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Abstract

When compared with carbon steel, stainless steel exhibits a more pronounced non-linearity and no well-defined
yield plateau, as well as appealing features such as aesthetics, higher corrosion resistance and lower life cycle
cost. Due to its considerably high ductility/strength and cost, stainless steel structural solutions tend to be adopted
mostly for slender/light structures, thus rendering the assessment of their structural behaviour rather complex,
chiefly because of the high susceptibility to instability phenomena. The first objective of this paper is to present
the main concepts and procedures involved in the development of a geometrically and physically non-linear
Generalised Beam Theory (GBT) formulation and numerical implementation (code), intended to analyse the
behaviour and collapse of thin-walled members made of materials with a highly non-linear stress-strain curve (e.g.,
stainless steel or aluminium). The second objective is to validate and illustrate the application of the proposed GBT
formulation, by comparing its results (equilibrium paths, ultimate loads, deformed configurations, displacement
profiles and stress distributions) with those provided by shell finite element analyses of two lean duplex square
hollow section (SHS) columns previously investigated, both experimentally and numerically, by Theofanous and
Gardner [1]. The stainless steel material behaviour is modelled as non-linear isotropic and the GBT analysis
includes initial geometrical imperfections, but neglects corner strength enhancements and membrane residual
stresses. It is shown that the GBT unique modal nature makes it possible to acquire in-depth knowledge concerning
the mechanics of the column behaviour, by providing “structural x-rays” of the (elastic or elastic-plastic)
equilibrium configurations: modal participation diagrams showing the quantitative contributions of the global,
local, warping shear and transverse extension deformation modes — moreover, this feature makes it possible
to exclude, from future similar GBT analyses, those deformation modes found to play a negligible role in the
mechanics of the behaviour under scrutiny, thus further reducing the number of degrees of freedom involved in a
GBT analysis, i.e., increasing its computational efficiency.

Keywords: Generalised Beam Theory (GBT); Thin-walled members; Post-buckling behaviour; Elastic-
plastic behaviour; Stainless steel; Tubular columns.

1. Introduction

Stainless steel has been used in the construction industry for over 70 years, even if its wide dissemination
has been severely restricted by fairly large productions costs (e.g., much larger than for carbon steel).
However, recent developments in material technology [2] are changing this situation quite rapidly, thus (i)
making stainless steel nowadays one of the world’s most profitably recycled material [3] and (ii) leading
to a renewed interest on stainless steel structural members and systems — since the year 2000, there has
been an increasing number of significant structural applications of stainless steel [4, 5].

Stainless steel types are classified according to their main alloy constituents and the austenitic and duplex
(or austenitic-ferritic) are, by far, the most frequently used alloys in building and construction.
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Nonetheless, in spite of the several attractive features of stainless steel, when compared with carbon
steel, such as better appearance, higher corrosion resistance and more cost-effective and longer life cycle,
an increased use of stainless steel in common applications, such as office or residential buildings,
requires (i) the development of efficient and safe design rules that can fully exploit the stainless steel
structural potential and (ii) the dissemination of easy-to-use tools to perform the structural design.
Concerning the first aspect, Eurocode 3, part 1.4 (EN 1993-1-4 [6]) was published in 2006 as a full
European standard prescribing supplementary rules for the design of stainless steel structures. However, it
is well known that some of its rules are mere extensions of similar rules for carbon steel design, included
in Eurocode 3, part 1.1 (EN 1993-1-1 [7]). For instance, an aspect that might severely hamper the design
of stainless steel elements is the assumption of an elastic-perfectly plastic constitutive relation, which is
particularly punitive for stocky elements [8]. Indeed, there are great differences conceming the material
behaviours of carbon and stainless steel alloys, since the latter are characterised by (i) the absence of a
well-defined vyield plateau, and (ii) a pronounced non-linearity beyond the proportional limit,
generally associated with the presence of a significant amount of strain-hardening.

Due to its considerably high ductility, strength and cost, stainless steel structural solutions tend to be
adopted mostly for slender/light structures (e.g., formed by thin-walled members), thus achieving a
sizeable weight economy that is often combined with a strong visual impact. Nevertheless, the high
slenderness of thin-walled structural members makes them prone to instability (geometrically non-linear)
phenomena, thus rendering the assessment of their buckling/collapse behaviour a very complex task.
Since experimental investigations are invariably limited, due to their very high cost and time consumption
(including the careful preparation of the test set-up and specimens), alternative complementary approaches
must be sought. The most universally employed one is the performance of sophisticated shell finite
element analyses (SFEA), using non-linear constitutive laws and incremental-iterative techniques.
However, this approach has some drawbacks, namely (i) the still excessively high computational effort,
(if) the time-consuming and error-prone data input, and (iii) laborious output data processing and
interpretation, particularly in the context of one-dimensional members (bars) — the results consist of nodal
stresses, instead of cross-section stress resultants (axial force, bending moment, etc.), the traditional and
more perceptible “language” usually adopted by the technical/scientific community. Despite its relatively
narrow field of application (prismatic, straight and non-perforated thin-walled members) and fairly limited
dissemination, Generalised Beam Theory (GBT) has been widely recognised as a powerful, versatile,
elegant and efficient approach to analyse thin-walled members and structural systems. These elegance and
efficiency arise mostly from its modal nature — the displacement field is expressed as a linear combination
of cross-section deformation modes with amplitudes varying along the member length. GBT has attracted
the interest of several researchers worldwide, leading to the development of new formulations and
applications. In particular, GBT has been extensively upgraded at the Technical University of Lisbon
[9, 10], where it has been applied to different (i) types of analysis (first-order, buckling, vibration, post-
buckling, dynamic), (ii) boundary and loading conditions (e.g., localized supports and non-uniform
internal forces and moments) and (iii) materials (steel, steel-concrete, FRP). With a few exceptions,
the material models adopted in these works were always elastic, with no degradation (plasticity) involved.
A physically non-linear GBT formulation was first reported by Gongalves and Camotim [11] in the
context of elastic-plastic bifurcation analyses — more recently, the same authors [12, 13] proposed GBT

Paper Presented by Prof. Dinar Camotim — dcamotim@civil.ist.utl.pt
© M. Abambres, D. Camotim & N. Silvestre — TU Lisbon



beam finite elements based on the J,-flow plasticity theory and aimed at performing member first-order
and second-order elastic-plastic analyses. In parallel, Abambres et al. [14, 15, 16] developed alternative
elastic-plastic GBT formulations, also based on the J-flow plasticity theory, that differ from the
previous ones in the fact that (i) the deformation modes are determined by means of the procedure
proposed by Silva et al. [17] and (ii) an additional degree of freedom (warping rotation) is considered.

The aim of this paper is two-fold: (i) to present the main concepts and procedures involved in the
development of a physically and geometrically non-linear GBT formulation and numerical implementation
(code) intended to analyse the behaviour and collapse of thin-walled members made of highly non-linear
materials, and also (ii) to illustrate its application and potential, by analysing the post-buckling behaviour
of lean duplex stainless steel square hollow section (SHS) columns that were experimentally and
numerically investigated by Theofanous and Gardner [1]. The GBT analyses include initial geometrical
imperfections, exhibiting a local and/or global nature, but does not account for membrane residual stresses
and comer strength enhancement effects. The stainless steel material behaviour is modelled as non-
linear isotropic and the three-stage stress-strain curve proposed by Quach et al. [18], involving only
three parameters (Young modulus E, 0.2% proof stress oo, and strain-hardening power n), is
adopted. The GBT results obtained (equilibrium paths, ultimate loads, deformed configurations,
displacement profiles and stress distributions) are compared with the values provided by SFEA performed
in the code ABAQUS [19]. Moreover, in order to assess how membrane residual stresses and comer
strength enhancements affect the column structural response, the GBT results are compared with the
experimental ones reported in [1].

2. Brief Overview of the GBT Kinematics

Consider the local coordinate system (x, s, z) at each wall mid-surface of a thin-walled bar (Fig. 1(a)),
where X, s and z are, respectively, the longitudinal coordinate (0<x<L, L is the member length), the
transverse coordinate (0<s<b, b is the wall width), and the through-thickness coordinate (-t/2<z<t/2, t is
the wall thickness). The corresponding displacements are u (axial or warping displacement), v (transverse
displacement) and w (flexural displacement), respectively. The GBT analysis of a thin-walled member
consists of two main steps: (i) a cross-section analysis and (ii) a member analysis. The cross-section
analysis comprises the determination of the deformation modes, i.e., their displacement profiles u(s),
vi(s) and wi(s) along the cross-section mid-line, and the evaluation of the associated modal mechanical
properties. The member analysis involves the determination of the each deformation mode amplitude
function i(x), providing the longitudinal variation of the corresponding displacement profile. The GBT
displacement field at the member wall mid-surface is then a linear combination of products between
the cross-section modal displacement profiles and the corresponding amplitude functions,

u(x, ) = U (8)¢y (X V(%,8) =V, (8) €, (%) w(x, 8) =W, (s) ¢\ () (@)

where subscript k denotes the deformation mode and satisfies the summation (Einstein) convention.

Paper Presented by Prof. Dinar Camotim — dcamotim@civil.ist.utl.pt
© M. Abambres, D. Camotim & N. Silvestre — TU Lisbon



(@) 2(w) (b)

Figure 1. (a) Local coordinate system at each wall mid-surface and (b) general applied/external distributed load q(x,s).

As mentioned earlier, the cross-section analysis adopted in this work is based on the approach developed
by Silva et al. [17], which considers four deformation mode families: conventional, warping shear,
transverse extension and cell shear flow — additional information about this cross-section analysis
procedure can also be found in [20, 21]. Although the existing GBT cross-section analyses consider
either three (u, v, w) or four (u, v, w, & — rotation about the x-axis) degrees of freedom (d.o.f.) per cross-
section node, the fact that shear deformation and/or spread of yielding may cause a highly non-linear
variation of the warping displacements along the cross-section mid-line brings about the convenience
of enhancing the warping displacement representation. This is done in this work by considering a fifth
d.o.f. per node, denoted as “warping rotation” and consisting of a rotation &, about the z-axis. Instead of
the piecewise linear approximation of the warping displacement profiles ui(s), associated with the existing
approaches, the consideration of the warping rotation &, leads to an approximation by means of piecewise
cubic polynomials (as illustrated in [14]).

Finally, note that the formulation developed retains the GBT fundamental plane-stress assumption, which
means that the (i) stress components oy, o5, 0z, and (ii) strain components y,, ys and &, (see Fig. 1(a)) are
deemed null everywhere, regardless of the material behaviour under consideration.

3. GBT Formulation for Second-Order Elastic-Plastic Analysis

3.1 Equilibrium Equations

The GBT equilibrium equation can be obtained from the Principle of Virtual Work [14],

J.J‘I(Gxxfsgxx + 0555855 + axséyxs) dzdsdx = J.J‘ [(qxui )5Ci,>< + (qsvi + qZVVI )5§|] ds dx ' (2)
Lb

Lbt

where (i) oy, 05, 0xs are the longitudinal normal, transverse normal and shear stress components (2™ Piola-
Kirchhoff tensor), (ii) qx, ds, g; are the local components of a general external distributed force applied at
the member mid-surface (see Fig. 1(b)), and (iii) d&x, d&s, Jyxs are the longitudinal, transverse and shear
virtual strain components — Green-Saint-Venant strain tensor, whose components are expressed in terms
of the components u, v, w (see Fig. 1(a)) as

1 2 2 2
£ =U, —ZW,, +E(u‘X +V° + WX) -az (U,XW,XX +V’XW’XS)
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1 2 2 2
s = V,s - ZW,SS + E(u,s T V,S + W’s ) —al (quWvXS + V,sW,ss) ' (3)

Vs = u,s + V,x - ZZVV,XS + u,xu,s + V,xV,s + W,xW,s -z (u,xW,xs + u,sW,xx + V,xW,ss + V,sW,xs)

where u, v and w are given in Eg. (1) and « is a factor equal to 0 or 1, depending on whether the non-linear
bending terms dependent on z are neglected or not. Note that all existing geometrically non-linear GBT
formulations neglect the non-linear bending terms dependent on z and z% and, although this choice has
consistently led to fairly accurate results [9, 13], the proposed formulation accounts for the terms
dependent on z (not those dependent on ), making it possible to assess their relevance. Furthermore, the
formulation contemplates (i) initial imperfections, namely residual stresses and geometrical imperfections,
and (ii) arbitrary loadings, including concentrated forces and/or moments, as long as all the loads depend
on asingle (load) parameter A.

3.2 Non-Linear Beam Finite Element

The rigorous determination of equilibrium configurations in a non-linear analysis requires the use of an
incremental-iterative strategy. The cylindrical arc-length method [22, 23] is adopted in this work and its
implementation involves (i) evaluating internal force vectors f ™ and (ii) establishing incremental
equilibrium equations, based on the tangent stiffness matrix Kin. A path-independent iterative strategy
[24] was considered, meaning that the strain increments at any Gauss integration point are evaluated
with respect to the last (converged) equilibrium configuration. Information on the implementation of the
arc-length procedure can be found in references [14, 21].

After introducing the strain components (Egs. (1) and (3)) in the first member of Eq. (2), all amplitude
functions are replaced by their finite element (FE) approximations, yielding

fim=2f @)
where f is the external force vector corresponding to a unit load parameter X.

The numerical results presented and discussed further ahead were obtained by adopting Hermite
cubic polynomials to approximate the GBT modal amplitude functions in each FE, i.e.

o (%) =Py (x)d, (%) =P (x) - ©)

where (i) ¥, is a 1x4 vector storing the Hermite cubic polynomials, (ii) dk is the corresponding
displacement vector (4x1) concerning the approximation of mode k, (iii) the first expression concerns
only the axial extension and warping shear modes (no inplane displacements: v=w=0), and (iv) the
second expression applies to all other deformation modes (v£0 and/or w+0).

According to the above procedure, the i component (4x1 sub-vector) of the internal force vector f ™
can be obtained by means of

int __ gint int int
™ = T + i) T fito) , 6)
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{u;— 2w, +[ uu, - ez (uw, +wu, ) ]dds*d, }(dds 'T)T e o)
+ [(vivk +WW, ) — aZ (V,W,  +W, V, )]dS d, (ds')

A,

{v — 7w +[(v V. +W W )—az(v W, +W_V )]Skd }(Si)TJr
i,s i,s8 i,s'k,s i,s"k,s i,s"k,ss i,ss " k,s k

fi(i:;) = '[O-ss T dVe ) (8)
Lo ez (U W+ w ) [dstd, (dST)
Fi%)
[u,, +v, — 22w, +[ U U — oz (W U, +u, w, ) |dds*d, + (dSi)T X
+':(Vivk,s T WiW ) —az (ViWk,ss W Vs )] s'd,
fi;r;ts) = '[O-xs +[uiuk,s _O‘Z(ink,s + Wl )J ds“d, (ddS ! )T + dv, , 9)

[ (Vi + Wi ) — az (W GV, + VW ) dS d, (S )T

i,ss

Fii(rlts)

where

[Py, if v w=0 v, ifvaw=0 (e, if v =0
SI= H l]{vl Wi ’ dSI= H l]pv W , ddS|= H, U{V W , (10)
Y., ifv,w=0 Youx i viow=0 v if v,,w, 20

H ,xx
() PPy is the primitive of ¥y, (i) subscripts i and k identify GBT deformation modes (i is a free index
and k satisfies Einstein’s convention), and (iii) the displacement vector dx and stress components oy,
os and oys are associated with a generic “equilibrium configuration” (during the iteration procedure and
when the structural response is non-linear, this configuration does not satisfy equilibrium for the applied
loads under consideration). After determining the internal force vector f™, the incremental equilibrium
equation for an arbitrary member deformed configuration j can be established as

Ad =AML T , (11)

]

Ktan

where (i) d is the displacement vector and (i) the tangent stiffness matrix (i, p)" component,
Kip,tan, 1S @ 4x4 sub-matrix concerning deformation modes i and p, reading [25]
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K B afiint afiint B aflzr:(tx) N Oflzr;;) N OfIETS) (12)
P ad T ad,  ad, ad, ad,

p pl

and corresponding to the internal force vector i component (see (6)) Jacobian with respect to the
displacement vector concermning deformation mode p — its components are dy (1=1,...,4). The
Jacaobian columns are defined by the second expression in Eq. (12), where (i) each term is given by

int

_ _ oF
o _ ([ mﬁ;ﬂimwmn () { dzsdx . (13)
od, {41]ad ad

pl pl

(ii) mn denotes xx, ss or xs, (iii) vector R, stems from the definition of f;{, in Egs. (7)-(9) and
(iv) the stresses, stress gradients and displacement vectors are computed at “equilibrium configuration” j.
Finally, for an arbitrary elastic-plastic material, the stress gradients in Eq. (13) are given at every point by

oo
od

mn

_ ao-mn ngx Go-mn 6855 ao_mn aJ/xs

+ + , (14)
oe, od, 0dg, od, Oy, ad,

pl

where the deformation gradients de/ody are defined after rewriting all deformation components in Eq. (3)
according to the FE approximation in Eg. (5). The stress components and their gradients dc/de are
obtained according to the Jo-flow plasticity model and resorting to implicit and/or explicit numerical
integration techniques, to be described in the following section.

Finally, the imposition of the boundary conditions is highlighted. For the first-order analysis of members
with cross-sections having null warping and non-null shear stresses ays, the authors [14] concluded that the
best way to reduce the effect of a shear locking phenomenon (stemming from the inadequacy of beam
theories to describe rigorously both static and kinematic measures) was to guarantee that kinematic
boundary conditions are satisfied, meaning that one has =0 in every section with null warping. Besides
the FE mesh refinement in the vicinity of cross-sections with null warping and non-null shear stresses
(e.g., a clamped support), it was also shown that the imposition of ¢ =0 only for the warping shear
modes helps in improving the accuracy of the analysis. In the case of second-order analysis, and after
validating the formulation presented herein (e.g., [16]), the authors concluded that the aforementioned
procedure should be kept, but without the need to impose ¢x=0 — this condition is no longer essential
to guarantee accurate results because the strain-displacements relations are now non-linear.

4. Overview of the Plasticity Model
4.1 The Prandtl-Reuss model

A detailed description of the Prandtl-Reuss model, combining the (von Mises) J,-flow theory with its
associated flow rule, can be found in the literature (e.g., [26]) and also in recent work by the authors
[14]. Therefore, only a brief overview of the main concepts and procedures involved in its development is
presented herein, together with some remarks regarding the implementation of this model for non-linear
materials exhibiting pronounced strain-hardening, such as stainless steel. For a material with isotropic
hardening, von Mises yield criterion reads
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f=F(G)—Gy(K)=0, F(G)z -3J, , (15)

where (i) f and F(o) are the von Mises yield function and stress, respectively, (ii) ¢’ is the yield stress (or
hardening function), (iii) x is the hardening parameter, and (iv) J; is the 2™ deviatoric stress invariant.
If a point (o, k), located on the yield surface, experiences an infinitesimal plastic flow, Prager’s
consistency equation [22] states that

df=f(a+dc7,1c+drc)—f(a,lc)=ai do; — hdp =0 , (16)
iy
where d#>0 is the plastic proportionality factor and h is the hardening modulus (null for perfectly-
plastic models). Since von Mises’s yield criterion is generally appropriate to model metals, it was decided
to derive dx on the basis the modified work-hardening relation suggested by Borst [22]

T p p p p
o de® o, dep +odel +o Ayl

=) o (x)

which leads to dx=d# for the plasticity model under consideration and can be used to obtain, in a
straightforward way, the hardening modulus h, given by [14]

, (17)

y
h:da
de?

>0 , (18)

eP=x=n
where the gradient function do”/de" is taken from the uniaxial stress-strain curve.

The hardening modulus plays a crucial role in defining the elastoplastic constitutive matrix [14]
and, therefore, in the development of implicit and explicit integration schemes to update the stresses and
the hardening parameter at any material point that has experienced plastic flow (see section 4.2). In
order to simplify the application of this plasticity model to an arbitrary isotropic material, a more
straightforward expression for h is derived next. For a general non-linear stress-strain curve o(g) with
a linear elastic region, the yield stress increment (da”) at any strain £>¢”, is given by

y_do

de

y
do de, de=d %+gp . (19)

ezgf
g+l

where (i) €y is the total strain at the onset of yielding, (ii) the current total strain £>&”; is divided into
its elastic (¢%) and plastic (¢”) parts, and (iii) E is the material Young’s modulus. Then, taking into
account Eqgs. (18) and (19), the hardening modulus can be expressed as

_ 0o’
oe’

o _do

h =7 . = 95
eP=x 1- go—a/E

, (20)

de &> gf
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in which the total strain £>¢’, appearing in the second member must be evaluated at the corresponding
plastic strain €’=x. However, in view the relation between the total strain and its elastic and plastic
parts (see Eq. (19)), the relation e(ep) can only be obtained numerically. In order to avoid resorting to
computationally costly numerical methods, like Newton-Raphson’s (N-R), and also to enable the
determination of ¢ (ep), a database was created to provide the (i) yield stress (¢°), (ii) plastic strain
(e°=e—0¢”/E>0) and (iii) hardening modulus (h), for each total strain inside the range g <e<g,.
During the analysis, ¢°(e°=x) and h(g"=x) are obtained from the database, using linear interpolation.

In order to compute the internal force vector and tangent stiffness matrix mentioned in section 3.2, it is
mandatory to update (i) first the stresses and hardening parameter x, and (ii) then the stress gradients
(Coloe) at each material point and for every “equilibrium configuration”. For that purpose, at every
Gauss integration point and after each iteration of the arc-length procedure mentioned in section 3.2,
one must (i) compute the elastic stress variation, due to the imposed strain variation (Ag) w.r.t. the last
equilibrium configuration i (stresses oj and hardening parameter r;), and then (ii) check whether the
corresponding final stresses (ge=0;+ D°A¢) fall outside the yield surface f (o, ;) = 0 (see Eq. (15)) or not".
If they do, numerical integration of the incremental constitutive equations is performed, in order to update
the stresses and the hardening parameter x — several implicit and/or explicit Euler-type methods were
implemented to perform this task (an overview is presented in the next section). Once the stresses and the
hardening parameter are updated, the stress gradients (6a/0¢) at each integration point can be computed
straightforwardly, through either the conventional or the consistent elastoplastic constitutive matrices
(derived in [14]). The consistent matrix was used to obtain the results presented in this work, in order to
reduce the computational cost of the incremental-iterative procedure [22].

4.2 Implicit and Explicit Integration Schemes

A key step in physically non-linear FE analysis concerns the numerical integration of the constitutive
relations, so that the unknown increments of both the stresses and the hardening parameter can be
obtained wherever plastic deformation takes place. The integration methods available are usually
classified as explicit or implicit? — concerning the latter, one should be aware that, when using the N-R
algorithm, divergence or non-convergence may occur, particularly in the case of yield surfaces
exhibiting vertices and/or high curvature gradients (in such case, some form of strain sub-
incrementation may be necessary [27]). As for the explicit schemes, they can be applied to a wide
range of models, although this should be done with some care, since the solution is not enforced to
satisfy the yield criterion to a specified tolerance, unlike in the implicit methods. According to Sloan et
al. [27], the accuracy and efficiency of explicit methods can be significantly enhanced by adopting
strain sub-incrementation and error control, in conjunction with a correction aimed at bringing the final
stresses and hardening parameter to the yield surface — some of these recommendations were followed
in this work and are discussed in this section.

The backward Euler and forward Euler schemes are the most popular implicit and explicit methods
used in elastoplastic problems. They belong to a family of methods aiming to compute, for each material

i f(oe, k) <0, the current strain increment takes place in the elastic range and all variables are updated under that condition (k remains
unchanged). If f(ce, 1) >0, plastic flow occurs and, therefore, the final stresses are located on the yield surface.

2 Explicit integration is based on known variables and, strictly speaking, requires no iteration to predict the unknown increments.
Implicit integration, on the other hand, is based on unknown variables and, therefore, involves the iterative solution of a system
of non-linear equations at each Gauss point considered in the FE analysis.
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point, the solution at configuration t+ At on the basis of the solution at configuration t + aAt (0<o<l1),
assuming that (i) t corresponds to the onset of plastic flow and (ii) At reflects the imposition of the
elastoplastic strain increment (Ae=Ac® + Ae™)® — backward and forward Euler methods correspond to
a=1 and 0=0, respectively. However, there are other schemes proposed in the literature that adopt
intermediate o values — for instance, 0=1/2 has been used to define the method known as Mean Normal
[22], which is unconditionally stable (Ortiz and Popov showed that this is so for methods adopting
0>1/2 [22]). Details about the definition and implementation of the forward Euler, mean normal
and backward Euler methods (without any complementary algorithm) can be found in [14] and,
therefore, are not discussed herein. In previous work [14, 15, 16, 28], several GBT-based results
concerning first and second-order elastoplastic analyses adopting elastic perfectly-plastic and bi-linear
stress-strain curves were validated against ABAQUS SFEA results. As described in [14], either the
backward Euler or the mean normal algorithms (initial solution given by the backward Euler scheme) can
be used to integrate the constitutive relations — nevertheless, after performing the analyses whose results
are presented in section 6, for a typical stainless steel stress-strain curve (pronounced non-linear strain-
hardening), the authors realised that the backward Euler method has convergence problems, which could
not be eliminated even after trying (i) different arc length sizes, (ii) better approximations of the trial
solution used in the N-R procedure, and/or (iii) different reliable convergence criteria [14]. Indeed, as
mentioned before, convergence issues are likely to occur in the presence of high yield surface curvature
gradients, which is the case of stainless steel. In view of this, it was decided to implement improved
forward Euler and mean normal algorithms to efficiently perform analyses involving highly non-linear
materials (avoiding convergence problems). The accuracy and robustness of these explicit methods
can be improved if complemented with (i) sub-incrementation and (ii) final solution correction.
Concerning the latter, the Consistent and Normal iterative schemes described in [27] are adopted if
the final stresses (ot ) and hardening parameter (x; ) obtained by the explicit method violate the yield
condition within a specified tolerance (TOL), i.e., if |f (o7, x5 ) |> TOL. The Consistent scheme, which
should be employed first, is more reliable, because it ensures that the strain increment remains unchanged
(consistent with the FE method). It prescribes that

o, =0,+060, 6o =-0kDn,
. (21)

K =K, + 0K, 6K=—fT(CZf’Kf) , n=ﬂ

n, D°n; +h, oo
where (i) do and Jx are small iterative corrections that must be applied until |f (o, x5 ) |[< TOL,
(i) D° is the GBT elastic constitutive matrix and (iii) hf and n¢ are the hardening modulus and
gradient vector, evaluated at (o7, ;) [14]. If there is lack of convergence, indicated by the fact that
the “corrected” stress state is further away from the yield surface than the uncorrected one, the
Consistent correction scheme should be abandoned and replaced by the Normal method, which assumes
that the hardening parameter remains unchanged — then, the final stresses are iteratively obtained from

% A closed-form expression to determine the elastic strain variation A€®, required to drive a stress point located inside the yield
surface to reach it, is derived for the von Mises yield criterion in [14].
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—f o,k )N
o, =0, +00, 5G=M . (22)
nf nf

Regarding the convergence criterion used in both methods, it reads
‘f (Gf,Kf)‘S U min{F (Gf),dy (K'f)}, u=1x10" to 1x10° , (23)

where F and ¢” are the von Mises and yield stresses. According to Sloan et al. [27], both the algorithms
presented before are efficient and robust, typically converging within 5 to 10 iterations — this assertion
was confirmed by the performed GBT analyses.

The other improvement to the explicit methods that was implemented in this work is the strain sub-
incrementation, which is only performed for the forward Euler method and always in combination with
the iterative correction of the solution (see (21)-(23)). It consists of (i) dividing the total strain increment at
any Gauss point into N equal sub-increments (N=3 was used), (ii) computing the corrected solution after
imposing each strain sub-increment, and (iii) then using this corrected solution as the initial state for the
next sub-increment, until the full total strain increment is imposed. The mean normal scheme was used to
obtain the GBT results presented in section 6, but considering an initial solution at configuration t+ At/2,
provided by the forward Euler method (with sub-incrementation and correction). Moreover, since
the final step of the mean normal scheme is always explicit, a correction is also applied to it.

5. Material Modelling of Stainless Steel Alloys

Several experimental investigations ([29-34]) showed that the mechanical behaviour of stainless steel
is asymmetric (distinct in tension and compression) and anisotropic (varies with the direction — e.g.,
distinct for the rolling/longitudinal and transverse directions). The relevance of these features depends
on several factors, such as the stainless steel grade, manufacturing process (e.g., cold or hot-rolling,
cold-forming) and strain history. In the GBT formulation proposed in this work, the stainless steel
elastoplastic behaviour is modelled as non-linear isotropic, according to the J,-flow theory presented in
section 4. This model was selected due to its frequent use in FE simulations [1, 35, 36], leading to a fairly
good agreement between numerical and experimental results. Some researchers [31, 32] have investigated
the influence of the constitutive model (isotropic and anisotropic) on the structural response of stainless
steel (austenitic, ferritic or duplex) thin-walled elements — they concluded that (i) the isotropic strain-
hardening model provides fairly accurate results and that (ii) the influence of anisotropy is negligible
and may be neglected in numerical analyses involving monotonic loading.

5.1 Full-Range Stress-Strain Curve

In order to model the stainless steel alloy material behaviour, the uniaxial stress-strain curve is obtained
by the full-range three-stage stress-strain relation proposed by Quach et al. [18], which (i) is valid for
the tensile and compressive behaviours of any alloy (austenitic, ferritic or duplex), (ii) was shown to
compare quite well with experimental curves, up to the ultimate stress, and (iii) outperforms the
alternative relations proposed in the literature (e.g., Gardner and Nethercot [34] or Rasmussen [37]).
Since only one hardening function ¢”(x) can be used with von Mises’s yield criterion (see section 4),
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it was decided to model the compressive behaviour, instead of the tensile — this choice is justified by the
fact that the overwhelming majority of problems to be tackled involve compressed thin-walled members
(those whose behaviour is often governed by instability phenomena). The strain-stress relation
proposed by Quach et al. [18] reads

i+o.ooz(iJ 0<o <o,
E Oo2 A
&= 50A2+EG_*+5*zp(&J 100, <0 =0, , (24)
02 0.1
G__a ,0,<0 =<0,
b¥o
where
0,=0-0,,, O, =0,-0y, € :%, 802—0.002+G|;‘2
In(20
po M) e E 0008+ (0-0)[ - . @5)
In(0y,/00) ~~ 1+0002n/e E E,
ltg,)-0,(1
a=o,(1t¢,)-be,, b=0“( &)= 82), g, =¢(o=0,)

& —&

Regarding this stress-strain relation, note that (i) it involves the stress and strain absolute values,
(if) the upper and lower signs in the third-stage expression of (24) concern tension and compression,
respectively, and (iii) gg2, o1 and o, are the 0.2%, 1% and 2% proof stresses — &y , €1 and &; are the
respective total strains. The hardening power (n) definition ensures that Eq. (24) passes through the
experimental point associated with the 0.01% proof stress (g .o1).

Using linear regression models, applied to a large number of uniaxial test results concerning different
stainless steel alloys (either in their virgin state or cut from flat portions of cold-formed sections),
Quach et al. [18] calibrated expressions that allow relation (24) to be defined as function of the three
basic Ramberg-Osgood parameters (usually available in the literature): n, E e og., given by*

4 According to Quach et al. [18], the proposed approximations are not applicable to corner portions of cold-formed sections since
they generally are work-hardened (due to fabrication) to a much higher degree than flat ones.
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0662, 1 085

)+1.145

E(;Az ( j Eg.z[
n, =12.255 = +1.037, nS=6.399

c

o, =0,, (0'5?2 +1.072), o, =0y, [0'662 +1.085),

n n
, (26)
1-0.0375(n" - 5) 1 o!
t ot t ot t _1_%02
(a)a“_%{ 0.2+ 185¢" J (b)a“_0°'z[o.2+185e‘j’ =l
C 2 C 1
o, =G$(1+8;) . &, :1—lJrthJ

where (i) “t” and “c” stand for tension and compression and (ii) the atu expressions (a) and (b) are
valid for (iiy) ferritic and (ii,) austenitic and duplex alloys, respectively. The approximation for stress o»
can be obtained from Egs. (24) and (25), using an iterative scheme like N-R to solve a non-linear equation.
However, in order not to increase the computational cost of the analysis, the approximation proposed in
[18] is adopted,

In,
0, R0y, + (01 —00_2) Al/“z {1_ (1/E0_2 _E:-/E)GZa}

a = Oy . (27)
A%z

B=0.018+e(E/E,, -1), A=
+e( / 0.2 ) 0,008+e(61/00_2_1)(1_ E/Eoz)

Regarding the computation of the hardening modulus h(x) (recall section 4.1 and Eq. (20)) and the yield
stress ¢”(x), the database to allow for their determination by linear interpolation, for any hardening
parameter «, was created on the basis of a range of equally spaced (Ae=1x10"®) total strains g <e<g,.
Since relation (24) does not allow a direct stress computation from a range of pre-defined strains, its
accurate inverse, proposed by Abdella et al. [38], was adopted to obtain the stress range corresponding to
the above equally spaced strains — the incorporation of those stresses into Eg. (24) leads to the final total
strain database. Note that these calculations have a low computational cost, since they are performed
only once in each analysis — before the beginning of the arc-length procedure.
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5.2 Elastic Behaviour and Initial Yield Stress

As mentioned earlier, stainless steel alloys have no well-defined yield point and, therefore, the 0.2%
proof stress (og ) is often taken as the yield strength, for design purposes (e.g., EN 1993-1-4 [6]).
According to Johansson and Olsson [29], in numerical studies involving materials that lack a distinct
transition between the elastic and plastic states (at the initial loading) it is not feasible to use op to
define the initial yielding, regardless of the constitutive model adopted. Those authors propose using the
proportional limit (usually taken as the 0.01% proof stress gpg1) to define the initial yielding, which
implies that linear elasticity is assumed. In fact, several researchers (Lecce and Rasmussen [30],
Ellobody and Young [39], Hassanein [40], Becque and Rasmussen [33]) have successfully used
the proportional limit as the initial yield stress in numerical simulations. For the above reasons, linear
elasticity is also assumed in this work and og; is taken as the initial yield stress. For the stress-strain
relation adopted, 6p 91 can be computed by using the hardening power n specified in (25),

|n(00,2) - In(nZO)

Coor =€ , (28)

where “In” stands for the natural logarithm.

6. lllustrative Examples

In order to (i) validate the proposed GBT formulation, and the corresponding numerical implementation
(using MATLAB R2010b [41]), and (ii) illustrate its application and potential, the geometrically
and physically non-linear behaviours of two SHS cold-formed stainless steel columns, previously
investigated by Theofanous and Gardner [1], are presented and discussed next: one fixed-ended stub
column® and one long pin-ended column, both cold-rolled and seam-welded. The stainless steel alloy
considered is the EN 1.4162, known as “lean duplex”, which is beginning to make inroads in the
building and construction industry, because (i) it is generally considerably less expensive than the
traditional austenitic grades (due to the much lower nickel content), (ii) its mechanical resistance is
higher than those of the most common ferritic and austenitic grades, and (iii) it still retains adequate
weldability and resistance to several types of corrosion [1]. Its material behaviour is modelled by means
of the Prandtl-Reuss model, presented in section 4.1, and considering the stress-strain relation given in
Eq. (24). The Ramberg-Osgood material parameters adopted were those reported in [1], obtained from
tensile and compressive tests of flat coupons cut from the centre of the face opposite to the weld — the
uniaxial stress-strain relations used for each column are shown in Figs. 2(a)-(b). Although it is well
known that cold-forming induces strength enhancements in the cross-section comer regions, their effects
were not taken into account in this study (and the corners were modelled with right angles).

Residual stresses (longitudinal and transverse) may arise in cold-formed tubular sections as a result of
(i) the plastic deformations taking place during sheet coiling and/or forming, and (ii) the seam-welding
operation required to “close” the section. Generally speaking, there are two types of residual stresses,
characterised by non-null (membrane stresses) and null (bending stresses) resultants in the through-
thickness direction — rigorous measurements [42] in stainless steel hollow sections showed that bending

® But long enough to contain a representative residual stresses and geometrical imperfection patterns.
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Figure 2. Lean duplex stainless steel compressive stress-strain curves adopted: (a) full and (b) initial strain ranges.

residual stresses are clearly dominant (membrane residual stresses are rather minute). After cutting the
coupons to be tested, they exhibit a longitudinal curvature due to bending residual stress release.
Nevertheless, because they are essentially reintroduced when the coupons are straightened, during the
test, their effect is implicitly taken into account by the material stress-strain properties [42, 43]. For
the above reasons, residual stresses were not explicitly modelled in this work, even if it is
acknowledged that they exist and affect the column behaviour. Regarding the initial geometrical
imperfections included in the analyses, which are specified in the next sub-sections, they are based on
those that yielded the best results (ultimate load/displacement) in the SFE simulations reported in [1].

In the following sub-sections, the GBT results are validated through the comparison with ABAQUS SFEA
values, obtained with column discretisations involving fine meshes of 4-node isoparametric SFES with
full integration (**S4 elements”, in the ABAQUS nomenclature). Each SFE contains 2 integration points
per surface direction and adopts the same number considered in the GBT analysis for the through-
thickness direction (z-axis) — the meshes and integration point numbers considered will be given later.
In ABAQUS, the material behaviour is also based on the Prandtl-Reuss model and the compressive stress-
strain input data must be expressed in terms of the true stress (at) and true plastic extension (gtp)
absolute values — they are obtained, from their nominal counterparts, as

t
gt(p)=—|n(l—8n)—% O't:O-n(l_gn) ) (29)

where ¢ and " are the nominal stress and extension absolute values. A meaningful comparison between
the GBT and ABAQUS results requires that all GBT normal stresses be transformed into true stresses at a
post-processing stage. However, the GBT von Mises stresses are based on nominal stress components
— those adopted to implement the J,-flow plasticity theory. The results presented and discussed comprise
equilibrium paths, GBT modal participation diagrams, displacement profiles, stress diagrams, stress
contours and column deformed configurations. The comparison between GBT and ABAQUS results
concerns three equilibrium states, termed (i) BP (before peak), (ii) P (peak — ultimate load) and (iii) AP
(after peak) — moreover, for each column, the experimental [1] and GBT-based equilibrium paths

Paper Presented by Prof. Dinar Camotim — dcamotim@civil.ist.utl.pt
© M. Abambres, D. Camotim & N. Silvestre — TU Lisbon



(including the peak load and associated displacement values) are also compared. Finally, note that (i)
the cross-section dimensions are referred to the wall mid-lines, (ii) all displacements and stresses concern
the column mid-surface (z=0 — membrane type) and (iii) the stress diagrams are plotted along the mid-line
coordinate s for the three cross-section walls labelled W1, W2, W3 in Figs. 3and 11.

6.1 Long Pin-Ended Column

Consider the pin-ended lean duplex SHS column (labelled as 80x80x4-2000 in [1]) shown in Fig. 3(a), (i)
with length L=1999 mm and the cross-section dimensions (width B, height H, and thickness t) given in
Fig. 3(b), and (ii) submitted to a compressive load F=361900 A N (A is the load parameter) — the load is
uniformly distributed along the end-section mid-line (g=1194.4 N/mm). The stainless steel compressive
stress-strain curve (see Figs. 2(a)-(b)2 is defined by the Ramberg-Osgood basic parameters with values
(i) o .,=679 N/mm? n'=6.5 and E '=199900 N/mm? for tension, and (ii) o &, = 657 N/mm? n°=4.7
and E “=197200 N/mm?, for compression - the initial yield stress is 6o’=347.34N/mm?. Since knife edges
were employed to materialise the pin-ended boundary conditions in the experimental test performed by
Theofanous and Gardner [1], only (i) the minor-axis rotation at both supports and (ii) the global axial
displacement at the loaded end cross-section, were not fully restrained in both the GBT and ABAQUS
analyses. In the latter, these boundary conditions were imposed at the reference nodes of the rigid plates
attached to the column end cross-sections.

In the GBT analysis, the SHS was discretised into 24 wall segments (5 intermediate nodes per wall — see
Fig. 4), leading to 124 deformation modes (warping rotations &, included as d.o.f.): 4 global, 45 local, 51
warping shear and 24 transverse extension modes — only 41 of them were included in the analysis and the
in-plane and out-of-plane configurations of the 8 most relevant ones are depicted in Figs. 4(a)-(d).
Concerning the longitudinal discretisation, the GBT analysis considers 48 symmetric FES with the
following distribution in half of the column (see Fig. 3(a)): (i) 3 FEs for x<0.03L, (ii) 18 FEs for
0.03L<x<0.47L and (iii) 3 FEs for 0.47L<x<0.5L, corresponding to a total of 3909 d.o.f.. As for the
ABAQUS model, it involves 150 SFEs along the column length (uniform mesh) and 24 SFEs along the
cross-section mid-line (also uniform mesh), which corresponds to 21747 d.o.f.. In each FE, the GBT
numerical integration involves three Gauss points per wall segment direction (s, z and x — see Fig. 1(a)).

Regarding the column initial geometrical imperfection, they are a linear combination of the first local
(symmetric) and the first global (flexural) buckling modes (Agiov=1.43, A 10c=5.76), with amplitudes

z B
W3
y g F=361900 /
el O<== 0
2 H=758 H w2 BN
L x B=757
« 1999 > t=38 w1
S
[mm]
(a) (b)

Figure 3. Long pin-ended column (a) overall view and loading, and (b) cross-section dimensions.
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Figure 4. In-plane and out-of-plane configurations of the 8 most relevant GBT deformation modes: (a) axial extension and
minor-axis bending (1, 3), (b) local (6), (c) warping shear (51, 53, 54) and (d) transverse extension (103, 104).

0.033 mm (local — obtained from the model of Dawson and Walker [1]) and L/1000=1.999 mm
(global) — the imperfection longitudinal profiles are depicted in Fig. 7(a), representing the horizontal
displacement of the cross-section point (node) indicated in Fig. 3(b).

Fig. 5(a) displays the GBT and ABAQuUS equilibrium paths A(6), where ¢ is the horizontal displacement of
the mid-span cross-section point indicated in Fig. 3(b). The load parameter values obtained for the
equilibrium states BP, P and AP (indicated in Fig. 5(a)) are: (i) Aecsr=0.79 and Aagq=0.81 (BP),
(i1) Aeer=1.04 and Aago=1.04 (P), and (iii) Acer=0.72 and Aasq=0.71 (AP). Figure 5(b) shows the GBT
modal participation diagram conceming the evolution of the column mid-span cross-section deformed
configuration as the loading progresses (and ¢ increases). The observation of the results presented in Figs.
5(a)-(b) prompts the following remarks:

(i) There is an excellent agreement between the GBT and ABAQUS equilibrium paths, including
the descending (post-peak) branch — the maximum difference is 1.5%.

(i) The GBT column ultimate load and associated o value read F,cgr=376376 N (A,=1.04) and
oucet=16.45 mm, values that compare fairly well with the experimental results reported in [1]:
Futes=361900 N, Ay st =1.00 and dy test =20 mm — see the dashed curve in Fig. 5(a). The
closeness between the GBT and test values makes it logical to infer that neglecting both the rounded
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Figure 5. Long Pin-ended column (a) GBT, ABAQuS and test equilibrium paths and (b) GBT modal participation diagram.

comer strength enhancement and membrane residual stresses did not affect too much the quality of
the GBT analysis (e.g., the ultimate load is almost exactly predicted).

(iit) The absence of post-buckling strength (A<Angiob=1.43) stems from the fact that the onset of yielding
occurs considerably below the global buckling load (A,=1.11, leading to F =A ¢”).
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(iv) Theofanous and Gardner [1] observed that the column failed in a global mode, which agrees with the
peak load deformed configurations provided by the GBT and ABAQUS analyses — see Fig. 6.

(v) The GBT modal participation diagram in Fig. 5(b), obtained as explained in [28], clearly shows
that global deformation governs the column behaviour, as reflected in the dominant participations
of modes 1 (axial extension) and 3 (minor-axis bending®) — see Fig. 4(a). Moreover, the observation
of the modal diagram leads to the following comments:

(v.1) The participation of mode 1 reaches a maximum of 23.5% close to the BP equilibrium state
and decreases subsequently, tending to 7.0% in the post-peak stage. As for the participation
of mode 3, it reaches a minimum value of 75.2% (practically coincident with the maximum of
mode 1) and then gradually increases until about 92%, value exhibited in the post-peak stage.

(v.2) In spite of appearing in the initial geometrical imperfection, mode 6 (local — see Fig. 4(b))
only shows some (minute) relevance for 6 >40 mm, in agreement with the fact that visible local
deformations only develop (at column mid-span region) beyond the AP state.

GBT ABAQUS

Figure 6. GBT and ABAQuS column post-collapse deformed configurations (AP equilibrium state).

Fig. 7(b) depicts the longitudinal profiles of the column mid-height lateral displacement (see Fig. 3(b))
at the equilibrium states P and AP — the GBT and ABAQUS analyses provide almost coincident results.
Local bending is not visible, because it is completely overshadowed by global bending (as shown in
Fig. 5(b)) — however, note that it clearly appears in the column initial (imperfect) configuration, as
attested by the corresponding longitudinal profile shown in Fig. 7(a) (see the column mid-span region).

Figs. 8(a)-(b) show the GBT and ABAQuS longitudinal normal (oxx) and von Mises (Oiises) Stress

diagrams at the mid-span cross-section (x=999.5 mm), for the equilibrium states BP, P and AP. Their

observation makes it possible to draw the following conclusions:

(i) There is a very good agreement between all the GBT and ABAQUS stress diagrams — as expected,
they are symmetric with respect to the cross-section horizontal principal axis (see Fig 3(b)).

(if) The values in the von Mises stress diagrams concerning equilibrium states BP and P are very similar

® The designation “minor-axis” stems from the fact that the measured SHS height and width are slightly different (H=75.8 mm, B=75.7 mm).
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Figure 8. Mid-span cross-section stress diagrams at the BP, P and AP equilibrium states: (a) oxy and (b) Omtises-

to the absolute values of the corresponding longitudinal stress diagrams, which means that the shear
and transverse normal stresses are very small (negligible) at the mid-span cross-section. This assertion
also holds for equilibrium state AP, but only for points where the oy, values are reasonably high.

(iii) Fig. 8(a) shows that, as expected, the influence of global bending in the longitudinal stresses increases
as the column evolves between the equilibrium states BP to AP. For instance, the neutral axis only
intersects the cross-section at the equilibrium state AP (the whole cross-section is under compression
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at BP and P). At the AP state, some cross-section points (those close to the W1 and W3 wall edges)
have already yielded in tension (see Fig. 8(b) and recall that 6p’=347.34 N/mm?).

(iv) At equilibrium state BP, the whole mid-span cross-section is in the initial elastic regime (Owises<00’)
and, therefore, the stress diagrams are linear or constant in each wall. At equilibrium states P and AP,
on the other hand, the stress diagram non-linearity is clearly visible in the W1 and W3 wall yielded
areas (Omises>00") — it reflects the non-linear hardening exhibited by the lean duplex stainless steel.

Figs. 9(a)-(b) show the GBT and ABAQUS Givises cONtours conceming the equilibrium state AP and one
notices a remarkable resemblance in both pairs of column side views displayed, showing either the
compressed or the tensioned region. As mentioned earlier (see also Fig. 8(b)), the column side under
tension, depicted in Fig. 9(b)), has also yielded, but to a lesser extent than its compressed counterpart.
Note that the column regions exhibiting lower stress values (coloured in blue) correspond to the vicinity
of the column neutral surface — these “blue regions” tend to move away from the principal (centroidal)
plane as one travels from the end section to mid-span, which is a direct consequence of the load
eccentricity increase (null at the end section and highest at mid-span).

GBT V GBT

+7.8%8=+02
+7.251e+02
th.603=+02
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tz.720e+02
+2.073=+02
t1.4Z26=+02
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+1.312=+01

ABAQUS o ABAQUS
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Figure 9. Mises stress (Ojises, N/mm?) contours at equilibrium state AP: column sides under (a) compression and (b) tension.

Fig. 10 depicts the GBT and ABAQUS transverse normal stress (oss) contours concerning equilibrium
state P and in the vicinity of the column end cross-sections (the plot height corresponds to the web height)
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— since the stresses are much lower in the remaining column regions, thus leading to a homogeneous
contour, only this specific region is dealt with. It is observed that the GBT transverse normal stresses do
not vary as smoothly as their ABAQUS counterparts — nevertheless, there is clear good qualitative
agreement between the two contours. It should be mentioned that the current GBT formulation may
lead to visible transverse normal stress discontinuities between adjacent cross-section wall segments,
which is due to the linear approximation adopted for the membrane transverse displacements v(s).
Nevertheless, previous work from the authors [14, 16, 28] (i) included GBT o diagrams that compared
much better with their SFEA counterparts, provided that the mean og value in each wall segment was
considered (this fact explains the good correlation between the GBT and ABAQUS stress contours), and
(i) showed that the oy discontinuities have very little impact on the overall (high) quality/accuracy
of the GBT results.
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Figure 10. Transverse normal stress (Ogs, N/mm?) contours at collapse (vicinity of column end section — along its height).

6.2 Fixed-Ended Stub Column

Consider now the fixed-ended lean duplex SHS stub column shown in Fig. 11(a), with length L=400 mm
and the cross-section dimensions (width B, height H, and thickness t) given in Fig. 11(b) — its is
labelled as 100x100x4 — SC1 in reference [1]. The column is subjected to a compressive force
F=1022000 A N (A is the load parameter) and, as before, the load is uniformly distributed along the end
section mid-line in both the GBT and ABAQUS models (q=2618.63 N/mm). The stainless steel (EN
1. 41622 is modelled accordlng to the Ramberg-Osgood basic parameters (i) o, —586 N/mm?, n'=o. 0
and E '=198800 N/mm?, for tension, and (ii) o 5, =560 N/mm? n °=8.3 and E °=198200 N/mm
for compression — the corresponding compressive behaviour is deprcted in Figs. 2(a)-(b) for the |n|t|al
and full strain ranges, and the initial yield stress is 0"=390.33 N/mm?. Both end cross-sections are fully
restrained, except for the global axial displacement of the loaded one — in ABAQUS, this was achieved
by attaching rigid plates to the end cross-sections and imposing restraints to their reference nodes.

The GBT analysis is based on a SHS discretisation involving 40 wall segments (9 intermediate nodes per
wall — see Fig. 12), leading to 204 deformation modes (warping rotations &, included as d.o.f.): 4 global,
77 local, 83 warping shear and 40 transverse extension modes — only 28 of them were included in the
analysis and the in-plane and out-of-plane configurations of the 9 most relevant ones are depicted in
Figs. 12(a)-(d). Concerning the longitudinal discretisation, 16 equal-length FEs were considered, which
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Figure 11. Fixed-ended stub column (a) overall view and loading, and (b) cross-section dimensions.
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Figure 12. In-plane and out-of-plane configurations of the 9 most relevant GBT deformation modes: (a) axial
extension (1), (b) local (6, 9, 14), (c) warping shear (85, 88) and (d) transverse extension (166, 168, 176).

corresponds to a total of 865 d.o.f.. The ABAQUS model involved 50 SFEs along the column length
(uniform mesh) and 48 SFEs along the cross-section mid-line (also uniform mesh), corresponding to a
total of 14401 d.o.f.. Finally, the GBT numerical integration adopted three Gauss points per wall segment
direction in each FE, and the initial geometrical imperfection included in the analyses exhibits the shape of
the first symmetric local buckling mode (A,=1.8368) and amplitude t/100=0.0393 mm — the corresponding
longitudinal profile, concerning the vertical displacement o, (see Fig. 11(b)), is depicted in Fig. 15(a).

Fig. 13(a) displays the GBT and ABAQUS equilibrium paths A(A), where A is the axial shortening (see
Fig. 11(a)). The load parameter values corresponding to the equilibrium states BP, P and AP (indicated
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in Fig. 13(a)) are: (1) Aeer=0.701 and Aago=0.701 (BP), (ii) AceT=0.893 and Aago=0.893 (P), and (iii)
Aeer=0.590 and Aagq=0.577 (AP). As for Fig. 13(b), it provides the GBT modal participation diagram
concerning the evolution of the column mid-span cross-section deformed configuration as the loading
progresses (and A increases). The observation of these results prompts the following remarks:

(i)

(i)

The agreement between the GBT and ABAQUS equilibrium paths is excellent, up to the peak load,
and very good in the post-collapse stage — the maximum difference is 4.9% and occurs at the
beginning of the descending branch, characterised by a very pronounced non-linearity.

The GBT column ultimate load and associated A value read F,cgr=912646 N (A,=0.893) and
Ayeer=3.13 mm, values that compare fairly well with the experimental results reported in [1]:
Futes=102000 N, Ay test=1.000 and Ay test=3.63 mm — see the dashed curve in Fig. 13(a) — the
differences between the GBT and test values point to the need to improve the developed GBT
code to be able to simulate numerically this particular stub column behaviour. The SFEA results
reported by Theofanous and Gardner [1] suggest that including in the model the comer strength
enhancement effects (obtained from coupon tests) will lead to a much better prediction (even if
the influence of membrane residual stresses is neglected).

(iii) The lack of post-buckling strength (A.<Ap) is just a logical consequence of the column low

slenderness, which implies that premature yielding (A,=0.586, leading to F=A ¢’o) precludes its
strength to approach even the local buckling load level.

(iv) Theofanous and Gardner [1] reported that the stub column failed (iv;) in a mode exhibiting local

v)

deformations and (iv,) after considerable plastic deformation, which fully complies with the post-
collapse deformed configurations obtained from the GBT and ABAQUS analyses — see Fig. 14.

The GBT modal participation diagram in Fig. 13(b) clearly shows the presence of two markedly
different behaviours: (i) a first one that is predominantly global and involves basically the (pre-
buckling) axial deformations associated with the axial extension mode 1’, and (ii) a second one
that corresponds to the emergence and gradual growth of local deformations, mostly due to the
contribution of mode 6 (see Figs. 12(a)-(b)) — it is worth noting that this mode becomes much more
dominant in the post-collapse stage (it literally “sweeps aside” mode 1). Moreover, the observation of

Fig. 13(b) also leads to the following remarks:

(v.1) Inthe ascending part of the column equilibrium path (A<A,=3.13 mm), there are contributions
from four modes, even if the clear dominance belongs naturally to mode 1, whose contribution
rises up to 77.3% (recall the content of footnote 7) before coming down a little. Mode 6, whose
growing emergence is partly (together with plasticity) responsible for the non-linearity of
the column equilibrium path, has a participation that rises up to 28% at collapse (and keeps
rising in the descending branch). As for the transverse extension modes 166 and 168, whose
presence is intrinsically linked to that of mode 6, they exhibit increasing contributions that go
up to about 6% each — it should be pointed out that, in spite of their fairly small contributions,
the removal of these two transverse extension modes from the GBT analysis would
considerably affect the accuracy of the results obtained — the simulated column behaviour
would be stiffer, because the local deformation would be “artificially restrained”.

" The presence of other deformation modes stems almost exclusively from the (local) initial geometrical imperfections. If such initial
imperfections were to be removed from the modal participation diagram, which would amount to considering only the deformations
caused by the applied load, the contribution of mode 1 would be quite close to 100%.
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Figure 13 Fixed-ended stub column (a) GBT, ABAQus and test equilibrium paths, and (b) GBT modal participation diagram.

(v.2) In the descending part of the column equilibrium path (A>A,=3.13 mm), the participation of
mode 1 decreases substantially, due to a combination of elastic unloading and an increase of
the local deformations stemming from the spread of plasticity in the mid-span region, forming
a yield-line mechanism (see Fig. 14). Indeed, the contribution of mode 6 increases significantly
and additional local modes (9, 14) emerge with small (but visible) participations. Moreover,
other modes, like the warping shear modes 85 and 88, also have minute participations in the
post-collapse deformed configurations. Finally, the transverse extension modes 166 and 168
also decrease their participations, due to a combination of elastic unloading and local
deformation “localisation” in the very close vicinity of the mid-span cross-section.
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Figure 14. GBT and AsaQus column post-collapse deformed configurations (AP equilibrium state).

Figs. 15(b)-(d) concem the equilibrium states BP, P and AP (see Fig. 13(a)), and provide the longitudinal
displacement profiles oy (x) and J; (x) — axial and transverse/vertical displacements of the cross-section
upper wall mid-width point (see Fig. 11(b)). The following conclusions can be drawn:

(i)
(i)

All the GBT and ABAQus longitudinal displacement profiles practically coincide — the most
perceptible (but small) differences concern dy(x) at equilibrium state P.

Regarding Fig. 15(b), while dx(x) profile at the equilibrium state BP is linear, its equilibrium state P
counterpart exhibits a mild non-linearity close to the column end sections. At the AP equilibrium
state, on the other hand, dy(x) is clearly non-linear, comprising three “almost linear” segments,
two with similar slopes (column outer regions) and the third much more steep (column central
region) — the higher slope stems from the axial stiffness drop due to the plastic deformation associated
with the increasing participation of the local modes in the post-collapse stage (see Fig. 13(b)).

(iii) Conceming the d;(x) profiles, the number of longitudinal half-waves changes from three (the initial

imperfection — Fig. 15()) to five (BP and P equilibrium states — Fig. 15(c)). At the AP equilibrium
state, the three half-waves return (now much more unequal) due to a combination of (iii;) localised
plastic deformation at mid-span region and (iiiy) elastic unloading in the remaining of the column.
Note also that the maximum amplitude always takes place at mid-span, where the curvature increases
along the equilibrium path — see Figs. 15(a), (c) and (d).

Figs. 16(a)-(b) show GBT and ABAQuS longitudinal normal (o) and von Mises (Oiises) Stress diagrams
at the mid-span cross-section (x=198 mm) — the former for the equilibrium states BP and P, and the
latter for the equilibrium states BP, P and AP. Their observation leads to the following conclusions:
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Figure 15. Longitudinal displacement profiles of the axial and transverse/vertical displacements of the section upper wall mid-

width point: (a) d,(xX) (initial geometrical imperfection), (b) Jx(x) at BP, P and AP, (c) J,(X) at BP and P, and (d) d(X) at AP.

(i) All stress diagrams are symmetric with respect to the cross-section horizontal principal axis.
At the three equilibrium states all cross-section mid-line points have undergone plastic deformation
(recall that 0’=390.33 N/mm?) — see Fig. 16(b).

(i) The GBT and ABAQUS Oy and Ojises diagrams concerning the equilibrium states BP and P are in
very good agreement — while those concerning the BP state are uniform, their P counterparts are
slightly non-linear (“wavy”). The Ojises Stresses are very similar to the oy absolute values, thus
indicating that the shear and transverse normal stresses are negligible at mid-span. The small
discontinuities between wall segments in the GBT oy diagram at the equilibrium state P are due to
the discontinuous transverse normal stresses, as already discussed in section 6.1.

(iii) Concerning the von Mises stresses at the AP equilibrium state, the GBT and ABAQUS diagrams
show a fairly good qualitative agreement, except for the pronounced stress drop occurring in the
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Figure 16. Mid-span cross-section stress diagrams: (a) Oy at states BP and P, and (b) Ojises at states BP, P and AP.

middle of wall W2. However, there are visible quantitative differences, notably at the cross-section
comers — besides the fact that the GBT load parameter value at the AP state is 2.3% higher than
its ABAQUS counterpart, these differences may also be due to the absence of relevant deformation
modes in the GBT analysis (recall that only 28 modes, out of 204, were included).

(iv) It is observed that, at the AP equilibrium state, the von Mises stresses tend to accumulate at the cross-
section comers, which is due to the fair amount of local deformations occurring at mid-span (see
Fig. 14) — this stems directly from the typical non-linear distribution of the longitudinal normal
stresses in the (plate) post-buckling range (the mechanical basis of the effective width concept).

Figs. 17(a)-(b) show the GBT and ABAQUS Giyises CONtours concerning the equilibrium states P and AP,
and one notices again a striking resemblance in each pair of them. Moreover, note that the whole column
mid-surface is already yielded at the P equilibrium state (recall that o"=390.33 N/mm?) and that
the lowest stresses occur in the vicinity of the two end cross-sections. When evolving from state P to AP
(equilibrium path descending branch — Aap<Ap), it is interesting to notice that:

(i) Roughly 2/3 of the wall area close to the column end cross-sections (coloured in light blue in Fig.
17(b)) has “unloaded”, i.e., the Mises stresses have decreased.

(if) Roughly 1/3 of the wall area close to the column mid-span cross-section has undergone further plastic
deformation, clearly visible at the corner regions (coloured in red in Fig. 17(b)). However, some
“unloaded” areas also exist in the column central region (light and dark blue zones in Fig. 17(b)).

Finally, Figs. 18(a)-(b) show the GBT and ABAQUS shear stress (oys) contours at the left half (x<0.5L)
of the column wall W3 at the P and AP equilibrium states — note that these contours are asymmetric with
respect to the mid-span cross-section. Once more, each contour pair displays a strong qualitative
resemblance, even if the GBT shear stresses exhibits more irregular patterns than their ABAQUS
counterparts — this may be caused by (i) transverse normal stresses discontinuities between wall segments
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Figure 17. GBT and ABAQUS von Mises ( Ojises) Stress contours (N/mm?) at the (a) P and (b) AP equilibrium states.

(as discussed in 6.1), and/or (ii) the absence of relevant warping shear deformation modes in the GBT
analysis (only 11, out of 83, were included). Moreover, it is clear that the shear stresses play a more
important role in the AP state than in the P one — indeed, while the maximum oy values at state P occur
close to the column end cross-sections, they shift to the mid-span region in the post-buckling range
(AP state), due to the formation of a yield-line mechanism involving local deformations.

7. Conclusion

This work addressed the development and illustrated the application of a GBT formulation and numerical
implementation (code) intended to perform geometrically and physically non-linear analyses of thin-
walled members made of isotropic materials exhibiting arbitrary (non-linear) strain-hardening. After
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Figure 18. GBT and ABAQUS shear (Oye) stress contours (N/mm?) at the left column half wall W3 for the (a) P and (b) AP states.

providing an overview of the main concepts and procedures involved in the development of the above
non-linear GBT formulation and beam finite element code, the paper presented and discussed in great
detail numerical results conceming two lean duplex stainless steel (EN 1.4162) cold-formed SHS columns
previously investigated by Theofanous and Gardner [1], namely a long pin-ended column and a fixed-
ended stub column. The stainless steel non-linear strain-hardening was modelled by means of the three-
stage stress-strain relation (in compression) proposed by Quach et al. [18], together with the Ramberg-
Osgood basic parameters, experimentally determined from flat coupon tests and reported in [1] (the corner
strength enhancements due to cold-forming were not taken into account). Initial geometrical
imperfections were incorporated in the analyses, exhibiting global and/or local buckling mode shapes
with commonly used amplitudes, and bending residual stresses (the most relevant in stainless steel cold-
formed SHS members) were also handled by the formulation. The above numerical results consisted of
equilibrium paths, modal participation diagrams, displacement profiles, beam deformed configurations
and stress diagrams and contours. For validation purposes, the GBT results were compared with values
obtained from ABAQUS SFEA — generally, a fairly good agreement was found and, moreover, it was
shown that the GBT modal nature makes it possible (i) to acquire in-depth insight on the mechanical
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features of the column behaviour and, by removing the non relevant deformation modes from the analysis,
(i) to further reduce the number of degrees of freedom involved and, therefore, increase the
computational efficiency. For these two particular examples, the GBT analyses involved about 18%
(long column) and 6% (stub column) of the number of d.o.f. required by the SFEA, in order to provide
similarly accurate results — for instance, the ultimate loads obtained from the two analyses were found to
be almost coincident for both columns.

In order to assess the influence of the (i) corner strength enhancement and (ii) membrane residual
stresses on each column load-carrying capacity, the GBT ultimate loads were compared with the
experimental ones reported in [1] — it was concluded that the above effects have (i) a small influence on
the long pin-ended column ultimate strength (Aucer=1.04 V. Ayes=1.00), but (ii) a moderate impact
on the fixed-ended stub column ultimate strength (Aucer=0.893 VS. Ay.es=1.000). In order to overcome
this shortcoming and be able to predict the behaviour and ultimate strength of thin-walled stainless steel
members more accurately, the corner strength enhancement and membrane residual stress effects will
be soon included in GBT-based analyses.

Finally, just two words to mention that the modal nature of the GBT analysis, which was only very
partially explored in this work, is expected to provide fresh insight on the mechanics underlying the
behaviour and collapse of thin-walled stainless steel members under various loadings. The authors plan to
investigate this issue in the not too distant future, now that the developed geometrically and physically
non-linear GBT formulation, and respective beam finite element code, may be deemed properly validated.
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