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ABSTRACT

Acoustic data are an invaluable source of information for characterizing the distribution and abundance of mid-
trophic level organisms (MTLOs) in the ocean. These organisms play a key role in the ecosystem as prey of top
predators and as predators of lower trophic level organisms, as well as in carbon export from the surface into
deeper waters. This study used 38 kHz-EK60 acoustic echosounder data from six cruises spanning 2011-2017 to
explore the seasonal and spatial variability in the vertical distribution of MTLOs’ from 10 to 600 m in the New
Caledonian (South Pacific) Exclusive Economic Zone. A total of 16715 acoustic vertical profiles of acoustic
backscattering strength were clustered into homogeneous groups. Two small shallow scattering layers (SSLs)
between 0 and 100 m, and one large deep scattering layer (DSL) at around 550 m depth, characterized the mean
vertical distribution of MTLOs. A machine-learning model (eXtreme Gradient tree Boosting algorithm, XGBoost)
was fitted to explain the acoustic profile clusters with environmental variables as predictors. Sun inclination was
the most important factor in structuring the vertical profile shapes due to the diel vertical migration signal,
followed by the mean oxygen value of the top 600 m. Bathymetry, euphotic depth, 0-600 m mean temperature
and SST were the next most significant variables. Isotherm depth, surface chlorophyll-a, wind, and mean salinity
had a lower influence on the shape of the vertical profiles. The model was then used to construct vertical
echograms at the scale of the New Caledonian EEZ, showing an accuracy up to 87% in cross validation. Across
the EEZ, the shape of vertical acoustic profiles were comparable, though layer echo intensities varied spatially
with a marked north-south gradient that remained relatively constant seasonally. The vertically-averaged
acoustic values were characterized by a maximum to the south of the EEZ in summer, mainly driven by high
oxygen values as well as shallow euphotic depth. We also estimated a migrant proportion between day DSL and
night SSL of about 78%. Our methodology offers a promising approach for analyzing the control of the envi-
ronment on the vertical distribution of MTLOs for other oceanic provinces, while also providing a framework to
investigate the corresponding trophic interactions between MTLOs and their predators feeding at different depths
and times. Moreover, our findings stress the need to consolidate knowledge on species composition to optimize

acoustic data interpretation.

1. Introduction

In pelagic ecosystems, mid-trophic level organisms (MTLOs), also
referred to as micronekton, are composed of crustaceans, molluscs,
gelatinous organisms and fish with size ranging from 1 to 20cm long
(Bertrand et al., 2002; Young et al., 2015). MTLOs play an important
role as intermediate components between lower trophic levels

(phytoplankton and zooplankton) and predators, including commer-
cially targeted fish species (Bertrand et al., 2002; Duffy et al., 2017,
Olson et al., 2014) as well as emblematic endangered marine species
(Lambert et al., 2014; Miller et al., 2018). The feeding habitats and
vertical behaviors of predators through the water column are very
diverse (e.g. Benoit-Bird and McManus, 2012; Choy et al., 2017).
Moreover, the habitat depth range of a specific predator may change
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spatially, as a function of prey distribution or due to physiological
tolerance to environmental parameters (Houssard et al., 2017; Schaefer
and Fuller, 2010, 2007). Ecosystem Based Fishery Management (EBFM)
aims to develop relevant knowledge on ecological mechanisms and
processes that shape such predator-prey interactions (Christensen et al.,
1996; Koslow, 2009). To date, most of the studies assessing the influence
of prey distribution on predator distribution at regional scales have used
ecosystem models (e.g. Lambert et al., 2014; Miller et al., 2018). Ob-
servations and data on the vertical distribution of prey are still lacking,
although they could greatly contribute to calibrate state-of-the-art
ecosystem models that inform EBFM (Fulton et al, 2005; Lehodey
et al., 2010; Maury, 2010; Pauly et al., 2000; Shin and Cury, 2001).

MTLOs are usually aggregated into layers, which are present in all
ocean basins between the surface and 2000 m depth (Opdal et al., 2008).
The thickness of a single layer ranges from a few meters to tens of me-
ters, and the layer can horizontally spread over hundreds of kilometers
(Benoit-Bird et al., 2017). Layers of MTLOs residing in the epipelagic
zone (0-200m) are referred to as shallow scattering layers (SSLs) and
those in the mesopelagic zone (200-1000 m) as deep scattering layers
(DSLs). The aggregation of pelagic organisms into scattering layers is a
highly organized process of many individuals reacting to predation
pressure as well as to environmental factors, such as food availability,
temperature, or oxygen concentration (Benoit-Bird et al., 2017; Cade
and Benoit-Bird, 2015; Ritz et al., 2011). Scattering layer characteristics
(depth, echo intensity, composition and number of layers) vary
geographically and seasonally (e.g. Escobar-Flores et al., 2018a). DSL
depth has been linked to various environmental variables such as
seawater density (Godo et al., 2012) or oxygen concentration (Bianchi
et al., 2013a; Klevjer et al., 2016). Primary production and sea tem-
perature also affect the DSL and SSL echo intensity (Escobar-Flores et al.,
2013, Irigoien et al., 2014), and DSLs are sometimes split into more than
one layer comprising different species (Ariza et al., 2016a; Benoit-Bird
and Au, 2004).

Day DSLs and night SSLs are connected through diel vertical
migration (DVM), a well-known phenomenon observed at the global
scale (Bianchi and Mislan, 2016; Klevjer et al., 2016). recognized as the
world’s largest animal migration (Hays, 2003). DVM patterns relate to
population-wide movements in the water column, with ascents and
descents of a large proportion of the MTLOs from the mesopelagic zone,
where they remain during day time, toward the more productive
epipelagic zone (0-200 m) where they feed during the night (Pearre,
2003). By migrating between surface and deep waters, MTLOs actively
contribute to the downward flux of nutrients and particulate organic
matter via their respiration and excretion processes (Ariza et al., 2015;
Drazen and Sutton, 2017). Quantifying the proportion of MTLOs per-
forming DVM and identifying the environmental drivers can thus
contribute to a better understanding of the overall role of DVM in the
global carbon cycle (Aumont et al., 2018; Belcher et al., 2019).

Data from scientific calibrated echosounders can provide a proxy of
the vertical distribution of SSLs and DSLs (Kloser et al., 2002).
Single-frequency acoustic data from echosounders at 38 kHz and lower
frequencies can typically describe both SSLs and DSLs down to 1000 m,
encompassing the entire DVM. Because they vary widely in two di-
mensions (depth and time/distance), echograms are complex to analyze
in relation to a multivariate environment. Most studies simplify infor-
mation contained in the depth profile of an echogram through few
metrics and analyze them through time together with environmental
variables. For instance, acoustic backscatter has been studied using
invariant depth-averaged vertical layers (e.g. 0-200 m and 200-1000 m)
(e.g. Bedford et al., 2015; Behagle et al., 2014; Doray et al., 2009). Other
studies extracted schools or layers and studied these layers’ depth,
thickness and echo intensity (Burgos and Horne, 2008; Proud et al.,
2018a). These methods provide information on the layer echo intensity
variability but not on the vertical structure variability. Behagle et al.
(2016) and Boersch-Supan et al. (2017) classified vertical acoustic
profiles but they did not test the influence of environmental parameters
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on their classification results.

To author’s knowledge, there is not any robust method that statis-
tically links the complete vertical distribution of scattering layers to
environmental variables. We attempted to fill part of this gap by
designing a method to link the vertical distribution of MTLOs to
oceanographic conditions; and using this method to predict vertical
distributions in un-sampled areas with similar environmental condi-
tions. We used acoustic vertical profiles as sampling units from six
cruises, and classified them into clusters to first describe the main ver-
tical profile modes. We then modeled, with a machine learning algo-
rithm, clusters as a function of environmental variables to understand
the main links between oceanographic factors and vertical distribution.
We finally predicted vertical echograms and migrant proportion be-
tween SSL and DSL at the scale of the New Caledonian EEZ in un-
sampled regions where oceanographic data were available.

2. Material and methods

Our study area fell within the New Caledonian Exclusive Economic
Zone (EEZ), a region of more than 1.4 million km?. Recent studies have
provided an overview of the physical and biological oceanographic
context in the New Caledonian EEZ (Ceccarelli et al., 2013; Menkes
et al., 2015). Studies specifically focusing on micronekton have explored
species richness and diversity in the region, identifying more than 480
MTLO species (e.g. Grandperrin, 1975; Payri et al., 2019), as well as the
spatial-temporal distributions of MTLOs averaged in the 20-120 m layer
(Receveur et al., submitted). We focused on the MTLOs vertical distri-
bution in the present study.

2.1. Acoustic data

We gathered data from six cruises (Nectalis 1-5 referred to as N1 to
N5, and Puffalis) on board the R/V Alis in the New Caledonian EEZ,
covering the area between 156°E—175°E and 14°S-27°S over the period
2011 to 2017 (Fig. 1, Table 1). During the cruises, in situ acoustic data
were recorded continuously using an EK60 echosounder (SIMRAD
Kongsberg Maritime AS, Horten, Norway) connected to four split-beam
transducers at 38, 70, 120 and 200 kHz. EK60 calibration was performed
according to Foote et al. (1987) for each cruise. In the present study, we
used 38 kHz only. The hull-mounted transducer was 4 m below the
surface and shallower than 6 m below the transducer face was deleted
from the records (data collection started at 10 m below the surface). The
maximum detection range was 800 m for all the surveys except for N1
cruise, where the records were limited to <600 m depth. For consis-
tency, the analyses were thus limited to 600 m.

All raw acoustic data were processed with the open-source Matecho
software (Perrot et al., 2018). A first cleaning step removed ghost bot-
tom echoes. Then, four semi-automatic cleaning filters were applied to:
(i) remove acoustic device interference (‘un-parasite’ Matecho filter),
(ii) remove attenuated signals (‘white pings’ filter), (iii) remove elevated
signals (‘deep spike’ filter) and (iv) reduce background noise (De Rob-
ertis and Higginbottom, 2007). Details of filter parameters can be found
in Behagle et al. (2016) and Perrot et al. (2018). After data cleaning, the
echo-integration was done on cells of 1-m deep and 0.1-nm long,
providing volume backscattering strength S, data (dB.re.1.m™1) (here-
after referred to as echo intensity), the linear measure of the volume
backscattering strength s, (m™!) | s, = 10% | and the area backscat-
tering strength S, (dB.re.1.m>m~2), a proxy for the MTLOs’ biomass
(Irigoien et al., 2014; Maclennan et al., 2002) for each cell. We used the
linear form of s, when arithmetic operations were necessary.

Vertical profiles were smoothed using a locally polynomial quantile
regression (Koenker, 2004) to remove high-frequency peaks (e.g. in-
terferences or very small schools that create peaks in an acoustic profile)
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Fig. 1. Cruise tracks of the R/V Alis with EK60 echosounder (colored lines) in the New Caledonian Exclusive Economic Zone. Black boxes show CTD stations. The
background grey colors represent the relative seabed depth (where lighter colors are shallower). Note that N1 and N2 tracks partially overlap but N2 track has been
slightly shifted to the north for visualization purposes. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of

this article.)

Table 1
Cruise details, with the cruise name, dates, the number of 0.1nm bins per cruise,
and the DOI of each cruise.

Cruise name Start End Number of 0.1nm DOI
bins
Nectalis 1 30/07/ 15/08/ 3681 10.17600/
(N1) 2011 2011 11100050
Nectalis 2 26/11/ 14/12/ 2896 10.17600/
(N2) 2011 2011 11100070
Nectalis 3 21/11/ 08/12/ 3617 10.17600/
(N3) 2014 2014 14004900
Nectalis 4 19/10/ 25/10/ 1034 10.17600/
(N4) 2015 2015 15004000
Nectalis 5 23/11/ 06/12/ 3989 10.17600/
(N5) 2016 2016 16004200
Puffalis 18/03/ 31/03/ 1498 10.17600/
(PUFF) 2017 2017 17003300

that were considered non-interpretable in the present study. Each ver-
tical profile ranging from 10 to 600 m was averaged in 4-m vertical bins
keeping the O0.1-nm horizontal resolution. Correlations between
consecutive vertical profiles were high for distances ranging from 0.1 to
0.4 nm and decreased after. We then selected one profile out of four to
limit autocorrelation effects. The final dataset was composed of 16,715
vertical profiles.

2.2. Environmental data

Table A1 displays the environmental variables selected to explore the
physical drivers of the MTLOs’ vertical distribution. For each vertical
profile, environmental data were extracted at the dates and positions of
the acoustic samples.

Bathymetry data were extracted from the ZoNéCo database at a 500-
m spatial resolution (ZoNéCo, 2013). Sun inclination was calculated as a
function of spatial position and date, with negative values for nights and
positive values for days (Blanc and Wald, 2012; Michalsky, 1988).
Twilight periods (i.e. dawn and dusk periods) were defined as the

periods when sun inclination was in the range —10° and 10°. During
these periods, as organisms actively swim up or down due to DVM, their
orientations change, creating strong variability in backscatter (McGehee
etal., 1998; Zedel et al., 2005), and were removed from the final dataset.
Hence, migration vertical profiles are highly changeable.

2.2.1. Inter-annual surface variables

Sea Surface Temperature (SST) was taken from the NOAA OI SST
High Resolution Dataset at a daily resolution (Reynolds et al., 2007).
The depth of the 20°C isotherm and the surface geostrophic ocean ve-
locity amplitude were extracted from the Armor3D dataset (Guinehut
et al., 2012) available at a weekly time scale. The depth of the euphotic
zone was extracted from the MERCATOR GLORYS2V4 reanalysis (Garric
et al.,, 2017) at a weekly resolution. Surface wind amplitudes were ob-
tained from Cross-Calibrated Multi-Platform (CCMP-v2, Wentz et al.,
2015) datasets at a weekly resolution. Surface chlorophyll-a was
extracted from GLOBCOLOUR (Saulquin et al., 2009) at a daily resolu-
tion. All interannual variables were extracted on a %° spatial grid and
were included as environmental covariates for modeling acoustic pro-
files (see section 2.3).

2.2.2. Subsurface datasets

In addition to surface values, Armor3D provided an ocean reanalysis
of observed vertical profiles of ocean temperature (T) and salinity (S)
(Guinehut et al., 2012). Armord3D was used rather than CTD field data,
because CTD casts were only taken at a limited number of sampling
stations (156 stations, Fig. 1). However, we systematically checked the
relationship between CTD and co-located Armor3D data (correlation of
0.99 for temperature values and 0.96 for salinity values). We extracted
the oxygen (O,) vertical distribution from the climatological dataset
CARS (Ridgway et al., 2002) as interannual data were not available. We
also checked the relationship between co-located CTD and CARS data
and we found a correlation of 0.74. We used the 6-606 m monthly av-
erages of seasonal temperature, salinity and oxygen (30 m vertical res-
olution) at a 1/2° spatial resolution as environmental variables for
modeling acoustic profiles (see section 2.3).
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2.2.3. Water masses

Water masses describe bodies of water with homogenous physical
properties, and constitute a synthetic way of understanding the physical
oceanography. Water masses can be defined in terms of temperature,
salinity (hence density) and oxygen values and have been described in
the Southwest Pacific (Gasparin et al., 2014; Germineaud et al., 2016).
We pooled temperature, salinity and oxygen values for all depths in the
top 606m as derived from Armor3D and CARS (Fig. Al). We then
classified data with a k-means algorithm (Hartigan and Wong, 1979)
and identified five distinct water masses corresponding to those iden-
tified by Gasparin et al. (2014) and Germineaud et al. (2016) (water
masses’ full description in Fig. Al and Table A2). The cluster results
were transformed into water mass covariates by calculating, for each
acoustic profile, the vertical proportion in depth occupied by the cor-
responding water mass in the water column.

2.3. Statistical methods

Fig. 2 displays the schematic framework of the analyses, considering
one acoustic vertical profile as the sampling unit (one ‘observation’
hereafter). We first reduced the vertical dimension by principal
component analysis and then classified the acoustic profiles in homog-
enous groups using their principal coordinates as variables. In the last
step, we fitted a machine-learning type model to link vertical profile
clusters to environmental variables.

2.3.1. Noise reduction and classification

A Principal Component Analysis (PCA, Jolliffe, 2011) allowed us to
reduce the dimensions of observations (Fig. 2, left panel, step 1). Vertical
acoustic profiles were then grouped using a model-based clustering
(MBC) (Fig. 2, left panel, step 2). As PCA brings similar observations
close, we performed clustering based on the density of observations in
PCA space (or similar). Each cluster was centered around points (e.g. the
clusters’ center) where the point density was the highest in the PCA
space (Fraley and Raftery, 2002). We maximized the Bayesian Infor-
mation Criteria (BIC) (Raftery, 1995) to select the appropriate number
of clusters. BIC values as a function of the number of classes were
plotted, and we added the BIC values derivative to better identify
discontinuities.
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2.3.2. Metrics on vertical profiles

Acoustic metrics were calculated using s, (linearized backscatter)
according to Urmy et al. (2012). We calculated the mean backscatter
value over the entire vertical profile (called ‘density’) and a mean depth
location calculated by the average sampled depths weighted by their s,
values (called ‘center of mass’). We calculated a proxy of the acoustic
aggregation rate over the water column: a high value corresponds to
high backscatter concentrated over short depth ranges in the vertical
profiles (called ‘aggregation’). These metrics are detailed in Table 2 (see
also Urmy et al., 2012).

2.3.3. Environmental factors driving the acoustic clusters

A “machine-learning” model was fitted to link the acoustic clusters to
environmental covariates (Fig. 2, left panel, step 3). We used the
XGBoost algorithm (eXtreme Gradient tree Boosting), which is an opti-
mized distributed gradient boosting designed to be highly efficient,
flexible and portable (Chen and Guestrin, 2016). XGBoost uses
machine-learning algorithms under the Gradient Boosting framework.
The basic idea is to incrementally create new sub-models that predict the
residuals or errors of prior sub-models, and then merge sub-models
together to make the final prediction. Gradient boosting uses a
gradient descent algorithm to minimize the loss when adding new
models. We used cross-validation to tune parameters (Browne and
Cudeck, 1989), with the proportion of well-classified observations in the
validation dataset as the criterion. The model was first fitted on a

Table 2

Details of parameters and formulas used for metric calculations. s, is the linear
measure of the volume backscattering strength (m™), zis the depth (m) and all
integrals are calculated between the first depth level (10m) and the deepest
depth (600m).

Name Metric Formula Parameters  Unit

Density Mean volume [ sy (2)dz H =146 dB re
backscattering 10.ogio ( H ) 1m™!
strength

Center of Mean vertical Jzs8,(2)dz =~ m

mass localization [ s, (2)dz

Aggregation Index of fsv (2)%dz - m!

aggregation ([, (z)dz)z

Mean vertical

6 cruises

16 715 profiles * 146

Model predictions
/ P profile by cluster
1t cluster probability x H\~___

depths

Step 1 PCA

16 715 profiles * 11
components

Step 2 | Classification (MBC)

f 10 acoustic clusters

Step 3 Model (XGBoost)

10 clusters explained by
10 covariates

2nd

1) Most probable class

Acoustic bio-
regionalization

.
\”‘Li

3th cluster probability  x

=

Oth class probablllty x

=

2) Weighted average

| |

Echograms' prediction and
average over vertical layers

e meE AR

Figure 10

Figures 11 and 12

Fig. 2. Diagram explaining the different steps of the analysis. Details of the approach are provided in the text.
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training dataset (75% of randomly selected profiles) and then tested ona
validation dataset (the remaining 25% of data). To prevent overfitting,
XGBoost parameters were set equal to 0.3 for the learning rate n and to
six maximum tree depths. Environmental variables listed in section 2.2
were included as covariates.

To rank the importance of covariates, SHapley Additive exPlanation
(SHAP) values were computed (Lundberg et al., 2018) for the overall
model and for each cluster. SHAP values indicated how much a given
covariate value could change the predicted value compared to the pre-
diction done without this covariate (Lundberg and Lee, 2017). For
instance, a high SHAP value for a given covariate value indicates a
strong significance in the prediction. For a given prediction, the differ-
ence between the value predicted by the model (e.g. the set of proba-
bilities to be in each acoustic cluster) and the predicted value without
one covariate was calculated. To take into account the integration order
of the remaining covariates, all possible orders of covariate inputs were
tested for predictions. Then, all differences were added to calculate
SHAP values. Following the same process, SHAP values were calculated
for other covariates. By averaging SHAP values by covariate across all
the observations, we could rank the explanatory variables in the final
model.

In the same way, SHAP values could be averaged by covariates across
groups of observations (for example acoustic clusters) to determine the
importance of each explanatory variable for those groups. To visualize
the importance of variables by cluster in the predicted observations, we
first normalized and centered the covariates. Then we plotted, by
acoustic cluster and for each covariate, SHAP values for each predicted
value associated with that covariate, with color coding for the normal-
ized covariate value (green to yellow, see Fig. 8 and section 3.2 for a
complete interpretation).

2.3.4. Model predictions

We next used the model as a predictive tool (Fig. 2, right panel) based
on the climatology of all explanatory variables computed in a given
spatial cell (latitude and longitude resolution of %4°). The distribution of
prediction dataset values were similar to observation dataset values
(Fig. A2). For each spatial cell, the model predicted the probability of
belonging to each acoustic cluster (Fig. 2, right panel). Two alternative
approaches were considered to finally allocate one acoustic profile per
cell: 1) we selected the acoustic cluster with the highest probability; and
2) we calculated each mean vertical profile by cluster, and then we
averaged the mean vertical profiles of clusters weighted by their pre-
dicted probability (Fig. 2, right).

The second option allowed us to predict acoustic values for all EEZ
cells by month, during day and night, and at each depth. We then esti-
mated echograms for the whole EEZ and produced maps of the inte-
grated 10-600 m acoustic value by season. Finally, we quantified the
proportion of migrant MTLOs (%) with:

sV — sP

Mp: v v’
s

Eq. (1)

with Mp representing the proportion of migrants, s the mean s, for a
given vertical layer (e.g. 10-200m) during the night in m~! and s? the
mean s, for the same layer during the day.

Statistical analyses were performed using R (R Core Team, 2018)
version 3.5.0. Classification was carried out using the library “mclust”
(Scrucca et al., 2016) with the ‘VVV’ option. Extreme gradient boosting
tree was carried out with the “xgboost” package (Chen et al., 2018).

3. Results

The six cruises provided a dataset covering the two mains seasons as
well as most of the New Caledonian EEZ. Cruises N2, N3 and N5 were
carried out during the warm season (December-May), and N1 and N4
during the cold season (June-November) (Table 1). The New

[92]
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Caledonian EEZ was reasonably well sampled, with cruise tracks for N1
and N2 covering the northern region, N3 the west, N4 the southwest, N5
the southeast, and Puffalis close to the coast (Fig. 1). The full dataset
encompassed more than 17,500km (e.g. about 9500 nm), including
16,715 vertical profiles, each with 146 depth points in the 10-600m
depth range.

3.1. Main patterns of MTLOs vertical distribution

The first two axes of the PCA accounted for 64.3% of the variability
and revealed two high density regions of acoustic profiles well separated
on the first axis. Within these regions, a secondary maximum appeared,
separated on the second axis (Fig. 3A). The first axis split night from day
profiles (50%), and the second axis split the vertical profiles geograph-
ically: those located in the north from those located in the south of the
EEZ (14.3%). The cumulative variance explained by the axes increased
relatively quickly (Fig. 3B). We thus kept the first 11 PCA components
for the MBC classification step, as these 11 dimensions (instead of the
initial 146 depths) contributed to 90% of the vertical profile shapes.
Based on the BIC curve and its derivative function, 10 clusters were
chosen rather than two or four which are the three first peaks high-
lighted by the derivative curve. Two or four clusters appeared too low to
correctly represent the high diversity of acoustic vertical profile shapes
observed among the 16,715 observations (Fig. 3C). Moreover, the BIC
increased quickly between one and 10 clusters, after which the rate of
increase was smaller. Finally, 10 clusters allowed us to keep the number
of clusters interpretable.

Day and night profiles were almost perfectly separated into different
acoustic clusters. Six clusters were mainly composed of day profiles
(light grey bar on Fig. 4A, referred as ‘day group’ hereafter) and four
clusters were composed mainly of night profiles (dark grey bar on
Fig. 4A, referred as ‘night group’ hereafter). The number of acoustic
profiles per cluster ranged from 277 to 2,065. Cluster 10 contained less
than 300 vertical profiles, while the other clusters described frequent
features with more than 1000 profiles per cluster. The spatial distribu-
tion of the acoustic clusters indicated a north-south separation for both
day and night groups (Fig. 4B) with clusters 1, 6 (day) and 5 (night) in
the north, and clusters 7 (day), 4 and 8 (night) in the south of the EEZ.

Among the six day clusters (Fig. 5), we observed persistent detections
at 20-80m, which were composed of non-migrant MTLOs staying
within the upper 150 m zone during the day. DSLs were located between
450 and 600 m depth. Cluster 10 displayed an intermediate layer in the
350-400m range. Cluster 9 had the highest density and cluster 6 the
lowest, showing a very flat profile indicative of a near empty water
column (Table 3). The center of mass of the clusters varied according to
the echo intensity of the SSL and DSL: the shallowest center of mass
(338.2m) of cluster 2 was due to a strong SSL, while cluster 10 had the
deepest mass center (408.5m) due to an intense DSL. For other day
clusters, the center of mass varied between 340 and 385m depth,
indicating an almost equivalent ratio between DSL and SSL intensities.
Clusters 7 and 10 were the most aggregated clusters (aggregation index
greater than 1.5). Indeed, these two clusters showed a narrower DSL
than the other clusters. Cluster 9 showed a more gradual change in DSL
intensity than other clusters (Fig. 5) and a very small aggregation index
(Table 3), indicating a diffuse vertical distribution through the water
column. In addition, profiles of cluster 9 were mainly located at the
beginning or at the end of transects (Fig. 4B).

The shape variability of the night vertical profiles among clusters
(Fig. 6) was concentrated on the epipelagic zone. Two clusters had two
well-marked SSLs (clusters 4 and 8) and other clusters had one high peak
only (cluster 3) (Fig. 6). Clusters 4 and 8 had the highest densities
(Table 3) and were found in the south (Fig. 4B). By contrast, cluster 5
had the smallest densities and was mainly found in the north. The
deepest center of mass was 187 m for cluster 8 and the shallowest was
144 m for cluster 3, which had a very intense SSL. Clusters 4 and 8 in the
south of the EEZ had, on average, a deeper mass center than other night
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clusters. Cluster 8 was the most aggregated, and cluster 5 ranked second. step 3). Among the 16 explanatory variables, the least important cova-
Clusters 3 and 4 were less aggregated. riates were the proportion of the five water masses and ocean currents.
They were removed from the final model as all six together increased the
success rate of the model (i.e., the rate of the well-classified profiles from

3.2. Environmental influence on the vertical distribution
the validation dataset) by only 1%. The success rate of the most parsi-

The relationships between acoustic clusters and environmental monious model reached 87%.
covariates were examined using XGBoost modelling (Fig. 2, left panel, The most influential variable on the profile shape was sun inclination
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Fig. 5. Vertical profile medians for each day acoustic class. The grey ribbon is the interquartile range.

Table 3
Parameters for profiles. Details of calculations are given in Table 3.

Day Day Night Night

1 2 3 4

Night Day Day Night Day Day

5 6 7 8 9 10

N observations 2065 1805 1010 2919
Density (dB) -75.6 —75.2 -72.7 -71.7
Center of mass (m) 369.3 338.2 144.3 174.7
Aggregation (m™") 1.28 1.18 2.55 1.72

2787 1878 1116 1538 1320 277
-74.0 -76.8 -75.3 -71.4 —75.0 -75.7
152.7 339.6 375.0 187.0 385.2 408.5
1.63 1.02 1.63 1.36 0.96 1.84

0 10 20 0 10 20

0 10 20 0 10 20

Sa (dB re 1(m?.m-?))

Fig. 6. Vertical profile means for each night acoustic class. The grey ribbon is the interquartile range.

(Fig. 7). This major effect was due to the DVM signal. The second most
important variable was oxygen followed by bathymetry, 20°C isotherm
depth, mean temperature over 6-606 m and euphotic depth. Wind,
chlorophyll-a, and SST ranked next. Mean salinity was the last.

As the sun inclination influence is obvious by comparing day and
night clusters, we removed it from Figs. 8 and 9 to clarify and simplify
them. The SHAP values of sun inclination can be found in Fig. A3.

For acoustic cluster 1, the significant covariates were bathymetry,
mean temperature, euphotic depth and SST (Fig. 8). The high values of
mean temperature and SST had a strong influence on this cluster (green
and yellow colors indicating high temperature values together with high
SHAP value), as well as values of deep bathymetry. High oxygen, ba-
thymetry, deep euphotic depth and weak wind contributed significantly
to the profiles of cluster 2. For cluster 6, low oxygen and shallow

euphotic depth were important, as well as mixed bathymetry values. The
shallowest values of bathymetry, relatively deep values of euphotic
depth, low chlorophyll-a and high oxygen shaped vertical profiles of
cluster 7. Profiles of cluster 9 were mainly influenced by intermediate
values of sun inclination (Appendix A3) as well as low mean oxygen,
bathymetry, deep euphotic depth, and strong wind. Finally, profiles of
cluster 10 were mostly influenced by deep 20°C isotherm depth.

For the night group, oxygen level influenced all clusters except
cluster 8, with low oxygen values for cluster 5, and high oxygen values
for clusters 3 and 4 (Fig. 9). The bathymetry shaped all clusters except
cluster 9 with a large diversity of values. Deep 20°C isotherm depth
acted on cluster 3. Quite warm temperatures were important for cluster
5 and extremely cold temperatures for clusters 3 and 4. The deep
euphotic depth impacted cluster 8 and strong winds clusters 5 and 8.
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Fig. 7. Mean SHAP values for the predictions by each environmental covariate
(y-axis).

Very low chlorophyll-a concentration had a strong influence on cluster 8
and relatively high chlorophyll-a concentration on cluster 5. Quite warm
SST drove cluster 4. Finally, mean salinity did not influence any cluster.

Generally, low oxygen values influenced clusters in the north of the
EEZ (clusters 1, 5, 6), and high oxygen and low chlorophyll-a were
significant for clusters in the south (clusters 2, 4, 7 and 8). Bathymetry
and oxygen influenced almost all clusters, while the impact of other
covariates was more variable among clusters.

3.3. Prediction at a larger spatial scale

3.3.1. Acoustic regionalization

Fig. 10 displays the spatial distribution of the most probable acoustic
clusters by season and by day and night. Day distribution was patchier
than night distribution. During the day, cluster 1 dominated in the north
during the warm season with a southward extension of its spatial range
during the cold season. Cluster 2 occurred in the south during the two
seasons. The southwest corner was partially invaded by cluster 7 during
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the warm season. Cluster 10 was present during the two seasons, but
scattered in isolated patches in the south. At night, cluster 5 dominated
in the north of the EEZ, and cluster 4 in the south. The cluster distri-
bution patterns were very similar during both seasons; however, a small
southward extension of cluster 5 was predicted during the warm season.
Cluster 3 and 8 patches were present in the south of Bellona (see Fig. 1
for location) during the warm season.

3.3.2. Vertical predictions of MTLO distributions

Following section 2.3.4, for each spatial cell, we calculated an
average vertical acoustic profile by weighting each mean clusters’ ver-
tical profile by the probability of cluster occurrence predicted by the
model. After estimating the quality of predictions for a given transect,
we predicted acoustic vertical profiles at the scale of the New Caledo-
nian EEZ by month. Then we averaged values for the 10-600 m vertical
layer by season. In addition, we quantified the proportion of migrant
MTLOs in the 10-200 m layer using Eq. (1).

For illustration, we selected the track of N4 that encompassed 1,034
observations. A visual comparison of the predicted reconstructed
echogram versus the observed echogram indicated that the method
could reproduce the main patterns of the observed echogram (Fig. 11A
and B). Dynamics of some small layers were replicated, as in box (2)
where the shallowest SSL became more intense, or in box (3) where the
shallowest SSL connected with the deepest SSL. However, some other
features were not well reproduced, as for box (1) or (5) where predicted
values did not replicate observed changes. Finally, in box (4) there was
an observed intensification of the deepest SSL whereas the model pre-
dicted an intensification of the shallowest SSL. The high correlation
between observed and predicted S, values pooled for all depths for the
N4 cruise (Fig. 11C, correlation = 0.88, p-value < 0.0001) indicated
again that the methodology could be used to predict echograms in non-
sampled areas if the range of environmental variables was similar to
sampled data.

By averaging predicted acoustic values in the whole water column
(10-600 m), we proposed an integrated view of the spatial and seasonal
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Fig. 8. SHAP (SHapley Additive exPlanation) values (x-axis) by covariate (y-axis) for each day cluster (columns). Every observation is one dot on each row. The SHAP
value (x-axis) represents the influence of a given covariate on the prediction. The dot color represents the covariate normalized value/level: yellow for high value
(high normalized SST for example) and dark blue for low value (low normalized SST for example). The height of one patch (the violin shape) gives an indication of
the dot density. Grey rectangles by row and by column show the mean SHAP value by cluster and by covariate. Based on these grey rectangles, dots of the four most
important covariates by cluster are plotted in brighter colors. (For interpretation of the references to color in this figure legend, the reader is referred to the Web

version of this article.)
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variations of the MTLOs’ distribution (see Fig. 12). The mean back-
scatter maximum always occurred in the south of the EEZ, extending
toward the north during the cold season.

The proportion of MTLOs migrating within the epipelagic
(10-200 m) during the night showed a larger part of migrant population
below 20°S, especially in the southeast (Fig. 12B). Migrant proportion

varied spatially spanning a range from 75% in the north to 85% in the
south with mean values around 78%.

4. Discussion

By analyzing six cruises of EK60 vertical profiles, we provide new
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insights into the spatiotemporal variability in the vertical distribution of
MTLOs in the New Caledonian EEZ. We proposed a statistical framework
to link MTLO vertical distributions to oceanographic conditions. This
framework allowed us to predict acoustic vertical distribution with some
success in un-sampled areas. Sun inclination and the mean oxygen
concentration were the main factors driving the acoustic vertical profile
shape. Three homogeneous acoustic-based regions, whose spatial extent
moved seasonally, were identified in the New Caledonian EEZ: north of
20°S; south of 20°S and west of 165°E; and south of 20°S and east of
165°E. The northern mean vertical distribution was characterized by
weak echo intensities of DSL and SSL and low mean oxygen values as
well as warm SST mainly influenced this vertical distribution. The ver-
tical distributions in the southwest corner showed strong DSL and SSL
and deep center of gravity; high mean oxygen values and deep euphotic
depth drove it. Finally, southeast corner vertical distributions revealed
strong SSL, especially between O and 50 m and was impacted by shallow
euphotic depth and high mean oxygen values. Finally, due to this spatial
pattern of vertical distributions, there were generally more MTLOs in the
south of the New Caledonian EEZ than in the north and the proportion of
vertical migrants was about 75%.

4.1. Methodological framework

Behagle et al. (2016) performed classification of acoustic vertical
profiles but they did not statistically link clusters to environmental
covariates. Proud et al. (2018) developed an innovative approach and
classified acoustic layers below 200 m to investigate variability in the
vertical distribution of MTLOs. Using a 38-kHz global dataset, they
identified six spatially-coherent regional clusters using estimated prob-
ability distributions of local SSL depth and of echo intensity. They
mapped the clusters at a global scale and matched them with Long-
hurst’s provinces (Longhurst, 1995, 2007). In our work, we fitted re-
lationships between mean MTLO vertical distribution and
environmental covariates and were able to predict vertical acoustic
profiles in un-sampled areas and so at a larger spatial scale than cruise
tracks.

Our proposed methodological framework treated the vertical
acoustic profiles as the sampling unit. We thus kept all the shape in-
formation contained by the profiles; echo intensity and location of in-
termediate layers or moderate peaks were taken into account in the
analyses. The PCA allowed us to represent the profile data in a lower-
dimensional space, reducing the degrees of freedom while keeping
90% of the variability of the raw dataset. This lower-dimensional space
was then grouped into 10 clusters that captured the large variabilities of
vertical shapes and identify three large homogeneous regions. Clusters
were then used in a machine learning algorithm, an approach still
underutilized in analyses of marine data despite their efficiency (De’ath,
2007; Elith et al., 2008). These approaches are often seen as ‘black
boxes’ and the interpretation of the results remains challenging. Here,
we obtained a high-performance level (87% in cross validation) for the
XGBoost modelling. At the same time, the importance of each covariate
was ranked, and we evaluated how they influenced each acoustic cluster
through SHAP values that have been shown to be reliable indicators of
covariate influence (compare to Gain, split count or Saabas) (Lundberg
and Lee, 2017). However, the use of SHAP values did not allow us to
explore the degree of the interactions among covariates.

The XGBoost model predicted the probability of belonging to a given
acoustic cluster based on a vector of covariate values when the range of
covariate values used for the model prediction were similar to the range
covered by the initial data used to build the model. Except for extremely
low values of temperature, oxygen and salinity and for shallow waters,
covariate ranges used for prediction were well sampled (Fig. A2). The
number of predicted cells with covariate vectors out of the covariate
range sampled were relatively small, mainly around the Main Island,
and extreme northern and southern parts of the EEZ in the cold season
(Fig. 10, black points). The narrow range of un-sampled covariate values
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even for the two widely different seasons suggests that observational
sampling was sufficient for the purpose of this study.

Using the predicted probabilities at a given point, we reconstructed
an acoustic profile by weighting the mean cluster profiles by these
probabilities for each point, leading to a complete 3-D reconstruction of
acoustic profiles in the EEZ. Despite that the correlation between pooled
observed and reconstructed backscatter values was high, the variability
inside the scatter plot remained relatively high (Fig. 11C). Predicted
values could vary from +- 10dB for an observed value, pointing out to
the limits of the model in terms of reproducing the exact variability. A
change of a few dB in the backscatter values may result in large biomass
changes (Proud et al., 2018b). Indeed, for layers dominated by Mycto-
phids, a 10dB change with a 38 kHz frequency could translate into a
three-fold increase in animal density (Benoit-Bird, 2009). Yet, the main
strength of the model was to reproduce the MTLOs’ vertical distribution
patterns in space and time rather than predict echo-intensities per se.

In addition, the use of the 38kHz frequency could help in detecting
organisms with a swimbladder (mostly fish) while excluding other or-
ganisms without gas-filled swimbladders (Davison et al., 2015). Foote
(1980) even showed that more than 95% of the organisms’ backscatter
at 38 kHz was produced by gas-filled swimbladders of fish and gas-filled
pneumatophores of siphonophores. One major limitation of our study
was the inability to determine if changes in layer intensity and depth
position were due to changes in the quantity or in the community/ag-
gregation composition of MTLOs. Developing a similar method
including species composition would be of great interest. Some efficient
algorithms already exist (e.g. Ariza et al., 2016b; Behagle et al., 2017;
Kloser et al., 2016; Korneliussen et al., 2008) based on two or three
frequencies that allow for distinguishing among different types of or-
ganisms in echograms. Going further into such analysis would require an
extensive program of in situ sampling with appropriate trawls to identify
the species composition of the different layers. So far, with the in situ
samplers available and given the species diversity already observed
(Ceccarelli et al., 2013; Payri et al., 2019), it is unlikely that such a goal
can be met in the near future in the New Caledonian region or in the
Coral Sea in general.

4.2. Acoustically based regionalization

Studies of biogeography require methods that partition large areas
into distinct regions with homogeneous biological and/or physical
oceanographic conditions (e.g. Longhurst, 1995, 2007). Our findings
provide evidence that new statistical tools used on acoustic recordings
are valuable for conducting regionalization that take into account the
distribution of MTLOs in the water column. Several studies already
include information on mesopelagic organisms (Sutton et al., 2017), and
even SSL depth and echo intensity (Proud et al, 2017, 2018). Our
methodological framework is reproducible at a global scale, and con-
tributes to the general effort for partitioning the mesopelagic domain
using acoustic information on the vertical distribution of MTLOs. Such
an expansion would require the acquisition of acoustic data on a large
scale and on a ‘routine’ basis, as is done for other variables on ships of
opportunity. Extending the present analysis using a global dataset (e.g.
MalaspinaCircumnavigation Expedition in Irigoien et al., 2014and
Klevjer et al., 2016) would allow for the detection of higher layer depth
variability across the world’s ocean.

By predicting and integrating acoustic values for the whole EEZ, we
offered a method to map out MTLO spatial distribution and a migrant
proportion proxy between day DSL and night SSL. Our range of inte-
grated backscatter 10-600 m values was relatively small (—77 to
—73dB). We assumed that this small range was because we averaged
DSL and SSL. We showed previously that echo-intensity layers change
differently for the SSL and for the DSL. Yet, the 10-600 m integrated
values erased echo-intensity changes. The water column was, on
average, denser in MTLOs in the southern part of the EEZ and charac-
terized by higher oxygen concentrations. To calculate a proportion of
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migrants, our method assumed that mean backscatter values for the
epipelagic layer during the night and the day were comparable, e.g. that
MTLO community acoustic responses were similar. Because of DVM, we
acknowledge that this hypothesis was strong and that results need to be
considered with some caution. The 75% proportion of migrants between
day DSL and night SSL we estimated is similar to the 62% reported by
Klevjer et al. (2016) for the South Pacific. The large proportion of mi-
grants between the night DSL and the day SSL points out the essential
role of DVM in the carbon cycle, as already demonstrated (e.g. Davison
et al., 2013; Hidaka et al., 2001; Schukat et al., 2013). However, our
dataset is limited to the upper 600 m of the water column, missing a part
of the DSL. Thus, having data incorporating depth layers down to
1000 m would help to clarify migration processes as well as organism
identification - information that could aid in distinguishing migrant
from non-migrant organisms.

Very few biogeochemical models constructed to date have included
DVM processes (Ariza et al., 2015). Bianchi et al. (2013b) implemented
a DVM on a size-structured NPZD model (Nutrient, Phytoplankton,
Zooplankton and Detritus). They reported a migrants’ proportion range
from 31% (158°W-22.5°N, ALOHA station) to 63% (161°E—47°N, K2
station) between the night DSL and the day SSL. By including for the first
time DVM in an end-to-end ecosystem model, Aumont et al. (2018)
estimated a contribution of migratory meso- and macro-zooplankton
organisms (e.g. smaller than organisms detected by our 38 kHz) to the
total epipelagic biomass of about 50% around New Caledonia. Along the
same lines, including proportions of migrant and non-migrant MTLOs in
models would certainly improve the understanding of carbon cycling in
such lower trophic ecosystem models.

4.3. Environmental drivers of the MTLOs vertical distribution

Physiological tolerance varies by species (Duffy et al., 2017). Hence,
direct relationships between acoustic echo-intensities and environ-
mental covariates are complex to understand due to the high species
diversity including MTLOs. In this section, we made some hypothesis
based on the literature about environmental effects on MTLO dynamics
without analyzing them by species.

4.3.1. Role of the most significant covariates

Sun inclination was by far the most important covariate influencing
acoustic vertical profiles. Indeed, the DVM pattern drastically affects the
shape of the vertical profiles at night and during the day. Ascents and
descents of MTLOs depend strongly on light intensity, with migrating
organisms generally going up to the surface at night to feed, and
returning back to deep layers during the day to avoid visual predation
(Benoit-Bird and Au, 2004; Hays, 2003).

The oxygen concentration averaged over the 6-606 m water column
was the second most important covariate influencing the vertical pro-
files. We highlighted a positive influence of oxygen concentration on the
mean echo intensity, indeed we found that vertical profiles with high
mean density were influenced by high oxygen values. Previous studies
demonstrated the influence on MTLOs’ residing depth. Indeed, in the
South Pacific, the lower vertical expansion of daytime and nighttime
SSLs is limited by the depth of the oxygen minimum (Bertrand et al,,
2010), and Bianchi et al. (2013b) demonstrated at a global scale that the
higher the oxygen concentration, the deeper the DSL daytime depth. Our
results are in contrast with the widespread hypotheses that low oxygen
concentrations provide a refuge from large visual predators and so
enhance acoustic values (Bianchi et al., 2013a; Steinberg et al., 2008).
As there is no oxygen minimum zone in the region, MTLOs are different
from organisms present in regions with oxygen minimum zone. High
oxygen at depth in New Caledonia EEZ may then help support higher
aggregations of respiring organisms at depth during the day. As oxygen
minimum zones are predicted to expand both spatially and vertically in
the future (Keeling et al., 2010), the direct impacts on predator distri-
bution (Stramma et al., 2012) are likely to be heightened by changes in
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prey distribution.

Bathymetry was the third most important variable influencing ver-
tical profile characteristics (Fig. 7). The topography of the deep ocean
floor is complex around New Caledonia (Gardes et al., 2014), with the
presence of three ridges, numerous seamounts with a high shape di-
versity, one trench and some sedimentary basins. The presence of sea-
mounts, distance to the coast, differences in the topography of the ocean
floor between the north and south New Caledonian EEZ affected MTLO
vertical distribution. The highest 10-600 m mean predicted acoustic
values occurred in the southeast corner, which was characterized by a
highly variable bathymetry (Fig. 12). Shallow waters offer lower-quality
habitat for mesopelagic organisms and may induce increased density in
scattering layers of MTLOs in the upper layers of the water column
(Escobar-Flores et al., 2018b). In addition, the southeast corner of the
EEZ has a high density of seamounts that can enhance the mean back-
scatter values. Seamount impacts on MTLO dynamics are a function of
the type of seamount (e.g. isolated or not, shape, depth, upwelling,
currents) and of the organisms that aggregate around seamounts (e.g.
Drazen et al., 2011; Morato et al., 2010, 2008; Rogers, 2018).

4.3.2. Other environmental drivers of MTLOs vertical distribution

A deep 20°C isotherm strongly impacted profiles of clusters in the
south during the warm season (cluster 3, Fig. 10). The depth of the 20°C
isotherm is a proxy of thermocline location: a deeper 20°C isotherm is
associated with higher stratification and limits nutrient inputs in the
euphotic surface layer (Kessler and Cravatte, 2013; Le Borgne et al,,
2011). Conversely, a 20°C isotherm close to the surface boosts vertical
transport of nutrients to the euphotic layer, and could potentially
stimulate the trophic web through enhancing phytoplankton,
zooplankton and micronekton production (Benoit-Bird and McManus,
2012; Lebourges-Dhaussy et al., 2014). We emphasized that the link to
the isotherm depth was not causal (isotherm depths do not act on ani-
mals) but instead reflected different oceanographic conditions. Isotherm
depth can also be considered as a proxy for the presence of eddies.
Keppler et al. (2018) identified two areas in the New Caledonian EEZ
with distinct eddy characteristics: a smaller number of eddies with a
longer lifetime in the southern portion of the EEZ part compared to the
northern part, with a clear limit at 20°S that corresponds with the spatial
delimitation of Fig. 10.

Mean 0-600 m temperature also impacted acoustic clusters. Spatial
patterns of mean temperature showed a strong north-south gradient,
with one front delimited around 20°S (Menkes et al., 2015). This
north-south separation coincides with the spatial distribution of the
predicted acoustic clusters (Fig. 10). We hypothesized that mean tem-
perature was simply a measure of hydrographic features that likely re-
flected different oceanographic conditions. Therefore, mean
temperature appeared to delimit large homogeneous biogeographic re-
gions (the north from the south of the EEZ) rather than having a direct
impact on organisms.

The deep euphotic zone had a strong influence on clusters with a
deeper center of mass (clusters 7, 8 and 9). A deep euphotic zone in-
dicates a deep chlorophyll maximum characterizing oligotrophic areas
dominated by vertical processes with nutrients coming from deep wa-
ters. Given that three clusters showed more intense deep SSL compare to
other clusters, we assume that a deep euphotic zone allowed ecosystem
organization around the chlorophyll maximum with deep zooplankton
maxima and, in turn, deep SSL.

High values of surface chlorophyll-a concentration had a strong in-
fluence on vertical profiles, with the highest echo intensities at the
surface layer (daytime cluster 2, Fig. 5). We suggest that the enhance-
ment of primary production at the surface during the day could be
associated with enhanced zooplankton production, leading to an in-
crease in MTLO density in that part of the water column. The trophic link
of a positive relationship between primary production and mesopelagic
organisms had been found previously (Escobar-Flores et al., 2013; Iri-
goien et al., 2014), but at a much wider scale.
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Finally, we did not find any effect of the water mass proportions in
the New Caledonian EEZ while previous studies (Behagle et al., 2016;
Sutton and Beckley, 2017; Jungblut et al., 2017) documented this factor
as significant. Water masses are often linked to biogeographical prov-
inces (Briggs and Bowen, 2012) at a wide spatial scale. We hypothesized
that the size of New Caledonian EEZ and the lack of contrasting water
masses precluded the detection of a significant effect in our case.

5. Conclusions and perspectives

While acoustics provides a useful avenue for routine measurement of
crucial trophic level organisms, it remains that analyses of such datasets
depend on knowledge of the species giving rise to the signal. Indeed, itis
crucial to increase our understanding of the actual relationships be-
tween acoustic output and true species composition and density. So far,
in our region of interest, the lack of adequate in situ sampling is a major
limitation to our understanding of the ecological processes based on
acoustic data.

Our findings highlight the importance of the environmental variables
characterizing the structure of the water column, such as the mean ox-
ygen, the euphotic depth (as a proxy for the vertical structure of primary
production) and the 20°C isotherm depth (as a proxy for the functioning
of ocean dynamics such as upwelling or downwelling). Investigating the
links between the 3-D oceanographic conditions and the dynamics of
MTLO distributions requires information on the physics, biogeochem-
istry and biology of the upper (<~1000 m) water column. Accessing 3-D
high-resolution oceanographic data or models to understand complex
interactions at the acoustic data acquisition scale is not yet possible. For
instance, we did not find a satisfying 3-D biogeochemical model esti-
mating the values of primary production that matched with our in situ
data. Consolidating and validating coupled dynamical-biogeochemical
3-D models will strongly contribute to a better comprehension of the
pelagic ecosystem.

Variability in scattering layer depths during day and night impacts
predator-prey interactions, including the predators’ energy budget
allocated to feeding. For active vertically migrating predators, the pos-
sibility to feed in shallow, warm, and rich water brings energetic savings
(Hazen et al., 2015). Acoustic data are extremely helpful for analyzing
predator-prey interactions on a wide scale (Bertrand et al, 2003;
Koslow, 2009). Indeed, acoustics recorded continuously along vessels’
tracks allow building datasets with better coverage than trawl data or
predators’ stomach content, for example. However, the area sampled
along cruise tracks remains small compared to the area in which pred-
ators feed. Our model provides the possibility to fill gaps around
acoustic cruise tracks while keeping all the information contained on
acoustic profiles. Then, by averaging vertical predictions on a specific
vertical layer (e.g. 0-30 m to link to seabirds foraging compartment), we
offer an innovative method to predict a proxy of prey biomass (through
echo intensity) that could be used in predator niche modeling on large
spatial and temporal scales (Briand et al., 2011; Lambert et al., 2014;
Miller et al., 2018).

Further, our method may provide a valuable contribution to assess
the climate change impact on MTLOs, and consequently on pelagic
ecosystems as a whole. The increase in ocean temperature, the extension
of low-oxygen zones (Bindoff et al., 2007; Doney et al., 2012) as well as
the possible decrease of the primary production (Bopp et al.,, 2013)
predicted under future scenarios of environmental change will have
dramatic effects on the distribution of MTLOs (i.e. layer position,
abundance and biomass). Our model, including predictive oceano-
graphic variables could help to predict changes in MTLO vertical dis-
tributions (i.e. layer position and echo intensity) for the next 100 years
using climate change scenarios as Proud et al. (2017) did.
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