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Abstract

Structural systems made of high-strength and/or high-ductility metals are usually also rather slender,
which means that their structural behavior and ultimate strength are often govemed by a combination of
plasticity and instability effects. Currently, the rigorous numerical analysis of such systems can only be
achieved by resorting to complex and computationally costly shell finite element simulations. This work
aims at supplying to designers/researchers an efficient and structurally clarifying alternative to assess the
geometrically and/or materially non-linear behavior (up to and beyond the ultimate load) of prismatic
thin-walled members, such as those built from cold-formed steel. The proposed approach is based on
Generalized Beam Theory (GBT) and is suitable for members exhibiting arbitrary deformation pattems
(e.0., global, local, distortional, shear) and made of non-linear isotropic materials (e.g., carbon/stainless
steel grades or aluminum alloys). The paper begins by providing a critical overview of the physically and
geometrically non-linear GBT formulation recently developed and validated by the authors (Abambres et
al. 2012a), which is followed by the presentation and thorough discussion of several illustrative numerical
results conceming the structural responses of 4 members (beams and columns) made of distinct (linear,
bi-linear or highly non-linear) materials. The GBT results consist of equilibrium paths, modal participation
diagrams and amplitude functions, stress contours, displacement profiles and collapse mechanisms — some
of them are compared with values obtained from ABAQuUS shell finite element analyses. It is shown that
the GBT modal nature makes it possible (i) to acquire in-depth knowledge on the member behavioral
mechanics at any given equilibrium state (elastic or elastic-plastic), as well as (ii) to provide evidence of
the GBT computational efficiency, which is achieved by excluding from the analyses all the deformation
modes that do not play any role in a particular member structural response.

1. Introduction

The use of high-strength and/or high-ductility metals, like steel, aluminium or titanium alloys, as well as
recent advances in manufacturing technology, has made it possible to build structural systems (often
made of thin-walled members) that (i) are highly efficient (large strength-to-weight ratios), thus leading to
fairly economic solutions (reduced construction time and considerable material/transportation savings)
and (ii) very often achieve a remarkable visual/aesthetic impact. Therefore, it is not surprising that thin-
walled structures are widely employed in several areas of Aeronautical, Automotive, Civil, Mechanical,
Chemical and Offshore Engineering (Loughlan 2004). Nowadays, the most commonly used thin-walled
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metal members, namely those made of carbon/stainless steel (cold-formed, hot-rolled or welded) and
aluminum (extruded or welded), exhibit a large variety of cross-sections shapes and are typically
employed in such lightweight structures as (i) houses and low to medium-rise buildings (e.g., light
steel framing, storage racks), (ii) profiled sheeting for steel-concrete composite floors, (iii) bridge and
footbridge girders and trusses, (iv) transmission towers, (V) drainage facilities, (vi) facade cladding or
(vii) car, vessel, aircraft and spacecraft structures.

Most thin-walled members exhibit local and/or global slenderness values that lead to a structural behavior
and ultimate strength governed by a strong interaction between plasticity and instability effects, which
renders their accurate assessment a very complex task — this fact stimulates the development of
improved methods of analysis and more efficient new design rules and recommendations. In this context,
one should bear in mind that, even if conventional civil/structural design is almost exclusively concerned
with the satisfaction of serviceability and ultimate limit states, the implementation of a performance-based
structural design® requires also an accurate prediction of the member/structure post-collapse response
(Hiriyur & Schafer 2005). Since experimental investigations are invariably limited, due to their very high
cost and time consumption (including the careful preparation of the test set-up and specimens), alternative
complementary approaches must be sought. The most universally employed, prescribed as a valid design
option for steel structures (e.g., CEN 2006, AISC 2010, BD 2011), is the performance of sophisticated
shell finite element analyses (SFEA), using non-linear constitutive laws and incremental-iterative
techniques. However, this approach has some drawbacks, namely (i) the excessively high computational
effort, i.e., large number of degrees of freedom (d.o.f.) involved, and (ii) the time-consuming/error-prone
input and output data processing/interpretation, particularly in the context of one-dimensional members
(bars). Moreover, the stress and displacement results have a nodal nature, rather than the more traditional
and perceptible “modal language” commonly adopted by the technical/scientific community (e.g., axial
force/extension, flexural moment/displacement, torsional moment/rotation). Besides SFEA, a
(potentially) more efficient option is the yield-line analysis (Hiriyur & Schafer 2005), although it only
aims at providing the (rigid-body) collapse mechanism equilibrium path and an upper bound for the
member ultimate strength. Nevertheless, significant challenges must still be overcome before this
approach can be routinely applied in practical applications — for instance, the need for (i) an a priori
definition of the spatial collapse mechanism, accounting for the influence of residual stresses and initial
geometrical imperfections, and (ii) the correct definition of the yield-line bending strength (these needs
must be fulfilled for different member geometries, materials, loadings and boundary conditions).

A very promising alternative to the aforementioned methods of assessing the member structural behavior,
which makes it possible to eliminate several of the shortcomings outlined above, is the use of Generalized
Beam Theory (GBT). Despite its relatively narrow field of current application (prismatic, straight and
non-perforated thin-walled members) and fairly limited dissemination, GBT has already been widely
recognized as a powerful, versatile, elegant and efficient approach to analyze thin-walled members and
structural systems. These elegance and efficiency arise mostly from its rather unique modal nature — the
displacement field is expressed as a linear combination of cross-section deformation modes whose
amplitudes vary continuously along the member length. This feature makes it possible to (i) acquire in-
depth knowledge on the mechanics of the thin-walled member behavior and (ii) judiciously exclude,
from subsequent similar GBT analyses, those deformation modes found to play no (or negligible) role

2 Particularly suitable for structural systems subjected to extreme loads (e.g., blast, impact, fire, wind or earthquake
loads), in which considerable load redistribution takes place and should be accounted for.



in the particular behavior under scrutiny, thus further reducing the number of d.o.f. involved in a GBT
analysis (i.e., increasing its computational efficiency). GBT has attracted the interest of several
researchers worldwide, leading to the development of new formulations and applications. In particular,
GBT has been extensively upgraded at the Technical University of Lisbon (Camotim et al. 2010a,
2010b), where it has been applied to different (i) types of analysis (first-order, buckling, vibration, post-
buckling, dynamic), (ii) boundary and loading conditions (e.g., localized supports and non-uniform
internal forces) and (iii) materials (steel, steel-concrete, FRP). With a few exceptions, the material
models adopted in all these works were always linear elastic. A physically non-linear GBT formulation
was first reported by Gongalves and Camotim (2004) in the context of elastic-plastic bifurcation
analyses — more recently, the same authors (Gongalves & Camotim 2011, 2012) proposed GBT beam
finite elements (BFE) based on the J,-flow plasticity theory and aimed at performing member first-order
and second-order elastic-plastic analyses. In parallel, Abambres et al. (2012a-c, 2013a-b) developed and
validated alternative elastic-plastic GBT formulations, also based on the Jo-flow plasticity theory
but differing from the previous ones in the fact that (i) the deformation modes are determined by
means of the procedure proposed by Silva et al. (2008) and Silva (2013), and (ii) a novel degree of
freedom (warping rotation) is considered. Very recently, GBT was first employed (and effectively
validated) to perform post-buckling analyses of thin-walled members made of elastoplastic materials
exhibiting strain-hardening, namely stainless steel tubular columns (Abambres et al. 2012c). When
compared with carbon steel, stainless steel (and also aluminum) alloys are characterized by (i) the
absence of a well-defined yield plateau, and (ii) a pronounced non-linearity beyond the proportional
limit, generally associated with the presence of a large amount of strain-hardening.

This work begins by providing a critical overview of the main concepts and procedures involved in the
recent development and numerical implementation of the aforementioned geometrically and materially
(elastic-plastic) non-linear GBT formulation. Then, the paper is essentially devoted to illustrate the
application and potential of the developed GBT approach — this is done by presenting and discussing in
great detail results conceming the structural response (mostly second-order, including the post-collapse
stages) of 4 thin-walled members (beam and columns) that (i) display different cross-section types
(open/closed, branched/unbranched), (ii) exhibit distinct material behaviors (linear, bi-linear or highly
non-linear) and (iii) experience several deformation patterns (global, local, distortional, transverse and
shear). Concerning initial imperfections, only the geometrical ones are incorporated in the non-linear
(post-buckling) elastic-plastic analyses — both residual stresses and cross-section corner effects are
neglected. The most relevant GBT features, stemming from its unique modal nature, are highlighted —
in particular, (i) the evolution of the member deformed configuration is analyzed through GBT modal
participation diagrams and amplitude functions, and (ii) equilibrium paths and deformed configurations
obtained with different deformation mode sets are compared for each analysis. Moreover, for validation
purposes, some GBT-based results are compared with those determined through ABAQUS SFEA.

2. GBT Non-Linear Elastic-Plastic Formulation — Overview

Only a critical overview of the main concepts and procedures involved in the development and numerical
implementation of the proposed GBT formulation is presented in this section. After presenting some
aspects related to (i) the kinematics and cross-section analysis adopted and (ii) the establishment of the
member equilibrium equations, the development of the non-linear BFE incremental equilibrium equations
is addressed (the plasticity model employed is described ahead). For detailed information on these
issues, the interested reader is referred to a very recent publication by the authors (Abambres et al. 2012c).



2.1 Kinematics and Equilibrium Equations

Consider the local coordinate system (X, s, z) shown in Figure 1(a) at each wall mid-surface of a thin-
walled bar, where x, s and z are the longitudinal (0<x<L — L is the member length), transverse (0<s<b —
b is the wall width) and through-thickness (-t/2<z<t/2 — t is the wall thickness) coordinates, respectively
— the corresponding displacements are u (axial or warping), v (transverse) and w (flexural). The GBT
analysis of a thin-walled member consists of two main steps, namely (i) a cross-section analysis and (ii) a
member analysis. The former leads to the determination of the deformation modes, i.e., their displacement
profiles uk(s), vi(s) and wi(s) (k stands for a generic mode) along the cross-section mid-line (z=0), and to
the evaluation of the associated modal mechanical properties. As for the member analysis, it consists of
determining the deformation mode amplitude functions ¢x(x), providing the longitudinal variations of the
corresponding displacement profiles. Then, the GBT displacement field at the member mid-surface is
given by a linear combination of products between each cross-section modal displacement profile
and the respective amplitude function,

u(x, ) = U (8)¢y (X V(%,8) =V, (8) €, (%) w(x, 8) =W, (s) ¢, (x) (@)

where subscript k, denoting each deformation mode, satisfies Einstein’s summation convention. As
mentioned earlier, the cross-section analysis adopted follows the approach developed by Silva et al.
(2008) and Silva (2013), which considers 4 deformation mode families: conventional, cell shear flow,
warping shear and transverse extension — information about this procedure can also be found in Silvestre
etal. (2011) and Abambres (2013). The existing GBT cross-section analyses, which consider either three
(u,v,w) or four (u,v,w, 6 — rotation about the x-axis) d.o.f. per section node, require fine discretizations to
capture the highly non-linear variation of the warping displacements, along the cross-section mid-line,
due to shear deformation and/or spread of yielding. This fact brings about the convenience of enhancing
the representation of these displacements, which is done here by considering additional nodal d.o.f.,
denoted “warping rotations” and consisting of rotations about the z-axis (6;) — one per intermediate node
and more than one per natural node (there is an independent rotation &, per converging wall direction).
This novel feature makes it possible to approximate each warping profile uk(s) by means of piecewise
(within each wall segment) cubic polynomials, instead of the piecewise linear functions employed in the
previous approaches — see the warping shear deformation mode profiles shown in subsection 4.1.

It should be noted that the proposed formulation retains the GBT fundamental plane-stress assumption,
which means that all stress (ox, 05, 02;) and strain (yx, ys,£22) components conceming the through-thickness

(a) (b) (©)

Figure 1: (a) Local coordinate system at each wall mid-surface, (b) general external distributed load g(x,s) and (c) non-null
stress components (plane-stress assumption).



direction (z) are deemed null everywhere, regardless of the problem under consideration. Accordingly,
and making use of the Principle of Virtual Work, the GBT equilibrium equation reads

I”(%ﬁ% +o e, + st57xs) dzdsdx = ” [(a,u,)8Z,, +(a, +0,W ) SZ; ] dsdx , (2
Lb

Lbt

where (i) oy, s, 0y are the longitudinal normal, transverse normal and shear 2™ Piola-Kirchhoff stress
components (see Fig. 1(c)), (i) qx gs, . are the local components of a general external distributed force
applied at the member mid-surface (see Fig. 1(b)), and (iii) d&x, O&s, O)xs are the longitudinal, transverse
and shear virtual Green-Saint-VVenant strain components (non-linear functions of displacements u, v, w),
expressed in terms of the modal amplitude functions (x) and their derivatives, through relations (1).
Moreover, the formulation accounts for (i) residual stresses and initial geometrical imperfections, and (ii)
arbitrary loadings dependent on a single load parameter A, including concentrated forces and/or moments.

2.2 Non-Linear Beam Finite Element

The rigorous determination of equilibrium configurations in a non-linear analysis requires the use of an
incremental-iterative strategy. The cylindrical arc-length method (Clarke & Hancock 1990, De Borst et al.
2012) is adopted in this work and its implementation involves (i) establishing incremental equilibrium
equations, based on the tangent stiffness matrix (Kiwn), and (i) evaluating internal force vectors (f"™) - a
path-independent iterative strategy (Powell & Simons 1981) is adopted: the strain increments at any
Gauss integration point are evaluated with respect to the last (converged) equilibrium configuration.

The numerical results presented and discussed in section 4 were obtained by adopting Hermite cubic
polynomials to approximate the GBT modal amplitude functions in each FE, i.e.,

o0 (x) =W, (x)d, () =1 (x)d - @)

where (i) the 1x4 ¥, vector stores the Hermite cubic polynomials, (ii) dy is the 4x1 displacement
vector related to the approximation of mode Kk, (iii) the first expression concems only the axial extension
and warping shear modes (no in-plane displacements: v=w=0)?, and (iv) the second expression applies
to all other deformation modes (v£0 and/or w£0). After writing all amplitude functions according to their
FE approximations, including the non-linear virtual strain components in the first member of Eq. (2) yields

f=af Ny

where f is the external force vector corresponding to a unit load parameter .. The internal force vector
i component (4x1 sub-vector associated with deformation mode i) can be obtained by means of

int __ gint int int int  __ int _
"= £+ i+ i, fim = [ [ [ o R dzdsdx — (mn = xx,ss,xs) , ()
L bt
where F.(i?ntn) is a 4x1 vector. Note that all displacement vectors (dk in Eq. (3)) and stress components
that appear in Eq. (5) concern a generic “equilibrium configuration” (during the iteration procedure and
when the structural response is non-linear, this configuration does not satisfy equilibrium for the applied

¥ Regarding these modal amplitude function approximations, the possibility of using piecewise linear Lagrange functions,
instead of Hermite polynomials, has also been considered (Abambres 2013).



loads under consideration). Once the internal force vector is defined, the incremental equilibrium equation
for an arbitrary member deformed configuration (j) can be established as

K| Ad =AL T , 6)

]

where (i) d is the displacement vector and (ji) the tangent stiffness matrix (i, p)*™" component, Kipstan, 1S @
4x4 sub-matrix concerning deformation modes i and p, reading (Silvestre & Camotim 2003)

afiim afiim af int af int af int
= = + +

. _ i(xx) i(ss) i(xs) 7
P ad od, oad, ad, od 0

pl pl pl

which corresponds to the Jacobian of the internal force vector i component, with respect to the mode p
displacement vector — its components are dy (I=1,...,4). The Jacobian columns are defined by the
second expression in Eq. (7), where each term is expressed as (recall Eg. (5))

af_im - aFint
i(mn) _ J‘J‘J‘ aGmn Fi”r]r:n to, i(mn) dZdeX, mn = XX, SS, XS , (8)
ad Pl bt ad pl ) od pl

with the stresses (recall Fig. 1(c)), stress gradients and displacement vectors computed at “equilibrium
configuration” j. For an arbitrary elastic-plastic material, the stress gradients are given at every point by

oo
od

— aO-mn a('C"X)( + Go-mn ag'SS + ao—mn ayXS
oe, od, og, od, Oy, ad,

mn

)

pl

where the deformation gradients de/od, are obtained by writing all strain-displacement relations according
to the FE approximations in Eq. (3). The stress components (Egs. (5) and (8)) and their gradients do/0e
(Eq. (9)) are obtained from the J,-flow plasticity model, resorting to implicit and/or explicit numerical
integration schemes wherever plastic deformation takes place — this issue will be addressed in section 3.

Finally, a few words devoted to the imposition of boundary conditions. In first-order analyses of members
with cross-sections exhibiting null primary warping and non-null shear stresses ays, it has been concluded
that shear locking effects (due to the beam theory inadequacy to describe rigorously static and kinematic
measures) are best minimized by ensuring the satisfaction of kinematic boundary conditions: =0 in
every section with null warping. Besides refining the FE mesh near cross-sections with null warping
and non-null shear stresses (e.g., a clamped support), it was also noted that imposing (at those sections)
¢ko=0 for the warping shear modes also helps improving the accuracy of the analysis. However, several
validation examples provided evidence that, in second-order analyses, the above procedure should be
kept, but without imposing =0 for the warping shear modes — due to the non-linearity of the strain-
displacement relations, this condition is no longer essential to obtain accurate results.

3. Overview of the Plasticity Model

Since a detailed description of the (i) J,-flow theory (with the associated flow rule) and (i) implicit and
explicit numerical integration schemes considered in this work, can be found in the literature (e.g., Wu
2005, De Borst et al. 2012) and also in recent publication by the authors (Abambres et al 2012b,c),
only an overview of the main concepts and procedures involved in their development is reported herein.



3.1 J,-flow Theory
For an isotropic material with strain-hardening, the von Mises yield criterion reads

f=F(G)—Gy(K)=0, F(G)z -3J, , (10)

where (i) f and F(o) are the von Mises yield function and stress, respectively, (ii) ¢’ is the yield stress
(or hardening function), (iii) x is the hardening parameter and (iv) J, is the 2™ invariant of the
deviatoric stress. If a point (o, x), located on the yield surface, experiences an infinitesimal plastic flow,
Prager’s consistency equation states that

df = f (o +dok+dx)— f(o.k)= 21 doy, — hdy = 0 . (1)
iy
where (i) di7>0 is the plastic proportionality factor (used to define the flow rule de;’= d# 6f/day) and
(if) h>0 is the hardening modulus (null for perfectly-plastic models). This modulus plays a crucial
role in defining the elastoplastic constitutive matrix and, therefore, also in the development of implicit and
explicit integration techniques used to update o and x at any material point experiencing plastic flow.

Since von Mises yield criterion is generally recognized as appropriate to model metals, it was decided
to derive dx on the basis of the modified work-hardening relation (De Borst et al. 2012)

T p p p p
o de® o, dep +odel +o Ayl

=) o (x)

which leads to dx=d# for the plasticity model under consideration, and can also be used to define
the hardening modulus of any elastoplastic material exhibiting linear elasticity as

, (12)

_do”’
de?

go—é‘ > O gaia — d_G y (13)

eP=k=n 1_go—a/E_ , de e>g)

where (i) E is the material Young’s modulus, (ii) the gradients do¥/de® and do/de refer to the
uniaxial stress-strain curve, (iii) &’ is the initial yield strain and (iv) the total strain & >g¢” must be
evaluated where its plastic component (gP) equals x. For materials exhibiting linear strain-hardening, it
turns out that (i) h is constant, and given by E«/(1—-Egs/E) at every material point (Esn is the
hardening slope), and (ii) the yield stress reads ¢”(eP=k)=0¢’+hx. For all other materials, one
has e=a’/E+¢” and, therefore, the relation (") must be obtained numerically. In order to avoid
the use of computationally demanding numerical techniques, like Newton-Raphson’s method (N-R), a
database was created to provide the (i) yield stress (¢”), (ii) plastic strain (¢°=¢—¢”/E >0) and (jii)
hardening modulus (h), for equally spaced (Ae=10") total strains such that &} < ¢ < &, (e, is the ultimate
strain) — values of 6”(¢”) and h(&”) not specified in the database are obtained by linear interpolation.

In order to compute the internal force vector and tangent stiffness matrix mentioned in subsection 2.2, it is
mandatory to update, at every material point for each “equilibrium configuration”, (i) first the stresses and
hardening parameter x, and (ii) then the stress gradients do/de. For that purpose, at every Gauss
integration point and after each iteration of the arc-length procedure, one must (i) compute the elastic
stress variation, due to the imposed strain variation (A¢) w.r.t. the last equilibrium configuration i (stress



vector gj and hardening parameter x;), and then (ii) check whether the corresponding final stresses
(c=0;+ D°A¢) fall outside the yield surface f(c, x;)=0 (see Eq. (10)) or not*. If they do, numerical
integration of the incremental constitutive equations is performed, in order to update the stresses and the
hardening parameter x — several implicit and explicit Euler-type methods were implemented to
perform this task (an overview is presented in the next subsection). Once the stresses and the hardening
parameter are updated, the stress gradients da/oe can be computed straightforwardly, through either the
conventional or the consistent elastoplastic constitutive matrix — the latter was used to obtain the
results presented in section 4, since it leads to a faster convergence of the arc-length method.

3.2 Implicit and Explicit Integration Schemes

A key step in physically non-linear FE analysis concerns the numerical integration of the elastoplastic
constitutive relations, so that the unknown increments of both the stresses and the hardening parameter
can be obtained wherever plastic deformation occurs. The integration methods available are usually
classified as explicit or implicit’. The explicit ones can be applied to a wide range of models, although
this should be done with some care, since the solution is not enforced to satisfy the yield criterion to a
specified tolerance, unlike in the implicit schemes. According to Sloan et al. (2001), the accuracy and
efficiency of the explicit methods can be significantly enhanced by adopting strain sub-incrementation
and solution correction aimed at bringing the final stresses and hardening parameter to the yield surface
— both these recommendations were implemented in this work.

The Backward Euler and Forward Euler schemes are the most popular implicit and explicit methods used
in elastoplastic problems. They belong to a family of methods aimed at computing, for each material
point, the solution at configuration t+At, on the basis of the solution at configuration t+aAt (0<a<l),
assuming that (i) t corresponds to the onset of yielding (initial or subsequent) and (ii) At reflects the
imposition of the elastoplastic strain increment Ae® (Ae=A¢® + Ae®)® — the Backward and Forward
Euler methods correspond to a=1 and 0=0, respectively. However, there are other schemes proposed in
the literature that adopt intermediate o values — €.9., a=1/2 has been used to define the method known as
Mean Normal. Although the above three methods were implemented, the Backward Euler is addressed
here in more detail, since it was the one employed to obtain the results discussed in the next section.
Taking (oj,x;) as the solution at a generic material point at configuration t, the Backward Euler method,
formulated on the basis of the conventional elastoplastic constitutive matrix, states that the final state
(oj+1, Kj+1) Is such that

_ e
O-j+1 =0~ A77j+lD nj+1

, (14)
Ge:0j+DeA5’ ANy =1nia—MN;

where (i) Ae is the elastoplastic strain increment, (i) D° is the GBT elastic constitutive matrix and (jii) 7j+1
and n;+1 are the plastic proportionality factor and gradient vector evaluated at the (yet unknown) final

* If f(6,k;)<0, the strain increment occurs in the elastic range and all variables are updated under that condition (x unchanged).
Iff (e, xi) >0, plastic flow occurs and, thus, the updated final stresses (not o) are located on the (updated) yield surface.

® Explicit integration is based on known variables and, strictly speaking, requires no iteration to predict the unknown
increments. Implicit integration, on the other hand, is based on unknown variables and, therefore, involves the iterative
solution of a system of non-linear equations at each Gauss point.

® It was implemented a closed-form expression to determine the initial elastic strain variation A&’ required to drive a
stress state located inside the yield surface to reach it (or to move a stress state between two yield surface points).



state, respectively. Since the unknowns in Eq. (14) outnumber the equations by one unit (#;+1 is the extra
unknown), an additional equation must ensure that the final stress point oj+1 IS located on the yield
surface, i.e., f(j+1, 7j+1)=0 (recall that #j+1=xj+1). Since this constitutes a non-linear problem, the N-R
method is chosen to solve the set of equations

g G'+ !77'+
( ) 1) =0, g(GHl’nHl):GHl_GbaCk’ Ohack = T _(ni”_ni)Den
f(0j+1’77j+1) , (15)

where (i) the trial solution (oj+1,%7'+1) for the first iteration is obtained by means of the Forward Euler
method, implemented with three strain sub-increments and correction of the final solution (Abambres et
al. 2012c), and (ii) the convergence criterion adopted to end the iterative process reads

k+1

g( :(:11’771&)

N 10* <g<10°°
f (Gj+1’77j+1) 2

, (16)

where ("Y1, #%41) is the solution at the end of iteration k.

4. llustrative Examples

The application of the GBT formulation for elastoplastic post-buckling analysis, which was implemented
in MATLAB R2010b (MathWorks 2010), is now illustrated. The numerical results presented and discussed
in subsections 4.1-4.5 concern four analyses involving (i) LiteSteel (hollow-flange channel) and I-section
beams, and (ii) lipped channel and equal-leg angle columns. Note that not all GBT results are shown —
only those deemed more significant to (i) highlight the advantages of the GBT analyses and (ii) provide
validation against SFEA values from ABAQuUS (DS Simulia 2008). The material models considered
exhibit a linear elastic regime and aim at simulating the constitutive behaviors of (i) carbon steel
(perfectly-plastic and bi-linear models — no hardening and linear hardening) and (ii) austenitic, ferritic and
duplex stainless steel alloys (three-stage stress-strain relation due to Quach et al. 2008). Regarding the
latter model, it is defined by the three basic Ramberg-Osgood parameters (E, oo and n) and was shown
to (i) provide accurate predictions over a wide range of tensile and compressive strains, and (ii)
outperform the full-range model proposed by Rasmussen (2003) — detailed information about its
implementation can be found in Abambres et al. (2012c). Table 1 shows the material properties
considered in each analysis, where (i) E, v, o¢’ are the Young’s modulus, Poisson’s ratio and initial yield
stress, (ii) Eg, is the strain-hardening slope (bi-linear model) and (iii) a0, n are the 0.2% proof stress and
hardening power (non-linear model”). In the ABAQUS models, which are also based on Jz-flow theory,
the compressive stress-strain input data must be expressed in terms of the true stress (0 ) and true
plastic extension (8t ), obtained from the nominal stress (0 ) and extension (e ) absolute values as

t

" In this model, (i) the 0.01% proof stress (oo.,) is taken as the initial yield stress (proportional limit) and (ii) superscripts ¢ and t
denote “compressive” and “tensile” (see Ta