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Abstract—Recently, ontologies have been widely adopted by
small, medium and large companies in various domains. These
ontologies may contain redundant concepts (computed from
primitive concepts). At the beginning of the development of
ontologies, the relationship between them and the database was
weakly coupled. With the explosion of semantic data, persistent
solutions to ensure a high performance of applications were
proposed. As a consequence, a new type of database, called
semantic database (SDB) is born. Several types of SDB have
been proposed and supported by different DBMS, where each
one has its architecture and its storage layouts for ontologies and
its instances. At this stage, relationship between databases and
ontologies becomes strongly coupled. As a consequence, several
research studies were proposed on the physical design phase of
SDB. To guarantee the similar success that relational databases
got, SDB has to be supported by complete design methodologies
and tools including the different steps of the database life cycle.
Such methodology should identify the redundancy embedded
into ontology. In this paper, we propose a design methodology
dedicated to SDB including the main phases of the lifecycle of
the database development: conceptual, logical, deployment and
physical. The conceptual design of SDB can be easily performed
by exploiting the similarities between ontologies and conceptual
models. The logical design phase is performed thanks to the
incorporation of dependencies between concepts and properties
in the ontologies. These dependencies are quite similar to the
principle of functional dependencies defined in the traditional
databases. Due to the diversity of the SDB architectures and
the variety of the used storage layouts (horizontal, vertical,
binary) to store and manage ontological data, we propose a SDB

deployment à la carte. Finally, a prototype implementing our
design approach on Oracle 11g is outlined.

I. INTRODUCTION

Nowadays, ontologies became a complete technology sup-
ported by modeling languages such as OWL (the Seman-
tic Web language designed to represent rich and complex
knowledge about things, groups of things, and relations be-
tween things1), PLIB [1] (a language for the engineering
domain), etc., editors (e.g. Protégé), reasoners (e.g., Pellet
[2]), evaluation methods, etc. An ontology is defined by
Gruber [3] as an explicit specification of a conceptualization.
Ontologies’ key benefit is interoperability. They showed their
contributions in various interoperability-sensitive research and
industrial domains such as data integration, semantic Web,
inference engines, semantic indexation, crawlers, data mining,
etc. Chronologically, ontologies have been adopted by three
main research and industrial communities: the linguistic, the

1www.w3.org/2001/sw/wiki/OWL

artificial intelligence and the database. Consequently, each
community has its own interpretation and use of the term
”ontology”. Due to this diversity, Jean et al. [4] propose a
taxonomy of ontologies, namely the onion model (left part of
the Figure 1). It is composed of three layers: linguistic on-
tologies, conceptual canonical ontologies and non conceptual
canonical ontologies.

Linguistic Ontologies (LOs) are those ontologies whose
scope is the representation of the meaning of the words used
in a particular universe of discourse, in a particular language.
Beyond the textual definitions, a number of linguistics rela-
tionships (synonymous, hyponym, etc) are used to capture, in
an approximate and semi-formal way, the relation between the
words. LOs may be used to localize similarities between source
schemas, to document existing databases or to improve the user
dialog. Wordnet2 is an example of such ontologies.

Conceptual Canonical Ontologies (CCOs) contain ontolo-
gies which describe concepts of a domain without any redun-
dancy. CCOs adopt an approach of information structuring in
term of classes and properties and associate to these classes and
properties a single identifiers reusable in various languages.
CCOs can be considered as shared conceptual models.

Non Conceptual Canonical Ontologies (NCCOs) represent
not only primitive concepts (canonical), but also definite
concepts (non-canonical), i.e. which can be defined from
primitive concepts and/or other definite concepts by the use of
expression languages such as OWL and PLIB. NCCOs provide
mechanisms similar to views in databases. Non-canonical
concepts can be seen as virtual concepts defined from canon-
ical concepts. These mechanisms may be used to represent
mappings between different databases. Some existing ontology
models provide users with appropriate builders, functions and
procedures to express such definitions. For example, the PLIB
model, using the EXPRESS modeling language, offers the
possibility to define the derived data and/or object properties
across functions. OWL uses different constructors to build non-
canonical concepts such as restrictions (e.g, the Man class can
be defined as all persons having the ’male’ value for the gender
property) or Boolean operators (e.g., the Human class can be
defined as the union of Man and Woman).

From the database point of views, conceptual ontologies
leverage conceptual models proposed by Dr. Peter Chen [5].
Recall that he argued that the world may be represented/mod-
eled by the use of two concepts, named, entity and relationship.

2http://wordnet.princeton.edu/



Fig. 1: Redundancy caused by Ontologies

In addition to conceptual models, ontologies brought two main
issues: (1) an ontology may contain non-canonical concepts
(concepts derived from other ones), whereas, a conceptual
model stores only canonical concepts. (2) An ontology offers
the reasoning capabilities. If the second problem has been
solved by using external reasoner or processing the reasoning
with database mechanisms, the first one has been mostly
ignored even if it raises the important issue of introducing
redundancy in the database. The following example illustrates
this type of redundancy.

Example 1: Let us consider the canonical class Human
domain of the properties name, gender and birthday. Us-
ing the description logic syntax, the non-canonical class
Man can be defined with an OWL restriction as follow:
Man ≡ Human ⊓ gender : Male. The non-canonical
property age can be defined with PLIB derivation function:
age = current date− birthdate

The Figure 2 presents the storage of the class Human
in the classical triple table (a direct translation of the RDF
model). The representation of non-canonical concepts in this
table (triples in grey) introduces two anomalies:

• if the gender of the instance is modified, the triple
(Id1, type,Man) becomes incorrect.

• if the birthdate of the instance is modified, the triple
(Id1, age, 23) becomes incorrect.

Thus, the identification of non-canonical concepts is crucial
for the development of database applications since it reduces
the redundancy and inconsistency of databases constructed
from ontologies. Functional dependency between properties
of a given class may also be used to reduce redundancy.
As a consequence, dependencies between ontological classes
and properties are critical when designing databases from
ontologies. Initially, the link between ontologies and databases
weakly coupled, because ontologies were used at the con-
ceptual level. The massive use of ontologies generates a big
amount of semantic data. To facilitate their managements,
persistent solutions to store and query these mountains of
semantic data were proposed. These gave raise to a new type
of databases, called semantic databases (SDB). Academicians
and industrials propose a large panoply of SDB [6], [7],

✁!✂✄☎✆✝ ✠✞☎✟✡✆☛✝☎ ✍✂✄☎✆✝

☞✌✎ ✏✑✒✓ ✔✕✖✗✘

☞✌✎ ✙✗✖✓ ✚✛✓✜✜✓

☞✌✎ ✢✓✘✌✓✜ ✣✗✤✓

☞✌✎ ✥✛✜✦✧✌✗✦✓ ★✎✩★✎✩✎✪✪★

☞✌✎ ✏✑✒✓ ✣✗✘

☞✌✎ ✫✬✓ ✭✮

Fig. 2: Example of redundancy in Semantic Database

[8], [9], [10], [11], [12]. Relationship between ontologies and
databases becomes strongly coupled. Three main architectures
of Database Management Systems managing such databases
are distinguished. In the first type (that we called Type1), the
traditional database architecture was reused to store in the data
part both ontologies and data referencing them. This way, the
ontology and its associated data are stored in a unique part.
To make an identified separation between ontology and data,
a second type (called Type2) was proposed where ontology
schema and its ontological data are stored independently
into two different schemes. Therefore, the management of
ontology and data parts is different. The Type1 and Type2
architectures hard-coded the ontology model (RDF or RDFS,
etc.). To enable the evolution of ontology models, a third
database architecture (called Type3) extending the second
one by adding a new part, called the meta-schema part was
proposed [9]. The presence of the meta-schema offers the
following characteristics: (1) a generic access to the ontology
part, (2) a support of the used ontology model’s evolution
by adding non functional properties such as preferences [13],
web services [14], etc. and (3) a storage of different ontology
models (OWL, PLIB, etc.). When ontologies became a part of
databases, several research efforts were mainly concentrated
on the physical design phase, where storage layouts dedi-
cated for ontologies and their instances were discussed. Three
main storage layouts are distinguished: vertical, horizontal
and binary. Vertical representation stores data in a unique
table of three columns (subject, predicate, object) (eg. Oracle
[8]). In the binary representation, classes and properties are
stored in different tables (eg. IBM SOR [10]). The horizontal
representation translates each class as a table having a column



Fig. 3: Ontology storage in SDB.

for each property of the class (eg. OntoDB [9]). Note that each
storage layout has its advantages and limitations based on the
ontological data and the queries. Nowadays, DBMS proposes
fixed storage layouts for its different components (data, meta-
schema, ontology model). In real life applications, database
administrators may choose the target DBMS based on her/his
architectures and storage layouts.

A. Summary.

The main studies in SDB were mainly concentrated on
the physical phase of database development. This situation is
similar to what we have seen during the development of the
database technology. When Prof. Edgar Frank Codd proposed
his relational model in 70’s [15], the lifecycle of database
applications had only two phases: logical and physical phases.
In the logical phase, the database schema may be normalized
using the functional dependencies defined on properties to
reduce the redundancy and ensure the quality of the final
database schema. In 1975, when Peter Chen proposed his entity
relationship model, he contributed in extending the lifecycle
of databases by adding the conceptual phase. Chen’s work
allows database technology to have its lifecycle. As a con-
sequence, several methodologies were proposed according to
this lifecycle: conceptual, logical and physical design phases.
We can cite the MERISE method [16], the Unified Process,
the Rational Unified Process, Two Tracks Unified Process, etc.
These methodologies were supported by academic and indus-
trial tools such as Sybase PowerAMC3 and Rational Rose4.
The maturity of SDB technology requires the development of
design methodologies including different phases of database
lifecycle. Recall in traditional databases, usually the relational
table layout is advocated when deploying a database which
makes easier the deployment process. In the SDB, the diversity
of storage layouts and the architectures of the target DBMS
makes the deployment more complicated. Another aspect that
has to be considered is the loading of ontological instances
into the SDB (Figure 3). This problem is quite similar to ETL
process (extraction, transformation, loading) [17].

B. Outline and Contribution

The contributions of our work are:

• The identification of the causes of redundancies and
inconsistencies of SDB which represent the presence

3http://www.sybase.com/products/modelingdevelopment/poweramc
4http://www-01.ibm.com/software/awdtools/developer/rose/

of the non-canonical concepts in ontologies and de-
pendencies between properties.

• The proposition of a formal model for describing con-
ceptual ontologies embedding dependencies between
their concepts and properties.

• The presentation of a complete methodology for de-
signing SDB, where deployment (including ETL) is
ensured through services.

The remainder of this paper is organized as follows. Section
2 presents the related works. Section 3 exposes an overview
of ontology characteristics related to dependencies relation-
ships. In Section 4, we propose a formalization of ontological
dependencies and SDB. Our approach exploiting conceptual
dependencies to improve the semantic database process is
given in section 5. Section 6 shows an application of our
approach to improve the SDB design methodology in the
Oracle 11g. Finally, section 6 gives a conclusion and some
future research directions.

II. RELATED WORK

Since the 70s, the functional dependencies have been
widely studied in the database theory. These dependencies,
usually defined on the attributes, were especially exploited
in the databases design process. They are used to model
the relationships between attributes of a relation, compute
primary keys, define the normalized logical model to avoid
redundant data, check the data consistency, etc. For the de-
scription logics (DL), functional dependencies have also been
the subject of several studies [18], [19], [20], [21], [22],
[23]. In [18], Borgida et al. have expressed the need to add
unique constraints for semantic data models, particularly for
the description logic, while in [19], the authors studied the
possibility to make them explicit in this language.

In [24], the authors extend DLR with identification con-
straints and functional dependencies. Note that DLR is an
expressive Description Logic with n-ary relations, particularly
suited for modeling database schemas. The resulting DL, called
DLRifd, allows one to express these constraints through new
kinds of assertions in the TBox. For example, a functional
dependency assertion has the form (fd R i1,..., ih → j) where
R is a relation, h≥2 and i1,...,ih,j denote components of R.
In [20], Motik et al. showed the role of constraints in the
ontologies while drawing a comparison between the constraints
in databases and those in ontologies.

In [21], [22], the authors were interested in the study of
dependency relationships and their implications in ontologies.
In [22], the authors propose a new OWL constructor to define
functional dependencies. They describe a FD by the following
quadruplet FD = (A,C,R, f), where:

• A is the antecedent i.e. is a list of paths (A =
{u1, u2, .., un}). A path ui is in turn composed of
roles ri (ri (ui={ri,1, ri,2, .., ri,n}).

• C is a consequent composed by a single path (C =
{u}).

• R is a root concept representing the starting point of
all paths in the antecedent and consequent.



• f a deterministic function which takes as parameters
the ranges of the last roles of the antecedent paths.

These dependencies are then translated into a set of SWRL
rules for the reasoning process.

In [21], the authors propose an approach to define func-
tional dependencies for a domain ontology based on the
concepts and roles defined in such ontology. They propose
an algorithm for the identification of a set of FD exploiting
the capabilities of DLLiteA reasoning. Note that the DLLiteA

is a variant of the DL-Lite family which is a new description
logic specially adapted to capture basic ontology languages.
The proposed algorithm computes (i) a set of functional
dependencies between ontological classes and (ii) the transitive
closure. Romero et al. [21] introduce a functional dependency
as a relationship between classes. For two concepts C1 and C2,
the authors established that each instance i1 ∈ C1 determines
a single instance of C2 if (1) there exists a functional role
(ri) valued for i1 and (2) ri connects i1 to a unique instance
of C2. This dependency relationship is denoted by C1 → C2.
These dependencies are then exploited during the data ware-
house design process to make the logical schema definition
automated.

In parallel, semantic databases, storing in the same reposi-
tory ontological data and the ontology describing their mean-
ings, have been introduced. To support such a database, several
architectures have been proposed [6], [7], [8], [25], [10], [11],
[12]. They have been mainly focused on the scalability of these
databases. Considering the support of ontology, each SDB
supports the semantics of a given ontology model using hard
coded techniques either by using database mechanisms or by
relying on an external logical engine. Therefore, the SDB may
contain anomalies like redundant and inconsistent data. For
example, let us assume that the individual i1 is instance of C1

and C2. Considering the storage process, the i1 description
is duplicated in the SDB and a redundancy case is raised.
Unfortunately, there is no available methodology dedicated to
the SDB design and avoiding these anomalies.

To summarize, we can easily say that studies on onto-
logical functional dependencies have been mainly focused on
objects properties (properties relating concepts to concepts).
In the other words, functional dependencies are defined at the
ontology level. A few studies on dependencies between data
properties (properties having as a range a simple type) and
the defined classes exist. One of the main objectives of our
paper is to study the characteristics of ontologies in order
to identify dependencies between properties and classes and
exploit them to propose a consistent SDB. Such characteristics
are described in details in the next section.

III. AN OVERVIEW OF ONTOLOGY FEATURES

Along this paper, we concentrate on conceptual ontologies
that offer two types of dependencies: (i) the dependency
relationships between the ontological properties and (ii) the
dependency relationships between ontological classes.

A. Dependency relationships between properties

In an ontology, two types of properties are distinguished: (1)
the data properties that link individuals to data values and

(2) the object properties that connect individuals to other
individuals. By examining existing ontologies, we observe
that some properties may be expressed in terms of other
properties. Therefore, dependency relationships may be raised.
This section studies dependency relationships between data
properties and object properties.

1) Dependency relationships between data properties: A
definition of a data property may be expressed from other prim-
itives and/or defined data properties sharing the same domain.
These derived definitions may be characterized as algebraic.
An algebraic concept definition is a non-canonical definition
that can be computed with the use of algebraic operators
such as the composition, union, intersection, restrictions, etc.
while a structural non-canonical concept definition consists
in defining and deducing a notion without using algebraic
operators.

Example 2: For a better understanding, let us consider
the data properties SSN (describing social security number),
birthdate, age, Studentstatus (describing if a student is major
or minor) and country of the class Student of the ontology
of Lehigh University benchmark5 (Figure 4). This ontology
is used along this paper. These properties have as a domain
the Student class and as a range an integer, a date or a
string, respectively. Assuming that the birth date is a prim-
itive property, therefore, the property age is considered as a
non-canonical algebraic property since it computed from the
birth date and the current date. Based on this definition, the
functional dependency between the properties birth date and
age (birthdate → age) can be defined.

2) Dependency relationships between object properties:
An object property is a binary relation between two individuals
belonging either to the same ontological class or to two
different classes.

Example 3: The object property teaches describes a bi-
nary relation between Professor and Course classes. Data
properties can be primitive or derived (computed from
the primitive and/or defined object properties). Let us
consider the properties headOf , headOfDepartement and
GeneralHeadOfUniversity describing respectively the fact
of being a headmaster, a department headmaster and a uni-
versity general headmaster. The third property can be de-
rived from the first two ones (GeneralHeadOf = headOf
◦ headOfDepartement) since a university general head-
master is the headmaster of a departement headmaster.
As a consequence, a dependency relationship (headOf ,
headOfDepartement → GeneralHeadOf ) can be identified
between headOf , headOfDepartement and the non-canonical
algebraic property GeneralHeadOf .

B. Dependency relationships between classes

As we said in the Section 1, an ontology may have two
types of classes: the canonical (primitive) classes and the non-
canonical (derived) ones. The derived classes may be classified
in algebraic concepts or structural ones.

In the first case, classes are defined as class expressions
based on set operators and/or property restrictions (∪, ∩, ¬,
∃, ∀, etc.). For example, let us assume that a data property

5http://swat.cse.lehigh.edu/projects/lubm/



Fig. 4: A fragment of the Lehigh University ontology.

StatusUniversity describing the status of a university (public
or private) has as a domain the primitive concept University
describing all the universities. A PublicUniversity class
that specifies the public universities may be defined as the
restriction on the property UniversityStatus on the public
value (PublicUniversity ≡ ∃ UniversityStatus.{public}
and domain (UniversityStatus) = University). Based on
this definition, a class dependency may be identified as
follows: University → PublicUniversity. It means that
the knowledge of the whole instances of the University
class determines the knowledge of the whole instances of the
PublicUniversity concept.

In the second case, classes are expressed using a direct
enumeration of its members. For a better understanding, let
us consider this example. Let CharenteUniversity con-
cept be the class describing the universities located at the
Charente department (in France). It is defined as one of
the following University instances: Poitiers University, EN-
SMA, Angouleme University, ENSIP (CharenteUniversity
≡ oneOf {PoitiersUniversity, ENSMA, AngoulemeUniver-
sity, ENSIP}). Therefore, the CharenteUniversity definition
depends on the University instances definition since the knowl-
edge of the whole instances of the enumereted universities
determines the knowledge of the whole instances of the
CharenteUniversity.

Ontology models provide the means to define derived classes.
For example, the PLIB [1] model allows the definition of
the derived classes across basic set operators, functions and
enumeration. In OWL, various builders are given to define
such classes (owl:unionOf, owl:intersectionOf, owl:hasValue,
owl:oneOf, etc.).

C. Synthesis

Our study shows that ontology models allow defining con-
cepts and properties with dependencies. But, some functional
dependencies among properties cannot be captured by these
definitions. Let us consider the SSN property. Knowing a
student SSN allows identifying exactly other data property
values. To offer designers the means to express such de-
pendencies and to define explicitly conceptual dependencies,
we propose to extend the expressive power of ontologies by
incorporating these new concepts in the ontology models. In

the next section, we propose a formal model of ontologies
considering dependencies between ontological properties and
classes.

IV. FORMALIZATION

In this section, we first propose a formal model of ontolo-
gies followed by a formalization of semantic databases.

A. A formal model of ontologies

The existing formalization of ontologies ignore the de-
pendencies that may exist between classes and properties
[26]. In this section, we propose a complete formalization
of conceptual ontology. Therefore, an ontology becomes a 7-
tuple O:〈C,R,Ref(C), Ref(R), FD(R), FD(C), Formal〉,
where:

• C denotes concepts of the model (atomic concepts and
concept descriptions).

• R denotes roles (relationships) of the model. Roles can
be relationships relating concepts to other concepts,
or relationships relating concepts to data-values (like
Integer, Float, String, etc).

• Ref(C): C → (Operator, Exp(C,R)). Ref(C) is a
function defining classes of the DL TBOX. Operators
can be inclusion (⊆) or equality (≡). Exp(C,R) is
an expression over concepts and roles of O using
constructors of description logics such as union, in-
tersection, restriction, etc.(e.g, Ref(Professor)→ (⊆,
Person ∩ ∀ givesCourse(Person, Course))).

• Ref(R): R → (Operator, Exp(C,R)). Ref(R) is
a function defining roles of the DL TBOX. Op-
erators can be inclusion (⊆) or equality (≡).
Exp(C,R) is an expression over concepts and
roles of O using constructors of description log-
ics such as union, intersection, restriction, etc.(e.g,
Ref(GeneralHeadOf ) → (≡, (headOf(Person, Per-
son) ◦ headOfDepartement(Person, Department))).

• FD(R): C x 2R → R a mapping from the powerset
of R onto R representing dependencies defined on the
applicable roles R of a class Ci ∈ C. A FD(R) is de-
fined as a pair FD(R):< FD(R).RP, FD(R).LP >
where:



◦ FD(R).RP is a role R describing the depen-
dent attribute of the role functional dependency
(right part) i.e. FD(R)(Ci, (R1, .., Rn));

◦ FD(R).LP is a powerset of R describing the
determinant set of the role functional depen-
dency (left part) i.e. domain(FD(R) (Ci));

• FD(C) a mapping from the powerset of C onto
C representing class dependencies. A FD(C) is de-
fined as a pair FD(C):< FD(C).RP, FD(C).LP >
where:

◦ FD(C).RP is a class C describing the depen-
dent class of the class dependency (right part)
i.e. FD(C)((C1, .., Cn));

◦ FD(C).LP is a power set of C describing the
determinant set of the class dependency (left
part) i.e. domain(FD(C));

• Formal is the formalism followed by the ontology
model like RDF, OWL, PLIB, etc.

B. Semantic database formalization

Since ontology is a part of a SDB, a formalization of such
database becomes necessary. SDB is then defined as a 8-tuple
SD:〈IM, I, Pop, SMIM , SMI , Ar,Rel, RS〉.

• IM is the information model of the source. It de-
scribes a fragment of the ontology O that defines the
user requirements. Three scenarios may occur:

◦ IM ⊂ O means that O is rich enough to cover
the user requirements;

◦ IM = O means that O covers all the designer
requirements;

◦ IM ⊃ O means that O does not fulfill the
whole designer requirements. The designer ex-
tracts from the O a fragment corresponding to
the requirements and enriches it by adding new
concepts/properties/dependencies to define the
IM ;

• I presents the instances or data of the source;

• Pop: C → 2I is a function that relates each concept
to its instances;

• SMIM is the storage model of the information model
(vertical, horizontal, binary);

• SMI is the storage model of the instance part I;

• Ar is the architecture model of the source;

• Rel presents the relations (tables) for instances store;

• RS: C → 2Rel is a function that relates each class to
its relations;

C. Instantiation of the Semantic Database Model

To instantiate the above model, let us consider an ex-
tended fragment (FLUO ) of the Lehigh University ontology
benchmark (LUO) as shown in Figure 4, where some classes
and dependencies are added. For example, a dependency
between the classes Student and Master Student (Student →
MasterStudent) is defined, since the MasterStudent class

may be expressed as a student with a master value (Mas-
terStudent ≡ ∃ level.Master; Domain(level) = Student). The
dependency idUniv → name meaning that the university
identifier (idUniv) determines the university name (name) is
an example of dependencies defining on role of the University
class.

We consider two examples of the instantiation of our model
by considering one commercial DBMS which is Oracle and an
academic DBMS which is OntoDB.

a) Oracle DBMS: The different components of SDB
are

• (IM = FLUO ) ⊃ O since FLUO = fragment(O) ∪ C
∪ R ∪ FD(C) ∪ FD(R);

• I presents the FLUO instances. For example,
the triplets (University#1, type, University)
(University#1, idUniv, ’M50421’) describe that
University#1, instance of University class, has
’M50421’ as an identifier value;

• For each Ci ∈ CIM , Pop(Ci) is defined. If we
consider the University class, Pop(University)
= {University#1, University#2,...,
University#100};

• Oracle uses a vertical representation to store its infor-
mation system;

• A vertical table is used to store instances. Note that
this table store both IM and I;

• Oracle has a Type1 architecture (two parts: meta-base
and data);

• Since Oracle uses vertical representation, a unique
table is created;

• RS = φ.

b) OntoDB DBMS:

• IM = FLUO ;

• I presents the FLUO instances.

• As in Oracle, Pop(University)={University#1,
University#2,..., University#100};

• OntoDB uses the hybrid storage layout;

• OntoDB uses the horizontal representation to store its
instances;

• OntoDB has a Type3 architecture (four parts: meta-
base, ontology, meta-schema and data);

• Since OntoDB uses the horizontal representation, a
table is generated for each class. Therefore, Rel =
{RelUniversity , RelStudent, RelProfessor, RelCourse,
RelPerson, etc.}

• A relation Reli is generated for each Ci ∈ C. Note
that the class and its associated relation have the
same name in OntoDB. Thus, RS(Ci) = RelCi

. For
example, RS(University) = RelUniversity since a
table University is generated and associated to the
University class.



Fig. 5: Semantic database design approach

V. DESIGN OF CONSISTENT SEMANTIC DATABASE

LOGICAL MODELS

In this paper, we are interested in exploiting dependency
relationships between ontological concepts to improve the
SDB design process. Inspired from relational database design
[27], we propose to incorporate dependency relationships in
the SDB design process in order to (1) reduce redundancy by
generating a normalized logical model, and (2) improve the
database quality by detecting the inconsistent data caused by
the violation of integrity constraints identified from dependen-
cies definitions.

Therefore, we propose our methodology to design SDB
with good quality. Our methodology has the following steps
(Figure 5):

1) Definition of Conceptual Model: the designer de-
fines the conceptual model by extracting a fragment
of the used ontology according to her/his require-
ments.

2) Identification of Canonical Concepts: as we said
in the previous sections, the exploitation of depen-
dencies between classes facilitates the identification
of canonical and non-canonical classes. To do so, we
propose a graph structure. It is built from FD(C),
where its nodes represent the ontology classes. An arc
exists between two nodes ni and nj if a dependency
exists. This graph is then used as the input of our
proposed algorithm to determine the minimum set
of canonical concepts (CC) and generates the set
of non-canonical concepts (NCC). This algorithm
starts by computing the isolated classes (classes not
involved in FD(C)). Note that these classes will be
canonical since they can not be derived from other
ones. Then, the minimum coverage-like classes (C+)
is computed. It represents the minimum subset of
basic FD(C) to generate all the others. C+ has to
be treated so as to eliminate circular relationships
between classes. Finally, the set of CC is identified
and as a consequence, the set of NCC is deduced.
Recall that this identification contributes in reducing
the redundancy in the final SDB.

3) Generation of a Normalized Logical Schema: for
each canonical class cci ∈ CC, we exploit the FD(R)
defined on their properties to generate the normalized
logical model. Note that, for each cci , a primary key
is computed and relations in 3NF are generated.

4) Hiding the physical implementation: to facilitate
the user access, we define a view on the normalized

relations corresponding to each canonical class. So,
the users may query the SDB without worrying about
the physical implementation of those classes.

5) Access Support to non-canonical classes: to en-
sure the transparency in accessing data through non-
canonical classes and reduce redundancy in the target
SDB, we propose the use of views. For each ncci ∈
NCC, a relational view is computed. For example, let
nccj be a NCC defined as the intersection of the two
canonical classes cc1(r1, r2, r3) and cc2(r1, r2, r4)
where {r1, r2, r3, r4} ⊂ R, a view corresponding
to nccj is defined as illustrated in the Listing 1.

Listing 1: Example of a relational view definition
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
CREATE VIEW n c c j AS
( (SELECT r1 , r2 FROM cc1 ) INTERSECT
(SELECT r1 , r2 FROM cc2 ) )

6) Deployment: Due to multitude choices of architec-
tures of the target DBMS and storage layouts, the
deployment process become more harder than the
classical databases. To illustrate this difficulty, let us
study its complexity. Let A = {A1, A2, .., An}, P =
{P1, P2, .., Pn} and SM = {SM1, SM2, .., SMn}
be the set of all possible architecture types, set of
various needed parts according to the design approach
and the set of existing storage models. The number
of deployment possibilities D that designer needs to
consider is given by the following equation:

D = card(A)× (card(SM))
card(P)

). (1)

Our analysis on databases architectures [7], [9], [25],
[28], [29] gives rise to three main architectures. Each
identified architecture may have at most four parts:
meta-base, meta-schema, ontology and data. Accord-
ing to the previous steps, the designer have to deploy
only in three parts: the meta-schema part to store the
extended ontology model (supporting dependencies
definition and classes types), the ontology part to
store ontology definition and the data part to store
the generated logical model and ontological data.
Note that three main storage models may be used
for each one of these parts as follows [11]: (SM1)
vertical table, (SM2) horizontal representation and
(SM3) binary representation. Therefore, the deploy-
ment complexity is equal to O(3 ×

(

33
)

). Studying
81 cases becomes a difficult task.
The designer is constrained to consider a significant
number of choices. This makes the deployment pro-



Fig. 6: Deployment of SDB as a Service.

cess more complex. To overcome this situation, the
SDB deployment process must be done in a generic
way. For that reason, we propose a deployment on
demand implemented as a service which follows the
standards such as WSDL6, SOAP7 and UDDI.
Based on the different parts of SDB architectures,
three kinds of deployment services are identified:
(1) a service concerns the meta-schema level, (2)
a service dedicated to the ontology level and (3) a
service for the data level. Note that a SDB may
materialize ontological data that come from various
sources (Web, files, databases, etc.) with different
formats. A similar ETL service has to be developed
to clean, transform and load data into the SDB. [17]
defined ten generic operators typically encountered in
an ETL process, which are:

a) EXTRACT (S,C): extracts, from incoming
record-sets, the appropriate portion.

b) RETRIEVE(S,C): retrieves instances associ-
ated to the class C from the source S.

c) MERGE(S,I): merges instances belonging to
the same source.

d) UNION (C,C’): unifies instances whose cor-
responding classes C and C ′ belong to dif-
ferent sources S and S′.

e) JOIN (C, C’): joins instances whose corre-
sponding classes C and C ′ are related by a
property.

f) STORE(S,C, I): loads instances I correspond-
ing to the class C in a target data store S.

g) DD(I): detects duplicate values on the incom-
ing record-sets.

h) FILTER(S,C,C’): filters incoming record-
sets, allowing only records with values of the
element specified by C’.

i) CONVERT(C,C’): converts incoming record-
sets from the format of C to the format of

6http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
7http://www.w3.org/TR/wsdl

C ′.
j) AGGREGATE (F, C, C’): aggregates in-

coming record-sets applying the aggrega-
tion function F (e.g., COUNT, SUM, AVG,
MAX) defined in the target data-store.

For our case, all these operations are considered
except the aggregation operator.
The data are then extracted from different sources,
saved in a temporary file generated into OntoML8

format (Ontology Mark-up Language) which allows
ontologies representation and exchange. The OntoML
file is used as a generic format of semantic data
exchange, transformed according to the format of the
target schema (vertical, horizontal, etc.) and loaded
into the SDB. Figure 6 illustrates the deployment
process.

Algorithm 1 shows an implementation of our ETL operators.
A validation of our approach is proposed in the next section.

VI. A CASE STUDY

A case study implementing the proposed SDB design
approach in Oracle 11g is proposed. The choice of this
database is justified by the leading position that has Oracle
11g in the database area. To lead our validation, we use an
extended fragment of the Lehigh University ontology as shown
in Figure 4. The validation process contains two main steps: (1)
the design step and (2) the deployment step where a services-
based case tool is proposed.

A. The design step

The design stage requires the execution of a set of steps
as follows: (1) the OWL meta-schema extension, (2) the
primary key computation, (3) the analysis of classes and (4)
the conversion of the OWL ontology to a N-Triple format.

8http://wiki.eclass.eu/wiki/ISO 13584-32 ontoML



Fig. 7: OWL meta-schema extension.

1) The OWL Meta-schema extension: Since the used on-
tology language does not handle dependencies representation,
we propose to extend the OWL meta-schema by adding the
following meta-classes: FD(R), FD(R).RP, FD(R).LP, FD(C),
FD(C).RP and FD(C).LP. These meta-classes describe respec-
tively a functional dependency defined between properties, its
right part, its left part, a class dependency, the FD(C) right
part and the FD(C) left part. For each added meta-class, a
set of meta-properties is defined. For example, the Its Class
meta-property references the meta-class to which the FD(R) is
associated. These dependencies may be exploited to compute
the types and the primary keys of classes. So, to represent
such a data, we propose to enrich the OWL meta-model by
adding the meta-classes PrimaryKey, NonCanonic and Canonic
describing respectively the primary key concept and the canon-
icity of classes. A set of meta-properties is associated to the
PrimaryKey meta-class: the PK.class references its associated
class while the PK.prop describes the set of the properties
composing this key. Figure 7 shows a fragment of the UML
model describing the extended OWL meta-model.

2) Compute primary keys: To compute the appropriate
primary key for each ontological class, we exploit the FD(R)
defined on the properties of each class. To do so, we apply a
java program that we have developed, on the extended OWL
ontology. Based on the FD(R), this program computes and
associates a primary key for each ontological class. To lead
our validation, we use an extended fragment of the Lehigh
University ontology as shown in Figure 4. Let us assume that
the idUniv property that describes the university identifier
is generated as the primary key of the University class.
Therefore, this step triggers the meta-schema instantiation by
adding the appropriate ontological data in the University.owl
file to define the generated primary key as described in the
Listing 2.

Listing 2: Example of the meta-schema instantiation
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
<PrimaryKey r d f : ID=” PrimaryKey 10”>
<PK . prop r d f : r e s o u r c e =”# idUniv ”/>

<PK . c l a s s r d f : r e s o u r c e =”# U n i v e r s i t y ”/>
</PrimaryKey>

Once the primary keys are computed, an analysis to identify
canonical and non-canonical classes is performed as described
in the next step.

3) Analysis of classes: To identify the types of classes, we
apply a java program, exploiting the class dependencies, on the
the Lehigh University ontology. Once the canonical and non-
canonical classes are identified, we instantiate the meta-scheme
classes ”Canonic” and ”NonCanonic” by generating the owl
statements describing the classes types definition. Figure 8
illustrates the class analysis process of the used ontology.

4) Ontology conversion: Oracle 11g offers only the data
loading under the N-TRIPLE format (.nt). To meet this re-
quirement, we use the converter rdfcat provided by the Jena
API (version 2.6.4). This tool enables the transformation of an
OWL file (.owl) to a N-TRIPLE file (.nt). For example, the
Listing 3 describes the instruction allowing the transformation
of the Lehigh University ontology from the OWL format to
the N-TRIPLE format.

Listing 3: Conversion of the Lehigh University ontology
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
C:\ programs\Jena −2.6.4> j a v a j e n a . r d f c a t −o u t n t r i p l e
U n i v e r s i t y . owl > U n i v e r s i t y . n t

By this conversion, the OWL statements defining the primary
key idUniv of the University class (see previous paragraph)
are transformed into a set of triplets as described in Listing 4.

Listing 4: Example of the primary key conversion
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
( PrimaryKey 10 , type , Pr imaryKey )
( PrimaryKey 10 , PK . prop , idUniv )
( PrimaryKey 10 , PK . c l a s s , U n i v e r s i t y )

Once the ontology conversion is done, the deployment step is
applied as described in the next section.
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CC = { C1, C2, C5 , C6 , C8, C9 ,C10, C11 , C12 , C13, C14}  ; NCC = { C3 ,C4 ,C7 }

C9, C8 C7 ;   C2, C3 C1 ;                ;

Class Dependencies:

C5, C6 C4C1 C3 C9, C8 C7 ;   C9, C8 C7 ;   C2, C3 C1 ;                ;

Class Dependencies:

C2, C3 C1 ;                ;

Class Dependencies:

C5, C6 C4C5, C6 C4C1 C3C1 C3

.java

.owl

<owl:Class 
rdf:ID="MasterStudent"
>

<owl:equivalentClass>
<owl:Restriction>
<owl:onProperty>

<owl:DatatypeProperty 
rdf:ID="level"/>

</owl:onProperty>
<owl:hasValue   

….

Fig. 8: Example of the classes analysis process.

B. OntoDep: a services-based case tool

In this section, we propose a service-based case tool en-
abling the deployment of our approach on SDB. The proposed
tool is implemented in Java language and uses OWL API
to access ontologies. Each service mentioned in section V
is implemented as a Web Service. According to the chosen
architecture and storage layout, the appropriate Web Service
is invoked via SOAP messages.

The deployment process is performed by invoking the
suitable Web Service that translates the semantic data to either
a vertical, horizontal or binary representation, by generating
XML files. The data loaded into our database are issued
from sources. As a consequence ETL operators (Extract,
Filter, Convert, Merge, etc.) have to be implemented using
the appropriate ontological language (SPARQL for vertical
representation, OntoQL for Horizontal, etc.). During this step,
the implemented ETL algorithm is executed in order to extract
semantic data from XML files, to transform and to load them
into the target SDB. The description of each Web Service is
implemented in a WSDL file.

Our tool is implemented so that technical details are hidden
to the user. Access to the persistent storage is implemented
using Data Access Object (DAO) Design patterns [30]. The
DAO pattern provides flexible and transparent accesses to
different storage layout. Based on the architecture of the
SDB, the right object DAO is selected. In order to obtain
a generic deployment process, our solution follow a service
oriented architecture (SOA). SOA offers the loose coupling
of the defined Web Services and interaction among them. It
allows the integration of new web services without affecting
the existing one. This provides the flexibility of the deployment

process. To deploy our approach on Oracle 11g, three main
steps are required as follows: (1) the meta-schema deployment,
(2) the ontology deployment and (3) the data deployment. Note
that Oracle 11g is a Type1 architecture and uses the vertical
table as a storage model for all types of data.

1) The meta-schema deployment: Oracle 11g offers several
techniques for the loading: (i) the bulk load, (2) the batch
load and (3) a load into tables using SQL INSERT statements.
We chose the first method for its fast loading. It loads the
ontological data in a staging table using the SQLLoader utility
(sqlldr) before being sent to the database. Since our design
approach requires the ontology meta-schema extension, the de-
ployment meta-schema service is invoked. This service extends
the used SDB meta-model by adding the needed meta-classes
and meta-properties to handle dependencies and canonicity
representations. The Figure 9 illustrates the invoking of the
meta-schema service.

2) The Ontology deployment: Once the meta-schema is de-
ployed, the ontology has to be loaded. To do so, we invoke the
ontology deployment service. First, we specify the ontology
deployment characteristics: the SDB architecture (Type1) and
the used storage model (vertical table). Then we load the ap-
propriate file describing the used ontology (University.nt). This
loading involves the storing of classes, properties, concepts
hierarchy, conceptual dependencies, primary keys and classes
types. The Figure 10 illustrates the invoking of the ontology
service.

3) The Data deployment: To deploy data on the SDB, the
data deployment service is invoked. First, we specify the data
deployment characteristics: the SDB architecture (Type1) and
the used storage model (vertical table). Then, the ETL process
is applied. It consists in extracting instances from the N-Triple



begin
Input: SDB (the schema only) and Sources (S)
Output: Populated SDB (schema + instances)
for Each C : Class of ontology do

ISDB = φ
for Each source Si ∈ S do

if Cs ≡ C /* instances in Si

satisfying all constraints
imposed by SDB*/ then

C ′ = IdentifyClasse(Si, C)
end
else

if Cs ⊂ C /*Instances in Si
satisfy all constraints
imposed by SDB, plus
additional ones */ then

C’= IdentifyClasse (Si, C)
end
else

if Cs⊃ C /* Instances
satisfy only a subset of
constraints imposed by
SDB*/ then

if format(C) 6= format(Cs) then
C’= CONVERT (C, Cs)
/*identify the
format conversion
from the source to
the target SDB*/

end
if C represents filter constraint
then

C’= FILTER (Si, C, Cs)
/*identify the
filter constraint
defined in the
target SDB*/

end
end

end
end
Isi = RETRIEV E(Si, C) /*Retrieve
instances of C*/
if more than one instance are identified in
the same source then

ISDB= MERGE (ISDB , Isi) /*Merge
instances of Si*/

end
if more than one instance are identified in
different sources then

ISDB= UNION (ISDB , Isi) /*Unites
instances incoming from
different sources*/

end
end
if Source contain instances more than needed
then

ISDB= EXTRACT (ISDB , Isi) /*
Extract appropriate
instances*/

end
end
STORE(SDB,C, DD(ISDB)) /*Detects
duplicate; loads them in SDB*/

end
Algorithm 1: ETL operators

Fig. 9: Deployment process: the meta-schema service invoca-
tion.

file, filtering them, converting these instances according to the
SDB schema, merging instances related to the same classes
and loading them into Oracle 11g. The Figure 10 illustrates
the invoking of the ontology service. The demonstration video
illustrating the deployment process of SDB is available at http:
//www.lias-lab.fr/forge/rcisvideo/video.html.

C. Synthesis

In the most semantic databases, storage layouts are frozen.
For example, in Oracle 11g, the vertical representation is
used for the storage of ontological concepts and instances.
Therefore, our approach may be improved to consider all
possible combinations of storage layouts. Indeed, based on the
class dependencies, the class’s types are identified and stored
in the ontology-based data models. The property functional
dependencies modeling allows computing primary keys for
each ontological class and subsequently, storing them in the
SDB. Based on these keys, rules helping to detect a set of
inconsistent data may be defined. Therefore, the data quality
may be improved by detecting a set of inconsistent and
duplicated data violating these integrity constraints. Thus, ex-
ploiting dependencies ensures that the stored data correspond
to the boundaries of the modeled universe and reduces the
inconsistency and redundancy in the semantic database models.

VII. CONCLUSION

This paper shows the need to develop a complete method-
ology for designing consistent semantic databases including
the main steps of database lifecycle: conceptual, logical, phys-
ical and deployment. This is motivated by the spectacular
development of academic and industrial solutions to support
such databases. We tried to show the strong coupling between
ontologies and databases and to highlight ontologies in the
databases design process. In the past, ontologies were used
in the conceptual level of the database development. If we
accept to push them along all steps of the lifecycle, we need
to give database designers algorithms and tools to identify re-
dundancy. Considering all ontological concepts (canonical and
non-canonical) may cause inconsistent databases. To avoid this
situation, we proposed to enrich the traditional definition of



Fig. 10: Deployement process: the ontology service invocation.

ontologies with dependency relationships between properties
and classes of the ontology. Precise formalizations of ontology
and semantic databases are given including different compo-
nents (classes, properties, storage models, architecture of the
target DBMS, dependency between classes and properties).
The presence of functional dependencies between properties
allows generating normalized logical model. A graph-based
algorithm is proposed to identify the canonical concepts of
a given conceptual ontology. These concepts are stored into
the database in normalized form. The non-canonical concepts
are represented by relational views. Our approach offers a
deployment à la carte based on Web Services including ETL
process. A case tool dedicated to the deployment process is
proposed considering semantic Oracle DBMS.

Currently, we are developing a design tool in order to
assist designers during the SDB design process. Also, we are
working in proposing cost models evaluating the cost for each
deployment instances.
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