
HAL Id: hal-02450521
https://hal.science/hal-02450521v1

Submitted on 23 Jan 2020 (v1), last revised 24 Jan 2020 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On Proper Labellings of Graphs with Minimum Label
Sum

Julien Bensmail, Foivos Fioravantes, Nicolas Nisse

To cite this version:
Julien Bensmail, Foivos Fioravantes, Nicolas Nisse. On Proper Labellings of Graphs with Minimum
Label Sum. [Research Report] Inria - Sophia antipolis. 2020. �hal-02450521v1�

https://hal.science/hal-02450521v1
https://hal.archives-ouvertes.fr

On Proper Labellings of Graphs with Minimum Label Sum

Julien Bensmail, Foivos Fioravantes, Nicolas Nisse∗

January 23, 2020

Abstract
The 1-2-3 Conjecture, raised by Karoński, Łuczak and Thomason, states that almost every

graph G admits a proper 3-labelling, i.e., a labelling of the edges with 1, 2, 3 such that no
two adjacent vertices are incident to the same sum of labels. Another interpretation of this
conjecture, that may be attributed to Chartrand et al., is that almost every graph G can be
turned into a locally irregular multigraph M , i.e., with no two adjacent vertices of the same
degree, by replacing each of its edges by at most three parallel edges. In other words, for almost
every graph G there should be a locally irregular multigraph M with the same adjacencies and
having a relatively small number of edges. The 1-2-3 Conjecture, if true, would indeed imply
that there is such an M with |E(M)| ≤ 3|E(G)|.

In this work, we study proper labellings of graphs with the extra requirement that the
sum of assigned labels must be as small as possible. In other words, given a graph G, we
are looking for a locally irregular multigraph M∗ with the smallest number of edges possible
that can be obtained from G by multiplying edges. This problem is actually quite different
from the 1-2-3 Conjecture, as we prove that there is no absolute constant k such that M∗ can
always be obtained from G by replacing each edge with at most k parallel edges.

We investigate several aspects of this problem, covering algorithmic and combinatorial
aspects. In particular, we prove that the problem of designing proper labellings with minimum
label sum is NP-hard in general, but solvable in polynomial time for graphs with bounded
treewidth. We also conjecture that for all almost every graph G there should be a proper
labelling with label sum at most 2|E(G)|, which we verify for several classes of graphs.

1 Introduction
In this work we study properties of some distinguishing labellings of graphs. We begin by giving
some useful definitions and notations. Let G = (V,E) be a graph. For a v ∈ V , let d(v) denote
the degree of v, that is the number of edges that are incident to v. We say that G is regular if
for each u, v ∈ V , we have d(u) = d(v). It is well known that there exists no non-trivial simple
graph that is totally irregular, meaning a simple graph for which all vertices have different degrees.
This however is not true for multigraphs, where multiple edges between two adjacent vertices are
allowed. A graph G is called locally irregular if for each uv ∈ E, we have d(u) 6= d(v). Finally, G
is called nice if it does not contain a connected component isomorphic to K2, the complete graph
with two vertices. Throughout this work, we focus only on nice graphs.

A function ` : E 7→ {1, . . . , k}, is called a k-labelling of G. By a distinguishing labelling we mean
a labelling ` that allows us to distinguish the vertices of G accordingly to some vertex parameter
computed from `. Note that this can equivalently be seen through the scope of graph colouring. In
this work, we are more particularly interested in proper labellings, which are defined as follows.
For any v ∈ V , let us denote by c`(v) the colour of v that is induced by `, being the sum of labels
assigned to the edges incident to v. That is,

c`(v) :=
∑

u∈N(v)

`(vu).

We say that ` is proper if the resulting c` is a proper vertex-colouring of G, i.e., for every edge
uv ∈ E we have c`(u) 6= c`(v). In this work, every labelling is assumed to be proper unless stated

∗Université Côte d’Azur, CNRS, Inria, I3S, France

1

otherwise. It is clear that for each not necessarily proper labelling ` of G and for each v ∈ V , we
have c`(v) ≥ d(v) with c`(v) = d(v) if and only if all edges incident to v are assigned label 1. It
follows that G admits a proper 1-labelling if and only if G is locally irregular.

The connection between the labellings of a graph G and its “regularity” was already explored by
several authors, in particular through the notion of irregularity strength of graphs, introduced
by Chartrand et al. in [9]. The irregularity strength s(G) of G is defined as the smallest k such that
G admits a k-labelling ` with the property that for every two u, v ∈ V (not necessarily adjacent),
we have c`(u) 6= c`(v). The main point for studying such labellings `, is that if, from G, we replace
each edge e by `(e) parallel edges, then we get a multigraph M that is totally irregular. Note that
building M in this way preserves the adjacencies of G, that is M has the same structure as G.
As stated earlier, no non-trivial simple graph G is totally irregular; it is thus legitimate to wonder
how to build a corresponding totally irregular multigraph M in the fashion above. In their work,
Chartrand et al. regard edge multiplications as an expensive operation they want to limit as much
as possible. This results in the following optimization problem: For a given graph G, what is the
smallest k such that G can be turned into a totally irregular multigraph M by replacing each edge
with at most k parallel edges? From the labelling point of view, this smallest k is precisely s(G).

Since the notion of total irregularity does not fit with simple graphs, as K1 is the only totally
irregular simple graph, it is legitimate to consider that this notion is too strong, and instead
consider weaker notions of irregularity. A few such notions have been explored in the literature,
such as the notions of highly irregular graphs [8] or locally irregular graphs [2] we have introduced
earlier. With respect to Chartrand et al.’s point of view, we note that there is again a straight
connection between proper labellings and locally irregular graphs. Namely, given a proper labelling
` of a graph G, by replacing each edge e with `(e) parallel edges, we here get a locally irregular
multigraph M with the same structure as G. As in the previous problem, one can again ask about
the smallest k such that G admits proper k-labellings. This smallest k (if any) is denoted χΣ(G).

This parameter χΣ is precisely at the heart of maybe the most famous conjecture concerning
proper labellings of graphs, the so-called 1-2-3 Conjecture, introduced by Karoński, Łuczak and
Thomason in 2004 [12]. This conjecture states that for every nice graph G, we have χΣ(G) ≤ 3.
It is worth noting that there exist nice graphs G that verify χΣ(G) = 3 (for example every nice
complete graph Kn has χΣ(Kn) = 3 as shown in [7]) and thus it is meaningless to try to show
that χΣ(G) ≤ 2 holds for all graphs G. There are many results supporting the 1-2-3 Conjecture,
the most famous of which belonging to Kalkowski, Karoński and Pfender [11], stating that for
any nice graph G, we have χΣ(G) ≤ 5. Another important result shown in [12] states that the
1-2-3 Conjecture is satisfied for nice 3-colourable graphs. However, unless a graph G is locally
irregular (in which case χΣ(G) = 1), it is not easy in general to characterize which graphs G have
χΣ(G) = 2 (see [10]). Nevertheless, quite recently a good characterization of nice bipartite graphs
G with χΣ(G) = 3 was provided in [18].

Minimizing, however, the maximum label that is used to create a proper labelling of a graph G,
does not always guarantee that we have actually minimized the cost that corresponds to the edge
multiplications described above. For example, a 2-labelling ` that assigns label 2 to three edges
of G and label 1 to the rest is more expensive (in terms of how many edges the corresponding
multigraphs have) than a 3-labelling `′ that assigns label 3 on only one edge of G and label 1 to the
rest. The 1-2-3 Conjecture, if true, would imply that every nice graph G admits a proper labelling
where the sum of assigned labels is at most 3|E|; but it might be that, using larger labels, we can
design better (with respect to the concerns above) proper labellings of G. This motivates us to
introduce and study a new problem, namely the problem of finding proper labellings that minimize
the sum of the assigned labels.

Formally, for a labelling ` of a graph G, we denote by σ(`) the sum of labels assigned to the
edges of G by `. That is,

σ(`) :=
∑

e∈E(G)

`(e).

For any k ≥ 1, we denote by mEk(G) the minimum value of σ(`) over all k-labellings of G. That
is,

mEk(G) := min {σ(`) : ` is a k−labelling of G} .

2

We set mE(G) := min{mEk(G) : k ≥ χΣ(G)}.
The study of the parameter mE(G) takes place in a recent series of works dedicated to under-

standing better the connection between proper labellings and proper vertex-colourings of graphs.
In [1], the authors studied proper vertex-colourings of graphs that minimize the number of distinct
resulting colours. In other words, the authors are there interested in proper labellings by which
the number of distinct resulting vertex colours is as close as possible to the chromatic number.
Noticing that this minimum number of distinct colours by a proper labelling is bounded above by
the minimum maximum vertex colour that can be achieved by a proper labelling, in [5] the authors
studied proper labellings where the maximum resulting vertex colour is as small as possible. In
these two works, the authors mainly showed that finding an “optimal” proper labelling is hard in
general but easy in particular graph classes, and provided results towards conjectures they have
raised on their modified notions of proper labellings.

An important point for mentioning the existence of [1] and [5] is that determining mE(G) for a
given graph G is also related to finding a proper labelling of G where the resulting vertex colours
satisfy some properties. More precisely, by a straight equivalence between edge labels and vertex
colours, see upcoming Observation 2.2, it can be established that determining mE(G) is equivalent
to finding a proper labelling of G that minimizes the sum of resulting vertex colours. Thus, at least
at first glance, one could think that determining mE(G) is somewhat related to the investigations
in [1] and [5]. In Section 4.1, we actually show that this is not the case, in the sense that proper
labellings that are good for our concerns might be arbitrarily bad for those in [1] and [5], and vice
versa.

This work is organized as follows. In Section 2 we provide some useful observations that are
going to be used throughout this work. As a warm up, we also provide the exact value of mE(G)
for easy classes of graphs, namely complete bipartite graphs, complete graphs and cycles.

In Section 3 we deal with the algorithmic aspects of the problem. We show that for k ∈ N,
determining mEk(G) is NP-complete when G is a planar bipartite graph. Then we provide an
algorithm that, given two integers s and k, can decide in polynomial time if mEk(G) ≤ s when G
belongs to the family of graphs that have bounded treewidth.

In Section 4 we answer two different questions that deal with the particular nature of our
problem. First, in Section 4.1, we show that in general a k-labelling that minimizes the maximum
induced colour does not minimize the sum of the labels used and vice versa. Then, in Section 4.2 we
provide an infinite family of graphs G for which mEk(G) can be arbitrary larger than mEk+1(G).
As mentioned earlier, this property is what justifies the study of this problem, as it shows that just
finding a k-labelling of G for k = χΣ(G) is not enough.

Finally, in Section 5 we study the more general aspects of the problem. In particular we
propose Conjecture 5.2 stating that for every nice graph G, we should have mE(G) ≤ 2|E(G)|.
We then proceed by providing upper bounds for some families of graphs, namely bipartite graphs
and trees, as well as graphs with large chromatic number, that further strengthen our belief that
Conjecture 5.2 should hold true.

2 First observations and classes of graphs
In this warm-up section, we give some first insight into the problem of determining the parameters
mE(G) and mEk(G) for a given graph G. This is done through first observations on the problem,
and by then focusing on easy classes of graphs.

2.1 First observations and remarks
The following observation provides trivial bounds on σ(`) for a k-labelling ` assigning labels with
value at most some k.

Observation 2.1. Let G be a graph and ` be a k-labelling of G. Then

|E(G)| ≤ σ(`) ≤ k|E(G)|.

3

Consequently, for any k ≥ χΣ(G), we have

|E(G)| ≤ mEk(G) ≤ k|E(G)|.

The following provides an obvious way for relating edge labels and vertex colours by a labelling
of a graph G, that, in general, is a convenient tool for establishing lower bounds on mE(G).

Observation 2.2. Let G be a graph, and ` be a labelling of G. Then∑
e∈E(G)

2`(e) =
∑

v∈V (G)

c`(v).

In particular, by any labelling `, the sum
∑
v∈V (G) c`(v) must be an even number.

In several contexts, we will make use of the following property of proper labellings in graphs
having some particular sparse structure (adjacent degree-2 vertices):

Observation 2.3. Let G be a graph with a path (v1, v2, v3, v4) such that d(v2) = d(v3) = 2. Then,
by any proper labelling ` of G, we have `(v1v2) 6= `(v3v4).

Proof. This is because c`(v2) = `(v1v2) + `(v2v3) and c`(v3) = `(v2v3) + `(v3v4). This implies we
must have `(v1v2) 6= `(v3v4) so that c`(v2) 6= c`(v3).

2.2 Easy classes of graphs
In this section, we determine what the value of mE(G) is when G is any nice complete bipartite
graph, complete graph, or cycle. Let us recall that, for any nice complete bipartite graph Kn,m,
we have χΣ(Kn,m) = 1 if n 6= m > 1, and χΣ(Kn,m) = 2 otherwise. For every nice complete graph
Kn, we have χΣ(Kn) = 3. For every nice cycle Cn, we have χΣ(Cn) = 3 whenever n ≥ 3 is odd
or n ≡ 2 mod 4, while we have χΣ(Cn) = 2 otherwise, i.e., when n ≡ 0 mod 4. Simple proofs for
these statements can be found e.g. in [7].

Note that in all the results obtained in this section, while constructing a proper labelling ` of
a graph G achieving σ(`) = mE(G), using a label larger than χΣ(G) is not needed. That is, we
here always have mEk(G) = mE(G) for k = χΣ(G). It is important to point out however that this
behaviour is not true in general (see Section 4.2).

Theorem 2.4. Let G = (A,B,E) = Kn,m be a nice complete bipartite graph with n + m > 2.
Then:

• if n 6= m, then mE(G) = mE1(G) = nm = |E(G)|;

• otherwise, i.e., n = m, we have mE(G) = mE2(G) = n(m+ 1) = |E(G)|+
√
|E(G)|.

Proof. If n 6= m, then G is locally irregular, in which case we get a 1-labelling when assigning
label 1 to all edges. This is best possible due to Observation 2.1. If n = m, G is not locally
irregular and thus k ≥ 2, meaning that a labelling of G must assign a label different from 1 to some
edges. Moreover, if a labelling assigns a label different than 1 to less than n edges, then there would
necessarily be, in both A and B, vertices incident only to edges labelled 1, thus with colour n. In
that case, ` would not be proper as some adjacent vertices would have the same colour.

This means that, a proper labelling ` of G must assign a label different from 1 to at least n
edges. This implies that mEk(G) ≥ |E(G)| + n. We claim there is a labelling ` achieving this
lower bound, hence best possible. To obtain `, let a be any vertex of A. Assign label 2 to all
the n edges incident to a, and assign label 1 to all other edges. This labelling is proper. Indeed
c`(a) = 2n, c`(a′) = n for every a′ ∈ A \ {a}, and c`(b) = n + 1 for every b ∈ B. Furthermore,
σ(`) = |E(G)|+ n = |E(G)|+

√
|E(G)|.

Theorem 2.5. Let Kn be a nice complete graph with n ≥ 3. Then:

• if n = 3, then mE(K3) = mE3(K3) = 6 = 2|E(K3)|;

4

• if n ≡ 0 (mod 4) or n ≡ 1 (mod 4), then mE(Kn) = mE3(Kn) = 1
2

(
n2 + (n−2)(n−1)

2 − 1
)

=
3
2 |E(Kn)|;

• if n ≡ 2 (mod 4) or n ≡ 3 (mod 4), then mE(Kn) = mE3(Kn) = 1
2

(
n2 + (n−2)(n−1)

2

)
=⌈

3
2 |E(Kn)|

⌉
.

Proof. Throughout this proof, for any n ≥ 3, let V (Kn) = {v1, . . . , vn}.
Regarding the first item, Observation 2.3 implies that a proper 3-labelling of K3 must assign

three distinct labels to the edges, and thus having {`(v1v2), `(v1v3), `(v2v3)} = {1, 2, 3} is optimal,
in which case σ(`) = 6.

Let us now focus on the second and third items. Following Observation 2.2, finding a proper
3-labelling of Kn achieving mE3(Kn) is equivalent to finding a proper 3-labelling minimizing the
sum of vertex colours. Since, in Kn, all vertices have degree n − 1, and all vertex colours must
be different by a proper 3-labelling, any proper 3-labelling producing distinct vertex colours in
S1 = {n− 1, n, n+ 1, . . . , 2n− 2} would be optimal. Note, however, that when n is congruent to 2
or 3 modulo 4, such a proper 3-labelling cannot exist as, in such cases, the sum n− 1 + n+ (n+
1) + · · · + (2n − 2) of the values in S1 is odd, which cannot be achieved by a labelling (recall the
last statement of Observation 2.2). In such cases, however, any proper labelling producing distinct
vertex colours in S2 = {n− 1, n, n+ 1, . . . , 2n− 3, 2n− 1} would be optimal.

Now consider the following 3-labelling ` of Kn (n ≥ 4), already introduced in [5], to establish
what the value mS3(Kn) is. We label the edges of Kn through three steps. Firstly, we assign label 1
to every edge. Secondly, we change the labels of the edges in {vivj | 1 ≤ i, j ≤ n, i+j ≥ n+2} to 2.
Then v1 is incident to no edge labelled 2, vertex v2 is incident to one edge labelled 2, vertex vi for
3 ≤ i ≤ b(n−1)/2c+1 is incident to i−1 edges labelled 2, and vi for b(n−1)/2c+2 ≤ i ≤ n is incident
to i−2 edges labelled 2. Let j = b(n−1)/2c+1. Note that for every i ∈ {2, 3, . . . , j, j+2, . . . , n}, vi is
adjacent to one more edge labelled 2 than vi−1; and that vj and vj+1 are both adjacent to j−1 edges
labelled 2 (and n − j edges labelled 1). So cl(v1) < cl(v2) < · · · < cl(vj) = cl(vj+1) < cl(vj+2) <
· · · < cl(vn) and cl(vi+1) ≤ cl(vi) + 1 for 1 ≤ i ≤ n, i.e., all vertices have different colours except vj
and vj+1. Finally, to avoid the conflict between vj and vj+1, let us increase the label of vj+1vj+2

from 2 to 3. This change induces a new conflict between vj+2 and vj+3. Then we need to increase
the label of vj+3vj+4 from 2 to 3 to get rid of this conflict, which creates a new conflict, and so on.
Formally, we change the labels of the edges in {vj+1vj+2, vj+3vj+4, . . . , vn−1vn} to 3 if n−j is even,
i.e., if n ≡ 0 mod 4 or n ≡ 1 mod 4. Otherwise, if n−j is odd and n ≡ 2 mod 4 or n ≡ 3 mod 4,
then we change the labels of the edges in {vj+1vj+2, vj+3vj+4, . . . , vn−4vn−3, vn−2vn, vn−1vn} to 3.

It can be checked that the resulting 3-labelling ` is proper, and achieves vertex colours in S1

when n is congruent to 0 or 1 modulo 4, or vertex colours in S2 when n is congruent to 2 or 3
modulo 4. As discussed above, this is best possible. Furthermore, it can easily be checked that the
elements in S1 sum up to the value claimed in the second item, and similarly for the elements in
S2 and the value claimed in the third item. This concludes the proof.

Theorem 2.6. Let n ≥ 3, and Cn be the nice cycle of length n. Then:

• if n ≡ 0 (mod 4), then mE(Cn) = mE2(Cn) = 3
2 |E(Cn)|;

• if n ≡ 1 (mod 4) or n ≡ 3 (mod 4), then mE(Cn) = mE3(Cn) =
⌈

3
2 |E(Cn)|

⌉
+ 1;

• if n ≡ 2 (mod 4), then mE(Cn) = mE3(Cn) = 3
2 |E(Cn)|+ 3.

Proof. Let us order the edges of Cn following a clockwise direction and define E(Cn) = {e1, . . . , en}
and V (Cn) = {v1, . . . , vn} such that for i < n, ei = vivi+1 and en = vnv1. Thus for i > 0,
N(vi) = {vi−1, vi+1} and N(v1) = {v2, vn}. Recall that χΣ(Cn) = 2 for the first item and that
χΣ(Cn) = 3 for the second and third item.

Claim 2.7. Let l ≤ k and ` be a k-labelling of Cn that assigns label l to at least one edge. If ` is
proper, then it assigns label l to at most b 1

2 |E(Cn)|c edges if n is odd and to at most 1
2 |E(Cn)| − 1

edges if n ≡ 2 (mod 4).

5

Proof of the claim. Let E = {e ∈ E(Cn) : `(e) = l} and G = (V,E) be the graph that has
V = {vi : ei ∈ E(Cn)} and for i 6= j, vivj ∈ E if the corresponding edges ei, ej are at distance
exactly 2 in Cn. Obviously |E(Cn)| = |V |. It follows from Observation 2.3 that if ` is a proper
labelling for Cn that maximizes |E|, then |E| = |S|, where S is an independent set of G. For n odd,
G = Cn. Since G is a cycle, |E| = |S| = b 1

2 |V |c = b 1
2 |E(Cn)|c. For n ≡ 2 (mod 4), let m be such

that n = 4m+ 2. It is clear that G contains two connected components, each one being a copy of
the Cn

2
cycle. Thus, |E| = |S| = 2bn2 c = 2m = 1

2 |E(Cn)| − 1. �

For the first item let ` be the following 2-labelling: `(e1) = 1, `(e2) = 1, `(e3) = 2, `(e4) =
2, `(e5) = 1, . . . , `(en) = 2. Let us assume that this ` is not proper. Then there would exist at least
two adjacent vertices vi, vi+1 such that c`(vi) = c`(vi+1). It follows that `(vi−1) = `(vi+2) (if i = 1
then vi−1 = vn and if i = n then vi+1 = v1) which is a contradiction. Furthermore, since n ≡ 0
(mod 4), label 2 is used on exactly half the edges of Cn and thus σ(`) = |E(Cn)| + 1

2 |E(Cn)| =
3
2 |E(Cn)|. Moreover, this value is optimal. Indeed, assume it is not. Then, there would exist a
labelling `′ such that more than 1

2 |E(Cn)| edges are labelled 1 by `′, a contradiction by Claim 2.7.
Let Cn be a cycle with n ≡ 1 (mod 4). We will show that mE(Cn) = d 3

2 |E(Cn)|e+ 1. Let ` be
a labelling of Cn that assigns label 3 on only one edge. It follows from Claim 2.7 that at most bn2 c
edges of Cn are labelled 1. Actually, there are exactly bn2 c edges labelled 1: if this was not the case,
and since only one edge of Cn is labelled 3, there would be more than bn2 c edges labelled 2, which
contradicts Claim 2.7. The same holds true for the edges labelled 2. Since n ≡ 1 (mod 4)⇒ ∃m :
n = 4m+ 1 and using this, one can easily show that σ(`) = bn2 c+ 2bn2 c+ 3 = · · · = d 3

2 |E(Cn)e+ 1.
Furthermore, let `′ be a labelling of Cn that assigns label 3 on more than one edge. It is clear
that if `′ is proper, then σ(`) < σ(`′). Thus, σ(`) = mE(Cn). The following is a proper labelling
that achieves this optimal value: `(e1) = 1, `(e2) = 1, `(e3) = 2, `(e4) = 2, `(e5) = 1, . . . , `(en−1) =
2, `(en) = 3.

Let Cn be a cycle with n ≡ 3 (mod 4). Similarly to before, mE(Cn) = d 3
2 |E(Cn)|e + 1. The

following is a proper labelling that achieves this optimal value: `(e1) = 1, `(e2) = 1, `(e3) =
2, `(e4) = 2, `(e5) = 1, . . . , `(en−3) = 2, `(en−2) = 1, `(en−1) = 3, `(en) = 2.

Let Cn be a cycle with n ≡ 2 (mod 4). We will show that mE(Cn) = 3
2 |E(Cn)|+ 3. Indeed, let

` be a labelling of Cn that assigns label 3 on only one edge. If ` is proper, it is obliged to assign
label 1 to at most 1

2 |E(Cn)| − 1 edges of Cn and label 2 to the rest. This however would lead to `
assigning label 2 on at least 1

2 |E(Cn)| edges, which is a contradiction by Claim 2.7. Thus, ` must
assign label 3 on at least two edges. Similarly to before, a labelling that assigns label 3 on exactly
two, label 1 to at most 1

2 |E(Cn)| − 1 edges and label 2 to the rest, would achieve the optimal
value. The following is one such proper labelling: `(e1) = 1, `(e2) = 1, `(e3) = 2, `(e4) = 2, `(e5) =
1, . . . , `(en−3) = 2, `(en−2) = 2, `(en−1) = 3, `(en) = 3.

3 Complexity aspects
In this section, we establish both a negative and a positive result on the complexity of computing
the parameter mEk(G) for some input integer k and nice graph G. More precisely:

• We first prove that determining mE2(G) is NP-complete, even when G is restricted to a
planar bipartite graph. Recall that this is contrasting with the complexity of determining
whether χΣ(G) ≤ 2 holds for a given bipartite graph G, which is a problem that can be
solved in polynomial time due to a result of Thomassen, Wu and Zhang [18].

• We then prove that determining mEk(G) can be done in polynomial time whenever k is fixed
and G is a graph with bounded treewidth.

3.1 A negative result for bipartite graphs
In this section, we prove, in Theorem 3.2 below, that the problem of determining mEk(G) is
NP-complete in planar bipartite graphs G.

Let us first introduce the k-gadget, for k ≥ 11, which will be useful for proving Theorem 3.2.
To build this gadget, let us start with k−1 stars, each having a center denoted by si, i ∈ [1, k−1],

6

such that d(si) = k + 1. For each star, we pick an arbitrary edge siyi and identify all the yi into
a single vertex y, which we call the representative of the gadget. Finally we add another vertex u,
called the root of the gadget, which is connected to y. It is clear that d(u) = 1 and d(y) = k. Also
note that each k-gadget is a tree with O(k2) edges.

When we say that we attach a gadget H to the vertex v of a graph G we mean that we add H
to G and the root u of the gadget is identified to v.

Claim 3.1. Let G(V,C,E) be a bipartite graph and ` be any 2-labelling of G such that σ(`) ≤
|E(G)| + c, for c = |C|. Let H be any p-gadget attached to G, where p − 1 > c. Let y be the
representative of H. If at least one edge e of H incident to y is labelled 2, then there are at least
two edges of H that are labelled 2.

Proof of the claim. Let us suppose that at least one of the edges of H incident to y is labelled 2.
Let z ∈ V ∪ C be the vertex of G′ to which H has been attached.

Let us first assume that the edge zy is labelled 2. If y is incident to only a single edge labelled
2 (i.e., zy), then its colour is c`(y) = p+ 1. Since all its p− 1 neighbours (6= z) have degree p+ 1,
each of them must be incident to at least one edge labelled 2 as otherwise they would have the
same colour as y. This leads to at least p > c edges labelled 2, which is a contradiction (observe
that since σ(`) ≤ |E(G)|+ c, there are at most c edges labelled 2). Otherwise, if y has exactly one
other incident edge (6= yz) labelled 2, say the edge yw, and we are done.

Then, let us assume that `(yz) = 1. Moreover, let us assume that some edge incident to y, say
yw1 different than yz, is labelled 2. Then c`(y) ≥ p + 1 with c`(y) = p + 1 if yw1 is the unique
edge incident to y labelled 2. In this case, each one of the p− 2 neighbours of y (6= z, w1) must be
incident to at least one edge labelled 2, leading to at least p − 1 > c edges labelled 2, which is a
contradiction. Thus c`(y) > p+ 1, which means there is at least one more edge yw2 incident to y
labelled 2. �

We are now ready for proving our result.

Theorem 3.2. Let G be a nice planar bipartite graph, k ≥ 2 and q ∈ N. The problem of deciding
if mEk(G) ≤ q is NP-complete.

Proof. The problem is clearly in NP. We focus on showing it is also NP-hard. The proof is done
by reduction from Planar Monotone 1-in-3 SAT, which was shown to be NP-complete in [14].
In this problem, a 3CNF formula F is given as input, which has clauses with exactly three variables
all of which appear only positively. We say that a bipartite graph G′ = (V,C,E) corresponds to
F if it is constructed in the following way: for each variable xi of F we add a variable vertex vi
in V and for each clause Cj of F we add a clause vertex cj in C. Then the edge vicj is added
if variable xi appears in clause Cj . Furthermore, F is valid as input to the Planar Monotone
1-in-3 SAT problem if the graph G′ that corresponds to F is planar. The question is, whether
there exists a 1-in-3 truth assignment of F ; that is a truth assignment to the variables of F such
that each clause has exactly one variable with the value true.

Let us prove the statement for k = 2. Let F be the 3CNF formula, with c clauses that is
given as input to the Planar Monotone 1-in-3 SAT problem. Our goal is to construct a planar
bipartite graph G such that F is 1-in-3 satisfied if and only if mE2(G) ≤ |E(G)|+ c.

We start with G′ = (V,C,E) being the planar bipartite graph that corresponds to F , with V
being the set of the variable vertices vi and C being the set of the clause vertices cj . Note that
in F , each clause has exactly three variables but there is no bound on how many times a variable
appears in F . Thus for each vi ∈ V, d(vi) ≥ 1 and for each cj ∈ C, d(cj) = 3. It follows that |C|=c
and |V | ≤ 3c.

We proceed by modifying G′ by adding the k-gadgets we described earlier. For each variable
vertex vi of G, let di be the degree of vi in G′. Let dv,i = (di− 1)(c+ 1) + di and dc = 3(c+ 1) + 3.
For each variable vertex vi, for all 1 ≤ j < di, we attach c+ 1 copies of the (dv,i + j)-gadget. Thus
the degree of each vi in G becomes equal to dv,i. On each clause vertex cj , let us attach c + 1
copies of the dc-gadget, c+ 1 copies of the (dc + 2)-gadget and c+ 1 copies of the (dc + 3)-gadget.
Thus the degree of each cj in G becomes equal to dc. Clearly, the construction of G is achieved
in polynomial time. Finally observe that since G′ is planar and the attached gadgets are actually
trees, G is also planar.

7

Let ` be a 2-labelling of G such that σ(`) ≤ |E(G)|+c, i.e., there are at most c edges of G labelled
2 by `. Observe that G contains p-gadgets for p ∈ {dv,i+1, dv,i+2, . . . dv,i+di−1, dc, dc+1, dc+3}
and dv,i − 1, dc − 1 > c. Thus Claim 3.1 holds for each gadget attached to G.

Claim 3.3. For any 2-labelling ` of G such that σ(`) ≤ |E(G)|+ c, we have that:

• for each variable vertex vi ∈ V, c`(vi) /∈ {dv,i + 1, dv,i + 2, . . . , dv,i + di − 1}

• for each clause vertex cj ∈ C, c`(cj) /∈ {dc, dc + 2, dc + 3}

Proof of the claim. Indeed, each variable vertex vi is adjacent to c+1 copies of the (dv,i+1)-gadget
and at most c edges are labelled 2 by `. Thus, at least one of the (dv,i+1)-gadgets, let us call it H,
that is attached to vi, has all of its edges labelled 1. Moreover, vi is adjacent to the representative
y of H which has degree d(y) = dv,i + 1. Since all the edges of H are labelled 1, the colour c`(y)
of y is dv,i + 1 and thus this colour is forbidden for vi, i.e., c`(vi) 6= dv,i + 1.

By repeating the same argument for the (dv,i + 2)-gadgets attached to vi, c`(vi) 6= dv,i + 2.
Similarly, by considering the dc-gadgets (resp., the (dc + 2)- and (dc + 3)-gadgets) attached to any
clause vertex cj , c`(cj) /∈ {dc, dc + 2, dc + 3}. �

Claim 3.4. Let ` be any 2-labelling of G such that σ(`) ≤ |E(G)|+c. Then all edges of the attached
gadgets must be labelled 1.

Proof of the claim. Observe that for each clause vertex z ∈ C, at least one of its incident edges must
be labelled 2. If this were not the case, then c`(z) = dc, and this is not allowed from Claim 3.3.

Let H be a k-gadget attached to z and y be the representative of H. Suppose `(yz) = 2. It
follows from Claim 3.1 that there are at least two edges of H labelled 2. Recall that the number
of edges of G that can be labelled 2 is at most c. Thus, the number of edges of G, that do not
belong to H and can be labelled 2, is at most c− 2. Furthermore, there are c− 1 clause vertices in
G that are different from z. It follows that there exists a clause vertex that has all of its incident
edges labelled 1, a contradiction. Thus, each z ∈ C must be incident to an edge wz with `(wz) = 2
and w cannot belong to a gadget attached to w. It follows that there must be |C| = c edges of G′
labelled 2 and since σ(`) ≤ |E(G)|+ c, all the edges of the attached gadgets are labelled 1. �

It follows from Claim 3.4, that the only possible colours induced by ` on the vertices of G′ are:

• for each variable vertex vi ∈ V, c`(vi) ∈ {dv,i, dv,i + 1, dv,i + 2, . . . , dv,i + di − 1, dv,i + di}

• for each clause vertex cj ∈ C, c`(cj) ∈ {dc, dc + 1, dc + 2, dc + 3}

Using Claim 3.3 it follows that

• for every variable vertex vi, c`(vi) ∈ {dv,i, dv,i + di}. Observe that c`(vi) = dv,i if all edges
of G′ adjacent to vi are labelled 1 and c`vi = dv,i + di, if all edges of G′ adjacent to vi are
labelled 2.

• for every clause vertex cj , c`(cj) = {dc + 1}, which corresponds to two edges of G′ adjacent
to cj labelled 1 and only one edge labelled 2.

We are now ready to show the equivalence between finding a 1-in-3 truth assignment φ of F
and finding a 2-labelling ` of G such that σ(`) = mE2(G) ≤ |E(G)|+ c. An edge vicj of G′ labelled
2 (respectively 1) by ` corresponds to variable xi bringing truth value true (respectively false) to
clause Cj by φ. Also, we know that in G′, each variable vertex vi is adjacent to n ≥ 1 edges, all
having the same label (either 1 or 2). Accordingly, the corresponding variable xi brings, by φ,
the same truth value to the n clauses of F that contain it. Finally, in G′, each clause vertex cj
is adjacent to two edges labelled 1 and one labelled 2. This corresponds to the clause Cj being
regarded as satisfied by φ only when it has exactly one true variable.

8

3.2 A positive result for graphs with bounded treewidth
Given a graph G = (V,E), a tree-decomposition [] of G is any pair (T,X) such that T =
(V (T), E(T)) is a tree and X = {Xt ⊆ V | t ∈ V (T)} is a familly of subsets (called bags) of
vertices of G such that: V =

⋃
t∈V (T)

Xt; for every {u, v} ∈ E, there exists t ∈ V (T) with u, v ∈ Xt;

and for every v ∈ V , {t ∈ V (T) | v ∈ Xt} induces a subtree of T . The width of (T,X) is equal to
max
t∈V (T)

|Xt| − 1 and the tree-width tw(G) is the minimum width of a tree-decomposition of G.

A tree-decomposition (T,X) is nice [6] if T is rooted in r ∈ V (T) and every node t ∈ V (T) is
exactly one of the following four types:

1. Leaf: t is a leaf of T and |Xt| = 1

2. Introduce: t has a unique child t′ and there exists v ∈ V s.t. Xt = Xt′ ∪ {v}

3. Forget: t has a unique child t′ and there exists v ∈ V s.t. Xt′ = Xt ∪ {v}

4. Join: t has exactly two children t′, t′′ and Xt = Xt′ = Xt′′

Let G = (V,E) be a graph. It is well known that G admits a nice tree-decomposition (T,X) rooted
in r ∈ V (T), that has width equal to tw(G), |V (T)| = O(|V |) and Xr = {∅} [6].

Let (T,X) be a rooted tree-decomposition (with root r) of G and t ∈ V (T). A subtree of T
induced by t and its descendants is denoted as Tt and the corresponding subgraph of G, i.e. the
graph induced by ∪t′∈V (Tt)Xt′ , is denoted by Gt (clearly, Gr = G). For every v ∈ V (Gt), let Nt(v)
denote the neighborhood of v in Gt, that is Nt(v) = {u ∈ V (Gt) : uv ∈ E(Gt)}. A quasi k-labelling
of Gt consists of a pair of functions (`, c), with ` : E(Gt) → {1, . . . , k} and c : V (Gt) → N, such
that c is a proper colouring of Gt, for every v ∈ V (Gt) \ Xt we have c(v) = c`(v) and for every
v ∈ V (Xt), c(v) ≥ c`(v). Intuitively, the notion of quasi k-labelling is a generalisation of k-labelling
that allows us to further modify the labels (and thus the induced colours) of the edges of Xt if this
is needed in order to extend a k-labelling of Gt into a k-labelling of Gt′ , where t′ is the parent of t
in T . Finally, let st(`) =

∑
e∈E(Gt)

`(e).
Observe that every k-labelling `′ of G induces a quasi k-labelling of Gt. For every e ∈ E(Gt)

and v ∈ V (Gt), let `(e) = `′(e) and c(v) = c`′(v). The pair (`, c) is a quasi k-labelling of Gt.
Indeed, since (T,X) is a tree-decomposition of G, for every internal node t of T , Xt is a separator
between Gt −Xt and G− V (Gt). Put differently, there are no edges between vertices of Gt −Xt

and G−V (Gt). Furthermore, if r is such that Xr = ∅, then a quasi k-labelling of Gr is a k-labelling
of G. Indeed, it is true (by definition) that a quasi k-labelling of Gr differs from a k-labelling only
on the vertices of Xr and since Xr = ∅ and Gr = G the observation follows.

Theorem 3.5. Let k ≥ 2 and tw ≥ 1 be two fixed integers. Given a nice graph G = (V,E) with
|V | = n and an integer s, the problem of deciding whether mEk(G) ≤ s can be decided in polynomial
time if G belongs to the family of graphs that have width at most tw (and in linear time if G is
additionally of bounded maximum degree).

Proof. Let us start by defining some sets. For every t ∈ V (T), let |Xt| = wt, |E(G[Xt])| = qt,
Xt = {v1, · · · , vwt

} and E(G[Xt]) = {e1, · · · , eqt} (to simplify the notation, we will simply denote
qt and wt by q and w respectively). Let Ft = {1, . . . , k}q × {1, . . . , k∆}w × {0, . . . , k∆}w and
(L,FC,CB) ∈ Ft, where L = {l1, . . . , lq}, FC = {f1, . . . , fw} and CB = {b1, . . . , bw}. The labels
we “intent” to assign to the edges of Xt are in L, the “final colours” induced by these labels on the
vertices of Xt are in FC and in CB we can find the contribution to these colours that come “from
bellow” (meaning the part of these final colours that are due to edges between Xt and Gt −Xt).
Furthermore, for Xt′ ⊆ Xt with Xt′ = {u1, . . . , uw′} (where w′ ≤ w), let FC|Xt′ = {f ′1, . . . , f ′w} be
defined by setting f ′j = fj for each j ∈ [1, w′] (L|Xt′ and CB|Xt′ are defined similarly).

Precisely, a quasi labelling (`, c) of Gt is said compatible with (L,FC,CB) ∈ Ft if, for each
i ∈ [1, q] and j ∈ [1, w], we have that `(ei) = li, c(vj) = fj , and bj =

∑
x∈Nt(vj)\Xt

`(vjx). Note
that this implies that, for all i ∈ [1, q] and j ∈ [1, w],∑

z∈Nt(vj)

`(zvj) = bj +
∑

z∈N(vj)∩Xt,ei=vjz

li ≤ c(vj) = fj

9

By (`∗, c∗) we denote one such compatible labelling that minimizes the sum of the labels assigned
by `∗ among all quasi-labellings compatible with (L,FC,CB). That is, for any t ∈ V (t), st(`∗) ≤
st(`) for every quasi-labelling ` compatible with (L,FC,CB). Let αt(L,FC,CB) := st(`

∗). In
essence, for each possible (L,FC,CB) ∈ Ft, αt(L,FC,CB) is equal to the sum of the labels of an
optimal (in terms of sum of labels) quasi labelling (`∗, c∗) ofGt that is compatible with (L,FC,CB).
Note that not all (L,FC,CB) ∈ Ft admit compatible quasi-labelling. If (L,FC,CB) ∈ Ft has no
compatible quasi-labelling, we set αt(L,FC,CB) =∞.

Finally, let us set

Table(t) = ((L,FC,CB,αt(L,FC,CB)))(L,FC,CB)∈Ft

being the table associated to each t ∈ V (T). Note that |Table(t)| = O(kq(k∆ + 1)2w) =

O(k(tw(G)+1)2 (k∆ + 1)2tw(G)+2), since q ≤
(tw(G)+1

2

)
= O((tw(G) + 1)2) and w ≤ tw(G) + 1.

Furthermore, since r is such that Xr = ∅, αr = αr(∅, ∅, ∅) is equal to the sum of an optimal
k-labelling of Gr and thus Table(r) = ((∅, ∅, ∅, αr)), where αr = mEk(G). All that remains to be
done is to compute this Table(t) for every t ∈ V (t). We present a dynamic programming algorithm
that performs this computation bottoms up; that is starting from the leaves of T and progressing
towards r. The computation depends on the type of t.

Let t be a leaf node. Recall that |Xt| = 1 and thus there are no edges in Xt. For every
y ∈ [1, · · · k∆] and every (L,FC,CB) ∈ Ft, the αt(L,FC,CB) entry of Table(t) is defined as:

αt(L,FC,CB) =

{
0, if (L,FC,CB) = (∅, {y}, {0})
∞, otherwise

Let t be an introduce node, t′ be its unique child, let w = |Xt′ |, and let v be such that
Xt = Xt′ ∪ {v} = {v1, · · · , vw, vw+1 = v}. Moreover, let E(Xt) = {e1, . . . , eq, eq+1, . . . , eq+h},
where E(Xt′) = {e1, . . . , eq}. Essentially, the set {eq+1, . . . , eq+h} contains the edges between v
and the other vertices of Xt. By induction, we can assume that Table(t′) is already computed.
Let us show how to compute Table(t). Let (L = (l1, · · · , lq+h), FC = (f1, · · · , fw+1), CB =
(b1, · · · , bw+1)) ∈ Ft, there is a quasi-labelling of Gt compatible with (L,FC,CB) only if the
following three conditions (easy to compute) are satisfied.

• The final colour fw+1 that corresponds to v is not in conflict with the final colours that
correspond to the neighbors of v in Xt. That is, for each j ∈ [1, w] such that vj ∈ Nt(v)∩Xt,
fw+1 6= fj .

• Since v is introduced in Xt, Nt(v) \ Xt = ∅ and as a consequence, c(v) cannot have any
contribution coming from Gt \Xt. That is bw+1 = 0.

• The colour of each vertex in Gt cannot exceed the final colour that corresponds to it. That is,

for every vi ∈ Xt, bi +
∑q+h
j=1 ljIi,j ≤ fi, where Ii,j =

{
1, if ∃w ∈ N(vi) ∩Xt s.t. wvi = ej

0, otherwise

If one of these three conditions is not satisfied, then αt(L,FC,CB) =∞. Otherwise, let us set

αt(L,FC,CB) = αt′(L|Xt′ , FC|Xt′ , CB|Xt′) +

q+h∑
j=q+1

lj .

Following the above process, ((L,FC,CB), αt(L,FC,CB)) is added to Table(t) for every
(L,FC,CB) ∈ Ft.

Let t be a forget node, t′ be its unique child, let w = |Xt|, and let v be such that Xt′ =
Xt ∪ {v} = {v1, · · · , vw, vw+1 = v}. Moreover, let E(Xt′) = {e1, . . . , eq, eq+1, . . . , eq+h}, where
E(Xt) = {e1, . . . , eq}. By induction, we can assume that Table(t′) is already computed. Let us
show how to compute Table(t).

Let (L,FC,CB) ∈ Ft. Let Γt′ be the subset of Ft′ that consists of all (L′, FC ′, CB′) ∈ Ft′
such that (L,FC,CB) = (L′|Xt , FC

′|Xt , CB
′|Xt) (i.e., (L,FC,CB) must be the restriction to Xt

10

of some (L′, FC ′, CB′) ∈ Ft′) and such that f ′w+1 = b′w+1 +
∑

q+1≤j≤q+h
l′j . The latter condition

allows to respect the property of quasi-labelling. Since, v ∈ Gt −Xt, the “colour" that it received
so far (with a contribution b′w+1 from the vertices in Gt′ −Xt′ plus the labels l′q+1, · · · , l′q+h of its
incident edges in Xt′ must equal its “final" colour f ′w+1. Finally, let

αt(L,FC,CB) = min
γ∈Γt′

αt′(γ).

Following the above process, ((L,FC,CB), αt(L,FC,CB)) is added to Table(t) for every
(L,FC,CB) ∈ Ft.

Let t be a join node, t′ and t′′ be its two children, with Xt = Xt′ = Xt′′ = {v1, . . . , vw}
and E(Xt) = E(Xt′) = E(Xt′′) = {e1, . . . , eq}. By induction, we can assume that Table(t′) and
Table(t′′) have already been computed. Let us show how to compute Table(t).

Let (L,FC,CB) ∈ Ft. Let Γt be the set of pairs ((L,FC,CB′), (L,FC,CB′′)) such that
(L,FC,CB′) ∈ Ft′ and (L,FC,CB′′) ∈ Ft′′ such that CB = CB′ + CB′′ (meaning that for each
j ∈ [1, w], bj = b′j + b′′j where bj ∈ CB, b′j ∈ CB′ and b′′j ∈ CB′′). Then, let

αt(L,FC,CB) = min
((L,FC,CB′),(L,FC,CB′′))∈Γt

αt′(L,FC,CB
′) + αt′′(L,FC,CB

′′)−
q∑
i=1

li.

Following the above process, ((L,FC,CB), αt(L,FC,CB)) is added to Table(t) for every
(L,FC,CB) ∈ Ft.

In all cases, it can be shown by induction that αt(L,FC,CB) 6= ∞ if and only if there is a
quasi-labelling of Gt compatible with (L,FC,CB), and moreover, if αt(L,FC,CB) <∞, it is the
minimum sum of the edges’ labels among all quasi-labellings of Gt compatible with (L,FC,CB).

4 Particular behaviours of the problem
In this section, we study some behaviours of the problem of determining mEk(G) for some integer
k and nice graph G. We start by establishing that there is no systematic relationship between the
proper labellings we are interested in and those considered in [1] and [5]. We then prove that, in
general, using large labels might be needed for designing a labelling ` verifying σ(`) = mE(G).
This actually remains true in cases where G is a tree.

4.1 Minimizing the maximum colour versus minimizing the sum of labels
As described in the introductory section, quite recently the authors of [5] investigated proper
labellings that minimize the maximum resulting vertex colour. The formal definitions are as follows.
For a given graph G and labelling ` of G, let mS(G, `) denote the maximum vertex colour c`(v) by
` over all vertices v of G. For a given k ≥ χΣ(G), let mSk(G) denote the smallest value of mS(G, `)
over all proper k-labellings of G. Now, the main parameter of interest is mS(G), which is defined
as the minimum value of mSk(G) over all values of k ≥ χΣ(G).

As established in Observation 2.2 determining mE(G) for a nice graph G can equivalently be
seen as finding a proper labelling of G that minimizes the sum of resulting vertex colours. Thus,
one could think that maybe mE(G) is a good approximation of mS(G), or vice-versa. In this
section, we show that this is actually not the case.

The next result shows that, when constructing a labelling ` of a graph G with mS(G, `) =
mS(G), we might have σ(`) being arbitrarily far from mE(G). In other words, minimizing the
maximum colour does not imply minimizing the sum of labels. This actually remains true for
trees.

Theorem 4.1. There exist nice trees T with arbitrarily large maximum degree ∆ ≥ 2 for which, for
any labelling ` achieving mS(T, `) = mS(T), the value mE(T, `) is arbitrarily larger than mE(T).
In particular, mE(T, `) = mE(T) + ∆− 2.

11

2

a1

3

a2

2

b1

3

b2

9u2

1 1

1 2 1 2

2

c1

3

c2

2

d1

3

d2

8 u3

1 1

1 2 1 2

u1

2 1

1

(a) {c`1 (u2), c`1 (u3)} = {8, 9}.

2

a1

3

a2

2

b1

3

b2

9u2

1 1

1 2 1 2

2

c1

3

c2

2

d1

3

d2

10 u3

1 1

1 2 1 2

u1

1 2

2

(b) {c`2 (u2), c`2 (u3)} = {9, 10}.

Figure 1: The only proper 2-labellings `1 and `2 of the T2 gadget, used in the construction illustrated
in Figure 2. The induced colours for each labelling are represented as integers in the corresponding
vertices. Vertex u1 is called the root of the gadget. Wiggly edges are edges that could be labelled
either 1 or 2.

Proof. Consider the following tree T with maximum degree ∆ ≥ 2. We start from a vertex v with
∆ neighbours u1, . . . , u∆, each of which is adjacent to ∆− 1 leaves. In other words, all neighbours
of v have degree ∆, and all other vertices are leaves at distance exactly 2 from v.

Now consider a labelling ` of T that minimizes the maximum colour, i.e., mS(T, `) = mS(T).
Since T has adjacent vertices with degree ∆, we have mS(T, `) ≥ ∆+1. One possible way to attain
mS(T, `) = ∆+1 is to have all edges incident to v being labelled 1, and, for each ui, to have exactly
one incident edge going to a leaf being labelled 2 and all other ∆−2 incident edges being labelled 1.
Indeed, we get c`(v) = ∆ 6= ∆ + 1 = c`(ui) for every i = 1, . . . ,∆. Actually, this is the only way
to have mS(T, `) = ∆ + 1, because if we label the edges incident to v so that c`(v) = ∆ + 1, then
it is easy to see that the vertex ui such that `(vui) = 2 would get c`(ui) ≥ ∆ + 2 to avoid a colour
conflict between v and ui. Therefore, there is only one general way to label (actually 2-label) T so
that mS(T, `) = mS(T) = ∆ + 1, and we note that the number of edges labelled 2 by ` is exactly ∆
(one for each ui). Thus mE(T, `) = |E(T)|+ ∆.

On the other hand, we note that, regardless of the value of ∆, the 2-labelling `∗ of T where
`∗(vu1) = `∗(vu2) = 2 and all other edges are labelled 1 is proper. This is because we get
c`∗(v) = ∆ + 2, c`∗(u1) = c`∗(u2) = ∆ + 1, and c`∗(ui) = ∆ for i = 3, . . . ,∆. Thus, mE(T) ≤
mE2(T) ≤ mE(T, `∗) = |E(T)|+ 2, and the difference between σ(`) and σ(`∗) then gets arbitrarily
large as ∆ grows larger.

The next result shows that the converse is also true: a labelling that minimizes the sum of
labels does not necessarily minimize the maximum colour as well.

Theorem 4.2. There exist nice graphs G with arbitrarily large maximum degree ∆ ≥ 12 for which,
for any 2-labelling ` achieving σ(`) = mE2(G), the value mS(G, `) is arbitrarily larger than mS2(G).

Proof. In [5] is exhibited a spreading gadget Gf (a slight modification of the graph depicted in
Figure 2) with one input (the edge u1u2) and two outputs (the edges u9u10 and u12u13), that are
pending edges that must all be assigned the same label (which can be either 1 or 2) by any proper
2-labelling (see Section 4.4 in [5] for details). Having a closer look at Gf, we note that, regarding
our minimization problem, it has the following property:

Claim 4.3. Let ` be a proper 2-labelling of Gf achieving σ(`) = mE2(Gf). Then ` assigns label 2
to the input and two outputs of Gf.

Proof of the claim. As mentioned above, the proper 2-labellings of Gf are of two kinds: those `1
assigning label 1 to the input and two outputs, and those `2 assigning label 2 to the input and two
outputs. Such labellings `1 and `2 are as described in Figure 2 (a) and (b), respectively (see [5]).
In particular, it is important to mention that the solid edges in the figures must be labelled as
illustrated (up to symmetry), while the only sources of freedom we have are the labels assigned to
the wiggly edges, which can each freely be chosen to be 1 or 2.

12

1

u1

4

u2

5

u3

6

u4

10

u5

10

u6

11

u7

3

u8

2

u9

1

u10

3

u11

2

u12

1

u13

1

1

2

2

2

2

2

2

2

1 1

2

1 1

2 3

1

1

2

T2

T2

2 3

1

1

2

T2

(a) Input is labelled 1.

2

u1

5

u2

3

u3

4

u4

8

u5

8

u6

7

u7

2

u8

3

u9

2

u10

2

u11

3

u12

2

u13

2

1

2

1

1

1

1

1

1

1 2

1

1 2

2 3

1

1

2

T2

T2

2 3

1

1

2

T2

(b) Input is labelled 2.

Figure 2: The only proper 2-labellings of the spreading gadget Gf. A triangle marked as “T2”
indicates that a copy of the T2 gadget (depicted in Figure 1) is attached via its root vertex. That
is, u5 (resp., u6) is identified to the roots of two copies of T2, while u7 is identified to the root of one
copy of T2. The induced colours for each labelling are represented as integers in the corresponding
vertices. Wiggly edges are edges that could be labelled either 1 or 2.

Let us now determine the minimum sum of labels assigned by these labellings:

• For a labelling `1 of Gf assigning label 1 to the input and two outputs, we note, as illustrated
in Figure 2 (a), that u5 and u6 must get colour 10, which is possible only if the two copies of
T2 attached to u5 and u6 are labelled as in Figure 1 (a). The vertex u7 must get colour 11,
which is not prevented by any of the two ways of labelling the copy of T2 attached to it.
Thus, for `1 to minimize the sum of labels, the copies of T2 attached to u5 and u6 must be
labelled as in Figure 1 (a), and the copy of T2 attached to u7 must be labelled as in Figure 1
(a) as well (as the sum of labels in the labelling of Figure 1 (b) is larger). All wiggly edges
should be assigned label 1. In total, a minimum `1 assigns label 1 to 40 edges and label 2 to
25 edges, and thus σ(`1) = 90.

• By similar arguments, we deduce that, by a labelling `2 of Gf assigning label 2 to the input
and two outputs, the copies of T2 attached to u5 and u6 should be labelled as depicted in
Figure 1 (b), while the copy of T2 attached to u7 should be labelled as depicted in Figure 1 (a)
(in particular, the two labellings of T2 depicted in Figure 1 comply with u7 having colour 7).
Again, the wiggly edges should be labelled 1. In total, a minimum `2 assigns label 1 to 42
edges and label 2 to 23 edges, and thus σ(`2) = 88.

Thus, a labelling ` of Gf achieving σ(`) = mE2(Gf) must assign label 2 to the input and two
outputs. �

Now consider the graph operation consisting in taking two copies G1 and G2 of Gf, and
identifying the input of G1 and one output of G2. As described in [5], this results in a graph G
with one input and three outputs such that, for every proper 2-labelling, the input and three outputs
must all be assigned the same label (which can be either 1 or 2). By repeating this operation with
more and more copies of Gf, we can come up with a graph G1/2 with one input and arbitrarily

13

A(4, 0) A(5, 0) A(6, 0) A(5, 0) A(6, 0) A(7, 0) A(8, 0)

A(3, 1) A(4, 1)

r

Figure 3: The auxiliary graph A(2, 2)

many outputs that must all be assigned the same label (either 1 or 2) by a proper 2-labelling.
So there are, essentially, two groups of proper 2-labellings of G1/2: those `1 assigning label 1 to
the input and all outputs, and those `2 assigning label 2 to the input and all outputs. Clearly, a
proper 2-labelling ` of G1/2 verifying σ(`) = mE2(G1/2), when restricted to any constituting copy
of Gf in G1/2, should also be minimum in terms of sum of assigned labels. From Claim 4.3, we
thus deduce that a proper 2-labelling ` of G1/2 achieving σ(`) = mE2(G1/2) must assign label 2
to the input and all outputs, i.e., must belong to the `2 group mentioned above. In particular, the
difference between the sum of labels of a minimum `1 and the sum of labels of a minimum `2 gets
larger as the number of copies involved in the construction of G1/2 gets larger.

Now let G be the graph obtained as follows. Consider the graph G1/2 with ∆ outputs (for any
∆ ≥ 12), and identify the degree-1 vertices of these ∆ outputs to a single vertex o∗ (with maximum
degree ∆, as it can be checked from Figures 1 and 2 that all other vertices of G1/2 have degree
at most 6). Note that a proper 2-labelling of G is also proper for G1/2, since vertices of degree 1
cannot be involved in conflicts. Also, a proper 2-labelling of G1/2 must proper for G, since o∗ has
degree at least 12 while all its neighbours have degree 2. By these arguments, a proper 2-labelling
` of G verifying σ(`) = mE2(G) must thus be one of these 2-labellings `2 assigning label 2 to the
input and all outputs. Such an `2 verifies c`2(o∗) = 2∆. On the other hand, a proper 2-labelling
`1 assigning label 1 to all outputs verifies c`1(o∗) = ∆. Thus, a proper 2-labelling ` of G verifying
σ(`) = mE2(G) will make o∗ get colour 2∆, while there are proper 2-labellings by which o∗ gets
colour ∆. Note in particular that by our choice of ∆, vertex o∗ must indeed be the vertex with
the largest colour, as its degree is at least 12, all other vertices have degree at most 6, and we are
only assigning labels 1 and 2.

4.2 Using larger labels can be arbitrarily better
In this section, we present, for any k ≥ 3, a construction for a tree Tk such that we have mE2(Tk) =
mE3(Tk) = mE4(Tk) = · · · = mEk(Tk) and mEk+1(Tk) < mEk(Tk). In other words, for these trees
Tk we need to consider large labels to design a proper labelling ` achieving mE(Tk, `) = mE(Tk).

Let us first introduce the auxiliary graph A(α, β) (for α ≥ 2 and β ≥ 0), which will serve as
the building block for Tk. This auxiliary graph is a tree and its built recursively as follows: For
any α∗ ∈ N, A(α∗, 0) is defined as a leaf. For any β > 0, A(α, β) is a tree of height β, rooted in a
vertex r that has α children. For each 1 ≤ i ≤ α, let ci be the corresponding child of r; each ci is
the root of a A(α+ i, β − 1) tree and thus d(ci) = α+ i+ 1 (since each ci has α+ i children of its
own as well as an edge connecting him with his parent). Note that d(ci) ∈ D(α) := [α+ 2, 2α+ 1]
and that for i 6= j, d(ci) 6= d(cj) (and thus all the values of D(a) are used exactly once). Finally,
we say that A(α, β) is represented by r. The auxiliary graph A(2, 2) is illustrated in Figure 3.

Let us also define the pending auxiliary graph that corresponds to A(α, β) as P (α, β) = (V,E),
where V = V (A(α, β)) ∪ {v} and E = E(A(α, β)) ∪ vr; in essence P (α, β) is A(α, β) with an
extra vertex v connected to r. We say that P (α, β) is pending from v. Observe that P (α, β) is
locally irregular and thus the labelling ` that assigns label 1 on every one of its edges is proper and
mE(P (α, β), `) = |E|.

Lemma 4.4. Let β ∈ N∗ and α ≥ 2. Let ` be an α-labelling of the pending auxiliary graph P (α, 2β)
pending from v. Let u,w ∈ V (P (α, 2β)) such that 1 ≤ dist(u, v) ≤ 2 and w is the parent of u. If
`(uw) > 1, then mE(P (α, 2β), `) ≥ |E|+ β.

14

Proof. Let us prove the Lemma for the case where dist(u, v) = 2 and u is the root of the A(α +
1, 2β − 1) subtree, i.e., u = r and w = v (similar arguments hold for the other cases) and let us
first assume that uw is the only edge of P (α, β) that has label more than 1, say `(uw) = α′ where
2 ≤ α′ ≤ α. It follows that c`(u) = α + α′ + 1 and that α + 3 ≤ c`(u) ≤ 2α + 1. Since all edges
of P (α, 2β) except uw is labelled 1, each child y of u has c`(y) = d(y). Moreover, since u is the
root of the A(α+ 1, 2β − 1) tree, each one of the α+ 1 children of u has a unique degree in the set
D(α+ 1). But D(α+ 1) = [α+ 3, 2α+ 2] and c`(u) ∈ D(α+ 1). It follows that there exists a child
of u that has the same induced, by `, colour as u. Thus ` must assign a label different than 1 to at
least one more edge of P (α, β), and the argument can be repeated at least β times (since the height
of T (α, 2β) is 2β+1), leading to ` having to assign a label different than 1 to at least β edges. The
exact value of mE(P (α, 2β), `) = |E|+ β is reached if each time the argument is repeated, α′ = 2
and the next edge that gets assigned label 2 is at distance 2 from the previous.

Theorem 4.5. For every k ≥ 2, there exists a nice graph Tk such that mEk+1(Tk) < mEk(Tk).

Proof. Let k ≥ 2 and let us describe the construction of Tk = (V,E). For 0 ≤ j ≤ k − 1, let
P (k + j, 2(k + 1)) be the auxiliary graph pending from vj that corresponds to an auxiliary graph
A(k + j, 2(k + 1)) (represented by a vertex rj) and let u, v be two vertices connected by the edge
uv. The tree Tk is the graph that is produced by identifying v with each one of the vj . Observe
that since rj represents A(k + j, 2(k + 1)), each rj has d(rj) = k + j + 1 in Tk and that the height
of Tk is 2(k+ 1) + 1. Also observe that in Tk, since N(v) = {r0, . . . , rk−1, u}, d(v) = k+ 1 = d(r0).

Claim 4.6. There exists a (k + 1)-labelling ` of Tk such that σ(`) = |E|+ k.

Proof of the claim. Note that Tk is almost locally irregular. Indeed, let w be a non leaf vertex
of Tk, other than r1, v and u, and let x be its parent. If d(w) = d + 1 then d + 1 > d(x) (by
construction) and w has d children ch1, . . . , chd, each one having degree at least d+ 2. In fact, the
only adjacent vertices that have the same degree are v and r0.

Let ` be the k + 1-labelling of Tk that assigns label k + 1 on the edge uv and label 1 on the
remaining edges of Tk. Then c`(v) = 2k+ 1 and for each 0 ≤ i ≤ k− 1, d(rj) ∈ [k+ 1, 2k] and thus
there is no conflict between the colour of v and that of its children. It follows that ` is a proper
(k + 1)-labelling for Tk and σ(`) = |E|+ k. �

Let `′ be any proper k-labelling of Tk. It suffices to show that σ(`′) > |E|+k. Let w ∈ N(r0)\{v}
and y ∈ N(v) \ {u, r0}. Once more, since d(v) = d(r0) = k + 1, at least one of the edges uv, r0w
or vy has to have a label different than 1 for `′ to be proper. Let `′(uv) = l with 2 ≤ l ≤ k and
assume that only this is the only edge of Tk that has a label different than 1. Then c`′(v) = k + l
and k + l ∈ [k + 2, 2k]. Recall that for each 0 ≤ j ≤ k − 1, rj has d(rj) = k + j + 1 and thus
d(rj) ∈ [k + 1, 2k] and since uv is the only edge with a label different than 1, c`′(rj) = d(rj). It
follows that there exists a j ∈ [0, k − 1] such that c`′(rj) = c`′(v) leading to `′ not being proper.
Thus there must exist another edge u′v′ (with, say, u′ being the parent of v′) that is assigned a
label different than 1 by `′. This edge, however, belongs to P (q, 2(k+ 1)) (for some q ∈ [k, 2k− 1])
and have 1 ≤ dist(v′, v) ≤ 2. It follows from Lemma 4.4 that mE(Tk) ≥ |E| + k + 1. The cases
where r0w or vy are assigned a label different than 1 follow by applying directly Lemma 4.4.

Observe that the height of Tk can be controlled by changing the β value of the pending auxiliary
graphs that form it. Furthermore, it follows from Lemma 4.4 that mE(T (α, 2β) < mE(T (α, 2β′))
for β < β′. This proves the following corollary:

Corollary 4.7. For every k ≥ 2, there exists a graph Tk such that mEk+1(Tk) is arbitrarily smaller
than mEk(Tk).

5 Bounds
Observation 2.1 establishes that, for any nice graph G, in general mE(G) should be expressed as
a function of |E(G)|. To date, the best result towards the 1-2-3 Conjecture, due to Kalkowski,
Karoński and Pfender [11], states that χΣ(G) ≤ 5 holds for every nice graph G. It implies the
following:

15

Theorem 5.1 ([11]). For every nice graph G, we have mE(G) ≤ mE5(G) ≤ 5|E(G)|.

Of course, the upper bound in Theorem 5.1 is immediately improved for every nice graph G for
which we can beat the upper bound of Kalkowski, Karoński and Pfender. In particular, let us recall
that χΣ(G) ≤ 3 whenever χ(G) ≤ 3 (see [12]), which implies that mE(G) ≤ mE3(G) ≤ 3|E(G)|
holds here. Recently, Przybyło proved in [15] that χΣ(G) ≤ 4 whenever G is regular, which implies
that mE(G) ≤ mE4(G) ≤ 4|E(G)| holds. More results of this sort can be found e.g. in the
survey [16] by Seamone.

More generally, the 1-2-3 Conjecture, if true, would imply that, for every nice graph G, we even
have mE(G) ≤ mE3(G) ≤ 3|E(G)|. A natural question to wonder is whether there exist graphs G
for which mE(G) is close to this theoretical upper bound 3|E(G)|. Recall that, already, we have
mE(G) ≤ mE2(G) ≤ 2|E(G)| whenever χΣ(G) ≤ 2. The fact that we are not aware of graphs G
with χΣ(G) = 3 needing a lot of 3’s in any proper 3-labelling leads us to suspect that even the
following conjecture might be true.

Conjecture 5.2. For every nice graph G, we have mE(G) ≤ 2|E(G)|.

Conjecture 5.2 holds true for all graphs G with χΣ(G) ≤ 2, recall Observation 2.1. Exper-
imentation via computer programs led us to observe that, actually, it might even be true that
the equality mE(G) = 2|E(G)| holds if and only if G is K3 or C6, recall Theorems 2.5 and 2.6.
However, these cases are very peculiar, due to the small number of edges these two graphs have.

Throughout this section, we provide weaker results towards Conjecture 5.2 for graphs with
given chromatic number, we verify Conjecture 5.2 for bipartite graphs, and we prove a stronger
result in the particular case of trees.

5.1 Graphs with large chromatic number
Towards Conjecture 5.2, we provide a general bound on mE(G) being a function of the chromatic
number χ(G). In particular, the bound we get is better than that in Theorem 5.1, and even better
than the conjectured one in Conjecture 5.2, for dense enough graphs.

In the upcoming proofs, we make use of arguments that are fairly common in this field (see
e.g. [1, 4, 7, 12, 13, 17, 18]), based on label modifications along walks with certain parity length.
Recall that a walk in a graph is a path in which vertices and/or edges might be repeated. A walk
is said closed if it starts and ends at a same vertex. We say a path is even (odd, respectively) if it
is of even length (odd length, respectively).

The next results are for graphs that are not bipartite. Results dedicated to bipartite graphs
will be provided in the next section.

Theorem 5.3. Let G = (V,E) be a nice graph with chromatic number k = χ(G) at least 3. Then,
we have mE(G) ≤ mEk+1(G) ≤ |E|+ k|V |.

Proof. Since k ≥ 3, we have that G is not a bipartite graph. It follows that there exists an odd
cycle C in G. Let H be the subgraph of G constructed according the following procedure: start by
H = C. Then, iteratively, for each vertex v ∈ V \ V (H) such that there exists a vertex h ∈ V (H)
with vh ∈ E, add v to V (H) and vh to E(H). Repeat this process until V (H) = V . In the end,
H will contain only one cycle, the cycle C, and simple paths that lead to all the vertices of G that
do not belong to C. Observe that for each e ∈ E(C), the subgraph H − e is a spanning tree of G.
Thus |E(H)| = |V (G)|.

Let G′ = G∪S0, where S0 = ∅, and Si ⊆ V (G′), for 1 ≤ i ≤ k, be the k stable sets induced by a
proper colouring c of G′ (i.e. if v ∈ Si then c(v) = i). We are going to construct a (k+ 1)-labelling
` on the edges of G′ such that σ(`) ≤ |E(G′)|+k|V (G′)|. Let us start by having ` assign label 1 to
all edges of G′. At this point, the colour of every vertex is exactly its degree. For each 0 ≤ i ≤ k, let
S∗i = {v ∈ Si|c`(v) = i mod (k + 1)} (obviously S∗0 = ∅). Our goal is to modify ` so that for each i,
we have S∗i = Si, from which it follows that c` is a proper colouring of G′. Aiming at reaching that
conclusion, note that, modulo k + 1, we can equivalently have ` assigning labels 0, . . . , k instead.

Let v∗ ∈ V (G′) such that d(v) = d (mod k + 1). Since c`(v∗) = d(v∗), it follows that v∗ ∈ S∗d .
Free to relabel the stable sets induced by c, we may assume that d is such that Sd−1 = ∅. For

16

each v ∈ Si \ S∗i , we define Po(v) = (v∗, ho1, . . . , h
o
n, v) and Pe(v) = (v∗, he1, . . . , h

e
m, v) to be an

odd and an even walk respectively, following the edges of H, that connect v∗ and v (thus n is
an even number and m is an odd number). These walks are sure to exist because H contains
the odd cycle C. Let `′ be the modified labelling `. To modify Po(v), we alternate between
removing 1 mod (k + 1) and adding 1 mod (k + 1) from the labels of its edges. Thus `′(v∗ho1) =
`(v∗ho1)−1 mod (k + 1), `′(ho1h

o
2) = `(ho1h

o
2)+1 mod (k + 1), . . . , `′(honv) = `(honv)−1 mod (k + 1).

Similarly, to modify Pe(v), we alternate between adding 1 mod (k + 1) and removing 1 mod (k + 1)
from the labels of its edges. Thus `′(v∗he1) = `(v∗he1) + 1 mod (k + 1), `′(he1h

e
2) = `(he1h

e
2) −

1 mod (k + 1), . . . , `′(henv) = `(henv)−1 mod (k + 1). These modifications do not affect the colours
of the internal vertices of Po(v) and Pe(v). We perform these modifications the one after the other.
That is if we start by modifying Po(v), we continue by modifying Pe(v), then with Po(v) and so
on. Each time we modify Po(v) or Pe(v), the colour of v is reduced by 1 mod (k + 1) and if we
alternate between modifying Po(v) and Pe(v), then the colour of v∗ stays the same.

Let v ∈ Si \ S∗i . We alternate between modifying Po(v) and Pe(v) until c`′(v) = i mod (k + 1).
Then me move on to modify another vertex v′ ∈ Si′ \ S∗i′ (i is not necessarily different than i′). If
the last modification for v was on Po(v), we start with modifying Pe(v′) and once more we proceed
by alternating between modification on Pe(v′) and Po(v′) and vice versa.

It is clear that once the above process is finished, for each v 6= v∗ and i, v ∈ Si if and
only if c`′(v) = i mod (k + 1). Also, if the total number w of modifications done is even, then
c`′(v

∗) = d mod (k + 1) and if w is odd, then c`′(v∗) = d − 1 mod (k + 1). In any case, and since
before the modifications Sd−1 = ∅, c`′ is a proper colouring of G. Note that this remains true
when turning all labels 0 into k+ 1, so that `′ is a (k+ 1)-labelling as desired. Recall also that the
modifications are done on the edges of H and |E(H)| = |V (G)|. In the worst case, all the edges of
H are labelled k + 1 by `′ and thus mE(G, `′) ≤ |E|+ k|V |.

In most proof contexts making use of the walk-switching procedure described in the proof of
Theorem 5.3, there are favourable situations in which the bound can be further reduced. The next
result illustrates that fact.

Theorem 5.4. Let G = (V,E) be a nice graph with odd chromatic number k = χ(G) at least 3.
Then, we have mE(G) ≤ mEk(G) ≤ |E|+ (k − 1)|V |.

Proof. LetH be the subgraph of G as it was defined in the proof of Theorem 5.3 and Si be the stable
sets induced by a proper colouring c of G. Our goal is to reach, by `, the desired colours modulo k.
Under that assumption, we can here assign labels 0, . . . , k− 1 instead. Once more, we start with `
assigning label 1 to all edges of G. For each 1 ≤ i ≤ k, let S∗i = {v ∈ Si|c`(v) = i mod k}.

For each v ∈ Si \ S∗i , let Pv be an odd length closed walk of H that contains v. Again
the existence of Pv is guaranteed because of C. We proceed by modifying the labels of Pv: we
alternate between adding 1 (modulo k) and removing 1 (modulo k) from the labels of consecutive
edges of Pv. Since Pv is a closed walk of odd length, exactly two consecutive edges (not necessarily
distinct) will have to be altered in the same way (i.e. either they are both incremented by 1 or
reduced by 1 modulo k). The modification is done so that these two edges have v as a common
vertex. Let `′ be the modified ` and let us assume that the labels of the edges of H that are
adjacent to v are both incremented by 1 modulo k (symmetric argument holds for the other case).
Clearly c`′(v) = (c`(v) + 2) mod k and since k is odd, by repeating this process the desired value
c`′(v) = i mod k is eventually reached.

Eventually turn all 0’s into k’s. In the worst case, `′ assigns label k on each one of the |V | edges
of H. Thus mE(G, `′) ≤ |E|+ (k − 1)|V |.

5.2 Bipartite graphs
In this section, we prove Conjecture 5.2 for nice bipartite graphs. It turns out, however, that we are
not aware of many bipartite graphs G for which mE3(G) reaches exactly 2|E(G)|. To go further, we
both improve the upper bound in particular contexts, and exhibit constructions of bipartite graphs
G with large value of mE2(G), that are legitimate candidates for having mE(G) large. Throughout
this section, it is worth keeping in mind that determining mE2(G) for a given bipartite graph G is
NP-complete by Theorem 3.2.

17

(a) (b)

(c) (d)

Figure 4: Constructing an odd multi-cactus through several steps, from the red-green C6 (a). Red-
green paths with length at least 5 congruent to 1 modulo 4 are being repeatedly attached onto
green edges through steps (b) to (d). Solid edges are red edges. Wiggly edges are green edges.

5.2.1 Conjecture 5.2 for nice bipartite graphs

Since, according to [12], nice bipartite graphs G verify the 1-2-3 Conjecture and some of them even
verify χΣ(G) = 3, they can be classified into three classes B1, B2 and B3 where, for each i ∈ {1, 2, 3},
the set Bi contains exactly the connected bipartite graphs G with χΣ(G) = i. Note that B1 contains
the locally irregular bipartite graphs G, each one of which verifies mE1(G) = |E(G)|. The graphs
G of B2 admit proper 2-labellings, and, for these, by Observation 2.1 we have mE2(G) ≤ 2|E(G)|.
So, in order to prove Conjecture 5.2 for nice bipartite graphs, we only need to focus on the graphs
of B3.

The graphs of B3 were characterized by Thomassen, Wu and Zhang in [18], who proved that
these graphs are exactly the so-called odd multi-cacti, which are the graphs that can be obtained
at any step of the following procedure (see Figure 4 for an illustration):

• Start from a cycle with length at least 6 congruent to 2 modulo 4 whose edges are properly
coloured with red and green (i.e., no two adjacent edges have the same colour).

• Consider a green edge uv and join u and v via a new path of length at least 5 congruent
to 1 modulo 4 whose edges are properly coloured with red and green, where both the edge
incident to u and the edge incident to v are red.

It is worth mentioning that odd multi-cacti are 2-degenerate and 2-connected. Also, they are
bipartite, and both of their parts have odd size. It can also be noted that for every green edge uv,
we have d(u) = d(v), and no two green edges share ends. In [7], it was actually shown that any
nice bipartite graph with a part of even size does not belong to B3:

Lemma 5.5. [7] Let G be a connected bipartite graph with bipartition (U, V). If |U | is even, then
χΣ(G) ≤ 2. Furthermore, G admits proper 2-labellings where all vertices of U have odd colour
while all vertices of V have even colour.

We are now ready to prove our main result in this section.

Theorem 5.6. For every nice bipartite graph G, we have mE(G) ≤ mE3(G) ≤ 2|E(G)|.

18

Proof. Since the statement holds for G ∈ B1 ∪B2, as explained earlier, we can assume G ∈ B3, i.e.,
G is an odd multi-cactus with bipartition (U, V) (where both |U | and |V | are odd). If G is a cycle
with length at least 6 congruent to 2 modulo 4, then the result follows from Theorem 2.6. Thus,
we may assume that ∆(G) ≥ 3, i.e., some path attachments were made to build G starting from
an original cycle.

Let us consider the last green edge xy to which a path P = (x, v1, . . . , v4k, y) was attached in
the construction of G, where k ≥ 1. Recall that d(x) = d(y) ≥ 3 by construction.

Consider G′ = G − {v1, v2, v3}. Assuming v1, v3 ∈ U and v2 ∈ V , the bipartition of G′ is
(U ′, V ′) = (U \ {v1, v3}, V \ {v2}). This means that |V ′| is even. By Lemma 5.5, there is a proper
2-labelling `′ of G′ such that all vertices of U ′ have even colour while all vertices of V ′ have odd
colour. Since x ∈ V ′, the colour c`′(x) is odd, and thus at least 3 since dG′(x) ≥ 2. Similarly,
v4 ∈ V ′, so the colour c`′(v4) is odd, and it is precisely 1 since dG′(v4) = 1.

We now extend `′ to a proper 3-labelling ` of G, by assigning label 1 to v1v2, label 2 to xv1 and
v3v4, and label 3 to v2v3. This way:

• c`(x) and c`(v4) remain odd;

• c`(v1) = 3 < 5 ≤ c`(x);

• c`(v3) = 5 > 3 = c`(v4);

• c`(v2) = 4 6∈ {c`(v1), c`(v3)} = {3, 5}.

For these reasons, it should be clear that ` is indeed a proper 3-labelling of G. We additionally
note that label 3 is actually assigned only once by `, to v2v3. Furthermore, ` assigns label 1 at
least once, e.g. to v1v2. From this, it follows that σ(`) ≤ 2|E(G)|.

As mentioned earlier, the only bipartite graph G verifying mE(G) = 2|E(G)| we are aware of,
is C6. Due to the small number of edges of C6, this case looks quite pathological. In particular,
it is natural to wonder whether Theorem 5.6 can be improved in general, when excluding C6. We
investigate this concern in what follows.

5.2.2 Lower bounds for some bipartite graphs

Our main result in this section is that, in general, for a nice bipartite graph G it is not possible
to lower mE2(G) below the 3

2 |E(G)| barrier. Put differently, there exist bipartite graphs for which
label 2 must be assigned to at least half of the edges by any proper 2-labelling. This is a consequence
of the following more general result, which is of independent interest.

Theorem 5.7. Let G be any nice graph, and let H be a graph obtained from G by subdividing every
edge e exactly ne times, where ne = 4ke + 3 for some ke ≥ 0. Then χΣ(H) = 2. Furthermore,
mE2(H) = 3

2 |E(H)|.

Proof. For every edge e = uv of G, let us denote by Pe the corresponding path of length 4(ke + 1)
in H. Note that H has many adjacent 2-vertices, so χΣ(H) > 1. Also, H is bipartite with
bipartition X ∪ Y , where w.l.o.g. X contains all vertices of G. Now let ` be the 2-labelling of H
obtained by considering every edge e = uv of G, and assigning labels 2, 1, 1, 2, 2, 1, 1, . . . , 1, 1, 2 to
the consecutive edges of Pe as going from u to v. Then ` is proper since all vertices in X have even
colour, while all vertices in Y have odd colour. The last part of the claim follows from the fact
that for every edge e of G, in any labelling ` of H every two edges of Pe being at distance 2 apart
must receive distinct labels (recall Observation 2.3). Due to the length of Pe, this implies that the
sum of the labels assigned to its edges is at least 3

2 |E(Pe)|. Thus, σ(`) ≥ 3
2 |E(H)|.

Corollary 5.8. There exist infinitely many bipartite graphs G ∈ B2 with various structure verifying
mE2(G) = 3

2 |E(G)|. This remains true for trees.

Proof. This follows from Theorem 5.7. The last part of the statement is because any subdivision
of a tree is clearly a tree itself.

19

In particular through experimentation via computer programs, we also managed to come up
with the following construction yielding bipartite graphs G for which mE2(G) slightly exceeds
3
2 |E(G)|. These graphs can be constructed as follows. Let x, y ≥ 4 be any two integers congruent
to 0 modulo 4. The graph H(x, y) is the graph obtained by starting from the disjoint union of a
cycle C with length x and a cycle C ′ with length y, by adding an edge joining any vertex of C and
any vertex of C ′. Note that H(x, y) has odd size.

Theorem 5.9. FF: I dont like how this theorem is phrased. It is not selfcontained. I mean that
H(x, y) should be defined inside the theorem Let x, y ≥ 4 be any two integers at least 4 congruent
to 0 modulo 4. Then, we have mE2(H(x, y)) =

⌈
3
2 |E(H(x, y))|

⌉
.

Proof. We begin by showing the following Claim:

Claim 5.10. Let G be obtained from a cycle C with length x at least 4 congruent to 0 modulo 4 by
adding an edge from any vertex v of C to a new pending vertex u. Then, by any proper 2-labelling
` of G, exactly half of the edges of G must be labelled 2. Furthermore, either:

• `(vu) = 1 and c`(v) = 5, or

• `(vu) = 2 and c`(v) can be either of 4, 5, 6.

Proof of the claim. Let us denote by v0, . . . , vx−1 the successive vertices of C, where v0 = v.
Because d(vi) = 2 for every i ∈ {1, . . . , x − 1}, recall, according to Observation 2.3, that, by any
proper 2-labelling ` of G, we must have `(v0v1) 6= `(v2v3) 6= `(v4v5) 6= · · · 6= `(vx−2vx−1) (and thus,
by the length of x, we have `(v0v1) 6= `(vx−2vx−1)), and similarly `(v1v2) 6= `(v3v4) 6= `(v5v6) 6=
· · · 6= `(vx−1v0) (and thus `(v1v2) 6= `(vx−1v0)). So there are essentially three ways for ` to be
designed:

• If `(v0v1) = `(v0vk−1) = 1, then `(v1v2) = `(vk−1vk−2) = 2, and c`(v1) = c`(vk−1) = 3. In
that case, so that c`(v0) 6= 3, we must have `(v0u) = 2 in which case c`(v0) = 4.

• If `(v0v1) = `(v0vk−1) = 2, then `(v1v2) = `(vk−1vk−2) = 1, and c`(v1) = c`(vk−1) = 3. In
that case, we can either have `(v0u) = 1 in which case c`(v0) = 5, or `(v0u) = 2 in which
case c`(v0) = 6.

• If `(v0v1) = 1 and `(v0vk−1) = 2, then `(v1v2) = 1 and `(vk−1vk−2) = 2, and c`(v1) = 2
and c`(vk−1) = 4. In that case, so that c`(v0) 6= 4, we must have `(v0u) = 2 in which case
c`(v0) = 5.

This concludes the proof. �

Let G = H(x, y), and ` be a proper 2-labelling of G. Let H1, H2 be the two connected compo-
nents resulting from the removal of the unique bridge uv of G, and G1 and G2 be the subgraphs
H1 + uv and H2 + uv, respectively, of G (where, say, G1 contains the cycle C1 with length x, and
G2 contains the cycle C2 with length y). Applying Claim 5.10 onto G1 and G2 and the restric-
tion of ` to these graphs, we deduce that we cannot have `(uv) = 1 as otherwise we would have
c`(u) = c`(v) = 5, a contradiction. So we must have `(uv) = 2. Furthermore, still by Claim 5.10,
exactly half of the edges of C1 must be labelled 2 by `, and similarly exactly half of the edges of
C2 must be labelled 2. It yields that σ(`) = d 3

2 |E(H(x, y))|e. Note that ` does exist, since G is not
an odd multi-cactus (due to the presence of the bridge uv). In particular, the edges of C1 and C2

can be labelled in such a way that c`(u) and c`(v) are two distinct values in {4, 5, 6}.

5.2.3 Improved upper bounds

As shown previously, it seems that, in general, for nice bipartite graphs the bound in Theorem 5.6
might not be optimal. Following our investigations in the previous section, we believe that perhaps
the following could be the right direction to investigate:

Conjecture 5.11. There is an absolute constant c ≥ 1 such that, for every nice bipartite graph
G ∈ B2, we have mE2(G) ≤ 3

2 |E(G)|+ c.

20

It is worth pointing out that a proper 2-labelling ` of a graph G where σ(`) is about 3
2 |E(G)| is

actually a 2-labelling where the number of assigned 1’s is about the same as the number of assigned
2’s. Thus, Conjecture 5.11 can be sort of related to the notion of equitable proper labellings of
graphs, which were introduced in [3], which are proper labellings where, for every two assigned
labels i, j, the number of edges assigned label i differs by at most 1 from the number of edges
assigned label j. Regarding Conjecture 5.11, it can be observed that mE2(G) ≤ 3

2 |E(G)|+ 1 holds
for every graph G admitting an equitable proper 2-labelling. The additive c term is naturally
reduced from 1 to 0 when G has even size. Among other results, the authors in [3] proved that
nice bipartite complete graphs and forests admit equitable proper 2-labellings.

Towards Conjecture 5.11, in this section our aim is to improve Theorem 5.6 further for the
bipartite graphs of B2. First off, we point out that the theoretical upper bound in Theorem 5.6
cannot be reached for a bipartite graph in B2.

Observation 5.12. ∀G ∈ B2, mE2(G) < 2|E(G)|

Proof. By definition of B1, B2 and B3, since G 6∈ B1 the graph G is not locally irregular. Now, if
mE2(G) = 2|E(G)|, then the only proper 2-labelling of G is the one assigning label 2 to all edges.
For such a labelling to be proper, G must have no two adjacent vertices having the same degree.
So G must be locally irregular, a contradiction.

In particular contexts, better bounds can be obtained by adapting the arguments from the
proof of Theorem 5.3 in a particular way.

Theorem 5.13. Let G be a nice bipartite graph with bipartition (U, V) where |U | is even. Then,
we have mE2(G) ≤ |E(G)|+ |V (G)| − 1.

Proof. Let us denote by Ue (Uo, respectively) the set of vertices of U having even (odd, respectively)
degree in G, and similarly by Ve (Vo, respectively) the set of vertices of V having even (odd,
respectively) degree in G. Note that either |Ue| and |Vo| must have the same parity, or |Uo| and
|Ve| must have the same parity. This is because, otherwise, since |U | is even and |U | = |Ue|+ |Uo|,
the sizes |Ue| and |Uo| must have the same parity, we would get that also |Ve| and |Vo| have the
same parity. From this, we would deduce that

∑
u∈U d(u) 6≡

∑
v∈V d(v) (mod 2), which is not

possible.
Without loss of generality, we may assume that Ue and Vo have the same parity, thus that

|Ue| + |Vo| is even. Our aim now, is to design a 2-labelling of G where all vertices in U get odd
colour while all vertices in V get even colour. Such a labelling will obviously be proper. To that
aim, we proceed as follows. Let us start with assigning label 1 to all edges of G. This way, at
this point the colour of every vertex is exactly its degree; so all vertices in Uo and Ve verify the
desired colour property, while all vertices in Ue and Vo do not. To fix these vertices, we consider
any spanning tree T of G. We now repeatedly apply the following fixing procedure: we consider
any two vertices x and y of Ue ∪Vo that remain to be fixed, and flip (i.e., turn the 1’s into 2’s, and
vice versa) the labels of all edges on the unique path in T from x to y. This way, note that only
the colours of x and y are altered modulo 2. Since |Ue| + |Vo| is even, there are an even number
of vertices to fix, and, by flipping labels along paths of T , we can fix the colour of all vertices in
Ue ∪ Vo. This results in a 2-labelling ` of G, with the desired properties, which is thus proper.

Note now that ` assigns label 2 to edges of T only. Since T has |V (G)| − 1 edges, the result
follows.

Note for instance that, for a graph G, we have |E(G)| + |V (G)| − 1 ≤ 3
2 |E(G)| as soon as

|E(G)| ≥ 2|V (G)| − 2. As notable consequences, this implies that a bipartite graph G ∈ B2 with a
part of even size verifies mE2(G) ≤ 3

2 |E(G)| as soon as G has minimum degree at least 4, or more
generally when the graph is dense enough.

The same result also holds when G is bipartite and cubic (in which case χΣ(G) = 2, by definition
of odd multi-cacti), from a more general argument:

Observation 5.14. Let G be a regular graph with χΣ(G) = 2. Then, we have mE(G) ≤ mE2(G) ≤
3
2 |E(G)|.

21

Proof. Let ` be a proper 2-labelling of G. Since G is regular, the edges labelled 1 by `, and similarly
the edges labelled 2, must induce a locally irregular subgraph of G. Then the 2-labelling `′ of G
obtained by turning all 1’s into 2’s, and vice versa, is also proper. Now there is one of ` and `′ that
assigns label 2 to at most half of the edges, and the conclusion follows.

Slight modifications of the proof of Theorem 5.13 also yields the desired result for certain
bipartite graphs that are Hamiltonian.

Observation 5.15. Let G be a Hamiltonian bipartite graph with bipartition (U, V) where |U | is
even. Then, we have mE(G) ≤ mE2(G) ≤ 3

2 |E(G)|.

Proof. Just mimic the proof of Theorem 5.13, but repair pairs of defective vertices of G along
a Hamiltonian cycle C = (v0, . . . , vn−1, v0), matching each of them, say, with the next defective
vertex in the ordering of C. If this fixing process turns more than half of the edges to 2, then,
instead, repair pairs of vertices around C matching each of them with the previous defective vertex
in the ordering (which is equivalent to flipping the labels along C).

5.3 Trees
Our main result here is that for every nice tree T , we have mE2(T) ≤ 3

2 |E(T)|, which cannot be
lowered in general, due to Corollary 5.8. Still, it confirms Conjecture 5.11 for nice trees. Let us
recall that it was proved in [3] that nice forests admit equitable proper 2-labelling. This directly
implies our result below for trees with even size, while it does not for trees with odd size (as a
2-labelling where the number of assigned 2’s is one more than the number of assigned 1’s does not
fulfil our claim).

Theorem 5.16. For every nice tree T , we have mE2(T) ≤ 3
2 |E(T)|.

Proof. The proof is by induction on the number of branching vertices of T . The base case is when
T has no branching vertex, i.e., when ∆(T) ≤ 2. In that case, T is a path. Let us here consider the
2-labelling ` of T obtained by assigning labels 1, 1, 2, 2, 1, 1, 2, 2, . . . as traversing the edges from
an end-vertex to the second one. It is easy to see that ` is indeed proper. Indeed, recall first that
degree-1 vertices cannot be involved in a colour conflict. Furthermore, for two adjacent 2-vertices
u, v to have the same colour, the edge incident to u different from uv must be assigned the same
label as the edge incident to v different from uv (recall Observation 2.3). Since, by `, no two edges
at distance 2 get assigned the same label, this implies that no colour conflict arises. Lastly, since
1’s and 2’s are assigned by pairs starting from a pair of 1’s, it should be clear that ` assigns more
1’s than 2’s. Thus, mE2(T) ≤ σ(`) ≤ 3

2 |E(T)|.

We now focus on the general case. That is, we now assume that T has branching vertices, and
every nice tree with fewer branching vertices verifies the claim. Let us root T at some degree-1
vertex r. In the usual way, this defines a (virtual) orientation of T , where every vertex v of T but
r has a unique parent (unique neighbour of v that is closer to r), all vertices v but the leaves have
children (neighbours of v that are farther from r), and more generally all vertices v but the leaves
have descendants (vertices where their unique shortest path to r passes through v). By a deepest
branching vertex of T , we refer to a branching vertex whose all descendants are not branching
vertices, i.e., they have degree at most 2.

Let us consider a deepest branching vertex v of T . Then v is adjacent to its parent w and there
are k ≥ 2 hanging paths P1, . . . , Pk attached to v. Note that some of the Pi’s may be of length 1
in case some of the children of T are leaves. Let T ′ be the tree obtained from T by removing the
edges of P1, . . . , Pk (i.e., all their vertices different from v). If T ′ is just an edge, then T is actually
a subdivided star. If T is a star with at least two leaves, then it is locally irregular and we can
assign label 1 to all edges. Otherwise, when T is a subdivided star different from a star, then,
without loss of generality, P1 has length at least 2. We then change the root r to be the degree-1
vertex of P1 so that, now, we can assume that T ′ indeed is not an edge.

Thus, we can assume that T ′ is not just an edge. Since T ′ has less branching vertices than T ,
by the induction hypothesis there is a 2-labelling `′ of T ′ verifying mE(T ′, `′) ≤ 3

2 |E(T ′)|. We wish
to extend `′ to the edges of P1, . . . , Pk, thus to a 2-labelling ` of T . To that aim, we consider the
following two extension schemes for extending `′ to the edges of one Px of the Pi’s:

22

• 1-extension: We assign labels 1, 1, 2, 2, 1, 1, 2, 2, . . . to the consecutive edges of Px, as they
are traversed going from v to the degree-1 vertex of Px.

• 2-extension: We assign labels 2, 1, 1, 2, 2, 1, 1, 2, 2, . . . to the consecutive edges of Px, as they
are traversed going from v to the degree-1 vertex of Px.

Note that whenever Px has length not congruent to 1 modulo 4, the number of assigned 1’s is
always at least the number of assigned 2’s by both 1-extensions and 2-extensions. More precisely,
if Px has length congruent to 1 modulo 4, then the number of 2’s by a 2-extension is one more than
the number of 1’s, and vice versa by a 1-extension. Recall also that 1-vertices cannot be involved
in colour conflicts. Furthermore, for two adjacent 2-vertices x, y to have the same colour, the edge
incident to x different from xy must be labelled the same way as the edge incident to y different
from xy. From this, we deduce that when extending `′ to the edges of the Pi’s via 1-extensions
and 2-extensions, we must just make sure that 1) the colour of v does not get equal to the colour
of its parent w, and 2) the colour of v does not get equal to the colour of one of its children.

We note that the second type of colour conflict cannot actually occur. Indeed, note that by
a 1-extension of Px, the neighbour of v in Px, unless it has degree 1 (in which case it cannot be
in conflict with v), gets the colour 2, while, by a 2-extension, it gets the colour 3. Since v is a
branching vertex with k ≥ 2 children, thus of degree k + 1, when performing 1-extensions and
2-extensions to the Pi’s, vertex v gets colour precisely k+ 1 ≥ 3 if only 1-extensions are performed,
and colour at least k + 2 ≥ 4 if at least one 2-extension is performed.

Thus, we just need to find a combination of 1-extensions and 2-extensions to the Pi’s so that
no colour conflict involving v and its parent w arises. Also, we need to make sure that the number
of assigned 1’s is at least the number of assigned 2’s. If one of the Pi’s has length not congruent
to 1 modulo 4, then we choose it as P1. Otherwise, if they all have length congruent to 1 modulo
4, then we choose any Pi as P1.

We first perform 1-extensions only, i.e., to all Pi’s. If the colour of v gets different from that
of w, then we are done. Otherwise, when performing a 2-extension to P1 and a 1-extension to all
other Pi’s, the colour of v gets bigger, thus getting different from the colour of w. This results in
the desired extension ` to all edges of T .

Let us conclude by noting that the number of 1’s assigned by ` is at least the number of assigned
2’s. This is because mE2(T ′, `′) ≤ 3

2 |E(T ′)|, and, as mentioned earlier, by 1-extensions to the Pi’s
the number of assigned 1’s is at least the number of assigned 2’s. By 2-extensions, this is true when
performed on paths of length not congruent to 1 modulo 4. By our choice of P1, if P1 has length
congruent to 1 modulo 4, then so do all Pi’s. In that precise case, the number of 2’s assigned to
the edges of P1 is one bigger than the number of assigned 1’s, but this is compensated by the fact
that, in P2, the number of assigned 1’s is one bigger than the number of assigned 2’s. Thus we
additionally have σ(`) ≤ 3

2 |E(T)|, as desired.

6 Conclusion
In this work, we have studied proper labellings of graphs with the additional requirement that we
want the sum of assigned labels to be as small as possible. Our interests were guided by both
straight questions, such as determining mE(G) for a given graph G, as well as more fundamental
ones, such as the difference, in general, between mEk(G) and mEk′(G) for k 6= k′. We have also
investigated the complexity of finding “optimal” labellings.

We quickly ran into Conjecture 5.2, which seems rather natural when knowing that the 1-2-3
Conjecture seems to be a more than plausible conjecture and that graphs, in general, seem to need
only a few 3’s to design proper 3-labellings. We believe it would be interesting to further study this
point in the future, as Conjecture 5.2 stands as the main open problem regarding our investigations
in the current paper. It would also be interesting to progress towards its refinement for bipartite
graphs, Conjecture 5.11. A way to progress towards answering both questions could be to exhibit
families of (possibly bipartite) graphs G for which mE(G) is “large”, i.e. larger than the quantity
in Theorem 5.9.

Regarding our algorithmic results in Section 3, we note that they all deal, for a given graph
G, with the parameter mEk(G) (for some k), and not with the more general parameter mE(G).

23

This is mainly because, as indicated by Theorem 4.5, in general there is no absolute constant that
bounds, for all graphs G, the smallest k such that mE(G) = mEk(G). In particular, even for a
graph G of bounded treewidth, although we can determine mEk(G) in polynomial time for any k
(due to our algorithm in Theorem 3.5), running multiple iterations of our algorithm to determine
mE(G) is not feasible in polynomial time. Thus, we leave the following problem open even for the
simplest case:

Question 6.1. What is the complexity of determining mE(T) for a given tree T?

References
[1] O. Baudon, J. Bensmail, H. Hocquard, M. Senhaji, É. Sopena. Edge Weights and Vertex

Colours: Minimizing Sum Count. Discrete Applied Mathematics, 270:13-24, 2019.

[2] O. Baudon, J. Bensmail, J. Przybyło, M. Woźniak. On decomposing regular graphs into locally
irregular subgraphs. European Journal of Combinatorics, 49:90-104, 2015.

[3] O. Baudon, M. Pilśniak, J. Przybyło, M. Senhaji, É. Sopena, M. Woźniak. Equitable
neighbour-sum-distinguishing edge and total colourings. Discrete Applied Mathematics,
222:40-53, 2017.

[4] J. Bensmail, F. Mc Inerney, K. Szabo Lyngsie. On {a, b}-edge-weightings of bipartite graphs
with odd a, b. Accepted for publication in Discussiones Mathematicae Graph Theory.

[5] J. Bensmail, B. Li, B. Li, N. Nisse. On Minimizing the Maximum Color for the 1-2-3 Con-
jecture. Technical report, 2019. Available online at https://hal.archives-ouvertes.fr/
hal-02330418.

[6] H.L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theoretical Com-
puter Science, 209(1-2):1–45, 1998.

[7] G.J. Chang, C. Lu, J. Wu, Q. Yu. Vertex-coloring edge-weightings of graphs. Taiwanese Jour-
nal of Mathematics, 15(4):1807-1813, 2011.

[8] G. Chartrand, P. Erdös, O.R. Oellermann. How to define an irregular graph. College Mathe-
matics Journal, Vol. 19, No 1, 1988.

[9] G. Chartrand, M.S. Jacobson, J. Lehel, O.R. Oellermann, S. Ruiz, F. Saba. Irregular networks.
Congressus Numerantium, 64:197–210, 1988.

[10] A. Dudek, D. Wajc. On the complexity of verterx-coloring edge-weightings. Discrete Mathe-
matics Theoretical Computer Science, 13(3):45-50, 2011.

[11] M. Kalkowski, M. Karoński, F. Pfender. Vertex-coloring edge-weightings: towards the 1-2-3
Conjecture. Journal of Combinatorial Theory, Series B, 100:347-349, 2010.

[12] M. Karoński, T. Łuczak, A. Thomason. Edge weights and vertex colours. Journal of Combi-
natorial Theory, Series B, 91:151–157, 2004.

[13] H. Lu, Q. Yu, C.-Q. Zhang. Vertex-colouring 2-edge-weightings of graphs. European Journal
of Combinatorics, 32:21-27, 2011.

[14] W. Mulzer, G. Rote. Minimum-weight triangulation is NP-hard. Journal of the ACM, 55(2):11,
2008.

[15] J. Przybyło. The 1-2-3 Conjecture almost holds for regular graphs. Preprint, 2018. Available
online at https://arxiv.org/abs/1809.10761.

[16] B. Seamone. The 1-2-3 Conjecture and related problems: a survey. Preprint, 2012. Available
online at http://arxiv.org/abs/1211.5122.

24

https://hal.archives-ouvertes.fr/hal-02330418
https://hal.archives-ouvertes.fr/hal-02330418
https://arxiv.org/abs/1809.10761
http://arxiv.org/abs/1211.5122

[17] K. Szabo Lyngsie. On neighbour sum-distinguishing {0, 1}-weightings of bipartite graphs.
Discrete Mathematics and Theoretical Computer Science, 20(1), 2018, #21.

[18] C. Thomassen, Y. Wu, C.-Q. Zhang. The 3-flow conjecture, factors modulo k, and the 1-2-3-
conjecture. Journal of Combinatorial Theory, Series B, 121:308-325, 2016.

25

	Introduction
	First observations and classes of graphs
	First observations and remarks
	Easy classes of graphs

	Complexity aspects
	A negative result for bipartite graphs
	A positive result for graphs with bounded treewidth

	Particular behaviours of the problem
	Minimizing the maximum colour versus minimizing the sum of labels
	Using larger labels can be arbitrarily better

	Bounds
	Graphs with large chromatic number
	Bipartite graphs
	Conjecture 5.2 for nice bipartite graphs
	Lower bounds for some bipartite graphs
	Improved upper bounds

	Trees

	Conclusion

