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Abstract After providing a brief overview of a recently developed and validated 

elastoplastic post-buckling Generalised Beam Theory (GBT) formulation, the paper 

presents and discusses illustrative numerical results concerning three tubular members 

exhibiting bi-linear and non-linear material behaviours. The GBT results consist of 

equilibrium paths, modal participation diagrams, stress contours, displacement profiles 

and collapse mechanisms, most of which are compared with values obtained from Abaqus 

shell finite element analyses. The GBT modal nature makes it possible to (i) acquire in-

depth knowledge about the member behavioural mechanics at any given equilibrium state 

(elastic or elastic-plastic), as well as (ii) evidence the GBT computational efficiency 

(d.o.f. reduction of over 75%), partly due to the exclusion from the analyses of all 

deformation modes playing no role in a given member response.  
  

1. INTRODUCTION 

Most thin-walled metal members exhibit slenderness values leading to structural behaviours and 

ultimate strengths governed by interaction between plasticity and instability, which renders their 

rigorous analysis a complex task. This stimulates the development of more efficient design rules 

and methods of structural analysis. In this context, even if conventional structural design 

concerns mostly serviceability/ultimate limit states, a performance-based design also requires 

accurate member post-collapse response predictions [1]. As experimental studies are invariably 

scarce, alternative approaches must be sought. The most universal is performing non-linear 

shell finite element analyses (SFEA), involving (i) large degree of freedom (d.o.f.) numbers, (ii) 

time-consuming/error-prone data processing and interpretation, and (iii) nodal stress/displacement 

outputs, rather than modal ones (e.g., stress resultants). 

Generalised Beam Theory (GBT) is an alternative to the above structural analysis methods. In 
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spite of its limited current field of application (prismatic, straight and non-perforated thin-

walled bars) and dissemination, GBT is recognised as an elegant and efficient approach to 

analyse thin-walled members and structural systems. These traits arise mostly from its modal 

nature: displacement field expressed as a linear combination of cross-section deformation 

modes with amplitudes varying continuously along the member length. This feature makes it 

possible to (i) acquire in-depth insight on the member behaviour and (ii) judiciously exclude 

from future similar analyses those modes found to play no role in the particular behaviour 

under scrutiny, thus further reducing the d.o.f. number. GBT has attracted the interest of 

several researchers, leading to new formulations and applications concerning various types of 

analysis, support and loading conditions, and materials [2]. With a few exceptions, the 

material models considered were linear elastic. The first physically non-linear GBT 

formulations are due to Gonçalves and Camotim [3-5]: beam finite elements (BFE) based on 

J2-flow plasticity theory aimed to perform member bifurcation, first and second-order 

inelastic analyses. The authors [6-9] developed and validated alternative 1st and 2nd order 

elastoplastic GBT formulations, also based on J2-flow theory but differing from the previous 

ones in the (i) deformation mode determination and (ii) consideration of warping rotations 

(novel d.o.f.)  in these works, GBT was first applied to strain-hardening materials, namely 

stainless steel. When compared with carbon steel, stainless steel (i) has no well-defined yield 

point and (ii) exhibits a high non-linearity beyond the proportional limit. 

The aim of this paper is (i) to present a brief overview of the materially and geometrically 

non-linear GBT formulation, and (ii) to illustrate its application and potential by studying the 

post-buckling behaviour and strength of tubular members made of perfectly-plastic, bi-linear 

and non-linear materials. The analyses include local and/or global initial geometrical 

imperfections, but neglect membrane residual stresses and corner strength effects. For 

validation, most GBT results (equilibrium paths, displacement profiles, stress contours, 

collapse mechanisms) are compared with Abaqus SFEA values. The GBT modal nature is 

highlighted through the presentation of modal participation diagrams. 

2. GBT NON-LINEAR ELASTIC-PLASTIC FORMULATION – OVERVIEW 

Only an overview of the main concepts and procedures involved in the development and 

implementation of the proposed GBT formulation is reported. After focusing on aspects 

related to kinematics and cross-section analysis, the member non-linear equilibrium equations 

are established and their BFE incremental solution addressed. 

2.1. Kinematics and equilibrium equations 

Consider the local coordinate system (x, s, z) shown in Figure 1(a) at each wall mid-surface of 

a thin-walled bar, where x, s and z are the longitudinal (0 ≤ x ≤ L  member length), 

transverse (0 ≤ s ≤ 0  wall width) and through-thickness (-t/2 ≤ z ≤ t/2  wall thickness) 

coordinates  the associated displacements are u (warping), v (transverse) and w (flexural). 

The GBT analysis consists of two main steps: (i) cross-section analysis and (ii) member 

analysis. The former leads to the deformation mode displacement profiles uk, vk and wk (for 

mode k), along s, while the member analysis determines the modal amplitude functions 
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k(x)  displacement profile longitudinal variations. Then, the GBT mid-surface displacement 

field is given by a linear combination of products between modal displacement profiles and 

their amplitude functions, 

                )()(),( , xsuxsu xkk         )()(),( xsvxsv kk         )()(),( xswxsw kk   (1) 

where k satisfies the summation convention. The cross-section analysis adopted considers 4 

deformation mode families: conventional, cell shear flow, warping shear and transverse 

extension. The existing analyses, considering either 3 (u, v, w) or 4 (u, v, w, θx  rotation 

about the x-axis) d.o.f. per section node, require fine discretisations to capture highly non-

linear axial displacement variations along the cross-section mid-line, due to spread of yielding 

and/or shear deformation. This justifies the convenience of enhancing the warping 

representation, done here through additional nodal d.o.f. (“warping rotations”): rotations 

about the z-axis θz  one per intermediate node and more than one per natural node 

(independent θz per converging wall direction). This enables the approximation of each 

warping profile uk by piecewise (in each wall segment) cubic polynomials, instead of 

piecewise linear functions (see warping shear modes in Figs. 4 and 6). 

Note that the formulation keeps the GBT plane-stress assumption, i.e., σxz, σsz, σzz and γxz, γsz, εzz 

are null. Accordingly, the Principle of Virtual Work leads to the GBT equilibrium equations 

     ,                   xx xx ss ss xs xs x i i x s i z i i

L b t L b

dz dsdx q u q v q w dsdx  (2) 

where (i) σxx, σss, σxs are axial, transverse and shear 2
nd

 Piola-Kirchhoff stresses, (ii) qx, qs, qz 

are local components of a distributed load on the member mid-surface (see Fig. 1(b)), and (iii) 

xx, ss, γxs are axial, transverse and shear Green-Saint-Venant non-linear virtual strains, 

expressed in terms of the modal amplitude functions k(x) and their derivatives, through Eqs. 

(1).The formulation also accounts for (i) residual stresses and geometrical imperfections, and 

(ii) arbitrary single-parameter () loadings, including concentrated forces and moments. 

 
(a) (b) 

Figure 1. (a) Local coordinate system at each wall mid-surface and (b) general external distributed load q(x,s). 
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2.2 Non-linear beam finite element 

The cylindrical arc-length method is adopted, involving (i) incremental equilibrium equations based 

on the tangent stiffness matrix Ktan, (ii) internal force vectors f 
int

 and (iii) a path-independent 

iterative strategy: strain increments evaluated w.r.t. the last converged equilibrium state. 

The results shown in section 3 were obtained using Hermite cubic polynomials to approximate 

the GBT modal amplitude functions in each BFE, i.e., 

   , 0
k,x H k

v wζ x =Ψ x d
                     

   , 0
k H k

v wζ x =Ψ x d
  

(3) 

where (i) the 1×4 ΨH vector stores the Hermite polynomials, (ii) dk is the 4×1 displacement 

vector related to the mode k approximation, (iii) the first expression concerns only axial 

extension and warping shear modes (v=w=0), and (iv) the second expression applies to all 

other modes (v≠0 and/or w≠0). After inserting the above approximations in Eq. (2) (including 

virtual strains), the internal and external force vectors interrelation for a generic “equilibrium 

configuration” (mn = xx, ss, xs) 

     
int int int,      

e

i mn ei mn i mn i mn
mn L b t

f f f F dV
    (4) 

is obtained, where (i) the i
th

 components are 4×1 sub-vectors related to deformation mode i and 

(ii) f
 
is the external force vector for a unit load parameter . Then, the incremental equilibrium 

equation for a deformed configuration j can be established as 

tan   
j

K d f
 

(5) 

where (i) d is the displacement vector and (ii) the tangent stiffness matrix (i, p)
th

 component, 

Kip,tan, is a 4x4 sub-matrix concerning deformation modes i and p, reading 

     
int int int

int int

,tan ,
   

  
    


i i ii i

p pl pl pl pl

xx ss xs

ip

f f ff f

d d d d d
K

 

(6) 

 
 

 
int int

int


 
 
 
  

 
 

    
e

i mn i mnmn
mn ei mn

pl pl plL b t

f F
F dV

d d d

 

(7) 

It corresponds to the Jacobian of the internal force vector i
th

 component, w.r.t. the mode p 

displacement vector  its components are dpl (l=1,…,4). For any elastoplastic material, the 

stress gradients at every point read 

      

  

      
  

      

xx ss xs

pl xx pl ss pl xs pl

mn mn mn mn

d d d d
 

(8) 

where ∂ε/∂dpl are obtained from writing the strain-displacement relations according to Eq. (3). 
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The stresses and their gradients (∂σ/∂ε) appearing in previous relations stem from the J2-flow 

theory with associated flow rule, by resorting to implicit and/or explicit numerical integration 

schemes wherever plastic flow takes place. Then, at every Gauss point and after each arc-length 

iteration, one must (i) compute the elastic stress variation, from the imposed strain variation 

(Δε) w.r.t. the last equilibrium state i (stresses σi and hardening parameter κi), and then (ii) 

check whether the final stresses (σe=σi + D
e
Δε) fall outside the yield surface f (σ, κi) = 0. If yes, 

numerical integration of the incremental constitutive equations is performed to update the 

stresses and hardening parameter κ  the Mean-Normal and Euler-Backward methods were used 

to obtain the results presented in 3.2 and 3.3-3.4, respectively. Once those variables are updated, 

gradients ∂σ/∂ε are directly computed from the consistent elastoplastic constitutive matrix. 

3. ILLUSTRATIVE EXAMPLES 

The application of the GBT formulation for inelastic post-buckling analysis, implemented in 

MATLAB [10], is now illustrated. The results discussed next concern 3 numerical examples 

involving (i) SHS and hollow flange (HF) I-section columns and (ii) a RHS beam-column. Material 

models with a linear elastic regime and involving different types of strain-hardening were 

considered, namely the (i) perfectly-plastic (PP), (ii) bi-linear (BL – linear hardening), and (iii) non-

linear (NL) models. Concerning the latter, the σ-ε relation due to Quach et al. [11] is adopted  it is (i) 

suitable for stainless steel alloys and (ii) defined by the 3 basic Ramberg-Osgood parameters (E, σ0.2, 

n) (implementation details reported in [9]). For validation purposes, GBT equilibrium paths, stress 

contours and deformed configurations (referred to the bar mid-surface) are compared with those 

yielded from ABAQUS [12] SFEA. 

Table 1 shows the material properties adopted in each analysis: (i) E, Esh, are the Young’s modulus 

and strain-hardening slope (BL model), (ii) σ0
y
, σ0.2, are the initial yield and 0.2% proof stresses, and 

(iii) n is the hardening power (NL model – 0.01% proof stress taken as the initial yield stress) – c, t 

denote compressive and tensile. All these (isotropic) models are employed to simulate the 

compressive behaviour and a ν=0.3 Poisson’s ratio is assumed. Table 2 shows the numbers of (i) 

GBT BFEs, (ii) axial and transverse (x, s) ABAQUS SFEs, and (iii) d.o.f. involved in each model. As 

for the numbers of Gauss integration points per BFE wall segment direction s, z, x (Fig. 1(a)) in each 

GBT analysis, they are (i) (3, 3, 3) for the SHS, (ii) (4, 5, 3) for the HF I-section and (iii) (2, 5, 4) for 

the RHS – the SFEA involved fairly uniform S4 FE meshes, adopting the same through-thickness 

integration points as the GBT analyses. 

Example E (GPa) Esh σ0
y 

(MPa) σ0.2 (MPa) n 

SHS 
E

c
=198.2 

E
t
=198.8 

- 390.3 
σ0.2

c
=560 

σ0.2
t
=586 

n
c
=8.3 

n
t
=9.0 

HF I-sec 
(PP & BL) 

205 E/50 290 - - 

HF I-sec  
(NL) 

E
c
=205 

E
t
=208 

- 289.5 
σ0.2

c
=515 

σ0.2
t
=560 

n
c
=5.2 

n
t
=6.9 

RHS 200 0 450 - - 

Table 1: Illustrative examples: material properties. 
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Example 
GBT ABAQUS Number of d.o.f. 

BFEs 
SFEs  

(x) 
SFEs 

(s) 
GBT ABQ 

GBT/ABQ  
(%) 

SHS 16 50 48   865     14401 6 

HF I-sec 66(*) 80 62 7391 29651 24.9 

RHS 50  160 36 6462 34452 18.8 

* Only non-uniform (symmetric) mesh: 18 BFEs (x < 0.35L) + 15 BFEs (0.35L ≤ x ≤ 0.5L) 

Table 2: Illustrative examples: FE discretisation and d.o.f. numbers. 

After providing information about the selected GBT modes, in 3.1, the results of each analysis 

are addressed in 3.2-3.4. The first one concerns a fixed-ended SHS stub column (Fig. 3(a)  

L=400 mm), made of EN 1.4162 duplex stainless steel and acted by a (uniformly distributed) 

compressive end force F=102.2x10
4
 λ N (experimental results reported by Theofanous & 

Gardner [13]). The initial geometrical imperfection, akin to the 1
st
 symmetric local buckling 

mode, has a t/100 amplitude (maximum in-plane displacement). The second problem deals 

with a pin-ended HF I-section column (Fig. 3(b)  L=1200 mm) acted by a compressive end 

force F=100x10
3
 λ N – besides the end-shortening, the pinned supports allow for global 

flexural rotations. In order to assess the impact of strain-hardening on the column behaviour 

and strength, analyses were carried out for PP, BL and NL material models with the same 

initial yield stress – Figure 2 shows their σ-ε curves. The initial imperfections combine the 1
st
 

global (flexural  L/1000 amplitude) and 13 half-wave local (1.18 mm amplitude) buckling 

modes. Lastly, a fixed-pinned (no in-plane motions) RHS beam-column (Fig. 3(c)  L=4000 

mm) made of a PP material is analysed, subjected to (i) a uniformly distributed vertical load 

acting along the full top flange (p=0.01 λ N/mm
2
) and (ii) an axial compression F=100x10

3
 λ 

N. The imperfection is akin to the 2
nd

 local buckling mode and has amplitude equal to t/100. 

 

Figure 2. HF I-section column material model (stress-strain curves). 

The results shown in 3.2-3.4 correspond to the points indicated on the equilibrium path, 

denoted as BP (before peak), P (peak) and AP (after peak). It is also worth noting that the 

GBT modal participation diagrams are based on the cross-section having the maximum 
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overall or in-plane displacement (initial imperfection not included) – each deformation mode 

contribution is the ratio between its maximum displacement and the sum of all such modal 

values, not necessarily occurring at the same point. 

 

 

 

   (a) fixed-ended (b) pin-ended  (c) fixed-pinned 

Figure 3. (a) SHS, (b) HF I-section, (c) RHS mid-line dimensions. 

3.1 GBT deformation modes 

The GBT deformation modes (G-global, D-distortional, L-local, WS-warping shear, TE-transverse 

extension and CS-non-global cell shear flow) included in each analysis are the following: 

(i) 28 modes out of 204 (1 G, 6 L, 11 WS, 10 TE), all bi-symmetric (SHS), (ii) 56 modes out 

of 132 (2 G, 1 D, 15 L, 20 WS, 17 TE, 1 CS), mostly symmetric w.r.t. the horizontal centroidal 

axis (HF I-section), and (iii) 65 modes out of 184 (2 G, 20 L, 18 TE, 25 WS), symmetric w.r.t. 

the vertical centroidal axis (RHS) – all these modes are renumbered sequentially, since they 

are just a fraction of the cross-section analysis full set. The in/out-of-plane shapes of the most 

relevant modes in each analysis are depicted in Figures 4-6 – the discretisations adopted are 

shown in the symmetric TE mode half-section shapes – warping rotation d.o.f. z (addressed in 

subsection 2.1) were used in the SHS and RHS member analyses. 

Global 1        Local 2 Local 3                  Local 4 Warping Shear 8, 9 

 
     

Transverse Extension 19 Transverse Extension 20  Transverse Extension 22 

           

Figure 4. SHS most relevant GBT deformation modes. 
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Global 1 Global 2 Distortional 3 Local 5 Local 6 Local 7 Local 8 Local 9 

        

Warping Shear 22, 23 Warping Shear 24, 26 Transverse Extension 40, 41, 46 

          

Figure 5. HF I-section most relevant GBT deformation modes. 

Global 1 Global 2 Local 3 Local 4  Local 5 

  
   

Local 6 Local 8 Warping Shear 23, 25 Transverse Extension 51, 52 

  

  
     

Figure 6. RHS most relevant GBT deformation modes. 

3.2 SHS column 

Figure 7(a) shows the GBT and ABAQUS λ(Δ) equilibrium paths (Δ is the column end 

shortening)  the BP, P and AP λ values are: λGBT=0.701 + λABQ=0.701 (BP), λGBT=0.893 + 

λABQ=0.893 (P), λGBT=0.590 + λABQ=0.577 (AP). Fig. 7(b) shows the GBT modal participations 

concerning the evolution, with Δ, of the mid-span cross-section deformed shape. The 

following remarks are due: 

(i) The agreement between the GBT and ABAQUS paths is very good (differences below 4.9%). 

(ii) The GBT participation diagram indicates two markedly different behaviours: (ii1) one 

prior to the peak, involving mostly mode 1 (58.6-84.7%), and (ii2) another after the peak: 

growth of local mode 2 (27.1-64.5%), “sweeping aside” mode 1. 
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(a)    

(b)   

Figure 7. (a) GBT and ABAQUS equilibrium paths and (b) GBT modal participation diagram. 

(iii) Concerning the TE modes 19 and 20, whose presence is intrinsically linked to modes 1 

(Poisson effects) and 2, it should be noted that, in spite of their small contributions (≈6%  

                                  

Figure 8.Column collapse mechanism (AP equilibrium state). 

each), they play a key role. Indeed, their removal from the analysis would considerably 

stiffen the column behaviour since local buckling would be “artificially restrained”. The 

GBT ABAQUS 
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post-peak participation decrease of these TE modes stems from elastic unloading and 

local deformation “localisation” very close to mid-height (see Fig. 8). 

Figure 9 depicts the BP, P and AP axial displacement profiles δx (x) of the top wall mid-point 

(see Fig. 3(a)). First of all, it is readily observed that the ABAQUS and GBT results virtually 

coincide at the BP and AP states, and exhibit small differences at the P state. Moreover, note 

the linearity of the BP profile, while its P counterpart exhibits a mild non-linearity close to the 

column ends. At the AP state, on the other hand, δx exhibits three “almost linear” segments, 

the two outer ones with similar (small) slopes and a much steeper inner one  this axial 

stiffness drop occurring in the column central region stems from the plastic deformations 

associated with the increasing participations of the local modes 2, 3 and 4 (see Fig. 7(b)). 

 

Figure 9. Axial displacement profiles of the top wall mid-point at the BP, P and AP equilibrium states. 

3.3 HF I-section column 

Figure 10(a) shows the GBT and ABAQUS λ(δy) equilibrium paths concerning the PP, BL and 

NL material models (δy is the mid-span cross-section mid-height lateral displacement  see Fig. 

3(b)). For the NL paths, the BP, P and AP applied load values are λGBT=2.79 + λABQ=2.76 (BP), 

λGBT=3.08 + λABQ=3.05 (P), λGBT=1.99 + λABQ=1.94 (AP). As for Figure 10(b), it provides the 

evolution, with δy, of the mid-span cross-section deformed configuration (via the GBT modal 

participation diagram). Note that: 

(i) Except for the PP material at advanced post-collapse stages, the GBT and ABAQUS 

curves agree very well  e.g., the NL paths do not differ by more than 4%. 

(ii) The PP and BL column responses prior to the later collapse stages virtually coincide (in 

spite of the inelastic collapse). However, the behaviour is much stiffer for the NL 

column (λu,NL=3.05, λu,BL=2.28), due to the large strain-hardening (partly responsible for 

the high non-linearity prior to reaching the peak load). 

(iii) Figure 10(b) shows that the column behaviour exhibits relevant contributions from (iii1) 

global modes 1 and 2 (21.2-69.7%), and (iii2) local modes 5 (8.9-36.1%), 6 and 8+9. 

Although the web-driven mode 5 dominates the local deformation in the path ascending 
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branch (recall it participates in the initial imperfection), important contributions from 

the flange-driven modes 6, 8 and 9 occur in the post-collapse phase – this can be 

attested by the failure mechanism (AP state) depicted in Fig. 11 (note the yield-line 

forming at the most compressed flange regions). 

(a)  

(b)        

Figure 10. (a) GBT and ABAQUS equilibrium paths and (b) GBT modal participation diagram (NL column). 

                

Figure 11.Column failure mechanism (AP equilibrium state). 

GBT ABAQUS 
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Figure 12(a) concerns the NL material response at the BP, P and AP states and shows the web 

mid-height lateral displacement profiles δy(x) (Fig. 3(b)). The agreement between GBT and 

SFEA results is fairly good  visible discrepancies stem mostly from differences in the initial 

imperfection prediction. In order to assess the material model influence, Figure 12(b) 

compares the GBT δy(x) profiles for λGBT=1.99 (AP state)  it is observed that, in spite of the 

expected quantitative differences, they all follow the same trend (same number of half-waves). 

    
      (a)                 (b) 

Figure 12. Cross-section mid-height lateral displacement profiles at (a) the NL column BP, P and AP equilibrium states, 

and (b) λGBT=1.99 for the NL, BL and PP columns. 

3.4 RHS beam-column 

Figure 13(a) shows the GBT and ABAQUS λ(|δz|) equilibrium paths (δz is the mid-span top 

flange mid-point vertical displacement  Fig. 3(c)). The BP, P and AP λ values are λGBT=7.51 + 

λABQ=7.50 (BP), λGBT=8.38 + λABQ=8.43 (P), λGBT=5.09 + λABQ=4.81 (AP). Figure 13(b) shows 

the modal participation diagram providing the evolution of the most deformed cross-section 

shape. It is possible to draw the following conclusions: 

(i) The GBT and ABAQUS curves show a very good correlation in most of the deformation 

range. Even if the differences increase as loading progresses, they never exceed 6% (5% 

excluding the last 2 ABAQUS points). 

(ii) Figure 13(b) clearly shows that the early loading stages are governed by axial 

extension and minor-axis bending (modes 1 and 2  65.7-72.7%). The local modes 3 

(7.0-12.5%) and 4 (4.6-10.5%), which stem from the loaded top flange transverse 

bending and oppose each other in the bottom flange (Fig. 6), also have visible 

contributions. Lastly, mode 23 (one of the “others”) captures the shear deformation 

associated with minor-axis bending. 

(iii) In the post-peak stage there is a clear global deformation decrease (modes 1+2), mostly 

compensated by the gradual growth, for |δz| ≥ 20 mm, of local modes 5 (web-driven  

0.3-7.6%) and 6+8 (1.0-4.7%). The presence of local deformation in the member yield-

line mechanism can be confirmed in Figure 14. 
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(a)      

(b)    

Figure 13. (a) GBT and ABAQUS equilibrium paths and (b) GBT modal participation diagram. 

Figure 15 compares the top flange mid-point vertical displacement profiles at the BP, P and 

AP states. Besides the excellent agreement between the GBT and ABAQUS outputs, note that 

the half-wave patterns change significantly in-between states P and AP, due to the plastic 

flow and elastic unloading associated with the failure mechanism. Finally,  the half-column 

Mises stress contours depicted in Figure 16, concerning state P and evidencing excellent 

agreement, make it possible to visualise the most yielded (and compressed) flange regions 

at collapse: the vicinities of the (i) fixed end section bottom flange (x≤L/2) and (ii) most 

deformed cross-section top flange (x≥L/2). 

  

Figure 14. Member collapse mechanism (AP equilibrium state). 

GBT ABAQUS 
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Figure 15. Vertical displacement profiles at the top flange middle point – BP, P and AP states. 

ABQ   

GBT  
             top flange (x ≥ L/2  right half-column) 

ABQ  

           

GBT  

          bottom flange (x ≤ L/2  left half-column) 

Figure 16. Mises stress (N/mm
2
) contours at the P equilibrium state. 

4. CONCLUDING REMARKS 

This paper (i) provided an overview of a recently developed and validated GBT formulation to 

assess the inelastic post-buckling behaviour of thin-walled members, and (ii) illustrated its 

application and potential by presenting and discussing the analysis of several tubular members, 

namely a stainless steel SHS stub column, a perfectly plastic RHS beam-column and three hollow-

flange I-section columns made of perfectly plastic, bi-linear and non-linear materials with identical 

yield stresses  the non-linear material exhibited a large strain-hardening and led to a significant 
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strength increase. For validation purposes, most GBT results (equilibrium paths, collapse 

mechanisms, displacements profiles and stress contours) were compared with values yielded by 

ABAQUS shell finite element analyses. It was shown that the GBT analyses provide similarly 

accurate results, while requiring no more than 25% (16.6% on average) of the d.o.f. numbers 

involved in the corresponding SFEA. Moreover, it was also shown, through modal participation 

diagrams, that the GBT analyses provide in-depth insight on the member mechanics associated with 

both the elastic and elastic-plastic regimes (including the collapse mechanisms). 
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