
HAL Id: hal-02450844
https://hal.science/hal-02450844

Submitted on 23 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automating the Evolution of Data Models for Space
Missions. A Model-Based Approach

Lynda Ait Oubelli, Yamine Aït-Ameur, Judicael Bedouet, Benoit
Chausserie-Lapree, Beatrice Larzul

To cite this version:
Lynda Ait Oubelli, Yamine Aït-Ameur, Judicael Bedouet, Benoit Chausserie-Lapree, Beatrice Larzul.
Automating the Evolution of Data Models for Space Missions. A Model-Based Approach. 7th In-
ternational Conference on Model and Data Engineering (MEDI 2017), Oct 2017, Barcelone, Spain.
pp.340-354. �hal-02450844�

https://hal.science/hal-02450844
https://hal.archives-ouvertes.fr

Official URL
DOI : https://doi.org/10.1007/978-3-319-66854-3_26

Any correspondence concerning this service should be sent

to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in:
http://oatao.univ-toulouse.fr/24893

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

To cite this version: Ait Oubelli, Lynda and Ait Ameur, Yamine and

Bedouet, Judicael and Chausserie-Lapree, Benoit and Larzul, Beatrice

Automating the Evolution of Data Models for Space Missions. A Model-

Based Approach. (2017) In: 7th International Conference on Model and

Data Engineering (MEDI 2017), 4 October 2017 - 6 October 2017

(Barcelone, Spain).

Automating the Evolution of Data Models

for Space Missions. A Model-Based Approach

Lynda Ait Oubelli1,2(B), Yamine Ait Ameur2, Judicaël Bedouet1,
Benoit Chausserie-Lapree3, and Beatrice Larzul3

1 ONERA - The French Aerospace Lab, Toulouse, France
{Lynda.Ait-Oubelli,Judicael.Bedouet}@onera.fr

2 University of Toulouse, INP, IRIT - Research Institute of Computer Science,
Toulouse, France

yamine@enseeiht.fr
3 CNES - The French Space Agency, Toulouse, France

{Benoit.Chausserie-Lapree,Beatrice.Larzul}@cnes.fr

Abstract. In space industry, model-driven engineering (MDE) is a key
technique to model data exchanges with satellites. During the prepa-
ration of a space mission, the associated data models are often revised
and need to be compared from one version to another. Thus, due to the
undeniably growth of changes, it becomes difficult to track them. New
methods and techniques to understand and represent the differences,
as well as commonalities, between different model’s revisions are highly
required. Recent research works address the evolution process between
the two layers (M2/M1) of the MDE architecture. In this research work,
we have explored the use of the layers (M1/M0) of the same architecture
in order to define a set of atomic operators and their composition that
encapsulate both data model evolution and data migration. The use of
these operators improves the quality of data migration, by ensuring full
conservation of the information carried by the data.

Keywords: Model driven engineering (MDE) · Data model compar-
ison · Data model evolution · Data migration · Composite evolution
operators · Semantic transformation patterns

1 Introduction

Context

Space agencies in Europe like CNES, the French space agency, have been involved
in data modelling and in the standardization of data modelling techniques for
more than 20 years. They have defined some Consultative Committee for Space
Data Systems (CCSDS) recommendations. These recommendations are related
to syntactic and semantic data description techniques, long term data preserva-
tion, data producer and archive interface. Furthermore, CNES, jointly with the
European Space Agency (ESA), have also developed tools to support the recom-
mended approaches and to support data engineering for various space projects.

DOI: 10.1007/978-3-319-66854-3 26

One of these tools is the BEST [1] workbench that came beyond EAST, the
Enhanced Ada SubseT. It allows a non-ambiguous description of data formats
including syntactic and semantic information. This tool is used in the frame of
space projects by scientists and engineers. It allows them to easily describe their
data formats and make them evolve, to quickly produce test data conform to
the format specification, to access and interpret data without having to write
specific code. The formal description of space-related data is crucial and should
be taken into account from the early stages of the mission when:

– the space system (one or more satellites, a ground control center, a mission
center, etc.) is designed;

– the satellite, once launched, starts to send telemetries and the ground segment
starts to send commands;

– a large amount of data is produced, processed, transformed and sent to end-
users during the life of the satellite;

All different stakeholders have to understand the data, to be able to interpret
it and to make use of it. Any misunderstanding might cause important delays
in mission planning. Arguably, a complete and non-ambiguous definition of any
kind of data produced is a key factor for meeting the deadlines of the project.
This formal definition can be used to generate different pieces of code that will
be used in the frame of the project (eg. on-board software, simulation software,
etc.). Code generation is highly valuable for a project, since some parts of the
application can be updated in a fast and efficient way with a minimum devel-
opment cost [2]. However, data generated (Data V1) with a particular release
of the application (DataModel V1) are not necessarily compatible with another
release (DataModel V2). Thus, starting the creation or the generation of data
that conforms to (DataModel V2) from scratch is a tedious operation.

Motivations

Research into how complex industrial data models evolve from one version to
another and how their data migrate still stands as one of the most scientific chal-
lenges to be addressed. This is due to the disability of existing solutions to face
with the huge complexity of changes in terms of type and number. Interpreting
comparison results of two small data models may be an easy thing. Meanwhile,
interpreting comparison results of two huge data models is still a hard task.

Objectives

In this research study, we intend to tackle the following objectives:

– being able to recognize many differences as a unique composite operator;
– ensuring evolution schema by finding structural and descriptive changes;
– full data migration without any loss of information.

To achieve these objectives, we decide to investigate and improve several methods
to compare data models (M1 level) governed by structured data-oriented meta-
models (M2 level) as shown in Fig. 1. Then, we propose to transform the obtained
differences to evolution operators working at data model level (M1) as well as

Fig. 1. Four-layer architecture of MDE

data level (M0). At the data model level, an evolution operator defines a data
model transformation capturing a common evolution [3]. At the data level, it
defines a model transformation capturing the corresponding migration.

Depending on the final usability goals of data and depending on the mod-
eller’s skills, the same concept may be modeled in different ways. For example,
to define the structure of data with BEST, only “composition” relationship can
be used (e.g. in the XIF meta-model1) whereas “inheritance” relationship may
be preferred (e.g. in the XTCE meta-model2). Such a difference in the way of
modeling induces a huge number of syntactic differences between a XIF data
model and a XTCE data model, even if they represent the same concept.

Understanding the semantic differences that may exist between the two data
models is difficult because these real differences are hidden by a large number
of syntactic differences. Once we can recognize these differences as a unique
composite operator, we can clearly identify other syntactic differences. This
is an extreme example of data model transformation but we often meet such
cases while studying how data models evolve. Indeed, modellers often need to
reconstruct their model to meet new end-users needs. But, they do not want
to completely break the ancient model or make it obsolete. Even if ascendant
compatibility is not kept, they try to preserve information contained in old data.

The remainder of this research paper is organized as follows. The next section
summarizes the previous related work for the different approaches being used
for meta-model evolution and model co-evolution. The theoretical description
of the proposed approach to formalize space data model evolution and data
migration using semantic composite operators is presented in Sect. 3. A case
study is discussed in Sect. 4 followed with conclusions and future work.

1 The underlying language used to formally define data is XML formatted accord-
ing to a CNES standard named XIF. XIF is a join implementation of two CCSDS
standards: CCSDS 644.0-B-3 Data Description Language EAST Specification and
CCSDS 647.1-B-1 Data Entity Dictionary Specification Language.

2 When exchanging satellite database including telemetry and telecommand defin-
itions with satellite manufacturers or other space partners, we may use another
CCSDS standard: 660.0-B-1 XML Telemetric and Command Exchange (XTCE).

2 Related Work

Many researchers studied the discipline of evolution, which was defined by [4]
as ≪All programming activity that is intended to generate a new software ver-
sion from an earlier operational version≫. This section summarises the different
existing approaches for model-based comparison, evolution and migration. Cap-
turing and formalizing evolution stages for composite systems is a challenging
task, due to the nature and characteristics of such systems. Furthermore, the
rapid changes, the density and the type of differences, which change according
to the evolution of end-user’s requirements, are the reasons of proposition of a
variety of algorithms, methods and evolution laws by scientific community.

2.1 Model Comparison

The history of comparing algorithms is composed of three stages. At the begin-
ning, we compared character to character. For instance, diff programs [5], are
used to solve the longest common subsequence problem (LCS). They are based
on finding the lines that do not change between files. Then, we leveled up by
focusing on the attributes and nodes of a structured document. A number of
advanced algorithms are being available to capture differences for XML such as
XDiff [6] or Aladin [7]. However, even if they give logical results, they lack the
ability to recognise a huge number of complex changes in a reasonable time.
Finally, we are interested in the meaning of these nodes and attributes by com-
paring a class node with a class node, an attribute node with an attribute node,
for instance, with the assistance of the well accepted EMF framework [8].

2.2 Evolution Operators

The process of capturing and constructing evolution operators have been inves-
tigated by [3]. Authors of this paper have worked on the definition of 61 reusable
evolution operators (30 are atomic and 31 are composite) with the aim of treat-
ing the coupled-evolution of meta-models (M2) and models (M1). The authors
have provided a catalog based on EMOF meta-modeling formalism in which
they have outlined a set of migration rules specified at a model level. However,
even if they tackled the generation of evolution operators, the authors did not
discuss the detection mechanism of these operators. This was treated later in [9],
where the authors proposed a detection engine of complex changes. They have
addressed the two challenges of variability and overlap between evolution opera-
tors. A research prototype named COPE [10] was extended into a transformation
tool tailored for the migration of models in response to meta-model co-evolution
named Edapt [11]. Furthermore, authors in [12] introduced the Silift, generic
tool environment able to lift incomprehensible low level differences derived from
EMF Compare into representations of user-level edit operations.

2.3 Data Migration

Nowadays, the majority of research teams [9–12] have tackled the phenomenon
based on the M2/M1 architecture layers of MDE, where the authors presented a
semi-automatic process to co-evolve model-to-model transformations upon meta-
model evolution. Authors in [13] introduced a comparison study between various
model migration tools such as AML, COPE, Ecore2Ecore and Epsilon Flock.
Indeed, each one of them has a set of criteria, that will support users to select
the most appropriate tool according to their needs.

3 Proposed Approach

To ease the migration process of data in a critical domain, where each data value
vulnerability is so height, a solid protocol for controlling the evolution of data
models is required. Therefore, deriving and capturing the set of changes might
even be largely different from one version to another.

Fig. 2. The pipeline architecture of model-based approach for data migration

In this paper, we propose a novel model-based approach for automating the
evolution of data models. An overview of the proposed approach is illustrated
in Fig. 2, where three different successive processes (data models comparison,
evolution operator’s flattening and data migration) should be able to reuse the
results of each other. We introduce a pipeline protocol in order to guarantee the
conservation of data values during the migration.

It is worth noting that the proposed scenario based on three processes can
be applied to other domains, where the main goal of the migration process is
data preservation. However, in other cases, where the main purpose is function-
alities conservation processing, many other approaches that tackled the compar-
ison, evolution and co-evolution processes are available. They act separately at
M2/M1 level in different ways with different tools.

3.1 Phase 1. Data Models Comparison

As shown in Fig. 3, the comparison process is the first step in our approach. It
requires two data models (M1 level) that conform to the same meta-model (M2
level). After customizing EMF Compare’s matching, differencing and filtering
engines, the comparison results will be a syntactic delta which contains equals
i.e. commonalities as well as differences (ResourceAttachementChange, Attribute
Change, ReferenceChange and FeatureMapChange). These are based on four
atomic operators:Add, Delete, Change and Move. Lot of efforts are being made
by [14] to improve the algorithms of EMF Compare in order to help the develop-
ers to customize the engines according to their requirements. But the framework
provides low level comparison results that are not always logic or difficult to
understand by human as mentioned in [12].

Another alternative to get the differences between the old and the new data
models would be to record end-user’s actions on the editor (UAR) using action
observers. These methods immediately produce a complete evolution schema.

Fig. 3. Overview of the input/output for the comparison process.

3.2 Phase 2. Evolution Operators Flattening

The kinds of differences delivered by the previous phase are at a low level.
They are not easy to interpret. Thus, we transform the differences to a set
of atomic operators. These operators are independent of the previous phase,
defined according to the treated metal-model and help to move to upper level.
Most of the time, each difference is represented by one atomic operator. Each
cascading difference is represented by the most priority operator. For example:
Add Attribute A to Class C and Add Class C to Model M can be considered as
one atomic operator: Add Class C to Model M. Indeed, adding a new class implies
the addition of all its properties. Furthermore, sometimes we can find differences
that cause the same change. For instance, in the case of eOpposite references
in Ecore meta-model, modifying one of the two references will automatically
update the other side of the opposition. Both changes will be detected as two
differences and can be seen as one atomic operator.

Fig. 4. Evolution atomic and composite operator’s meta-model

Once atomic operators are found, we instantiate composite operators (see
Fig. 4) as compositions of atomic ones, in order to rise from syntactic differencing
delta to semantic one. In practice, we can find implicitly one or many composite
operators derived from a composition of many atomic operators. For example,
Pull up attribute A is considered as a composite operator that is composed of the
following atomic operators: Delete attribute A from class C, Add attribute A to
class C’. Another interpretation of this composite operator is: Pull up attribute
is composed of the atomic operator Move attribute A from Class C to its mother
class C’.

In the proposed approach, our goal is to build an evolution schema with
the maximum number of composite semantic operators and minimum number
of atomic syntactic operators. Each atomic operator is specified by a precondi-
tion an apply and a migrate operation. For example, the atomic operator Add
attribute A to class C requires the existence of class C. Each composite operator
is characterized by four properties: a formula, a precondition, an apply and a
migrate:

– a formula is a sequence of atomic operators that define a composite operator.
Identical formulas do not necessarily lead to a composite operator or to the
same composite operator, depending on the precondition.

– a precondition responsible for managing the dependency between atomic oper-
ators in term of existence, order and priority. For example: Add Literal L
requires the precondition Exist Enumeration E, which checks the existence
of the enumeration E in the old data model or the existence of the operator
Add Enumeration E.

– an apply is used to make evolve the old data model. Apply calls are used to
check if the new data model is equivalent to the final evolved old data model.

– a migrate is a property where each composite evolution operator encapsulates
its own migration behavior in order to ensure data conservation.

Moreover, to avoid conflicts, we suggest to integrate the end-user to resolve
ambiguity during the building of composite operators, as shown in Fig. 5(a).
He/she can modify the found evolution schema and apply a checking operation on
his/her evolution schema; after calling the different apply, the final evolved data

(a) Operator Flattening

(b) Example

Fig. 5. The passage from syntactic comparison delta to semantic one

model M must be identical to the original new data model. If some differences
are found between these two data models, the evolution schema based on atomic
and composite operators is wrong and needs to be corrected by the end-user.

3.3 Phase 3. Data Conservation

In our study, we classify the operators into two categories: safe operators without
impact and operators with impact. The impact is considered at the M0 level.
For example, the operator Add Attribute may need or not a migration of existing
and corresponding object instances.

Furthermore, inspired by information theory concepts defined by [15], where
the author distinguish between data representing cost side of the system, and
information representing the value side, we propose a sub-classification of the
operators with impact into two other sub-categories: operators where migra-
tion is data-conservative and operators where it is not. Figure 6(a) illustrates
the concept by an evolution example of a UML composition relationship to an
aggregation UML relationship. In this case we change the data structure but we
do not lose any information and we do not need to create additional pieces of
information as shown in (Fig. 7).

The last phase of our approach is the migration process as shown in
(Fig. 6(b)). We migrate the existing instance attributes in data from the source
M0 to the target M0’. We define M0 as instances of the model M1 and S0 as
physical data, which represent the M0 instances into different formats.

(a) Example (b) Migration process

Fig. 6. Conservation of data values during the migration process

Fig. 7. Example of data values conservation during data models reconstruction

4 Case Study from the MICROSCOPE Project

In this section, we will see how the previous approach is applied to a particular
revision of a data model used in the MICROSCOPE project [16]. This project
studies the universality of free fall in space thanks to two differential accelerom-
eters supplied by the French National Aerospace Research Center, ONERA, and
embedded in a microsatellite from the CNES. While CNES models the telecom-
mands (TC) and the telemeasures (TM), ONERA models the processing of tele-
measures. In both cases, there is an intensive use of model-driven engineering to
handle the complexity of such project thanks to two respective in-house meta-
models Best [1] and GAMME [2]. In the following, we detail the comparison,
evolution and migration strategies that could be used to co-evolve parameters
used during the telemeasures processing, following the pipeline architecture.

This case study interests in the way of combining two telemeasures: class
Signaux with two attributes signal1 and signal2. Both attributes were typed
by an enumeration called Signal, identifying the different telemeasures. Then, it
was decided that it is possible to combine other signals than a telemeasure. As
shown in Fig. 8 the modeller decided to reconstruct the data model by replacing
the two attributes by two composition relationships towards a new class, called
DataAbstract. The original attributes signal1 and signal2 are factorized in a class

DonneesSession, inheriting from DataAbstract and owning a signal attribute of
typeSignal. In this way, end-users can combine two telemeasures, a telemeasure
with another signal or two signals. As a result:

– a new abstract class named DataAbstract is added;
– new two classes named DonneesSession, AutresDonnees inheriting from

DataAbstract are added;
– a new attribute named signal of type Signal is added to the class DonneesSes-

sion;
– a new attribute named signalExt of type String is added to the class Autres-

Donnees;
– the types of signal1 and signal2 are changed from Signal to DataAbstract.

4.1 Comparison Process

After using the default engines of EMF Compare 3.0.1, we find many false-
negatives (i.e. undetected correspondences) and false-positives (i.e. unexpected
correspondences) in the matching results. 247 differences are obtained. However,
when moving to release 3.2.0 of EMFCompare, we get better matching results.
Moreover, after customizing the matching engine policy (based on id), we get
only 17 differences. The idea is to find a unique name to identify each element in
the model (for example, the unique name of an attribute is its name concatenated
to the name of the container class). EMFCompare considers the two compared
versions as two graphs. At the beginning, it makes a matching between ances-
tors. Each matching is composed of zero or many sub-matches. In other words,
EMFCompare uses a top-down matching approach. Next, a differencing engine
is employed to obtain all the differences using all the matched elements. Then,
we decide to keep some interesting differences: when a data model element is
updated or when an added data model element has an impact on data. There-
fore, we neglect hidden changes given by cascading EMF diffs. Finally, we get 7
differences.

4.2 Evolution Process

In fact, the seven differences provided by EMF Compare (Table 1) are satisfying
in term of correctness and precision. However, it is not easy to exploit them.
Thus, we decide to transform these low level differences to atomic operators
(Table 2) by applying a java transformation template on EMFCompare differ-
encing engine and by running an evolution operator’s defined at the meta-model
level.

In the end, we obtain three ADD Classes as atomic operators and two com-
posite operators ChangeTypeofStructuralFeature, that concern type changes of
the attributes signal1 and signal2 from Signal to Data Abstract. In this case,
our evolution schema is hybrid, i.e. it is a mixture of atomic and composite
operators.

Table 1. Syntactic comparison results between two data models obtained by EMF
compare customization.

EMFCompare diff Kind Matching

ReferenceChangeSpec CHANGE gType (GStructuralFeature: signal1 in
GClass: Signaux) matched to
(GStructuralFeature: signal1 in
GClass: Signaux)

AttributeChangeSpec CHANGE type (GMetaModel Element property: null
in GAttribute: Signal1) matched to
(GMetaModel Element property:
Composition in GReference: Signal1)

ReferenceChangeSpec CHANGE gType (GStructuralFeature: signal2 in
GClass: Signaux) matched to
(GStructuralFeature: signal2 in
GClass: Signaux)

AttributeChangeSpec CHANGE type (GMetaModel Element property: null
in GAttribute: Signal2) matched to
(GMetaModel Element property:
Composition in GReference: Signal2)

ReferenceChangeSpec ADD gContents (GClass: null in GModel:
Lap1nDataModel) matched to
(GClass: DataAbstract in GModel:
Lap1nDataModel)

ReferenceChangeSpec ADD gContents (GClass: null in GModel:
Lap1nDataModel) matched to
(GClass: DonneesSession in GModel:
Lap1nDataModel)

ReferenceChangeSpec ADD gContents (GClass: null in GModel:
Lap1nDataModel) matched to
(GClass: AutreDonnees in GModel:
Lap1nDataModel)

In the evolution meta-model (Fig. 8) we define four atomic operators ADD-
Class, ADDAttribute, ChangeTypeofStructuralFeature and ADDReferenceType.
Each composite operator is a transformation pattern composed of a set of
atomic operators. For example, Complex1 as shown in Table 3 is composed of
two atomic operators: ChangeTypeofStructuralFeature and ADDReferenceType.
The sequence of both operators is the formula. As shown in Fig. 8, a precondition
checks the dependency between atomic and composite operators where:

– F’ respresents the new gStructuralFeature in the gClass DonneesSession:
signal ;

– new((f.gType).allFeatures) represents the new gType of the two new gStruc-
turalFeature signal1 and signal2: Data Abstract ;

– F’.gType represents the gType of the gattribute signal: Signal ;

Table 2. From differences to atomic operators.

Atomic Operator GModelElement Value

ADDgContents GClass DataAbstract

ADDgContents GClass DonneesSession

ADDgContents GClass AutreDonnees

ADDReferenceType type Composition

ChangeTypeofStructuralFeature GAttribute DataAbstract

ADDReferenceType type Composition

ChangeTypeofStructuralFeature GAttribute DataAbstract

– old(F).gType represents the old gType of the two old gStructuralFeature sig-
nal1 and signal2: Signal.

Fig. 8. Evolution from the old to new data model

We use this precondition to check our evolution schema with five operators.
In the end, if the precondition is true, a full data conservation is immediately
achieved. By calling the apply() of each operator, we can compare the trans-
formed old (the final old data model) with the new version used during the
comparison process. In our case the results are positive, i.e. the proposed evolu-
tion schema based on evolution operators is correct.

Table 3. Evolution schema based on atomic and composite operators

Atomic Operator GModelElement Value

ADDgCon tents GClass DataAbstract

ADDgCon tents GClass DonneesSession

ADDgCon tents GClass AutreDonnees

Comp osite

Operator

GModelElement Value

Complex1 ADDReferenceT ype

ChangeTypeofStructuralFea-

ture

Comp osition

DataAbstract

Complex2 ADDReferenceT ype

ChangeTypeofStructuralFea-

ture

Comp osition

DataAbstract

4.3 Migration Process

In our case, migration concerns composite operators only. We need to migrate
the values of the gattributes as shown in Fig. 9. Initially, we have signaux an
instance of the gclass Signaux. In the end, we arrive to three instances, one is
instantiated from the gclass Signaux and the two others are instantiated from
the gclass DonneesSession.

Fig. 9. Data conservation during the migration process

5 Conclusion and Future Work

The data models in space industry evolve very rapidly from simple data models
to more and more complex ones. A number of technologies, methodologies and
platforms have emerged to ease and formalize the comparison between differ-
ent revisions, the synchronization between the evolutions of UML, EMF meta-
models (M2) and the co-evolution of models. In fact, there are many model
evolution and migration tools and each one has its own characteristics. But it
is still difficult for end-users to extract the correct evolution. Moreover, most of
these tools do not interest in the evolution of data models (M1) and co-evolution
of data model instances (M0).

Thus, in this research study, we propose a protocol at M1/M0 level to auto-
mate the migration process of our data based on the comparison and on the
evolution of their data models. Because reconstruction of composite operators
based on the atomic ones provide a rich source of evolution strategy, an app-
roach is being investigated to formalize comparison, evolution and migration
processes using a model-based setting. This can be a major milestone for data
model evolution with data values conservation as a primary priority during the
migration.

Several other research directions to pursue our work can be investigated.
First, we are interested in extending our approach to handle during the evolu-
tion process semantic meaning of elements by the integration of end-user via
a graphical user interface (GUI) and a definition of a thesaurus, that concerns
space data models. The thesaurus contains words that belong to the same lexical
field. During the comparison process, it is used to check weather the meaning of

data model elements is kept or not, in case we have syntactic changes. Further-
more, we want to validate our approach on more complex data models in term
of number and type of changes. We also want to tackle the conservation of APIs.
Instead of working on a complex formula to recognize an evolutionary operator,
we could look at whether the data API is conserved.

Acknowledgments. Authors would like to express their gratitude to all members
of the TCS team: Patrice Carle, Romain Kervarc, Rémi Lafage, Antoine Ferlin and
Rémi Plantade from ONERA. This paper relies on their excellent comments and their
constructive suggestions.

References

1. National Center for Space Studies (CNES) and The European Space Agency
(ESA).: Best (2016). http://goo.gl/3awkpg

2. Bedouet, J., Huynh, N., Kervarc, R.: GAMME, a meta-model to unify data needs
in simulation modeling (WIP). In: Proceedings of the Symposium on Theory of
Modeling and Simulation-DEVS Integrative M and S Symposium, p. 14. Society
for Computer Simulation International (2013)

3. Herrmannsdoerfer, M., Vermolen, S.D., Wachsmuth, G.: An extensive catalog of
operators for the coupled evolution of metamodels and models. In: Malloy, B.,
Staab, S., van den Brand, M. (eds.) SLE 2010. LNCS, vol. 6563, pp. 163–182.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-19440-5 10

4. Lehman, M.M.: Software evolution. In: Marciniak, J.L. (ed.) Encyclopedia of Soft-
ware Engineering. Wiley, Hoboken (1994)

5. Hunt, J.W., MacIlroy, M.D.: An Algorithm for Differential File Comparison. Bell
Laboratories, New York (1976)

6. Wang, Y., DeWitt, D.J., Cai, J.Y.: X-Diff: an effective change detection algorithm
for XML documents. In: Proceedings of the 19th International Conference on Data
Engineering, pp. 519–530. IEEE (2003)

7. National Center for Space Studies (CNES): Aladin. https://logicels.cnes.fr/
content/best

8. Toulmé, A.: Intaloi Inc. Presentation of EMF compare utility. In: Eclipse Modeling
Symposium, pp. 1–8 (2006)

9. Khelladi, D.E., Hebig, R., Bendraou, R., Robin, J., Gervais, M.P.: Detecting com-
plex changes and refactorings during (Meta) model evolution. Inf. Syst. 62, 220–241
(2016)

10. Herrmannsdoerfer, M., Benz, S., Juergens, E.: COPE - automating coupled evolu-
tion of metamodels and models. In: Drossopoulou, S. (ed.) ECOOP 2009. LNCS,
vol. 5653, pp. 52–76. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03013-0 4

11. Vissers, Y., Mengerink, J.G.M., Schiffelers, R.R.H., Serebrenik, A., Reniers, M.A.:
Maintenance of specification models in industry using Edapt. In: 2016 Forum on
Specification and Design Languages (FDL), pp. 1–6. IEEE (2016)

12. Kehrer, T., Kelter, U., Ohrndorf, M., Sollbach, T.: Understanding model evolution
through semantically lifting model differences with SiLift. In: 2012 28th IEEE
International Conference on Software Maintenance (ICSM), pp. 638–641. IEEE
(2012)

13. Rose, L.M., Herrmannsdoerfer, M., Williams, J.R., Kolovos, D.S., Garcés, K.,
Paige, R.F., Polack, F.A.C.: A comparison of model migration tools. In: Petriu,
D.C., Rouquette, N., Haugen, Ø. (eds.) MODELS 2010 Part I. LNCS, vol. 6394,
pp. 61–75. Springer, Heidelberg (2010). doi:10.1007/978-3-642-16145-2 5

14. Brun, C., Pierantonio, A.: Model differences in the eclipse modeling framework.
UPGRADE Eur. J. Inform. Prof. 9(2), 29–34 (2008)

15. McDonough, A.M.: Information Economics and Management Systems. McGraw-
Hill Book Co., New York (1963). p. 11

16. Baghi, Q., Métris, G., Bergé, J., Christophe, B., Touboul, P., Rodrigues, M.:
Gaussian regression and power spectral density estimation with missing data: the
MICROSCOPE space mission as a case study. Phys. Rev. D 93(12), 122007 (2016)

