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DESCRIBING LACK OF COMPACTNESS IN SOBOLEV SPACES

MATHIEU LEWIN

Abstract. We review the well-known concentration-compactness method and
the bubble decomposition in Sobolev spaces, which allows to describe the pos-

sible lack of compactness of sequences in these function spaces.

In these notes we consider a bounded sequence u = {un} in L2(Rd) and we
describe its possible behavior (up to subsequences) in a rather detailed way. We
typically think of a sequence un which converges to u weakly in L2(Rd) but which
does not converge for the strong topology. One says that u = {un} exhibits a lack
of compactness. Considering instead un − u, we can think of a sequence un ⇀ 0
weakly in L2(Rd) but such that, for instance,

∫
Rd |un|2 = λ > 0 for all n.

Example 2a: translation. Example 2b: oscillations.

Example 1b: concentration (blow-up).Example 1a: vanishing.

n−d/2 φ(x/n)

φ(x − n~v)

nd/2 φ(nx)

φ(x) ein~v·x

Locally compact Non locally compact

Figure 1. Four typical behaviors of a sequence {un} ⊂ L2(Rd)
with un ⇀ 0 while

∫
Rd |un|2 = λ for all n. In the examples, φ is a

fixed (smooth) function in L2(Rd), such that
∫
Rd |φ|2 = λ.

In Figure 1, we display four typical examples of such a sequence {un} (the exam-
ples can easily be adapted to fix any Lp(Rd) norm). In Example 1a, the sequence
{un} spreads out everywhere in space but since its mass is conserved, locally the
mass must go to zero. The sequence is said to “vanish” (Y. Meyer likes to think of
a melting snowman: If we wait sufficiently long, there is essentially no remaining
water anywhere on the floor). In Example 1b, the sequence concentrates at one
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2 M. LEWIN

point (to be more precise |un|2 converges to a delta measure located at zero). For
n large enough we essentially detect all the mass in any small neighborhood of the
origin. In Example 2a, the sequence {un} keeps a constant shape for all n but it
runs off to infinity. If we want to see anything, we have to follow the sequence by
“running after it”. Finally, in Example 2b, the function oscillates so fast that (by
the Riemann-Lebesgue Lemma) it converges weakly to zero in L2(Rd).

Examples 1a and 1b on the one side, and 2a and 2b on the other side are in some
sense dual to each other: We can go from 1a to 1b (resp. 2a to 2b) by applying
a Fourier transform. For instance, a sequence which oscillates very fast has a lack
of compactness due to translations in Fourier space, and conversely. Similarly, a
sequence which concentrates in Fourier space vanishes in direct space and conversely.

Another important remark is that the examples are all associated to the action
of a non-compact group over L2(Rd). The group is (R+,×) for Examples 1a and 1b
and its action consists in dilating a function in the manner (λ · u)(x) = λd/2u(λx).
In Examples 2a and 2b the group is (Rd,+) and it acts either by translating the
function or by multiplying it by a phase factor, the two actions being the same up
to a Fourier transform. The non-compactness of the sequence un then arises from
the non-compactness of the group itself.

There is a crucial difference between the examples of the first column and that of
the second one. Examples 1a and 2a cannot happen in a bounded domain Ω ⊂ Rd,
it is important that the problem is settled over the infinite space Rd and the non-
compactness arises from the non-compactness of Rd itself. Examples 1b and 2b can
however perfectly happen in a bounded set Ω. Examples 1a and 2a are called locally
compact, whereas Examples 1b and 2b are not locally compact. The difference can
also be detected by looking at the derivative. In the first column, the derivative
of the sequence {un} stays bounded uniformly in n: For instance the sequence is
bounded in the Sobolev space H1(Rd). In the cases of the second column, the
function oscillates or blows up so fast that the derivative has to explode: We have
||∇un||L2(Ω) →∞, even in a (well-chosen) bounded domain Ω.

Of course, it is clear that we can combine the four examples before as we want.
We can add functions behaving differently or even compose the corresponding group
actions. Think of a sequence un which concentrates at a point xn escaping to infinity.

In the beginning of the 80s, there has been a high activity in trying to describe the
possible behavior of sequences which undergo a lack of compactness. The main idea
was to prove that, in an appropriate sense, the four behaviors mentioned before are
universal. Stating differently, a non-compact sequence should, up to a subsequence,
be a (possibly infinite) sum of sequences having one or several of the above behaviors,
up to a small error. Knowing this fact is very useful either in a contradiction
argument (when we want to prove that the sequence has to be compact), or when the
studied lack of compactness has a special physical meaning and has to be described
more accurately.

The first to tackle these issues on a specific example were Sacks and Uhlen-
beck [20] in 1981 who dealt with a concentration phenomenon for harmonic maps.
Brezis and Nirenberg [3] then faced similar difficulties for some elliptic Partial Dif-
ferential Equations (PDE) with a critical Sobolev exponent in 1983. The same
year, Lieb proved in [11] a useful lemma dealing with lack of compactness due to
translations in the locally compact case. The most general method for dealing with
locally compact problems was published by Lions [15, 16] in 1984 under the name
“concentration-compactness” (it was announced before in [13]). Later in 1984-85,
Struwe [21] and, independently, Brezis and Coron [2] have provided the first “bub-
ble decompositions” (that is they have shown that the sequence under study can be
written as a sum of functions which concentrate at some points in space). In 1985,
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Lions adapted his concentration-compactness method to the nonlocal case [17, 18]
(see also [14]).

The tools developed in the 80s are now of widespread use in the analysis of PDEs.
In most of these notes, we present a simple version of it. We consider a bounded
sequence {un} in H1(Rd) and describe in a rather detailed way its behavior in
Lp(Rd) for a subcritical 2 ≤ p < p∗ (with p∗ being the critical Sobolev exponent
to be recalled below). More precisely, we will show that {un} can be written as a
sum of functions retaining their shape and escaping to infinity at different speeds
(like in Example 2a), plus a remainder which can vanish in the sense of Example
1a. This is enough for many of the physical models encountered in practice. Most
of the arguments of this section can be generalized to a Sobolev space W k,p(Rd)
with k ≥ 1 and 1 < p <∞. It is not essential that the underlying space is a Hilbert
space, but only that the sequence is locally compact, by the Rellich-Kondrachov
Theorem. then in Section 5 we quickly touch upon the critical case where both
examples 1a, 1b and 2a can happen.

Our approach in these notes is a combination of ideas of Lieb [11] and of the
concentration-compactness method of Lions [15, 16]. For a more general version of
the concentration-compactness method (in L1(Rd) or for measures), we refer to the
original papers of Lions, or to the book of Struwe [22]. The french speaking reader
can refer to the book of Kavian [7], or to that of Cancès, Le Bris and Maday [4] for
an intuitive presentation of the method.

1. Finding bubbles

We consider a sequence u = {un} bounded in L2(Rd) (later our sequence will be
bounded in H1(Rd)). Our goal is to detect pieces of mass which retain their shape
for n large and, possibly, escape to infinity (in the spirit of Example 2a in Figure 1,
we call them ‘bubbles’). For this reason, we consider all the possible weak limits, up
to translations, of subsequences of {un} and define the largest possible mass that
these weak limits can have.

Definition 1 (Highest local mass of a sequence). Let u = {un} be a bounded
sequence in L2(Rd). We define the following number

(1) m(u) = sup

{∫
Rd

|u|2 : ∃{xk} ⊂ Rd, unk
(·+ xk) ⇀ u weakly in L2(Rd)

}
.

Here we are interested in understanding the lack of compactness due to space
translations, which take the form of a group action, as we have already mentioned.
There is a similar definition of m for any such group action. The combination of
translations and dilations will be considered later in Section 5.

Remark 2. It is clear that m(u) = m(u(· + x)) for any sequence of translations
x = {xn} ⊂ Rd (here u(·+x) is the sequence {un(·+ xn)}). Also, if u′ = {unk

} is
a subsequence of u = {un}, then m(u′) ≤m(u). ♦

Remark 3. If {un} is not only bounded in L2(Rd) but also in the Sobolev space
H1(Rd), then we can replace the weak convergence in L2(Rd) by weak convergence
in H1(Rd) in the definition of m(u) without changing anything.

Exercise 4. There does not necessarily exist a u ∈ L2(Rd) realizing the above
supremum (that is such that unk

(· + xnk
) ⇀ u for a subsequence with

∫
Rd |u|2 =

m(u)). We provide a counter-example. Let ψn = n−d/2
√

1− 1/nu(x/n) for some

fixed u ∈ L2(Rd). Define a new sequence {un} as follows:

u1 = ψ1,
u2 = ψ1, u3 = ψ2,
u4 = ψ1, u5 = ψ2, u6 = ψ3,
u7 = ψ1, ...
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and so on. Verify that m(u) =
∫
Rd |u|2 but that it is not “attained” by any weakly

convergent subsequence.

Exercise 5. Verify that m(u) = 0 if un(x) = n−d/2u(x/n) (Example 1a), un(x) =
nd/2u(nx) (Example 1b), or un(x) = u(x) ein~v·x (Example 2b). Here u is a fixed
function in L2(Rd).

The purpose of m(u) is to detect the largest piece of mass in the sequence
u = {un}, which possibly escapes to infinity (when |xnk

| → ∞). If m(u) > 0, then
we can find

• a subsequence {unk
};

• a sequence of translations {x(1)
k } ⊂ Rd;

• a function u(1) ∈ L2(Rd) such that m(u) ≥
∫
Rd |u(1)|2 ≥m(u)− ε > 0 (in

particular u(1) 6= 0),

such that

unk
( ·+ x

(1)
k ) ⇀ u(1) weakly in L2(Rd).

Once we have found the first ‘bubble’ u(1), we can go on and try to find the next

one by considering the sequence r
(2)
k := unk

− u(1)( · − x(1)
k ) and the corresponding

m(r(2)). Arguing by induction we can find by induction all the bubbles contained
in the original sequence un.

Lemma 6 (Extracting bubbles). Let u = {un} be a bounded sequence in L2(Rd)
(resp. H1(Rd)). Then there exists a (possibly empty or finite) sequence of functions
{u(1), u(2), ...} in L2(Rd) (resp. H1(Rd)) such that the following holds true: For
any fixed ε > 0, there exists

• an integer J ,
• a subsequence {unk

} of {un},
• space translations {x(j)

k }k≥1 ⊂ Rd for j = 1, ..., J with |x(j)
k −x

(j′)
k | → ∞ as

k →∞, for each j 6= j′,

such that we can write

(2) unk
=

J∑
j=1

u(j)( · − x(j)
k ) + r

(J+1)
k

where

r
(J+1)
k (·+ x

(j)
k ) ⇀

k→∞
0

weakly in L2(Rd) (resp. H1(Rd)) for all j = 1, ..., J and

m(r(J+1)) ≤ ε.
In particular we have

(3) lim
k→∞

(∫
Rd

|unk
|2 −

∫
Rd

|r(J+1)
k |2

)
=

J∑
j=1

∫
Rd

|u(j)|2.

The functions u(j) are all the possible weak limits of u up to translations and
extraction of subsequences. The theorem says that any bounded sequence u in
L2(Rd) can be written as a linear combination of these limits translated in space,

up to an error term r
(J+1)
k . This error term is not necessarily small in norm, but

it is such that m(r(J+1)) is small. If {un} is only bounded in L2(Rd) then lots of

things can happen to r
(J+1)
k , think of Examples 1a, 1b and 2b of Figure 1. When

{un} is bounded in H1(Rd) then m(r(J+1)) ≤ ε will tell us a lot since Examples
1b and 2b cannot happen in a locally compact setting. We will explain this in the
next section.



DESCRIBING LACK OF COMPACTNESS IN SOBOLEV SPACES 5

Let us emphasize the fact that the bubbles u(j) do not depend on ε. They can be
constructed once and for all for any fixed sequence u = {un}. On the contrary, the

number J of bubbles, the space translations x
(j)
k and the subsequence nk needed to

achieve a given accuracy in the decomposition of unk
, all depend on ε.

Proof of Lemma 6. We only write the proof when {un} is bounded in L2(Rd). When
it is bounded in H1(Rd), any weak limit in L2(Rd) is automatically also a weak limit
in H1(Rd).

Ifm(u) = 0, there is nothing to prove and we may therefore assume thatm(u) >
0. In this case we deduce from the definition ofm(u) that there exists a subsequence

nk, a sequence of translations {x(1)
k } ⊂ Rd, and a function u(1) ∈ L2(Rd) such that

m(u)

2
≤
∫
Rd

|u(1)|2 ≤m(u)

and

unk
(·+ x

(1)
k ) ⇀ u(1)

weakly in L2(Rd). Defining r
(2)
k := unk

− u(1)( · − x
(1)
k ), we obviously get that

r
(2)
k (·+ x

(1)
k ) ⇀ 0. We also have

||unk
||2L2 =

∣∣∣∣∣∣u(1)
∣∣∣∣∣∣2
L2

+
∣∣∣∣∣∣r(2)
k

∣∣∣∣∣∣2
L2

+ 2<
〈
r

(2)
k (·+ x

(1)
k ), u(1)

〉
where the last term tends to 0 by the weak convergence of r

(2)
k . So we conclude that

lim
k→∞

(
||unk
||2L2 −

∣∣∣∣∣∣r(2)
k

∣∣∣∣∣∣2
L2

)
=
∣∣∣∣∣∣u(1)

∣∣∣∣∣∣2
L2
.

If m(r(2)) = 0, we can stop here. Otherwise we go on and extract the next

bubble. We find a subsequence and space translations such that r
(2)
k`

(· + x
(2)
` ) ⇀

u(2) 6= 0, with

m(r(2))

2
≤
∫
Rd

|u(2)|2 ≤m(r(2)).

We also extract a further subsequence from unk
and x

(1)
k . To simplify the exposition,

we use the same notation for all these subsequences. So we can write

unk
= u(1)( · − x(1)

k ) + u(2)( · − x(2)
k ) + r

(3)
k

where r
(3)
k (·+x(2)

k ) ⇀ 0. If |x(2)
k −x

(1)
k | does not diverge, then we can extract another

subsequence such that x
(1)
k − x

(2)
k → v. We would then obtain unk

(· + x
(1)
k ) ⇀

u(1) + u(2)(· + v), since r
(3)
k (· + x

(1)
k ) = r

(3)
k (· + v + x

(2)
k ) ⇀ 0. This contradicts

the fact that unk
(· + x

(1)
k ) ⇀ u(1) by construction, unless u(2) = 0 which is not

the case for us here. So we conclude that |x(2)
k − x

(1)
k | → ∞. Now we can use that

unk
(·+x(1)

k ) ⇀ u(1) and deduce that r
(3)
k (·+x(1)

k ) ⇀ 0, since u(2)(·+x(1)
k −x

(2)
k ) ⇀ 0.

Similarly as before, it can be checked that

lim
k→∞

(
||unk
||2L2 −

∣∣∣∣∣∣r(3)
k

∣∣∣∣∣∣2
L2

)
=
∣∣∣∣∣∣u(1)

∣∣∣∣∣∣2
L2

+
∣∣∣∣∣∣u(2)

∣∣∣∣∣∣2
L2
.

We can apply the previous argument ad infinitum, constructing the sequences

u(j) and r(j) in the same fashion, except when we reach a remainder r
(J+1)
k which

is such that m(r(J+1)) = 0. Our construction satisfies

lim
k→∞

(
||unk
||2L2 −

∣∣∣∣∣∣r(J+1)
k

∣∣∣∣∣∣2
L2

)
=

J∑
j=1

∣∣∣∣∣∣u(j)
∣∣∣∣∣∣2
L2
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for all J , and in particular∑
j

∣∣∣∣∣∣u(j)
∣∣∣∣∣∣2
L2
≤ lim sup

n→∞
||un||2L2 ≤ C.

Therefore we see that
∣∣∣∣u(j)

∣∣∣∣
L2 → 0 as j →∞. Recalling that

m(r(j)) ≤ 2

∫
Rd

|u(j)|2

by construction, we deduce that m(r(j)) → 0 as well. Hence, for J large enough,
m(r(J)) must be smaller than any ε fixed in advance, and this concludes the proof
of Theorem 6. �

Remark 7. As is obvious from the above proof of Lemma 6, we can also choose
the sequence {u(j)} to have that

(4) max
j≥0

∫
Rd

|u(j)|2 ≥m(u)− η

for any η > 0. It suffices to choose u(1) satisfying this property. Note that (4) is a
maximum, since

∫
Rd |u(j)|2 → 0 as j →∞, by construction. ♦

As we have mentioned in Exercise 4, m(u) is not necessarily ‘attained’. We now
prove that it is always attained for a subsequence.

Corollary 8 (m({un}) is attained for a subsequence). Let u = {un} be a bounded
sequence in L2(Rd) and η > 0. There exists a subsequence u′ = {unk

}, {xk} ⊂ Rd,
u ∈ L2(Rd) such that

∫
Rd |u|2 = m(u′) ≥m(u)− η and unk

( · − xk) ⇀ u.

Proof. We apply Lemma 6, choosing specifically the sequence {u(j)} such as to have

max
j≥0

∫
Rd

|u(j)|2 ≥m(u)− η

by Remark 7. Then we choose J large enough such that

m
(
r(J+1)

)
< max

( ∫
Rd

|u(j)|2, j = 1, ..., J
)
.

It is then clear that m(u) = max
( ∫

Rd |u(j)|2, j = 1, ..., J
)
. �

2. Vanishing

In the previous section we have defined the highest mass that weak limits can have
up to space translations. We have shown in Lemma 6 that any bounded sequence in
L2(Rd) can be written as a linear combination of these bumps escaping to infinity,

plus a remainder r
(J+1)
k which is such that m(r(J+1)) is small. If we continue this

construction infinitely many times we will have found all the bubbles and essentially
arrive at a sequence r such that m(r) = 0. What does this information tell us?
Our purpose here is to show that the remainder can then only vanish, in a proper
sense. This statement can be made rigorous in the Sobolev space H1(Rd).

Lemma 9 (A subcritical estimate involving m(u)). Let u = {un} be a bounded
sequence in H1(Rd). There exists a universal constant C = C(d) such that the
following holds:

(5) lim sup
n→∞

∫
Rd

|un|2+
4
d ≤ C m(u)

2
d lim sup

n→∞
||un||2H1(Rd) .
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The previous result gives an estimate on the size of ||un||L2+4/d(Rd) in terms of

m(u). Note that the exponent 2 + 4/d is always smaller than the critical Sobolev
exponent p∗, which equals 2 + 4/(d−2) in dimensions d ≥ 3 and +∞ in dimensions
d = 1, 2. The proof of course relies on the Sobolev inequality which we discuss
later in Section 5. Lemma 9 is essentially due to Lions (see the proof of Lemma I.1
in [16]).

Proof of Lemma 9. We only write the proof for d ≥ 3 and let the (very similar)
cases d = 1, 2 as an exercise. We consider a tiling of the whole space Rd by means

of cubes, say Rd = ∪z∈ZdCz with Cz =
∏d
j=1[zj , zj + 1). We then calculate by

Hlder’s inequality

(6)

∫
Rd

|un|q =
∑
z∈Zd

∫
Cz

|un|q ≤
∑
z∈Zd

||un||θqL2(Cz) ||un||
(1−θ)q
Lp∗ (Cz)

,

where 1/q = θ/2 + (1 − θ)/p∗. We choose q in such a way that (1 − θ)q = 2. A
simple calculation shows that q = 2 + 4/d. Note that this choice satisfies 2 < q <
p∗ = 2 + 4/(d− 2) (recall we are in the case d ≥ 3). By the Sobolev embedding in
the cube Cz, there exists a constant C such that

||un||2Lp∗ (Cz) ≤ C
(
||un||2L2(Cz) + ||∇un||2L2(Cz)

)
.

Note that the constant C only depends on the volume of the cube, hence it is
independent of z ∈ Zd. Inserting in (6), we obtain∫

Rd

|un|q ≤ C
(

sup
z∈Zd

||un||L2(Cz)

)θq ∑
z∈Zd

(∫
Cz

|un|2 +

∫
Cz

|∇un|2
)

= C

(
sup
z∈Zd

||un||L2(Cz)

)θq
||un||2H1(Rd) .

Passing to the limit n→∞, we deduce that

(7) lim sup
n→∞

∫
Rd

|un|2+
4
d ≤ C

(
lim sup
n→∞

sup
z∈Zd

∫
Cz

|un|2
) 2
d

lim sup
n→∞

||un||2H1(Rd) .

We now claim that

(8) lim sup
n→∞

sup
z∈Zd

∫
Cz

|un|2 ≤m(u),

which will end the proof of Lemma 9. Indeed, consider a sequence z = {zn} ⊂ Rd
such that

lim
n→∞

∫
Czn

|un|2 = lim sup
n→∞

sup
z∈Zd

∫
Cz

|un|2.

The sequence un(·+ zn) is bounded in H1(Rd). Up to extraction of a subsequence,
we have unk

(·+ znk
) ⇀ u weakly in H1(Rd) and, by the Rellich-Kondrachov com-

pactness Theorem, strongly in L2(C0). We deduce that

lim
n→∞

∫
Czn

|un|2 = lim
nk→∞

∫
C0

|unk
(·+ znk

)|2 =

∫
C0

|u|2 ≤
∫
Rd

|u|2 ≤m(u).

This concludes the proof of Lemma 9. �

We now use the previous result to characterize when m(u) = 0 holds, which
is equivalent to saying that un(· + xn) ⇀ 0 for all {xn} ⊂ Rd. Intuitively this
corresponds to vanishing as displayed in Example 1a of Figure 1 since un must then
converge to zero strongly in all Lp(Rd), for all sub-critical exponents 2 < p < p∗.
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Lemma 10 (Vanishing). Let u = {un} be a bounded sequence in H1(Rd). The
following assertions are equivalent:

(i) m(u) = 0;

(ii) for all R > 0, we have lim
n→∞

sup
x∈Rd

∫
B(x,R)

|un|2 = 0;

(iii) un → 0 strongly in Lp(Rd) for all 2 < p < p∗, where p∗ = 2d/(d− 2) if d ≥ 3,
p∗ =∞ if d = 1, 2.

The interpretation of (ii) is that there is essentially no mass remaining for n large
enough in any ball of fixed radius R, independently of the location of the center of
the ball.

Proof of Lemma 10. We start by proving that (i) ⇒ (ii). Indeed, from the esti-
mate (8) of the proof of Lemma 9, we deduce that

lim sup
n→∞

sup
z∈Zd

∫
Cz

|un|2 = 0

where Cz =
∏d
j=1[zj , zj + 1) are cubes covering the whole space. Since a ball of

radius R can be covered by a finite union of such cubes, the result follows.
To show that (iii)⇒ (i), we consider {xnk

} ⊂ Rd and u such that unk
(·+xnk

) ⇀
u. Since

||unk
(·+ xnk

)||Lp(Rd) = ||unk
||Lp(Rd) → 0

when 2 < p < p∗, we have unk
(·+xnk

)→ 0 strongly in Lp(Rd), hence (by uniqueness
of the weak limit) u = 0. Therefore m(u) = 0.

Finally, the proof that (ii)⇒ (iii) is a consequence of (7). We have ||un||L2+4/d(Rd) →
0 and the rest follows by interpolation, using that {un} is bounded in Lp(Rd) for
2 ≤ p ≤ p∗ by the Sobolev embedding. �

Exercise 11. Write the proof for d = 1, 2. Generalize also Lemmas 9 and 10 to
the case of a bounded sequence {un} in W k,p(Rd) for 1 < p < ∞ and k a positive
integer, with an appropriate definition of m(u).

3. Isolating bubbles in space

In applications it is often useful to “isolate” the bubbles, which means that we

write unk
as a sum of functions u

(j)
k of compact supports, each of them converging

strongly to the weak limit u(j) of Lemma 6, and where the distance between the
supports diverges. This step is not always necessary in practice but it is sometimes
convenient. It is also more in the spirit of Lions’ concentration-compactness prin-
ciple and this is an occasion for us to learn how to use the concentration functions
of Levy.

The localization procedure can be done for any chosen J in the bubble decom-
position (2) of Lemma 6. In order to illustrate the main idea, we start with the
case J = 1, that is when we have one sequence un which converges weakly to some
u(1) := u. We will come back to the general case later in Corollary 17.

Lemma 12 (Extracting the locally convergent part). Let {un} be a sequence in
H1(Rd) such that un ⇀ u weakly in H1(Rd) and let 0 ≤ Rk ≤ R′k such that
Rk →∞. Then there exists a subsequence {unk

} such that

(9)

∫
|x|≤Rk

|unk
(x)|2 dx→

∫
Rd

|u(x)|2 dx

and

(10)

∫
Rk≤|x|≤R′k

(
|unk

(x)|2 + |∇unk
(x)|2

)
dx→ 0
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as k →∞. In particular, we have that unk
1B(0,Rk) → u strongly in Lp(Rd) for all

2 ≤ p < p∗ (where p∗ is like in Lemma 10).

The interpretation of Lemma 12 is that we can isolate by means of a growing ball
B(0, Rk) the part which converges strongly to u in sub-critical spaces Lp(Rd) with
2 ≤ p < p∗. In the annulus {Rk ≤ |x| ≤ R′k}, we have essentially nothing (by the
convergence to zero in H1(Rd)). In practice, we choose R′k such that R′k − Rk →
∞. Since the original sequence {unk

} has been decomposed into two parts (the
convergent part in the ball B(0, Rk) and the rest in the domain Rd \ B(0, R′k)),
Lions used the word dichotomy [15, 16] to describe this procedure.

The intuition behind the decomposition of Lemma 12 is that we have to choose
Rk and R′k growing slowly enough that we essentially only retain the mass of the
weak limit u and not more. However, our statement is for convenience written the
other way: We can choose Rk and R′k essentially as we want, but then the sequence
nk has to go to infinity so fast that unk

has almost already converged to its local
limit u in the ball B(0, R′k).

Proof of Lemma 12. We follow Lions [12, 15, 16] and introduce the so-called Levy
concentration functions [10]

Qn(R) :=

∫
B(0,R)

|un|2, and Kn(R) :=

∫
B(0,R)

|∇un|2.

Note that Qn and Kn are continuous non-decreasing functions on [0,∞), such that

∀n ≥ 1, ∀R > 0, Qn(R) +Kn(R) ≤
∫
Rd

|un|2 + |∇un|2 ≤ C

since {un} is bounded in H1(Rd). By the Rellich-Kondrachov Theorem, we have

Qn(R) =

∫
B(0,R)

|un|2 →
∫
B(0,R)

|u|2 := Q(R)

for all R ≥ 0. We now recall a very useful result dealing with sequences of monotone
functions.

Lemma 13 (Sequences of monotone functions). Let I be a (possibly unbounded)
interval of R, and {fn} be a sequence of non-increasing non-negative functions on
I. We assume that there exists a fixed function g, locally bounded on I, such that
0 ≤ fn ≤ g on I. Then there exists a subsequence {fnk

} and a non-increasing
function f such that fnk

(x)→ f(x) for all x ∈ I.

In the applications, g is often a constant on the whole interval I. By Lemma 13,
up to extraction of a subsequence (for the sake of clarity we do not change notation),
we may assume that Kn(R) → K(R) for all R ≥ 0, and for some non-decreasing
function K. We denote ` := limR→∞K(R).

� It can be shown that ` ≥
∫
Rd |∇u|2 but there is not always equality, except

if we know that {un} is bounded in Hs(Rd) for some s > 1.

Consider now the given sequences Rk and R′k which diverge to ∞. We have
Qn(Rk)→ Q(Rk) and Qn(R′k)→ Q(R′k) as n→∞, and a similar property for Kn.
Extracting a subsequence, we may assume for instance that

|Qnk
(Rk)−Q(Rk)|+|Qnk

(R′k)−Q(R′k)|+|Knk
(Rk)−K(Rk)|+|Knk

(R′k)−K(R′k)| ≤ 1

k
.

We then deduce that∣∣∣∣∣
∫
B(0,Rk)

|unk
|2 −

∫
Rd

|u|2
∣∣∣∣∣ = |Qnk

(Rk)−Q(∞)| ≤ 1

k
+

∫
|x|≥Rk

|u|2 −→
k→∞

0
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and that∫
Rk≤|x|≤R′k

|unk
|2 = Qnk

(R′k)−Qnk
(Rk) ≤ 1

k
+Q(R′k)−Q(Rk) −→

k→∞
0,∫

Rk≤|x|≤R′k
|∇unk

|2 = Knk
(R′k)−Knk

(Rk) ≤ 1

k
+K(R′k)−K(Rk) −→

k→∞
0,

where we have used that K(R′k)−K(Rk)→ `− ` = 0 when k →∞.
Finally, it is clear that 1B(0,Rk)unk

⇀ u weakly in L2(Rd). Since the norm also
converges, we get that the convergence must be strong. By the Sobolev embeddings,
{un} is bounded in Lp(Rd) for all 2 ≤ p < p∗, hence so is 1B(0,Rk)unk

. By interpo-

lation, 1B(0,Rk)unk
converges towards u strongly in Lp(Rd) for all 2 ≤ p < p∗. This

ends the proof of Lemma 12. �

Exercise 14. Prove that for any bounded sequence u = {un} in H1(Rd),

(11) m(u) = lim
R→∞

lim sup
n→∞

sup
x∈Rd

∫
B(x,R)

|un|2.

Exercise 15. Generalize Lemma 12 to the case of a bounded sequence u = {un}
in W k,p(Rd) for 1 < p <∞ and k a positive integer.

In the previous lemma, we have isolated in the ball B(0, Rk) the part of the
sequence unk

which converges to u strongly, by retaining only the adequate mass.
Unfortunately, the function unk

1B(0,Rk) is not in H1(Rd) and it is in practice con-
venient to replace the characteristic function 1B(0,Rk) by a smooth cut-off. This is
the purpose of the next Corollary.

Corollary 16 (Splitting of a weakly convergent sequence in H1(Rd)). Let u = {un}
be a sequence in H1(Rd) such that un ⇀ u weakly in H1(Rd) and let 0 ≤ Rk ≤ R′k
such that Rk →∞. Then we have for a subsequence {unk

}

lim
k→∞

∣∣∣∣∣∣unk
− u(1)

k − ψ
(2)
k

∣∣∣∣∣∣
H1(Rd)

= 0

where u(1) = {u(1)
k } and ψ(2) = {ψ(2)

k } are sequences in H1(Rd) such that

• u(1)
k → u weakly in H1(Rd) and strongly in Lp(Rd) for all 2 ≤ p < p∗;

• supp
(
u

(1)
k

)
⊂ B(0, Rk) and supp

(
ψ

(2)
k

)
⊂ Rd \B(0, R′k);

• m
(
r(2)

)
≤m

(
{unk

}
)
≤m(u).

Proof. We apply Lemma 12 with Rk/2 and 4R′k. We obtain a subsequence {unk
}

such that

(12)

∫
|x|≤Rk/2

|unk
|2 →

∫
Rd

|u|2,
∫
Rk/2≤|x|≤4R′k

|unk
|2 + |∇unk

|2 → 0.

Let χ : R+ → [0, 1] be a smooth function such that 0 ≤ χ′ ≤ 2, χ|[0,1] ≡ 1
and χ|[2,∞) ≡ 0. We denote χk(x) := χ(2|x|/Rk) and ζk(x) = 1 − χ(|x|/R′k) and

introduce u
(1)
k := χkunk

and ψ
(2)
k := ζkunk

. By (12), we clearly have unk
− u(1)

k −
ψ

(2)
k → 0 in H1(Rd) since this function has its support in the annulus {Rk/2 ≤
|x| ≤ 2R′k}. Furthermore

lim
k→∞

∫
Rd

|u(1)
k |2 = lim

k→∞

∫
|x|≤Rk/2

|u(1)
k |2 =

∫
Rd

|u|2,

hence u
(1)
k ⇀ u weakly in H1(Rd) and strongly in Lp(Rd) for all 2 ≤ p < p∗. Note

that by construction 1B(0,4R′k)ψ
(2)
k → 0 strongly in L2(Rd).

It remains to show that m
(
ψ(2)

)
≤m

(
{unk

}
)
. If m

(
ψ(2)

)
= 0 there is nothing

to prove. Assume that ψ
(2)
kj

( · − xj) ⇀ ψ for some subsequence and some ψ 6= 0.
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If for a subsequence (denoted the same for simplicity), we have |xj | ≤ 3R′kj , then

B(xj , R
′
kj

) ⊂ B(0, 4R′kj ), hence ψ
(2)
kj

( · − xj)1B(0,R′kj
) ⇀ 0 = ψ, a contradiction.

Hence it must hold |xj | ≥ 3R′kj for all j sufficiently large. Note then that for j large

enough, ζkj ≡ 1 on the ball B(xj , R
′
kj

), hence

ψ
(2)
kj

( · − xj)1B(0,R′kj
) = unkj

( · − xj)1B(0,R′kj
) ⇀ ψ,

thus unkj
( · − xj) ⇀ ψ weakly in H1(Rd). This proves that

∫
Rd |ψ|2 ≤ m

(
{unk

}
)

and the proof is complete. �

We now consider a sequence u = {un} and its weak limits u(j) up to translations,
obtained from Lemma 6. We want to localize all the bubbles in disjoint balls
receeding from each other, in the same spirit as in the previous result. The following
result is proved in a very similar fashion as Lemma 12 and Corollary 16, using two
concentration functions per bubble.

Theorem 17 (Splitting in arbitrarily many localized bubbles). Let u = {un}
be a bounded sequence in H1(Rd) and {u(j)} ⊂ H1(Rd) be the sequence given by
Lemma 6. For any ε > 0 and any fixed sequence 0 ≤ Rk →∞, there exist

• J ≥ 0,
• a subsequence {unk

},
• sequences of functions u(1) = {u(1)

k }, ...,u(J) = {u(J)
k },ψ(J+1) = {ψ(J+1)

k }
in H1(Rd),

• space translations x(1) = {x(1)
k }, ...,x(J) = {x(J)

k } in Rd,

such that

(13) lim
k→∞

∣∣∣∣∣∣
∣∣∣∣∣∣unk

−
J∑
j=1

u
(j)
k ( · − x(j)

k )− ψ(J+1)
k

∣∣∣∣∣∣
∣∣∣∣∣∣
H1(Rd)

= 0

where

• u(j)
k → u(j) 6= 0 weakly in H1(Rd) and strongly in Lp(Rd) for all 2 ≤ p < p∗;

• supp(u
(j)
k ) ⊂ B(0, Rk) for all j = 1, ..., J and all k;

• supp(ψ
(J+1)
k ) ⊂ Rd \ ∪Jj=1B(xjk, 2Rk) for all k;

• |x(i)
k − x

(j)
k | ≥ 5Rk for all i 6= j and all k;

• m
(
ψ(J+1)

)
≤ ε.

We emphasize again that the error term ψ
(J+1)
k is small in the sense thatm

(
ψ(J+1)

)
is small, that is {ψ(J+1)

k } does not contain a local mass larger than ε. In general

the mass
∫
Rd |ψ(J+1)

k |2 of {ψ(J+1)
k } is not necessarily small since the sequence can

still undergo vanishing. However, by Lemma 9, the subcritical norms of ψ
(J+1)
k are

all small.
Results taking the same form as Corollary 17 are ubiquitous in the literature and

they are often called “bubble decompositions” of the sequence u = {un}, see, e.g.,
[21, 2, 19, 6].

Exercise 18. Write the proof of Corollary 17, using 2J concentration functions

(two per bubble), that is for the functions |unk
( ·+ x

(j)
k )|2 and |∇unk

( ·+ x
(j)
k )|2 for

j = 1, ..., J .
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4. The concentration-compactness principle

In this section, we vaguely explain how to use the tools of Sections 1–3 in practice,
following Lions [15, 16, 19].

We assume that we are given an energy functional E defined on H1(Rd), which
is continuous, bounded from below and coercive on

(14) S≤(λ) :=

{
u ∈ H1(R3) :

∫
R3

|u|2 ≤ λ
}
.

for all λ ≥ 0. The corresponding minimization principle reads

(15) I(λ) := inf
u∈S(λ)

E(u).

where, this time,

(16) S(λ) :=

{
u ∈ H1(R3) :

∫
R3

|u|2 = λ

}
.

By coercivity, all the minimizing sequences u = {un} are bounded in H1(Rd). The
goal is to prove the existence of a minimizer for (15) and to give a criterion for
the precompactness of all the minimizing sequences. As we have explained, a given
minimizing sequence can undergo lack of compactness: It can vanish in the sense
that m(u) = 0, or it can split into several pieces as in Corollary 17. The main
idea is to describe in a rather detailed way the behavior of minimizing sequences in
the case of lack of compactness and to find what would be the total energy of the
system when this happens. If we can show that the energy is too high (above I(λ)),
we arrive at a contradiction, hence the minimizing sequence must be precompact.

To deal with vanishing, we introduce a functional Evan which is the original
energy E to which all the subcritical terms which go to zero when un → 0 in Lp(Rd)
for 2 < p < p∗ (by Lemma 10) are removed. In the applications, Evan usually
only contains the gradient terms. One then defines the corresponding minimization
principle Ivan(λ) := infu∈S(λ) Evan(u). Another equivalent way to define Ivan(λ) is
as follows:

(17) Ivan(λ) := inf
u={un}⊂S(λ)

m(u)=0

lim inf
n→∞

E(un).

To deal with the phenomenon of splitting, we introduce an energy E∞ which is
the original energy E to which we remove all the compact terms that converge to
zero when un ⇀ 0 (but without assuming a priori that un → 0 strongly in some
Lp(Rd) space), thinking of un = u( · − n~v). In our examples, this usually means
to remove the external potential term by letting V = 0 and to only keep the terms
which are invariant by translation. The corresponding minimization principle reads
I∞(λ) := infu∈S(λ) E∞(u). Another way to define I∞(λ) is:

(18) I∞(λ) := inf
{un}⊂S(λ)
un⇀0

lim inf
n→∞

E(un).

By taking appropriate test functions, it can usually be proven that

∀0 ≤ λ′ ≤ λ, I(λ) ≤ I(λ− λ′) + I∞/van(λ′).

If I(0) = Ivan(0) = I∞(0) = 0 (which we always assume), we deduce that I(λ) ≤
I∞/van(λ).

For models which are invariant by translations, we always get E∞ = E . In this
case we can only hope to prove the precompactness of minimizing sequences up to
translations (that is there exists {xn} ⊂ Rd such that unk

( · − xk) is compact). We
start by explaining the general strategy when E is invariant by translations.
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The first step is to show that vanishing does not occur, by proving that I(λ) =
I∞(λ) < Ivan(λ) for all λ > 0. This can usually be done by means of a well-chosen
test function.

Once we know this, it must hold m(u) > 0 for all minimizing sequences u of
I(λ). Then, by definition of m(u), there exists a subsequence (denoted the same

for clarity) and translations x(1) = {x(1)
n } ⊂ Rd such that un( · − x(1)

n ) ⇀ u(1) 6= 0.

Using Lemma 12, we can write un( · − x(1)
n ) = u

(1)
n + ψ

(2)
n + ε

(2)
n where ε

(2)
n → 0

strongly in H1(Rd). One then shows that

E(un) = E(un( · − x(1)
n )) = E(u(1)

n ) + E(ψ(2)
n ) + o(1).

Using that u
(1)
n → u(1) strongly in Lp(Rd) for 2 ≤ p < p∗, we try to show that

E is weakly lower semicontinuous along this sequence (it is not needed that E is
wlsc, but only that all the terms which are not wlsc are continuous in Lp(Rd) for
2 ≤ p < p∗). This means we have

lim inf
n→∞

E(u(1)
n ) ≥ E(u(1)) ≥ I(λ(1))

where λ(1) :=
∫
Rd |u(1)|2. For {ψ(2)

n }, we only write that

E(ψ(2)
n ) ≥ I

(∫
Rd

|ψ(2)
n |2

)
→ I

(
λ− λ(1)

)
,

using that u
(1)
n → u(1) in L2(Rd). Passing to the limit, we find that I(λ) ≥ I(λ(1))+

I(λ − λ(1)). However, since the converse inequality is always true, there must be
equality. One finally deduces that E(u(1)) = I(λ(1)) (hence u(1) is a minimizer of

the problem corresponding to its own mass I(λ(1))) and that limn→∞ E(ψ
(2)
n ) =

I(λ− λ(1)), that is {ψ(2)
n } is a minimizing sequence for I(λ− λ(1)).

The next step consists in applying the whole argument to the new sequence

ψ(2) = {ψ(2)
n }. Since it is a minimizing sequence for I(λ − λ(1)), it cannot vanish,

hence there is a u(2) such that, up to a subsequence, ψ
(2)
n ( · − x(2)

n ) ⇀ u(2) 6= 0.
As before u(2) must be a minimizer of the problem corresponding to its own mass,

λ(2) =
∫
Rd |u(2)|2 and we can write ψ

(2)
n = u

(2)
n + ψ

(3)
n + ε

(3)
n where u

(2)
n → u(2) in

appropriate spaces and {ψ(3)
n } is a minimizing sequence for I(λ − λ(1) − λ(2)). If

λ(2) = λ− λ(1), then {ψ(2)
n } is compact.

One could go on and in principle get infinitely many pieces of mass receding from
each other (or even apply Lemma 17 directly). It is however enough to stop as soon
as there is a contradiction, which is often the case when there are two pieces of
mass. The argument is as follows: We have

I(λ) ≤ I(λ(1) + λ(2)) + I(λ− λ(1) − λ(2)) ≤ I(λ(1)) + I(λ(2)) + I(λ− λ(1) − λ(2))

and since I(λ) = I(λ(1)) + I(λ(2)) + I(λ − λ(1) − λ(2)), there must be equality
everywhere. In particular

I(λ(1) + λ(2)) = I(λ(1)) + I(λ(2)).

The last step of the proof consists then in using the two minimizers u(1) and u(2)

of, respectively, I(λ(1)) and I(λ(2)), to build a convenient trial state showing the
so-called binding inequality

I(λ(1) + λ(2)) < I(λ(1)) + I(λ(2)),

which is a contradiction. In practice this last step often uses the fact that charged
Coulomb systems attract at large distances.

The previous method was devoted to the case of a translation-invariant system,
E = E∞. When E 6= E∞ (for instance when there is a potential V ), there is an
additional step at the beginning of the method. One proves that I(λ) < I∞(λ)
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(by constructing a convenient trial state), which implies that a given minimizing
sequence u = {un} cannot have a vanishing weak limit: un ⇀ u(1) 6= 0. One then

applies Lemma 12 to write un = u
(1)
n +ψ

(2)
n +ε

(2)
n and to show that the energy splits

in two pieces:

E(un) = E(u(1)
n ) + E∞(ψ(2)

n ) + o(1).

Note that ψ
(2)
n ⇀ 0 hence the local terms disappear and we get E∞. Arguing as

before we find I(λ) = I(λ(1))+I∞(λ−λ(1)). The rest of the proof is similar to what
we have said before and the binding inequality that must be proven now reads:

I(λ(1) + λ(2)) < I(λ(1)) + I∞(λ(2)).

For many concrete examples of the strategy described in this section, see [15, 16].

5. The Sobolev inequality and the critical case

Up to now we have been working in H1(Rd). The above results easily generalize
to Hs(Rd), at the expense of using localization methods for fractional Laplacians
as described for instance in [8, App. A] and [9, App. B]. We discuss now the critical
case where the mass

∫
Rd |u|2 is not finite anymore, which prevents from using the

subcritical exponent 2 + 4/d as we did in Lemma 9. In other words, we provide a
version of Lemma 9 in the critical case. But before we start with a simple proof of
the Sobolev inequality, following [5], which will be useful for our argument.

5.1. The Sobolev inequality.

Theorem 19 (Sobolev inequality). For every s > 2d in dimension d ≥ 1, there
exists a constant Cd,s such that

(19) ||u||2L2d/(d−2s)(Rd) ≤ Cd,s
∫
Rd

|k|2s|û(k)|2 dk,

for every u ∈ S ′(Rd) such that |{|u| ≥ λ}| <∞ for all λ > 0.

Proof. For shortness we denote

K :=

(∫
Rd

|k|2s|û(k)|2 dk
)1/2

:= ||u||Ḣs(Rd) .

We start by writing∫
Rd

|u(x)| 2d
d−2s dx =

d− 2s

d+ 2s

∫
Rd

∫ ∞
0

λ
2d

d−2s−11(|u(x)| ≥ λ) dλ dx

=
d− 2s

d+ 2s

∫ ∞
0

λ
2d

d−2s−1|{|u(x)| ≥ λ}| dλ.(20)

Now we will give an estimate on |{|u(x)| ≥ λ}| for any fixed λ. We write u = v+w
where v̂(k) = û(k)χ(|k|/a), with a a parameter depending on λ to be determined
later and 0 ≤ χ ≤ 1 a localizing function satisfying χ|[0,1] ≡ 1 and χ|[2,∞) ≡ 0.

We use that

|{|u(x)| ≥ λ}| ≤ |{|v(x)| ≥ λ/2}|+ |{|w(x)| ≥ λ/2}|
and choose a to ensure ||v||L∞ ≤ λ/2 which will give |{|v(x)| ≥ λ/2}| = 0. Indeed,
we have

||v||L∞ ≤ (2π)−d
∫
|k|≤a

|û(k)| dk

≤ (2π)−d
(∫
|k|≤a

dk

|k|2s

)1/2(∫
|k|≤a

|k|2s|û(k)|2dk
)1/2

≤ C a d−2s
2 ||u||Ḣs(Rd) = C K a

d−2s
2 ,(21)
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which suggests to take a
d−2s

2 = λ/(2CK) ⇐⇒ a = C ′(λ/K)
2

d−2s . For the term
involving w, we write

|{|w(x)| ≥ λ/2}| ≤ 1

λ2

∫
Rd

|w|2 ≤ 1

λ2

∫
|k|≥a

|û|2.

Coming back to (20), this gives∫
Rd

|u(x)| 2d
d−2s dx ≤ C

∫ ∞
0

λ
2d

d−2s−1 1

λ2

∫
|k|≥a

|û|2 dλ

≤ C
∫ ∞

0

λ
6s−d
d−2s

∫
|k|≥C′(λ/K)

2
d−2s

|û|2 dk dλ

= CK
4s

d−2s

∫
|k|2s|û|2 dk = CK

2d
d−2s .

�

5.2. Existence of minimizers: lack of compactness in Ḣs(Rd). In order to
adapt the arguments used before in the subcritical case, we now have to deal with
the lack of compactness due to dilations, in addition to translations. This leads us to
introduce the following concept. For a bounded sequence u = {un} in Lp

∗
(Rd) we

introduce the highest (critical) mass that weak limits can have, up to translations,
dilations, and extraction of a subsequence:

(22) m(u) =

{∫
Rd

|u|p∗ : α
−d/p∗
k unk

( · − xk
αk

)
⇀ u

}
.

The following is the corresponding adaptation of Lemma 9 to the critical case.

Lemma 20 (A critical estimate involving m(u)). Let d > 2s > 0. We have for

every bounded sequence u = {un} ⊂ Ḣs(Rd)

(23) lim sup
n→∞

∫
Rd

|un|
2d

d−2s ≤ Cm(u)
4s

d−2s lim sup
n→∞

||un||2Ḣs(Rd) .

Proof. We follow the argument used in the proof of Theorem 19 and only give a
different estimate of ‖vn‖L∞ with v̂n = ûn χ(·/a), in terms of m(u) instead of K.
Indeed, we have

‖vn‖L∞ = (2π)−d/2 sup
x∈Rd

∣∣∣∣∫
Rd

adχ̌(ay)un(x− y) dy

∣∣∣∣
= (2π)−d/2 sup

x∈Rd

∣∣∣∣∫
Rd

χ̌(y)un

(
x− y
a

)
dy

∣∣∣∣
≤ (2π)−d/2a

d−2s
2 sup

a>0
sup
x∈Rd

∣∣∣∣∫
Rd

χ̌(y)
1

ad/p∗
un

(
x− y
a

)
dy

∣∣∣∣ .
For every n, let an and xn realizing the above supremum. Since the function

1

a
d/p∗
n

un

(
xn − y
an

)
is bounded in Lp

∗
(Rd), we may extract a subsequence and assume that

1

a
d/p∗
n

un

(
xn − ·
an

)
⇀ u.

By definition of m(u) we have ||u||Lp∗ (Rd) ≤m(u)1/p∗ . (Note that un(−x) has the

same m as un(x).) On the other hand,

lim
n→∞

∫
Rd

χ̌(y)
1

a
d−2s

2
n

un

(
xn − y
an

)
dy =

∫
Rd

χ̌u
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and therefore

lim sup
n→∞

‖vn‖L∞ ≤ ||χ̌||
L

p∗
p∗−1

a
d−2s

2 m(u)1/p∗ .

The argument is then the same as before. �

Corollary 21. Let u = {un} be a bounded sequence in Ḣs(Rd), with d > 2s. Then
m(u) = 0 if and only if un → 0 strongly in Lp

∗
(Rd).

The intuition behind this result is that the space Lp
∗
(Rd) is critical with regards

to the norm of Ḣs(Rd) within the family of Lp(Rd) spaces, but it is still not the
optimal space for the Sobolev inequality. A better space is a Lorentz or even a Besov
space [1]. This is the intuition of why m(u) = 0 implies the strong convergence in
Lp
∗
(Rd).

Using the above result, we can deduce the existence of an optimizer for the
Sobolev inequality (19) in a few lines.

Corollary 22 (Existence of a minimizer for the Sobolev inequality). The best
constant Cd,s in (19) is attained.

Proof. A minimizing sequence for Sobolev

S(λ) := inf∫
Rd |u|p

∗=λ
||u||2Ḣs(Rd) = λ

2
p∗ S(1)

must satisfy m(u) > 0. Hence we can find a translation and a dilation such that,
after extracting a subsequence,

1

a
d/p∗
n

un

( · − xn
an

)
⇀ u 6= 0.

Writing

un = ad/p
∗

n u (an((· − xn)) + rn

we have ∫
Rd

|un|p
∗

=

∫
Rd

|u|p∗︸ ︷︷ ︸
:=λ>0

+

∫
Rd

|rn|p
∗

+ o(1)

(by strong local convergence in Ḣs(Rd)), and

||un||2Ḣs(Rd) = ||u||2Ḣs(Rd) + ||rn||2Ḣs(Rd) + o(1)

(since Ḣs(Rd) is a Hilbert). Therefore,

S(1) = lim
n→∞

||un||2Ḣs(Rd) ≥ ||u||
2
Ḣs(Rd) + S(1− λ)

≥
(
λ2/p∗ + (1− λ)2/p∗

)
S(1)

which proves that λ = 1 since 2/p∗ < 1, and hence that u is an optimizer. �

Arguments of this type have been used for instance in [1]. It is possible to extend
several of the results of the previous sections to the critical case (for instance the
bubble decomposition), with of course the addition of the possible lack of compact-
ness due to dilations.
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Gauthier-Villars, Paris, 2nd ed., 1954.

[11] E. H. Lieb, On the lowest eigenvalue of the Laplacian for the intersection of two domains,

Invent. Math., 74 (1983), pp. 441–448.
[12] P.-L. Lions, Principe de concentration-compacité en calcul des variations, C. R. Acad. Sci.
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