj ∈−→ ∧(qj , pj) ∈≈

∀qi
τ
−→

′
qj ∈−→

′ ∃pi
τ⋆

−→ pj ∈−→ ∧(qj , pj) ∈≈

By extension two lts are weakly bi-similar, noted ≅lts, if their
initial states are weakly bi-similar i.e. (s0, s

′
0) ∈≈ (a weak

bi-simulation including initial states can be built).

Bi-simulation relationships are defined on a single set of
labels and compare transitions with the same labels. To check
plasticity, comparing lts with different sets of transition labels
is required.

C. A formal model for designing plastic interfaces

The representation of task models by Interactive systems,
proposed in our approach, leads to lts with different sets
of labels, corresponding to interaction actions. Relational bi-
simulation relationship, defined below, relaxes the classical
definition to handle different sets of labels. This definition
introduces a relation, Γ on pairs of labels, used to rewrite
different labels.

Let lts = 〈S, s0 E, −→〉 and lts′ = 〈S′, s′0 E′, −→′〉
be two transition systems such that S ∩ S′ = ∅, E * E′ and

Fig. 3. The ontology model represented as an UML class diagram

E′ * E. Let A be another set of labels different from the
those of E ∪ E′, in other words A ∩ (E ∪ E′) = ∅

Definition 4: Bi-directional relation on labels. Γ ⊆ E −
E′ × E′ − E is a relation on labels of two labelled transition
systems defined by
∀ α ∈ E − E′, ∃ β ∈ E′ − E such that (α, β) ∈ Γ
∀ β ∈ E′ − E, ∃ α ∈ E − E′ such that (α, β) ∈ Γ

The left and right projection functions Projl and Projr are
associated to Γ.

Informally, Γ links labels belonging to the set of labels that
are not in E∩E′. Note that for plasticity checking purpose, this
relation will be borrowed from the defined domain ontology.

Definition 5: Rewriting function on labels. Let Φ : E ×
E′ −→ (A ∪ E ∪ E′ ∪ {τ}) be a function on labels of two
labelled transition systems. Φ is defined by

∀ (α, β) ∈ Γ ∃ γ ∈ A such that Φ(α, β) = γ
The definition of the rewriting function entails four different
applications.

1- Substitution. If ∃ e ∈ A such that Φ(a, b) = e then
labels a and b are replaced by a new label e in A.

2- Right replacement. If ∃ b ∈ E′ such that Φ(a, b) = a
then label b ∈ E′ is replaced by a label a ∈ E.

3- Left replacement. If ∃ a ∈ E such that Φ(a, b) = b then
label a ∈ E is replaced by a label b ∈ E′.

4- Hiding. Φ(a, b) = τ denotes the case of a pair of labels
that should be hidden on both labelled transition systems after
rewriting.
Remark. When an ontology is used, substitution means that a
subsuming concept is available and left (resp. right) replace-
ment means that the left (resp. right) label is subsumed by the
right (resp. left) one. Hiding means that the label is not relevant
for plasticity. If Γ is empty, then no plasticity is possible.

Definition 6: Transforming labelled transition systems.
lts = 〈S, s0 E, −→〉 and lts′ = 〈S′, s′0 E, −→′〉 are
respectively rewritten to lts⊤ = 〈S⊤, s⊤0 E⊤, −→⊤〉 and

lts⊤
′

= 〈S⊤′

, s⊤
′

0 E⊤′

, −→⊤′

〉 according to the label relation
Γ and to the rewriting function on labels Φ as follows .

-S⊤ = S and S⊤′

= S′ i.e. same sets of states.
- s⊤0 = s0 and s⊤

′

0 = s′0 i.e. same initial states.

- E⊤ = (E − Projl(Γ)) ∪ A ∪ {τ} and E⊤′

= (E′ −
Projr(Γ))∪A∪{τ} sets of labels enriched with the rewritten
labels thanks to the Φ rewriting function.
-transition relations are redefined on the new labels −→⊤⊆
S⊤ × E⊤ × S⊤ and −→⊤′

⊆ S⊤′

× E⊤′

× S⊤′

where
−→⊤ = {s

e
−→ t ∈−→| ∀e′ ∈ E′. (e, e′) /∈ Γ}

− {s
e
−→ t ∈−→| ∀e′ ∈ E′. (e, e′) ∈ Γ}

∪ {s
a
−→ t | ∃(e, e′) ∈ Γ ∧ Φ(e, e′) = a}

−→⊤′

= {s′
e′

−→ t′ ∈−→′| ∀e ∈ E. (e, e′) /∈ Γ}

− {s′
e′

−→′ t′ ∈−→′| ∀e ∈ E. (e, e′) ∈ Γ}

∪ {s′
a

−→′ t | ∃(e, e′) ∈ Γ ∧ Φ(e, e′) = a}

The defined lts⊤ and lts⊤
′

are labelled transition systems with

the same set of labels, since E⊤ = E⊤′

.

Definition 7: Relational weak bi-simulation relationship
on lts. Let 〈lts, lts′,Γ,Φ〉 be a structure where
-lts and lts′ are two labelled transition systems such that
S ∩ S′ = ∅, E * E′ and E′ * E,
- Γ ⊆ E×E′ is a relationship on labels according to definition
4,
- Φ is a label rewriting function according to definition 5.

Then, ≅Γ,Φ
lts ⊆ LTS × LTS is relational weak bi-simulation

relationship on labelled transition systems if there exists a
weak bi-simulation relationship on labelled transition systems
between the transformed lts. We write

(lts, lts′) ∈≅Γ,Φ
lts ⇐⇒ (lts⊤, lts⊤

′

) ∈≅lts

It becomes possible to compare labelled transition systems
with different sets of labels.

Definition 8: Plasticity property. For two user interfaces
UI1 and UI2, modeled by two task models, corresponding
to the labelled transition systems lts1, lts2; and an ontology
Ont, defining the relation ΓOnt; and a rewriting function
ΦOnt; we say that UI1 and UI2 satisfy plasticity property

if lts1 ≅ΓOnt,ΦOnt

lts lts2. Note that if Γ = ∅ ∧ E1 6= E2 the
plasticity property does not hold.

D. An ontology of interaction

A domain ontology of both tasks and interaction devices is
defined to supply Relational bi-simulation with the relation Γ
and the rewriting function Φ on labels. The different actions
performed on an interactive system, together with their asso-
ciated devices, can be categorized within an ontology. Classes
and properties related to interaction devices and modes are
categorized in a subsumption relationship. Figure 3 shows a
class diagram, representing the core concepts of the obtained
ontology. It defines hierarchical categories of interactive ac-
tions and/or devices. The main concepts of this ontology are
the interaction device (DEV), the interactive task (INTTASK)
and the user interaction (INTR). Interaction device (DEV)
describes the various categories of devices. It is mainly based
on most known taxonomies of interaction devices, published in
the literature [26], [25], [33] and [34]. The concept Interactive
task (INTTASK) refers to the abstract interaction, as defined
in [28] -examples of instances of this class are select, copy,
text input etc. User interaction (INTR) class represents the
patterns of interactions techniques as defined in [27], [22] and
[24]. It can be either a basic interaction, corresponding to a
user action (ATOMIC-UA), or a composite action, defining the
behavior of the user and the machine during the interaction in
terms of user actions. The actions composition operators are
the sequence (SEQ), concurrent (PARA), choice (CHOI) and
iteration (ITER). Each interaction materializes an alternative
way to perform an interactive task (INTTASK) with a set of

user actions, allowed by interaction devices (DEV) available
within a computing platform.

Among the different kinds of ontological relations between
user actions, offered by our ontology, the equivalence and
the subsumption (is a) relationships are exploited by our
approach. The former means that two user interactions INTR
are equivalent when they materialize the same interactive task
INT TASK. The latter describes the situation where an atomic
task can be performed either by an atomic action ATOMIC UA
or by a composite task COMPOSITE. Particularly, the relation
linking the concept INT TASK and the concept INTR is
exploited when rewriting labels of the lts in the following
manner:
• A label, derived from equivalent ATOMIC UA, is

replaced by the label, derived from the INTR they perform
(materialize). Equivalence is a substitution.
• A label, derived from INT TASK, replaces two sets of

equivalent COMPOSITE interactions (both realize the same
INT TASK)
• A label, derived from INTR, can replace a set of labels

derived from an ATOMIC UA or COMPOSITE interactive
task if it is subsumed by a single ATOMIC UA that realizes
the same INT TASK. Subsumption is a left or right replacement.

Finally, as for classical ontology engineering, the ontology,
defined above, shall be consensual and agreed by the user inter-
face developers’ community. This aspect is out of scope of our
paper and the presented ontology can be subject to evolution
or amendment without impacting the defined approach.

E. A Methodology for checking user interface plasticity

The main goal in our proposed approach is to check that a
pair of different interactive systems allows a user to perform
the same tasks, using different interactive techniques with
available interactive devices and modes. Considered interactive
systems are formalized as labelled transition systems, and
then a relational bi-simulation on these systems is checked,
provided that a relation on labels of their corresponding
labelled transition systems is available -using our ontology.
Informally, our approach states that a transition system is said
plastic if it can be at least implemented by two interactive
systems, which are linked by a relational bi-simulation rela-
tionship, according to a given relation on labels. Our stepwise
methodology, to check that a pair of interactive systems
(Systsource, Systtarget), consists of the following steps:

1- Design. Formalize interactive systems (Systsource,
Systtarget) as a pair (ltssource, ltstarget) of labelled transition
systems.

2- Irrelevant action identification. In the obtained lts, at the
previous step, identify the internal actions that are not relevant
for the interaction. The labels, corresponding to these actions
in ltssource and/or ltstarget, are set to τ .

3- Rewriting. Identify the pairs of labels that are different
in ltssource and ltstarget, obtained at the previous step. Then,
rewrite these pairs of labels, using the relation on labels of the
lts, defined in the interaction ontology. At this step, the two
ltssource and ltstarget have the same labels.

4- Checking. Check classical weak bi-simulation between
LTS ltssource and ltstarget, obtained at the previous step. If
they are bi-similar, then we can assert that they encode the
same task model.

IV. APPLICATION TO A CASE STUDY

In order to illustrate the previously described formal
method for checking UI plasticity, we consider the case of
checking if a web application, initially designed to send SMS
on a personal computer (PC), runs on a Smartphone as well.
Below, we show how two task models, describing two user
interfaces, concretizing the same task on these two concrete
different platforms (PC and Smartphone).

A. Tasks description

Figure III-E shows the CTT task model, describing how
the application UI allows a user to send an SMS. The user
opens a session to access his own space (subtask TA). Then,
he writes a message and sends it (subtask TB). Finally, he
logs out from his own space (subtask TC). The leaves of the
defined task model are actions that a user must carry out to
achieve each subtask. To login, a user gives his identifier (T1)
and password (T2) in any order and submits them (T3). Then,
he triggers the message editor (T4), edits his message (T5) by
entering the text of the message (T8) and the phone number of
the recipient (T7) (in any order). Then, he decides whether he
sends the entered message (T6) or saves it (T10) or cancels it
(T11). To send the message, the user must request the system
(T12) and confirm the action (T13). If he does not confirm
sending the message (T14), he chooses to save it (T15) or to
cancel the whole operation (T16). Finally, the user closes the
session (T17).

B. Design

In order to keep this paper in a reasonable length, we only
describe the subtask EditMsg (T5). We show how our formal
approach applies to establish the similitude (equivalence) of
this subtask, when deployed on a PC or on a Smartphone. The
Task model of figure 5 describes how to carry out the task
(T5) on the PC platform.

Fig. 5. The EditMsg subtask (T5) deployed on a PC

The model of figure 6 shows how the same task is achieved
on a Smartphone. As a consequence, two interactive systems
(Systsource, Systtarget), corresponding respectively to the PC
and to the Smartphone platforms, are described.

From the task models of figures 5 and 6, a pair
(ltsPc, ltsPh) of lts, formalizing the behavior of
(Systsource, Systtarget), are obtained. As mentioned
above, CTT models are formalized as LOTOS process algebra
expressions and thus an lts can be associated to each CTT
expression.

The lts ltsPc and ltsPh of figures 7 and 8 correspond
to Systsource and Systtarget, respectively. They describe the
interactive system, running on a PC and on a Smartphone
respectively.

Fig. 4. Send SMS abstract Task Model

Fig. 6. The EditMsg subtask (T5) deployed on a Smartphone

1 2 3 4 5 6 7

8 9 10 11 12 13

e7

e7

e5e7
e3 e7e3

e5e7
e1e1

e5
e7 e1 e7

e1 e5
e7 e3

e3

Fig. 7. lts on PC platform

TABLE I. USER ACTIONS AND CORRESPONDING LABELS

CTT’s atomic ac-

tions

Signification lts’s

Labels

KeyPress CHR Press the keyboard character key e1
KeyPress NUM Press the keyboard digital key e3
Click LBTN Click the mouse left button e5
BtnPress DUDirBtn Press keypad Down/Up e6

direction button

Move Mouse Move the mouse e7
BtnPress LRDirBtn Press keypad Left/Right e8

direction button

BtnPress CentBtn Press keypad central button e10

1

2

5

3

4

6

7

8

9

10

11

13

12

14

15

16

17

e6

e8

e6e8

e6
e8

e6

e8

e10

e10

e10

e10

e3

e1

e6
e8

e3

e6
e8

e1

e6

e8

e6

e8

e10

e10

e10

e10

e1

e1

e3

e3

Fig. 8. lts on Smartphone platform

Table I gives the correspondence between actions of task

models and the corresponding labels in the lts.

C. Identification of irrelevant actions

The labels, corresponding to irrelevant actions in the
task model with respect to the plasticity, are identified from
the ontology. In this case study, the iterated user actions,
corresponding to moving the mouse in the screen on the
PC {MoveMouse}, or moving buttons on the Smartphone
{BTNPressDUDirBtn, BTNPressLRDirBtn}, are considered as
irrelevant. Only one iteration is considered in this case and the
other iterations are set to τ for their corresponding labels (e7,
e6, e8) in ltsPc and/or ltsPh. Note that these actions could
have been kept as they are if one may consider the number of
times buttons are pressed, for example.

D. Rewriting

The next step consists in rewriting the different lts, involved
in the task models, corresponding to (ltsPc, ltsPh), in order to
produce new lts that share the same set of labels. Let EPc and
EPh be the set of labels, corresponding to ltsPc and ltsPh,
respectively. LabDiff is the set of labels of ltsPc and ltsPh,
which are different.

LabDiff = (EPc ∪ EPh)− (EPc ∩ EPh)
= {e5, e6, e7, e8, e9, e10}

The set of labels Er
s and Er

t to be rewritten for ltsPc, and
ltsPh, respectively, are defined below.

Er
Pc = EPc ∩ LabDiff Er

Ph = EPh ∩ LabDiff
= {e5, e7} = {e6, e8, e10}

TABLE II. LABEL REWRITING TABLE

lts’s Labels Substitution
action

φ
Application

(e5, e10) GO φ(e5, e10) = g

(e7, e6) MoveCursor φ(e7, e6) = m

(e7, e8) MoveCursor φ(e7, e8) = m

At this level, according to the defined methodology, the
rewriting function can be applied. This function is defined in
table II. Figure 9 shows an excerpt of the ontology instances,
used for this case study. Labels (g,m) appear after rewrit-
ing. The label g, corresponding to the interactive task (INT
TASK) GO, replaces the labels corresponding to User Actions
(ATOMIC UA), Click that acts on LBTN, and BtnPress that
acts on CentBtn; because it represents the effect of the two

actions. The label m, corresponding to the interactive task (INT
TASK) MoveCursor, replaces the labels corresponding to user
actions (ATOMIC UA), Move that acts on Mouse, BtnPress
that acts on DUDirBtn, and BtnPress that acts on LRDirBtn.

Fig. 9. Instances of our ontology concepts used to rewrite labels

E. Checking

Once the previous steps are achieved, the labelled transition
systems ltsPctr of figure 10 and the ltsPhtr of figure 11 are
obtained for both the PC and the Smartphone, respectively.
They share the same set of labels {e1, e3,m, g, τ}.

1 2 3 4 5 6 7

8 9 10 11 12 13

m

m

g
τ

e3 me3
g

τ
e1e1

gτ e1 m
e1 g

τ
e3

e3

Fig. 10. lts on PC platform after rewriting labels

It becomes possible to verify that the obtained lts are bi-
similar by checking the observational equivalence relationship
between them, i.e. by checking the weak bi-simulation rela-
tionship, previously defined.

1

2

5

3

4

6

7

8

9

10

11

13

12

14

15

16

17

m

m

mm

τ
τ

τ

τ

g

g

g

g

e3

m

m

m

e3

m

m
e1

τ

τ

τ

τ

g

g

g

g

e1

e1

e3

e3

Fig. 11. lts on Smartphone platform after rewriting labels

The final result shows that ltsPctr and ltsPhtr are weakly
bi-similar. Therefore, we can conclude that the task models,
described on a PC and on a Smartphone, can substitute each
other, ensuring thus the plasticity property.

F. Tool support

The CADP c© (Construction and Analysis of Distributed
Processes) model checker [35] has been set up to model tasks
and check bi-simulation. This toolbox provides resources for
compiling and checking Lotos [30] programs. In our approach,
the lts are first, formalized in LotosNt [35] (see figure 12),

a simplified version of LOTOS. They are transformed into
LOTOS programs. Then, an internal representation, by labelled
transition system (automaton) in BCG format, is generated
for each LOTOS program. Finally, the bi-simulation of the
two BCG automata is checked, thanks to the BISIMULATOR
module, using observational equivalence relationship option.

module ltspct is

process main [m,g,e1,i,e3 :any] () is

select

m; brch1[m,g,e1,e3,i] [] m; brch2[i,m,g,e1,e3]

end select

end process -- main

process brch1 [m,g,e1,i,e3:any] () is

select

i; brch1[m,g,e1,e3,i] [] g; e1; brch11[m,g,e1,e3,i]

end select

end process -- brch1: branche1

......

process brch23[e1:any] ()is

e1; brch23[e1]

end process

end module -- ltspct

Fig. 12. A section of LOTOS NT code corresponding to ltsPctr

V. CONCLUSION

This paper presented a formal modeling approach to check
the plasticity property of user interfaces. The objective is to
allow UI developers check whether different user interfaces,
running on different computing platforms, with different inter-
action techniques, and various available interaction devices,
support the same user tasks. The approach relies on the
formalization of task models by lts, where states record the
UI changes and transitions are labelled with user actions.
They offer a powerful model to describe behavioral aspects of
task models. Our idea, to handle plasticity of user interfaces,
comes from the fact that, once task models are formalized as
lts, we observe that different paths with different actions of
two task models may lead to equivalent states. This notion
of equivalence is hard to establish because the actions, la-
beling the transitions, are not exactly the same ones. There
is a need to express equivalence relations on such actions
when such a relation holds. Therefore, one needs to make
explicit the knowledge that some interaction devices, modes
or actions have the same effect. This information represents
an axiomatization of the interaction domain. We have chosen
to model such a knowledge with domain ontologies, that are
well adapted for the description of domain knowledge indepen-
dently of any context of use. The proposed approach is based
on two formal verification techniques. First, it exploits the bi-
simulation relationship to compare behaviors, expressed by lts.
Second, the computation of the subsumption and equivalence
relationships, within an ontology provided with equivalent
or subsuming instances, that can be used to safely rewrite
transition labels. The interest of the proposed approach is its
loose coupling between the tasks models -the user interface-
and the ontology. Indeed, both may evolve independently.

Moreover, this approach can be used for handling plasticity
at both design and runtime. On the one hand, checking bi-
simulation overall labelled transitions systems, ensures that a
global task model can substitute another one. On the other
hand, the fact that the bi-simulation relationship is defined on
pairs of states ensures that two bi-similar states are equivalent.
Thus, it becomes possible to switch from one state of an lts
to its bi-similar state, of another lts, at runtime. A case study

of a web application, sending an SMS from a Pc or from a
Smartphone, showed how our approach works. It illustrates
two equivalent task models modulo an interaction domain
ontology.

Finally, this work opens several research perspectives. First,
as for classical ontology engineering, the ontology used in this
paper shall be consensual and agreed by the UI developers’
community. Second, the definition of the rewriting function
should be automated. We are currently investigating how this
function can be encoded within rewriting systems like Maude.
Third, more complex applications should be addressed in order
to show how this approach scales up to other interactive
systems. Finally, we believe that the provided relational bi-
simulation relationship opens research paths for studying adap-
tive systems in general.

REFERENCES

[1] D. Thevenin and J. Coutaz, “Plasticity of user interfaces: Framework
and research agenda,” in Proceedings of INTERACT, vol. 99, 1999, pp.
110–117.

[2] J. Coutaz and G. Calvary, “HCI and Software Engineering for User
Interface Plasticity,” in HCI Handbook: Fundamentals, Evolving Tech-

nologies, and Emerging Applications, 3rd Edition, J. A. Jacko, Ed.
CRC Press, 2012, pp. 1195–1220.

[3] J. A. Johnson, B. A. Nardi, C. L. Zarmer, and J. R. Miller, “Ace:
building interactive graphical applications,” Communications of the

ACM, vol. 36, no. 4, pp. 40–55, 1993.

[4] S. Kawai, H. Aida, and T. Saito, “Designing interface toolkit with
dynamic selectable modality,” in Proceedings of the 2nd annual ACM

conference on Assistive technologies. ACM, 1996, pp. 72–79.

[5] M. Crease, S. Brewster, and P. Gray, “Caring, sharing widgets: a toolkit
of sensitive widgets,” in People and Computers Usability or Else!

Springer, 2000, pp. 257–270.

[6] E. A. Bier, M. C. Stone, K. Pier, W. Buxton, and T. D. DeRose,
“Toolglass and magic lenses: the see-through interface,” in Proceedings

of the 20th annual conference on CGIT. ACM, 1993, pp. 73–80.

[7] W. Stuerzlinger, O. Chapuis, D. Phillips, and N. Roussel, “User interface
faades: towards fully adaptable user interfaces,” in Proceedings of

the 19th annual ACM symposium on User interface software and

technology, ser. UIST ’06. New York, NY, USA: ACM, 2006, pp.
309–318.

[8] G. Calvary, J. Coutaz, L. Bouillon, M. Florins, Q. Limbourg,
L. Marucci, F. Paternò, C. Santoro, N. Souchon, D. Thevenin et al.,
“The cameleon reference framework,” Deliverable D1, vol. 1, 2002.

[9] Q. Limbourg, J. Vanderdonckt, B. Michotte, L. Bouillon, and V. López-
Jaquero, “Usixml: A language supporting multi-path development of
user interfaces,” Engineering HCI and Interactive Systems, pp. 134–
135, 2005.

[10] A. Demeure, G. Calvary, and K. Coninx, “Comet(s), a software archi-
tecture style and an interactors toolkit for plastic user interfaces,” in
Interactive Systems. Design, Specification, and Verification, ser. LNCS,
T. Graham and P. Palanque, Eds. Springer Berlin Heidelberg, 2008,
vol. 5136, pp. 225–237.

[11] B. Jabarin and T. Graham, “Architectures for widget-level plasticity,”
Interactive Systems. Design, Specification, and Verification, pp. 451–
460, 2003.

[12] A. Stanciulescu, Methodology for Developing Multimodal User

Interfaces of Information Systems (a). Presses univ. de Louvain, 2008,
vol. 556.

[13] K. Samaan and F. Tarpin-Bernard, “The amf architecture in a multiple
user interface generation process,” in Developing User Interfaces with

XML, AVI’2004 Workshop, 2004.

[14] A.-M. Dery-Pinna, J. Fierstone, and E. Picard, “Component model
and programming: a first step to manage human computer interaction
adaptation,” in Human-Computer Interaction with Mobile Devices and

Services. Springer, 2003, pp. 456–460.

[15] K. M. De Oliveira, F. Bacha, H. Mnasser, and M. Abed, “Transportation
ontology definition and application for the content personalization of
user interfaces,” Expert Systems with Applications, vol. 40, no. 8, pp.
3145–3159, 2013.

[16] J. Sonnenberg, “Service and user interface transfer from nomadic
devices to car infotainment systems,” in Proceedings of the 2nd In-

ternational Conference on Automotive User Interfaces and Interactive

Vehicular Applications. ACM, 2010, pp. 162–165.

[17] W. Dees, “Usability of nomadic user interfaces,” in Human-Computer

Interaction. Towards Mobile and Intelligent Interaction Environments,
ser. LNCS, J. Jacko, Ed. Springer Berlin Heidelberg, 2011, vol. 6763,
pp. 195–204.

[18] D. Masson, A. Demeure, and G. Calvary, “Examples galleries generated
by interactive genetic algorithms,” in Procedings of 2nd Conf. on

Creativity and Innovation in Design. ACM, 2011, pp. 61–71.

[19] D. Pierre, D. Marc, and R. Philippe, “Ubiquitous widgets: Designing
interactions architecture for adaptive mobile applications,” in Inter-

national Conference on Distributed Computing in Sensor Systems

(DCOSS). IEEE, 2013, pp. 331–336.

[20] J. Vanderdonckt, D. Grolaux, P. Van Roy, Q. Limbourg, B. Macq,
and B. Michel, “A design space for context-sensitive user interfaces,”
Proceedings of IASSE, 2005.

[21] A. Demeure, G. Calvary, J. Coutaz, and J. Vanderdonckt, “The comets
inspector: Towards run time plasticity control based on a semantic
network,” Task Models and Diagrams for UI Design, pp. 324–338, 2007.

[22] K. Samaan and F. Tarpin-Bernard, “Task models and interaction models
in a multiple user interfaces generation process,” in Proceedings of the

3rd annual conference on Task models and diagrams. ACM, 2004,
pp. 137–144.

[23] S. Jean, G. Pierra, and Y. Ait-Ameur, “Domain Ontologies: A Database-
Oriented Analysis,” in Web Information Systems and Technologies,

International Conferences, WEBIST 2005 and WEBIST 2006. Revised

Selected Papers, ser. LNBIP. Springer Berlin Heidelberg, 2007, pp.
238–254.

[24] P. Dragicevic and J.-D. Fekete, “Support for input adaptability in the
icon toolkit,” in Proceedings of the 6th international conference on

Multimodal interfaces. ACM, 2004, pp. 212–219.

[25] W. Buxton, “A three-state model of graphical input,” in Human-

computer interaction-INTERACT, vol. 90. Citeseer, 1990, pp. 449–
456.

[26] S. Berti, F. Paternò, and C. Santoro, “A taxonomy for migratory
user interfaces,” in Interactive Systems. Design, Specification, and

Verification. Springer, 2006, pp. 149–160.

[27] D. Navarre, P. Palanque, and S. Basnyat, “A formal approach for user
interaction reconfiguration of safety critical interactive systems,” in
Computer Safety, Reliability, and Security. Springer, 2008, pp. 373–
386.

[28] L. L. Constantine, “Canonical abstract prototypes for abstract visual
and interaction design,” in Interactive Systems. Design, Specification,

and Verification. Springer, 2003, pp. 1–15.

[29] F. Paternò, C. Mancini, and S. Meniconi, “Concurtasktrees: A diagram-
matic notation for specifying task models,” in Proceedings of the IFIP

TC13 Interantional Conference on HCI, vol. 96, 1997, pp. 362–369.

[30] I. Lotos, “A formal description technique based on the temporal ordering
of observational behaviour,” ISO/IEC JTC 1/SC 7, Geneva, 1988.

[31] R. Milner, A Calculus of Communicating Systems. Secaucus, NJ, USA:
Springer-Verlag New York, Inc., 1982.

[32] ——, Communication and concurrency. Upper Saddle River, NJ, USA:
Prentice-Hall, Inc., 1989.

[33] S. Card, J. D. Mackinlay, and G. Robertson, “The design space of
input devices,” in Proceedings of ACM Conference on Human Factors

in Computing Systems, Multi-Media, ser. CHI90, 1990, pp. 117–124.

[34] D. Frohlich, “The design space of interfaces,” in Multimedia Systems,

Interaction and Applications, 1st Eurographics Workshop. Springer
Verlag, 1991.

[35] CADP-Team, “Cadp web site http://cadp.inria.fr,” webpage, 2013.

