Youness Bazhar 
email: bazhary@ensma.fr
  
Yassine Ouhammou 
email: ouhammoy@ensma.fr
  
Yamine Aït-Ameur 
email: yamine@enseeiht.fr
  
Emmanuel Grolleau 
email: grolleau@ensma.fr
  
Stéphane Jean 
email: jean@ensma.fr
  
Persistent Meta-Modeling Systems as Heterogeneous Model Repositories

Keywords: meta-modeling, model management, database

 by exploiting the support of user-defined operations in PMMS in order to perform model transformations and model analysis.

Introduction

Recently, the use of model-based engineering technologies and modeling tools has widely increased especially in industrial contexts. This generates very often, in case of an excessive use, large scale models which raise the issue of scalability as one of the major weaknesses of applying modeling in real industrial contexts. Moreover, industries need also to share and exchange voluminous models and data, and a simple file exchange may sometimes be insufficient. These issues are industrial and scientific challenges and consequently, we need platforms to (i) overcome issues of scalability, (ii) surmount problems related to the heterogeneity of models, and (iii) provide a common repository for model sharing. Thus, Persistent Meta-Modeling Systems (PMMS) have been proposed as the leading solution that satisfy all these requirements. Indeed, a PMMS is a meta-modeling and model management system equipped with (1) a database that stores metamodels, models and instances, and (2) an associated exploitation language that possesses meta-modeling and model management capabilities. But, if existing PMMS support the definition and the storage of meta-models, models and instances, they provide mechanisms that are not adapted to accomplish some advanced model management tasks like model transformation, code generation, model analysis, etc. This is due to the lack of developed behavioral semantics in PMMS since current PMMS offer mechanisms that are either specific to the database or to the domain the PMMS is dedicated to. Thus, in a recent work [START_REF] Bazhar | Bemore: a repository for handling models behaviors[END_REF], we have proposed an extension of PMMS with the support of behavioral semantics with wide programming capabilities. Indeed, this proposition consists of introducing dynamically user-defined operations that can be implemented by web services and external programs written in any language (e.g., Java, C++). These operations can manipulate complex types (e.g., classes and meta-classes) as well as simple types (e.g., string, integer). This work has been validated with an application for handling derived ontologies concepts [START_REF] Bazhar | Extending ontology-based databases with behavioral semantics[END_REF]. The contribution of this paper is to show how model transformations and model analysis can be achieved in PMMS using the approach presented in [START_REF] Bazhar | Bemore: a repository for handling models behaviors[END_REF]. This application is prototyped with an implementation on the OntoDB/OntoQL PMMS [START_REF] Dehainsala | OntoDB: An ontology-based database for data intensive applications[END_REF].

The remainder of this paper is organized as follows. Section 2 introduces a motivating example that raises the need of operations in PMMS for model management. Section 3 gives an overview on the state of the art. Section 4 exposes the OntoDB/OntoQL PMMS on which our approach is based. Section 5 presents our approach for extending PMMS with the support of user-defined operations. Section 6 presents a model transformation and a model analysis case studies that show the usefulness of extending PMMS with operations. Finally, Section 7 is devoted to a conclusion.

A Motivating Example

This section presents an example of a real-time system that we use throughout this paper. The aim of this example is to design an uniprocessor system with three periodic tasks (T1, T2 and T3 ). Each task is characterized by a period P, a deadline D, and a worst-case execution time ET. The system scheduling follows the EDF (Earliest Deadline First) scheduling policy. This system is defined as a set of tasks: S =< T 1, T 2, T 3 >, where:

T 1 =< P = 29ms, D = 29ms, ET = 7ms > T 2 =< P = 5ms, D = 5ms, ET = 1ms > T 3 =< P = 10ms, D = 10ms, ET = 2ms >
This kind of systems can be designed using languages dedicated to design real-time and embedded systems like AADL [START_REF]Architecture analysis & design language (aadl)[END_REF] (see Figure 1) or MARTE [START_REF]Uml profile for marte : Modeling and analysis of real-time embedded systems[END_REF]. Indeed, AADL (Architecture Analysis and Design Language) is an architecture description language dedicated to describe components and their hierarchical composition, while MARTE (Modeling and Analysis of Real Time and Embedded systems) is a modeling language dedicated to design both software and hardware aspects of real-time and embedded systems and supports schedulability analysis.

AADL and MARTE could express the system of our example using different constructors and following different methodologies. One of the major differences between these two languages is that AADL is more oriented towards architecture description and does not offer the capability to analyze the schedulability of systems, while MARTE meets this need. Here, we can already see the problem of heterogeneous modeling that appears in the design of complex systems. Thus, analyzing an AADL model schedulability must go through a model transformation to MARTE.

Our objective is to be able to share the system of our example independently of the formalism used to express it. For this, the PMMS shall provide mechanisms to be able to transform AADL models to MARTE ones and vice versa. Moreover, we would like to be able to analyze the schedulability of our system regardless the formalism used to design it. Achieving these model management tasks require operators.

Next section presents existing PMMS and discusses their capabilities and limitations concerning behavioral semantics.

Related Work

In our study of the state of the art, we have classified model persistence systems into two types: model repositories and their exploitation languages that only serve to store and retrieve models, and database environments for meta-modeling and model management. This section presents and discusses these two model persistence systems.

Model Repositories and Their Exploitation Languages

Some meta-modeling systems are equipped with persistent repositories that are dedicated to store meta-models, models and instances [START_REF] Philip | An overview of repository technology[END_REF]. These repositories use many back ends to store the different abstraction layers such as relational, NoSQL or XML databases. Main examples of these model repositories are dMOF [START_REF]dMOF version 1.1 user guide[END_REF], MDR [START_REF] Matulla | Netbeans Metadata Repository[END_REF], EMFStore [START_REF] Koegel | Emfstore: A model repository for emf models[END_REF] and Morsa [START_REF] Espinazo Pagán | Morsa: A scalable approach for persisting and accessing large models[END_REF]. These repositories store MOF [START_REF]Meta object facility (mof)[END_REF] and UML [START_REF]Unified modeling language (uml)[END_REF] models, and focus mainly, like in [START_REF] Espinazo-Pagán | A homogeneous repository for collaborative mde[END_REF], on the architecture of the repository. As a consequence, they serve only as model warehouses in the sense that they do not offer a persistent environment for meta-modeling nor model management since all meta-modeling and model management tasks require loading models and instances from the repository and processing them in main memory.

Persistent model repositories are equipped with declarative query languages restricted only to querying capabilities. Main examples of model repositories query languages are mSQL [START_REF] Petrov | A query language for mof repository systems[END_REF], P-OQL [START_REF] Henrich | Praktische Informatik Fachbereich Elektrotechnik: P-oql: an oqloriented query language for pcte[END_REF], SQL/M [START_REF] Kelley | Schema architecture of the UniSQL/M multidatabase system[END_REF], iRM/mSQL [START_REF] Petrov | iRM: An OMG MOF based repository system with querying capabilities[END_REF] and MQL [START_REF] Hearnden | Mql: A powerful extension to ocl for mof queries[END_REF]. These languages do not possess neither meta-modeling nor model management capabilities, and thus they remain high-level query languages only.

Persistent model repositories and their associated query languages do not offer persistent environments for meta-modeling and model management.

Persistent Model Management Systems

To manage models inside the database, several PMMS have been proposed like ConceptBase [START_REF] Jarke | Metamodelling with datalog and classes: ConceptBase at the age of 21[END_REF], Rondo [START_REF] Melnik | Rondo: A programming platform for generic model management[END_REF], Clio [START_REF] Hernández | Clio: A semi-automatic tool for schema mapping[END_REF] and OntoDB/OntoQL [START_REF] Dehainsala | OntoDB: An ontology-based database for data intensive applications[END_REF]. These PMMS handle the structural semantics of models by offering constructors of (meta-)classes, (meta-)attributes, etc. Yet, they provide hard-encoded mechanisms to express behavioral semantics such as predefined operators (like in Rondo and Clio), or use classic database procedural languages (e.g., PL/SQL) which cannot manipulate complex types (e.g., meta-classes or classes). The most advanced PMMS remain ConceptBase since it gives the possibility to introduce userdefined functions with external implementations. However, these implementations can only be done in the Prolog language. Besides external programs have to be stored in a special and internal file system, and requires restarting the server (cold start) in order to support the function newly introduced [START_REF] Jeusfeld | ConceptBase .cc User Manual[END_REF].

As the previous overview of the state of the art shows, current PMMS do not support the definition on the fly of model management operations that can be implemented using external programs and web services hence the necessity to extend PMMS with such capabilities.

Next section presents the OntoDB/OntoQL PMMS that we use to implement our approach.

The OntoDB/OntoQL Persistent Meta-Modeling System

OntoDB/OntoQL [START_REF] Dehainsala | OntoDB: An ontology-based database for data intensive applications[END_REF] is a four-layered persistent meta-modeling system where only the meta meta-model is hard-encoded (see Figure 2) so that we can extend on the fly the meta-model layer in order to integrate different meta-modeling formalisms (warm start). This system is equipped with the OntoDB model repository and the OntoQL exploitation language that we present in the next subsections. 

The OntoDB Model Repository

The OntoDB model repository architecture consists of four parts (Figure 2).

The system catalog and data layer parts are the classical parts of traditional databases. The system catalog part contains tables used to manipulate the whole data stored in the the database, and the data layer part stores instances of models. The meta-model layer and model layer parts store respectively metamodels and models. Note that OntoDB respects the separation of the different storage layers and preserves the conformity of models and instances. OntoDB stores data in relational tables since it is implemented on the Post-greSQL RDBMS. Figure 3 shows the representation of some concepts of our example. The meta-model layer contains three main tables: MetaModel, Class and Attribute that store respectively meta-models, classes and attributes. Each class is associated to a corresponding table at the model layer that stores class instances. Similarly, each concept at the model layer is associated to a corresponding table at the data layer to store instances.

The OntoQL Meta-Modeling Language

OntoQL has been defined in order to facilitate the exploitation of model repositories. OntoQL is a declarative and object-oriented language owning metamodeling and querying capabilities. Indeed, OntoQL has been proposed to create and manipulate meta-models, models and data without any knowledge of the structure of tables and their relationships. One of the benefits of OntoQL is that it guarantees a large flexibility of expressiveness so that we can create meta-models and models on the fly. This subsection shows how we can create meta-models and models using OntoQL.

Meta-Model Definition. the meta-model part of the OntoDB model repository can be enriched to support new meta-models using the OntoQL language. Below we give some of the OntoQL statements for defining the AADL metamodel (Listing 1.1). OntoQL possesses also querying capabilities so that it makes possible to query the different layers. Moreover, OntoQL supports the other persistence basics (UPDATE and DELETE) for meta-models, models and instances.

Limitations of OntoDB/OntoQL. at this level, we only obtain an AADL model of our system. And if we need to derive the corresponding MARTE model of our system, this requires (1) storing the MARTE meta-model in OntoDB and (2) defining a model transformation from AADL to MARTE using operations. The first step is feasible as OntoDB/OntoQL supports the definition on the fly of meta-models and models. Yet, the second step cannot be accomplished since OntoDB/OntoQL does not support the definition of operations on meta-models and models elements. Moreover, OntoDB/OntoQL cannot allow us to analyze the schedulability of our system for the same reason. Indeed, we need an operator that computes the schedulability by invoking an analysis test. Thus, OntoD-B/OntoQL has to be extended in order to overcome this limitation. Next section presents the extension of OntoDB/OntoQL to support behavioral semantics.

Extending Persistent Meta-Modeling Systems with Behavioral Semantics

In order to handle behavioral semantics in PMMS, we have extended the meta meta-model supported by the OntoDB/OntoQL PMMS with the concepts of Operation, Implementation and Descriptor as shown in the dotted box of Figure 2. They represent respectively a function or a procedure, its associated implementations and implementations descriptors. The extension of the OntoDB/OntoQL system took place in two main stages detailed in next subsections.

Extending the OntoDB Model Repository

The first stage concerns the extension of the meta meta-model layer at repository level with tables that store operations definitions, implementations and implementations descriptions. Figure 4 shows the main tables resulted from the extension of the meta meta-model layer of OntoDB. The Operation, Implementation and Descriptor tables store respectively operations signatures (the operation name, inputs and outputs), implementations and descriptions of these implementations.

Extending the OntoQL Meta-Modeling Language

The second stage of our PMMS extension consists in enriching the OntoQL language with the capability to create and exploit operations and implementations. The first statement creates an operation that has an AADL System and SystemImpl input, and a MARTE saAnalysisContext and gaResourcesPlatform model output. The second statement defines an implementation of the operation previously defined by providing a set of meta-data of a remote Java program stored outside the database implementing this operation. This metadata is exploited to run the remote program.

The other aspect of extending of the OntoDB/OntoQL PMMS was to set up mechanisms that make the mapping between data types of the OntoDB/On-toQL system, and data types of the external implementations. Thus, we have set up a behavior API (Application Programming Interface) that serves as an intermediate layer between the OntoDB/OntoQL world and the external world. In particular, it provides generic infrastructures to specify data types correspondences between the two worlds, and to execute remote programs and services. This section is devoted to show the usefulness, for model management, of extending PMMS with behavioral semantics. We firstly show how we can define transformation operations of AADL models to MARTE ones, and then we show how we can use operations for real-time models analysis. AADL to MARTE Transformation: while AADL is dedicated to design system architectures, MARTE is structured around two main concerns: one to model the features of real-time and embedded systems and the other to annotate application models in order to support analysis of system properties. Table 1 summarizes the different concept mappings from AADL to MARTE. These transformation rules are introduced in order to justify the operations, we define later in the paper, for transforming AADL models to MARTE ones.

Using Operations for Model Transformation

We precise that our objective is not to propose a new transformation approach, neither to guarantee a safe transformation from AADL to MARTE. Several works have addressed the transformation form AADL to MARTE.

As it has been stressed before, our objective is to use the possibility to introduce operations on the fly in the OntoDB/OntoQL system in order to transform AADL models into MARTE ones. Indeed, we firstly create model transformation operations that will transform AADL concepts to MARTE ones, then we create corresponding implementations. These two steps are explained below in detail. Definition of Transformation Operations: the definition of AADL to MARTE transformation operations consists of specifying for each operation its name, its eventual input and output types. The following statements define some of the essential transformation operations based on rules defined in Table 1. Exploiting Defined Operations: after defining operations and their implementations descriptions, we become able to invoke the defined operations in order to transform AADL concepts to MARTE ones. For instance, we can use the established operations for obtaining our AADL source model expressed in the MARTE formalism. We can also transform the same model to a MARTE model in order to have two representations of our system. The first statement selects the MARTE system resulted from the transformation of the AADL model of our example, while the second statement reads the resulted MARTE memory and scheduler concepts from the transformation of the proc embsys process element of the AADL model of our system. Whereas, the last statement creates a gaResourcesPlatform instance from the resulting transformation of the embsys cpu processor of the AADL model.

These are only examples of the multiple transformation operations and operation invocations we have written in order to permit a complete transformation and mapping from AADL to MARTE. This eases accessing, updating, deleting and transforming AADL models even if we do not adopt AADL as a main language for designing real-time and embedded system. We can also go further by setting up an operation that analyzes the schedulability of our AADL model that we detail in the next subsection.

Using Operations for Model Analysis

Once the MARTE model is obtained after this transformation, it becomes possible to trigger scheduler analysis on these MARTE models.

So, to analyze the schedulability of the system of our example, we define an operation whose objective is to analyze the schedulability of our system. To achieve this task, we create an operation isSchedulable that takes as input a MARTE model and returns as output a boolean value which states whether the systems is schedulable or not. This operation is implemented with a Java program that invokes the MAST analysis tool [START_REF] Medina | Mast real-time view: A graphic uml tool for modeling object-oriented real-time systems[END_REF]. This statement asserts whether the embsys system, transformed from AADL to MARTE by the #aadl2Marte operation, is schedulable or not. Here, we analyze the schedulability of the corresponding MARTE model of our system. Note also that the invocation of the isSchedulable operation requires providing a MARTE model as input and thus, we provide an operation invocation as an argument of the #isSchedulable operation since OntoDB/OntoQL supports such manipulation. The previous statement invokes the isSchedulable analysis operation which is specific to MARTE, using an AADL resource hiding the transformation process to the user.

Conclusion and Perspectives

In this paper, we have validated our approach presented in [START_REF] Bazhar | Bemore: a repository for handling models behaviors[END_REF] by using operations in PMMS for model transformation and model analysis. The use of operations enables particularly sharing models regardless of the language used to design them.

The work presented in this paper opens many perspectives. We expect to enhance our approach by integrating membership constraints so that operations can be defined only for a specific class like in object-oriented programming. Another perspective consists of defining an object constraint language to express static semantics in persistent meta-modeling systems by storing and evaluating the expression of invariants, contracts, and so on that can be associated to classes and operations.
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 1 Fig. 1. The system S of our example expressed with AADL
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 2 Fig. 2. The architecture of OntoDB/OntoQL
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 3 Fig. 3. Data representation in the OntoDB model repository

Listing 1 . 1 .

 11 A subset of OntoQL statements for creating the AADL meta-model CREATE ENTITY #P r o p e r t y ( #name STRING, #v a l u e STRING) ; CREATE ENTITY #ProcessSubComponent ; CREATE ENTITY #T h r e a d C l a s s i f i e r UNDER #ProcessSubComponent ; CREATE ENTITY #ThreadType UNDER #T r e a d C l a s s i f i e r ( #name STRING #e x t e n d s REF (#ThreadType ) ) ; CREATE ENTITY #ThreadImpl UNDER #T h r e a d C l a s s i f i e r ( #name STRING, #p r o p e r t i e s REF (# P r o p e r t y ) ARRAY, #i m p l e m e n t s REF (# T h r e a d C l a s s i f i e r ) , #e x t e n d s REF (#ThreadImpl ) ) ; Model Definition. once a meta-model is defined and supported by the On-toDB/OntoQL platform, we become able to create models conforming to that meta-model. Next statements create the AADL model of our example. CREATE #ThreadType Task ; CREATE #ThreadImpl Task . Impl1 PROPERTIES ( D i s p a t c h P r o t o c o l = P e r i o d i c , Compute Execution Time = 7Ms . . 7 Ms , D e a d l i n e = 29Ms , P e r i o d = 29Ms) IMPLEMENTS Task ;

Fig. 4 .

 4 Fig. 4. The extension of the meta meta-model layer of OntoDB

Listing 1 . 2 .

 12 AADL to MARTE transformation operations CREATE OPERATION #r u l e 1 INPUT (REF (#SystemType ) , // AADL s o u r c e e l e m e n t s REF (#SystemImpl ) ) OUTPUT (REF (# s a A n a l y s i s C o n t e x t ) , // MARTE t a r g e t e l e m e n t s REF (# g a R e s o u r c e s P l a t f o r m ) ) ; CREATE OPERATION #r u l e 2 INPUT (REF (#SystemSubComponent ) ARRAY) OUTPUT (REF (#R e s o u r c e ) ARRAY) ; CREATE OPERATION #r u l e 2 . 1 INPUT (REF (#P r oc e ssTy p e ) , REF (# P r o c e s s I m p l ) ) OUTPUT (REF (#M e m o r y P a r t i t i o n ) , REF (# S c h e d u l e r ) ) ; CREATE OPERATION #r u l e 2 . 2 INPUT (REF (# P r o c e s s o r T y p e ) , REF (# P r o c e s s o r I m p l ) ) OUTPUT (REF (#h w P r o c e s s o r ) ) ; The #rule1 operation transforms a SystemType and its associated System-Impl of an AADL model to their corresponding concepts in MARTE (saAna-lysisContext and gaResourcesPlatform). The #rule2 operation transforms SystemClassifier subcomponents of an AADL model to Resouce elements of the gaResourcesPlatform. Definition of Implementations: once we have defined model transformation operations, we establish their associated implementations descriptions. The following statements define implementations descriptions of the operations previously defined. CREATE IMPLEMENTATION #r u l e 1 J a v a I m p DESCRIPTORS ( t y p e = ' j a v a ' , l o c a t i o n = ' 1 9 3 . 5 5 . . . / programs . j a r ' , c l a s s = ' f r . ensma . l i a s . AadlToMarte ' , method = ' r u l e 1 I m p ' ) IMPLEMENTS #r u l e 1 ; CREATE IMPLEMENTATION #r u l e 2 J a v a I m p DESCRIPTORS ( . . . method = ' r u l e 2 I m p ' ) IMPLEMENTS #r u l e 2 ; CREATE IMPLEMENTATION #r u l e 2 . 1 JavaImp DESCRIPTORS ( . . . method = ' r u l e 2 . 1 Imp ' ) IMPLEMENTS #r u l e 2 . 1 ; CREATE IMPLEMENTATION #r u l e 2 . 1 JavaImp DESCRIPTORS ( . . . method = ' r u l e 2 . 2 Imp ' ) IMPLEMENTS #r u l e 2 . 2 ;

CREATE

  #s a A n a l y s i s C o n t e x t m a r t e e m b sy s AS SELECT #r u l e 1 ( embsys , embsys . Impl ) FROM #S y s t e m C l a s s i f i e r ; CREATE #g a R e s o u r c e s P l a t f o r m m a r t e e m b sy s AS SELECT #r u l e 1 ( embsys , embsys . Impl ) FROM #S y s t e m C l a s s i f i e r ; CREATE #M e m o r y P a r t i t i o n marte memory AS SELECT #r u l e 2 . 1 ( p r o c e m b sy s , p r o c e m b s y s . Impl ) FROM #P r o c e s s C l a s s i f i e r ; CREATE #S c h e d u l e r m a r t e s c h e d u l e r AS SELECT #r u l e 2 . 1 ( p r o c e m b sy s , p r o c e m b s y s . Impl ) FROM #P r o c e s s C l a s s i f i e r ; CREATE #g a R e s o u r c e s P l a t f o r m m a r t e e m b sy s c p u AS SELECT #r u l e 2 ( e m b sy s c p u ) FROM #P r o c e s s o r ;

  CREATE OPERATION #i s S c h e d u l a b l e INPUT (REF (#MARTEModel ) ) OUTPUT (BOOLEAN) ; CREATE IMPLEMENTATION #i s S c h e d u l a b l e J a v a I m p DESCRIPTORS ( t y p e = ' Java ' , l o c a t i o n = ' 1 9 3 . 5 5 . . . / programs . j a r ' , c l a s s = ' f r . ensma . l i a s . A n a l y z e r ' , method = ' i s S c h e d u l e r I m p ' ) IMPLEMENTS #i s S c h e d u l a b l e ; Now, it becomes possible to run the analysis by invoking the previous operation in the following statement. SELECT #i s S c h e d u l a b l e (#a a d l 2 M a r t e ( embsys . Impl ) ) FROM #SystemImpl

Table 1 .

 1 AADL to MARTE transformation rules ProcessClassifier subcomponent SchedulableResources tagged value of Scheduler stereotype rule 2.3.1.1 ThreadType and ThreadImpl swSchedulableResource and saStep rule 2.3.1.2 ThreadImpl properties: Tagged values of swSchedulableResource dispatch protocol and period -Specified by type tagged value (a type of ArrivalPattern)

		AADL	MARTE
	rule 1	SystemType and SystemImpl	saAnalysisContext and
			gaResourcesPlatform stereotypes
	rule 2	SystemClassifier subcomponent Specified by Resources tagged value
			of gaResourcesPlatform
	rule 2.1	ProcessType and ProcessImpl	MemoryPartition and Scheduler
	rule 2.2	ProcessorType and ProcessorImpl hwProcessor stereotype
	rule 2.3	ProcessorImpl properties	Specified by the schedPolicy tagged
		scheduling protocol property	value of Scheduler stereotype.
	rule 2.3.1 -deadline	In this case: tagged values of saStep
		-compute execution time	-Specified by deadline tagged value
			-Specified by execTime tagged value
	rule 2.4	SystemImpl properties	Specified by processingUnits tagged
		-actual procesor binding	value of Scheduler stereotype