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ESTIMATION OF CORRESPONDENT TRAJECTORIES IN MULTIPLE OVERLAPPING

SYNCHRONIZED VIDEOS USING CORRELATION OF ACTIVITY FUNCTIONS

Thierry Malon, Sylvie Chambon, Vincent Charvillat, Alain Crouzil

IRIT, Université de Toulouse, Toulouse, France

ABSTRACT

We present an approach for ranking a collection of videos

with overlapping fields of view. The ranking depends on how

they allow to visualize as best as possible, i.e. with significant

details, a trajectory query drawn in one of the videos. The pro-

posed approach decomposes each video into cells and aims at

estimating a correspondence map between cells from differ-

ent videos using the linear correlation between their functions

of activity. These latter are obtained during a training session

by detecting objects in the videos and computing the cover-

age rate between the objects and the cells over time. The main

idea is that two areas from two different videos that systemat-

ically offer presence of objects simultaneously are very likely

to correspond to each other. Then, we use the correspondence

between cells to find the reformulated trajectory in the other

videos. Finally, we rank the videos based on the visibility they

offer. We show promising results by testing three aspects: the

correspondence maps, the reformulation and the ranking.

Index Terms— Trajectory reformulation, video surveil-

lance, multiple views, overlapping fields of view, matching

1. INTRODUCTION

The multiplication of multimedia devices allowing to record

videos raises new challenges. Nowadays, it is easy to find

multiple videos from the same event. Multiple views with

overlaps offer a richer understanding of the scene compared

to single view. However, manually watching each video is a

long and tedious task. Consequently, there is a need in helping

users to easily navigate through a collection of videos.

In recent years, numerous works proposed approaches to

tackle the challenge of easing multiple video visualization.

When camera calibration parameters are known and numer-

ous images of the scene are available, a static 3D reconstruc-

tion of the scene can be obtained by detecting and matching

keypoints [1]. To incorporate the temporal aspect of syn-

chronized videos, [2] proposed a 4D reconstruction of the

scene with both the static parts and also the dynamic parts

that are moving over time. These reconstructions capture ele-

ments from multiple viewpoints and thus provide a good over-

all representation and understanding of the scene. However,

they cannot always be performed as they require camera cali-

bration parameters and low viewpoint variations between the

cameras. When 3D reconstruction is not feasible, navigation

through videos by switching over time to the one that best de-

scribes the scene was investigated. In [3], scores are attributed

to each view using the activity of the objects, their size, loca-

tion and number, as well as particular events occurring. The

higher the score, the most interesting the view. In this paper,

we suppose that calibration, and so 3D reconstruction, is not

possible, due to uncontrolled acquisition of the videos.

In video surveillance, investigators generally have hun-

dreds of cameras to process, some of which can present over-

laps in their fields of view. To navigate through the videos,

they want to be able to manually formulate a query on ele-

ments of interest and choose among a ranked list of videos

that match the query. When dealing with overlapping videos,

in [4], the user can query a region of interest of the current

video and be redirected to the video that offers the best en-

tropy regarding the objects contained in the queried region.

For cases where the camera views are disjoint, the authors

of [5] proposed to jointly compute the camera network topol-

ogy and the re-identification. They iteratively refine topology

by using re-identification and reversely. In the same context,

[6, 7] proposed to study the structure of the camera network

by estimating links between the disjoint cameras and the time

delay between them. They cut each view into cells, measure

the activity over time of each cell using a training set made of

videos with detections and then merge cells with similar ac-

tivity into regions. Their Cross Canonical Correlation Anal-

ysis applied to functions of activity showed good results for

estimating the spatial and temporal topology inference of a

camera network. Consequently, we propose to estimate cor-

respondences between multiple videos presenting overlaps by

using functions of activity inspired by this measure.

Most approaches based on multiple cameras with over-

lapping fields of view suppose that it is possible to estimate

the camera calibration parameters. In general cases, i.e. with

videos from surveillance cameras combined with smartphone

videos, it becomes difficult to have a reliable estimation of

these parameters. In this work, we do not compute calibration

parameters. As far as we are concerned, in the same context,

we can cite [8] where the lines of view of cameras present-

ing overlapping fields of view are retrieved from a training

set of videos by detecting the point on the ground plane of a
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Fig. 1: General overview of the approach: (a) Collection of videos as input, (b) detection of objects and categories, (c) functions

of activity computing, (d) correspondence maps computing, (e) user trajectory query, (f) video ranking based on visibility score.

detected object in a view at the moment when it appears in

another view. In this paper, we also use a training phase.

The main contribution of this paper is to propose a new

approach for reformulating a trajectory query drawn in one

view into its corresponding trajectories in other overlapping

views, and then for ranking these views regarding the visi-

bility of the scene they offer. We first introduce functions of

activity for estimating correspondence maps between video

pairs. Then, when a user draws a query trajectory in one

video, we propose a reformulation score to find the corre-

sponding trajectories in the other overlapping videos. Finally,

we define a visibility score to rank these matched videos re-

garding how spread the trajectories are in each video as we

assume that the longer the trajectory, the more interesting the

view, i.e. the view shows more details about the trajectory

than the initial view.

2. PROPOSED METHODOLOGY

We suppose that the videos are shot from static viewpoints

and are temporally synchronized, i.e. that they start at the

same timestamp and have the same duration. We have no cal-

ibration parameters. The approach consists of the following

steps, see Figure 1. For each video, see (a), we first detect the

objects of interest and assign them a category, see (b) where

red bounding boxes belong to vehicle and the blue one to a

pedestrian, which can be done using ROLO [9]. Then, in (c),

we decompose each view into cells (the grid on the figure),

and associate to each cell a function of activity per object cat-

egory defined as its occupation rate over time. Then, for each

video pair, in (d), we assign to each cell of the first video a

correspondence map regarding the correlation of its occupa-

tion rate over time (two particular cells are highlighted in the

top view as well as their corresponding cells in the bottom

view). Our main idea is that, if two cells from two differ-

ent synchronized cameras are systematically simultaneously

occupied, they are likely to correspond to the same 3D po-

sition. Thus, when drawing a query trajectory in a view, in

(e) (the red bold line), we list the cells crossed by this query

and look for the corresponding cells in the other view. For

each other view, the reformulated trajectory is obtained using

the sequence of cells that has the best reformulation score,

defined as a trade-off between maximizing correspondences

and minimizing the distances between consecutive cells. A

ranking of the videos about the visibility of the trajectory is

finally returned in (f) based on the reformulation score and

the visibility of the reformulated trajectory.

2.1. Correspondence maps

In this section, we define the notion of function of activity

and how we compute the correspondence map from a region

in one videos to its corresponding regions in another video.

Let V1 and V2 be two temporally synchronized camera views

with overlapping fields of view. We note dVω (t) the ensem-

ble of detections containing all the objects of category ω that

are detected at time t in video V , used to learn the correspon-

dence maps. As clusters of close pixels generally correspond

to the same region, we divide each view V into N cells cVi of

identical size. The impact of N is measured in Section 3.

The function of activity of category ω in a view V , de-

noted a
V,ω

i , is the recovery rate of the cell by the detections of

category ω objects dVω over time. Note that each cell has one

function of activity per category of object (see Figure 1.(c)).

We define the correspondence rate of category ω between two

cells of two different videos as:

Cω(c
V1,ω

i , c
V2,ω

i′ ) = max(0, corr(aV1,ω

i , a
V2,ω

i′ )) (1)

where corr stands for the linear correlation operator between



two random variables. For each cell c
V1,ω

i , we also define a

correspondence map Cω(c
V1,ω

i , V2) containing the correspon-

dences between c
V1,ω

i and all the cells of V2. Figure 1.(d)

illustrates the correlation maps: a pair of views is depicted,

and two cells are highlighted in blue and red (respectively for

categories "person" and "car") in the top video. The bottom

view shows another video with the correspondence maps of

the two cells. The main idea for matching cells is that corre-

sponding cells are expected to present correlated functions of

activity. In fact, it is unlikely that a pair of non corresponding

cells systematically presents the same activity over time.

2.2. Trajectory reformulation

We propose a trajectory reformulation scheme relying on the

cell correspondences. A trajectory is defined as a succession

of connected 2D segments.We extract the sequence S of M

cells (ci1 , ..., ciM ) that are crossed by the segments with no

consecutive identical cells.

To find the corresponding trajectory, we want to find the

successive indices of the cells in the other view (i′1, ..., i
′

M )
that maximize the sum of the correlations with the successive

crossed cells while ensuring a continuity in the reformulated

trajectory. To this end, we penalize successive correspond-

ing cells that are not adjacent regarding their distance and we

define the reformulation score of the sequence of cells S be-

tween views V1 and V2 as:

argmax
(i′1,...,i′M )

1

M

M∑
k=1

Cω(c
V1

ik
, c

V2

i′k
)

1 +
M−1∑
k=1

max(0, ||i′k − i′k+1|| − 1)

(2)

The numerator favors cells of V2 that have a good activity

correlation with the cells crossed by the query in V1 while the

denominator penalizes consecutive cells that are not adjacent

in the reformulated trajectory. We obtain the reformulated tra-

jectory in the other view by joining the centers of the sequence

of cells of index (i′1, ..., i
′

M ).

2.3. Selection and ranking of videos

In this section, we explain the proposed method for select-

ing the videos that are related to the queried view and rank-

ing them regarding the visibility of the reformulated trajectory

they offer. As stated before, investigators often have to treat

dozens of videos at once. When focusing on a particular lo-

cation, they may want to automatically navigate between the

videos of the same scene, i.e. views presenting overlaps. It

is very unlikely that a view with no overlap with the queried

view contains any region presenting correlated activity with

a region of the queried view for the whole duration. Thus,

views where the trajectory query cannot be reformulated suf-

fer from a low reformulation score and can be filtered using a

threshold σ. The remaining reformulated trajectories are then

ranked regarding their visibility score that we define as the

product of their total length and their reformulation score. We

choose these criteria because we suppose that the longer the

trajectory, the higher the number of details that can be seen.

3. EXPERIMENTS

We want to evaluate the quality of the correspondence maps,

the trajectory reformulation and the ranking of the views that

offer a better visualization. We used the ToCaDa dataset [10].

It contains 25 videos in which about 30 objects of 3 cate-

gories (person, motorcycle and car) are present. Among all

the videos, 15 views present large overlaps while the others

are shooting non overlapping areas. The videos are tempo-

rally synchronized and have the same duration (≈5 minutes).

We first evaluate the quality of the correspondence maps

between the 15 videos with overlaps by measuring how much

the objects that cover cells of a video also covers the corre-

sponding learned cells in the other videos. For each pair of

videos (V1, V2), we list the objects that simultaneously appear

in both videos and compute all the bounding boxes at times of

simultaneous presence. Then, we define the correspondence

rate between each pair B1 and B2 of simultaneous bounding

boxes of a same object of category ω seen in V1 and V2:

∑

(c
V1,ω

i
,c

V2,ω

j
)

|cV1,ω

i ∩B1|

|B1|

|cV2,ω

j ∩B2|

|B2|

Cω(c
V1,ω

i , c
V2,ω

j )

||C(cV1,ω

i , V2)||
(3)

The first term evaluates how the bounding box in the first cam-

era is covered by the cell c
V1,ω

i whereas the second term eval-

uates the same aspect for the corresponding cell c
V2,ω

j with

the corresponding bounding box in the second camera. The

last term is related to equation (1). The mean correspondence

rate is obtained by averaging over all simultaneous bounding

boxes of a same object, over all objects in a pair of videos

and over every pair of videos. We used the provided category

labels, detection and tracking of the bounding boxes of the ob-

jects in each view to compute the correspondence maps of the

cells. Figure 3 presents the correspondence rates for different

setups and different number of cells. We tried to evaluate the

behavior of the method when categories are not distinguished,

when adding a temporal desynchronization of one second be-

tween each pair of videos or when training is done on only

half of the dataset. As expected, the results reveal that this

step is quite sensible to perturbations. Also, distinguishing

between the categories widely improves the correspondence

map rate. Note that we do not expect high correspondence

rates as the correspondence map of one cell in a video gener-

ally covers a large amount of cells in the other videos. How-

ever, we expect that this correspondence rate is sufficient for

the next step evaluated: the quality of the reformulation.



Fig. 2: Best views ranking. 1st column: three trajectory queries are drawn in red, respectively for categories human, moto and

car. 2nd to 4th columns: the top 3 views that offer both a high visibility score and where the reformulated trajectory occupies

most space are returned in descending order. 5th column: an overlapping view with a low rank.

We drew 10 trajectory queries at the ground level in differ-

ent overlapping views and applied the proposed reformulation

method. To estimate a corresponding trajectory of reference,

i.e. to be compared with, we computed the homographies be-

tween the ground plane of each pair of overlapping views by

using the corners of the blue parking space. Then, we mea-

sured the Dynamic Time Warping (DTW) distance [11], in

pixels, between the two trajectories (obtained by applying the

homography and using our method). Figure 4 presents the

mean DTW distance on videos of size 960 × 540 for differ-

ent numbers of cells. Again, as expected, the reformulation

becomes reliable when the number of cells raises and these

results validate the quality of the proposed reformulation.

For the best view ranking, the views that present no over-

lap with other videos are correctly filtered when using σ =

0.3 as almost no correspondence can be learned due to the

absence of systematic simultaneous presence of objects. Fig-

ure 2 presents the top 3 best views proposed for different tra-

jectory queries drawn in different views. An overlapping view

with a low visibility score is also presented and mostly cor-

responds to views where the trajectory is not fully visible or

short due to the viewpoint of the camera. Among the top 5

views returned on our 10 trajectory queries, 72% of the views

give as much as or more visibility to the trajectory.

4. CONCLUSION

From a collection of videos with no calibration, the proposed

method allows to successfully rank a subset of videos that

present overlaps in their fields of view regarding the visibility

they offer of a trajectory query. Future work may deepen this

method by relaxing the constraint of synchronization and es-

timating the time delay between different videos, using pho-

tometric information of the objects and exploiting the neigh-

borhood of the cells to compute the correlation maps.
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