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Abstract—The populations of prey and predator interact . INTRODUCTION

with prey harvesting. When there is no predator, the There are man idemioloaical or logical model
logistic equation models the behavior of the preys. For ere are many epiaemiological or ecological models

interactions between preys and predators, we use the [8], [7], [8], [9], [10], []jljv [5] in the literature an_d
generalized Holling response function of type Ill. This &S0 many models which encompass the two fields
function which models the consumption of preys by [3], [4], [8], [9], [LO], [11], [12]. Dynamic models for
predators is such that the predation rate of predators infectious diseases are mostly based on compartment
increases when the preys are few and decreases wherstructures that were initially proposed by Kermack and

they reach their satiety. Our main goal is to analyze the \cKendrick (1927,1932) and developed later by many
influence of a SIS infectious disease in the community. The other researchers.

epidemiological SIS model with simple mass incidence is . . . . .
: ; . The main questions regarding population dynamics
chosen, where only susceptibles and infectious are counted.

We assume firstly that the disease spreads only among theCONCEN the effgcts of infectipus disgases in .regulqting
prey population and secondly that it spreads only among natural populations, decreasing their population sizes,
the predator population. There are many bifurcations as: reducing their natural fluctuations, or causing destabi-
Hopf bifurcation, transcritical bifurcation and saddle-node lizations of equilibria into oscillations of the population
bifurcation. The results indicate that either the disease states. With the Holling function response of type I, it
dies out or persists and then, at least one population can js well known that the predators increase their searching
disappear because of infection. For some particular choices activity when the prey density increases.

of the parameters however, there exists endemic equilibria ; : .
in which both populations survive. Numerical simulations Generally, ifz denotes the density of prey population,

on MATLAB and SCILAB are used to illustrate our € _HO!“”Q function of type | isp; (z) = rx Wherer. IS
results. the intrinsic growth rgte of preys. The Holling function of
. wo T

KeywordsPredator; Prey; Infectious disease; Response YP€ I1'1S P2(z) = 1z wherew, andw; denote
function; Bifurcation; Global Stability respectively the time taking by a predator to search and
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capture preysB is the predation rate per unit of time. Inintrinsic growth rate of preys] is the natural death rate
the models considered in this work, the Holling functionf predatorsf is the capacity of environment to support
of type Ill is used for interactions between predatottsie growth of preysh, is the rate of preys’s harvesting,
and preys () — 2m1‘2 : 2], where m and andj: are the recover rgtgs of infected preys and infected

. , _ . _predators respectively) is the adequate contact rate
a are positive constants,is an arbitrary constant. Th'sbetvveen susceptible preys and infected preys white

function models the consumption of preys by predatortﬁ.e adequate contact rate between susceptible predators

It is well known th"’_‘t with this function, the predation, jnfected predators. We also assume that infected
rate of predators increases when the preys are

i ) f YEdators still can catch preys at a different ratehan
and decreases when they reach their satiety (a pred o]

. . . . nd ones. The paramet@r can be thought to be less
increases his searching activity when the prey de”S{Wan m, if the disease affects the ability in hunting of

increases). The function,, ¢; and ¢? are r_espectively tHe predators or larger thah, if we want to emphasize
a_lso rgferred to as Lotka—\_/olterra, Michaelis-Menten AMfAat the interactions with infected predators cause the
sigmoidal response fgnctlons.. Generally, there are m Feys to die for the disease even if they are not caught.
macroparasitic infections which can affect only Preys, andb are positive constants, > 0 andri, > 0 denote

only predators or both preys and predators. Our goalyll, 5yequate predation rate between predators and preys.

this paper is to analyze the influence of a SIS mfectlo%sand & denote the conversion coefficients, can be

disease which spreads only in one of the two populatiorll% ative (conversion of prey's biomass into predator’s

]:I'he ml?dﬁls cor(;&lde_redhanlt_j analyze:\iﬂ here are dlfferg mass) or positive (bad effect of the infected preys for
rom all the models in the literature. Moreover, we usg,, predator population due to disease).

_numerlcal simulations on MATLAB and SCILAB to Trough the linear transformation and time scaling
illustrate our results. Tz oy w .
(X,Z,Y,W,T) = ;,2,7,?%1{;% , the follow-
ing simplified systems ar(é ogtained from (s1) and (s2),
The model (sl1) is obtained from the classic Lotka-
\olterra model with simple mass action when the disease
spreads only inside the prey population. In this model,

II. THE MODEL FORMULATION

t=pr(l—z)—plx)y—Axz+vz—h,
i=Axz—vz—mip(2)y,

the infected preys do not reproduce and there is no dis-{ ~ (1)
ease related mortality. The model (s2) is obtained when| Y ip{x)y; N mip(z) y—dy,
the disease spreads only inside the predator population\ * = 0;¥ = 0;z 20,
These models are respectively
. _ (1 T ﬁm:Qy i &= pr(l—x)—plx)y —mplx)w— hi,
r=r E z de—i—Bx—i—l rz y:p(x)y_dy_éyw_‘_,uwv (2)
+52 — ha, w=ep(r)w+hyw— pw,
- 7122 z 20,y > 0;w >0,
Z:sz—’?z—%, (s1)
P 2 bz + 1 where the parameters are defined as follow
. cma“y Mo z“y ~
Yy = s ~ — = 2 = —dy, B o o ~ ~
ar?+br+1 az?+bz+1 7 me flpé L hy \ Y
> > > = — = — —= = — — —
220,220,520 P e T e T an " T aaks ek
) ) 5 m m m d
s=7(1 ff) __mry Mt WZ%WMZ ~1’m2:~7~2’m3:~7~37d:w~2,
\ K ax2 +br+1 aa?+br+1 ek _m emooom cmk
Iy 5= 0é e _Cs 0 pi+d
- 2 - 7 _~2~~2a€ ~, V1 — ~7M1_~~"27
. cmxcy ~ ~ ~ cmk Amk c cmk
y=—————dy—dyw+jw, (s2) o = T
ax2 +bxr+1 a=ak*b="bkp(r) = —F—.
ermriw ~ ~ ax®+bxr+1
w=— 7 1+5yw—(ﬂ+d)w, 3)
azr” + bx Systemsg|({1) and Systenq (2) are new and different from
2>0,y>0, w>0 y 1y yster (2)

all the models in the literature. These models without
where the variableg and w denotes respectively thedisease give us the same system which has been analyzed
infected preys and infected predators,denotes the without disease inJ1].
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A. Results for the Mode[ (1) with Disease only in Prefpr existence ofBy is p(z)

I1l. RESULTS

Population

Let us setu;(x) =

px(l—x)—hy
(L + m)p(e) = md’

ma(p(n) — d)ui(n)

Ry =

bdxz —d = 0. We deducers and thenBs. The condition

mi(p(x) —d) > 0ie

2
p(z) —d>0 < ad<1andzx €|xs,+o0].

Concerning the stability of these equilibria, the fol-
lowing theorem hold.

Theorem 2:Let’s consider Systenj |(1).

a(p(n) — d)2u2(n) + b(An — v)(p(n) — d)ui(n) + (An — 7)%e The equilibriaB, and B; are always unstable.

the basic reproduction number, and

h h
1— /1 -4 1+ ,/1—4"2
\ p P
rH=—"—"2I3= —"—"", 4
2 2
J?ZI%JCOI?ZOGRL

the expressions of the positive real valugsx1, z2, .

Theorem 1:The equilibrium points of Systen]](1),

according to the values of the parameters, are given as
follow :

Whenh; > g then there is no equilibrium point.

When h, B, then the unique equilibrium is
By(x0,0,0) which is a double point ifd #

——— and triple point ifd = ———.
at2b+4 pie p et 214

Whenh; < P andad > 1, then the equilibria are
Bl(xl,0,0) anng(azg;O;O).

When hy < <; ad < 1 and z3 = =z, then
Bi(x1,0,0) is a double point and3y(z2,0,0) ex-
ists.

When hy < B; ad < 1 and z3 = x9, then
Bi(x1,0,0) is simple andBs(x2,0,0) is a double
point.

When h; < B; ad < 1 and z3 €|x1;z2[, then
B1($1,0,0); BQ(Z’Q,0,0) and Bg(xg,o,yg) exist,
_ pas(l —;3) —h_

Whenh; < B; ad < 1andzxs € [0; z1[U]zg; +00f,
then By (x1,0,0) and Bs(x2,0,0) exist.

When h; < g; ad < 1; x4 €]nyzof, T2 >

whereys

and Ry > 1, then By(x1,0,0);

Bg(xg, 0, 0) andB4(x47 24, y4) exist, wherery > 0,
z4 >0 andy, > 0.

max (xg; %

The equilibriumB;, is stable if one of the following

conditions is satisfied h; < g % > x9 and
p(x2) < d, or hy < g, % < w9, p(as) = d and
p”(.%'g) S 0.

The equilibriumBs is stable if one of the following
conditions is satisfieth; < g, ad < 1, x3 €]r1; x|

andzs = } orh; < g ad < 1, x3 €]x1; x2], 23 <
landd> orh1<3,ad<1,:p3€

4

. at2b+4 and xo(z3) <0,
where xo(x3) is the eigenvalue of:.

The equilibrium pointBy(x4, z4,y4) IS asymptoti-
cally stable if and only if the following conditions
hold : as < 0; asa; +ag > 0 andaiag > 0, where

a+2b+4’
|x1;xe[, 23 < %, d <

az = p(1 — 2x4) — p'(x4)ys — A4
Az — v — map(24)ya,

a1 = — [p(1 — 2x4) — p'(x4)ys — A2q] X

Axgy — v — mip'(24)ya]

—Amap(24)ys — p(z4)p'(24)Ya,
ag = — [p(1 — 2x4) — p'(x4)ys — Azq] X
[Azg — v — map' (za)ya) + Amop(z4)p' (24)yaz4
+p' (za)yamap(z4)(Arg — )
+p(za)p (24)ys(Azg — v — map'(24)ya).

(5)

Proof : The eigenvalues of the jacobian matiixB)
arex; = 0; x2 = Arg —y andx3 = p(zo) — d.

a)

b)

Proof : These equilibria are obtained by setting the
right hand side of[ (1) equals to zero. Fpe= 0 one has
equationpz? — px 4+ hy = 0. Then we haveB,, B; and

Bs.
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Forz =0, one hap(r) = d <= (1 —ad)z?® -

0% 1 1 _
If y <3O d < - = p(zo), then

x2 > 0 or x3 > 0 and By is unstable.

If % > 5 andd = % :p(xo),-t.hen
x2 < 0 and x3 = 0. Hence, the stability of
By is given by the center manifold theorem.
The translation(u, ug,u3) = (z — zo, 2,y)
brings the singular pointBy to the origin.
In the neighborhood of the origin and, since
hy B, System |(L) has a new form. The
Jacobian matrixJ(By) is not diagonalizable
and the passage matrix to the Jordan’s basis is

Page 3of


http://dx.doi.org/10.11145/j.biomath.2012.10.231

J. Tewa et al.,
-1 0 1 b1)
P= 0 0 -1 |.By the transformation
0 1 0
(Ul,vg,vg)T = Pil(ul,uQ,u;:,)T, the system
becomes:

b1 = va + 9 (20) (v1vs — v3)

!
+

/.
x
P (o) (U% + v% — 201v3) V2

m /! 0
2O 0 4 Ol (wr. e, v,

1')2 =3+ p'(:co)(vlvg — 1)32))

/!
PEACIOPR SN JEP
m /! 0
20 0+ O (0r. v,
| m /! 0
D3 = X203 — AM(v1v3 — v3) + L()UQU‘%
+O(|(v1, v2, v3)[*). (6) 2

We can now find that the center manifold is
given by W¢ = {vs = 0}. Therefore, the
system [(B) is topologically equivalent, around
the origin, to the following system:

/!
b = vg+to ($0)va2+0(|(1/1,v2)|4)7
Uy = (|(U1502)| )7
’[)3 - (‘ 1)171)2)’ )

Then, thle singular poinBy is unstable.
c) If Z 5 andd = p(zop), then

x2 = 0 and x3 :a 0. Applying the center b3)
manifold theory as previoushy3, is unstable.

@) i) = % andd > — p(z), we

a
have xo = 0 and x5 < 0. Applying the center
manifold theory as previoushB, is unstable.

The stability of B; is obtained with jacobian matrix.
The stability of B, is obtained using the center manifold
theorem. Taking into account the fact thgts) = d, one
find that the characteristic polynomial of the linearized
system around the singular poiBy is

QX)) = (x—Azz+7) [=x* + (p(1 — 223) — p'(3)y3)X]

—d(x — Awz +7)p'(23)ys.
The discriminant ofQ(x) is
(p(1 — 2x3) — p/(23)ys)” — 4dp' (z3)ys. (7)

a) If 3 > 7, then the eigenvalug; = Az3—~ >
0. Hence ,Bs is unstable.
b) If 23 < %, theny; < 0.

Az(h) =

Biomath 1 (2012), 1210231, http://dx.doi.org/10.11145/j.biomath.2012.10.231
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When As(hy) = 0 the Jacobian matrix aBs;
has a double eigenvalue

olay) 1= L2 I g

olf d> , thenzz > 1. From where

+ 20+
Xo(h1) < 0 Therefore, the singular poinBs
is stable.

o lf d < Tl then: Wheny(h1) < 0
a
(resp. xo(h1) > 0) the singular pointBs is
stable (resp. unstable).
When Az > 0 the eigenvalues of the Jacobian

= xo(h1) — VA

matrix at B arey; < 0, x2 5

VA
and x3 = xo(h1) + > 2. We have,yaxs =

dp'(h1)ys > 0 and x2 + x3 = xo(h1), where
xo(h1) is defined by|[(B).

o If d> Z o a then the singular point
Bs is stable.
o Ifd<

. It then: Whenyo(h1) <0
(resp.xo(h1) > 0) the singular point3; is
stable (resp. unstable).

If Az < 0, then the eigenvalues of the Jacobian
matrix at Bs are x1 < 0, x2 = xo(h1) —

RVEAY

1 3, where

and x3 = xo(h1) + 1

2
Xo(h1) is defined by). Ifd > - n
then the singular poiniBs is stable. Ifd <

———— and xo(h then, the singul
a+2b+4 an XO( 1)<0 en, 1eSII’]gual’

point By is stable. Ifd < ———
) a+2b+4

Xo(h1) > 0 then, the singular point is unstable.

If d < and xo(h1) = 0 then,

the real gentral and stable spaces are respec-
tively defined byE< = ((1,0,0);(0,0,1)) and

s — <(1’ _q W(@)ys p'($3)y3)>_ Then

and

i X% . L X1 .
applying the center manifold theorem it comes
that the singular poinBs is unstable.

The stability of B4 is obtained using the Routh-Hurwitz
conditions.
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B. Results for the Mode[](2) with Disease only inside « The equilibriaCy andC; are always unstable.

Predator Population « The equilibriumCs is stable ifh; < g andp(z2) <
Let us setuq(z) = {”1 —p(m)} and vy(z) = d. . . . .
5le « The equilibrium(s is stable if and only if one of
(p(l‘zli d)up(z) Let z5 the eventual positive root of these conditions is satisfiedhi < g, ad < 1, x3 €
eL_p(x)] ; ]xl;a:g[andyg—;(m—d) orh1<4 ad < 1,
1\ e
equatlonp(:ng,) — and the functiongs(z) = pz(1 — 23 lovzal, s < € ( —d) d > plo), or
x) — (2)uz(z) — mp(a)va(a). 01

Hypothe3|s 1: The attack of non-infected predators  h, < 2 ad < 1, x5 €lar; 2], ys < 53 <“1 _ >
. : : e
is more important than the one of the infected predators < p(x0), Eo(x3) < 0.

. €
lL.e.e= z <L « The singular poinCy(z¢, ys, ws) IS asymptotically
Theorem 3:The equilibria of Systen [2), wherey; stable if and only if the following conditions are
xz1 andz, are given by[(#), according to the values of  satisfied :by < 0; bab; + by > 0 and biby > 0,
the parameters, are given as follow. where
o Whenh, > P , then there is no equilibrium point. by = p(1 — 2x6) — p'(x6)(y6 + Mmws)
+p(z6) — d — dwe;
o« Whenh; = =, thenC, ;0;0) is a double point if
L= henColeoi0:0) P b = — (p(1 — 226) — 1/ (26) (o + M)
d # ———— and triple point ifd = ————. (p(xg) — d — dwg) + d1we(p — dyg)
a+2b+4 a+2b+4 () (2 e 20 (26 Ywe:
e Whenh; < p andad > 1, thenCi(z1;0;0) and P(xs)P(26)ys — emp(zs)p' (@s)ws:
Ca(22;0;0) eXipSt- bo = ep(6)p' (z6)ws [0ys — 1+ m(p(w6) — d — dw)]
« Whenhy < 75 ad < 1 andazy = a1, then —d1mp(z6)p' (z6)yewe
C1(z1;0;0) is a double point and’y(z2; 0;0) ex- —01we (1 — dye) (p(1 — 2x6) — p'(26) (Y6 + 7]%5))6)) :
ists.

« When h; < B; ad < 1 and z3 = 9, then Proof: The stability ofC is deduce as foB, in theorem
C1(z1;0;0) exists andCy(z2;0;0) is a double 2. The jacobian matrix always has a positive eigenvalue.
point. ’ Then, C; is unstable. We obtain the stability 6% and

Cs applying the same arguments as s and Bs in

theorem 2. The stability of”; is obtained using the

Routh-Hurwitz conditions.

« When h; < B; ad < 1 and z3 €]zy;x2],

then the equilibria ar€’; (x1;0;0); Co(x2;0;0) and
pajg(l — 1'3) — h1

; h = .

Calws; ys; ) Whereys d >0 IV. HOPFBIFURCATION
« Whenhy < %5 ad < 1 andas € [0:a: [Uay; 400, Let us introduce the following parameters

then the equmbrla ar€’;(z1;0;0) andCa(z2; 0;0). pT3

= 20z} —a)rd +1 1
e« When h; < g; ad < 1; ad > 1, z¢ € o bx3+2{a$3+(b a>x3+}’ (10)
(&
d

]ZL‘l;ZL‘Q[ﬁ]l‘g;—FOO[; T9 > x3 OF hy < g; % < and ) , )

1, z6 €|wy;xo[N]es;zs); 22 > w3 11 < x5, = — [p(Q)(xg)—{—p(g)(l‘g)} __ W) (11)

then the equilibria ar€’; (z1; 0; 0); Ca(z2; 0; 0) and 16 4y/—As(h1o)

Ca(xe;ys;we), Ys = uz(xe) andwg = va(xe). Recalling [(4), the flow of Systenj|(1) and System (2)

Proof : The equilibriaCy, C1, C» andC are obtained respectively undergo a supercritical Hopf bifurcation
in the same way as in theorem 1, setting the right haggoundhio given by the following result
side of the system equals to zero. Equilibridin exists ~ Theorem 5:(Hopf bifurcation) Leth; < 4; ad < 1;
when the previous conditions are satisfied. x3 €|xr1, min (2, A) [. Thanks to HypotheS|s 1. Then, a
Concerning the Stability analysis of these equilibriaynique stable curve of periodic solution bifurcates from
the following theorem holds. the singular pointd3;3 andCs into the regionsh; > hqg
Theorem 4:Let’s consider the Systenf](2) and supi II < 0 or hy < hyo if II > 0. The singular points
pose that Hypothesis 1 holds. Bs and C3 are stable forh; < hip and unstable for

Biomath 1 (2012), 1210231, http://dx.doi.org/10.11145/j.biomath.2012.10.231 Page 501[7
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h1 > hyo. This correspond to supercritical stable Hopf
bifurcation.
Proof : The proof can be obtained as [n [13].

2 (infected preys)

V. NUMERICAL SIMULATIONS

“oo o2 04 06 08
x (non infected preys) (a)

20,

0,

2 (infected preys)

,,,,,,,

Fig. 1. Phase portraits of System (1) for < 2 % = z, and T e (b)

p(z2) < d. B and By are unstable. The axis = % is stable. . .
Fig. 5. Phase portraits of Systefr] (1). The case (a) corresponds to
h1 < p} (1 — 13 The case (b) correspondsig > p} (1 — %

1 . . .
and% < 3 lllustration of saddle-node bifurcation phenomenon.

Non-nfected precators ()

VI. CONCLUSION

Our goal was to analyze the modifications on a preda-

o (@) = *(b) tor prey model (generalized Gause model) with prey har-
2
Fig. 2. Phase portraits of Systef] (1). The case (a) correspoRissting and Holling response type M=,
to hy B; T < z2 and p(z2) < d. The case (b) corresponds to . . azxr bx+1
) % A 1 to account for a disease spreading among one of the
fa= x> /2 andd = ooy Unstabiliy of By and Bx. - two species. The simple epidemiological model SIS has
been chosen, where only susceptibles and infectives are
counted. The results indicate that either the disease dies
out, leaving only neutral cycles of generalized Gause
E model, or one species disappears and all individuals
in the other one eventually become infected. For some
particular choices of the parameters however, endemic
: equilibria in which both populations survive seem to
NG arise.
(S TR (- ) J— 0 T e . (b)
REFERENCES
Fig. 3. Phase portraits of SysteH (2) for < g andd > p(z2).
Stability of Cs. [1] R.M. Etoua and C. Rousseau, Bifurcation analysis of a general-

ized Gause model with prey harvesting and a generalized Holling
response function of type Ill , J. Differ. Equations 249, No. 9,
2316-2356 (2010), ISSN 0022—-0396.

[2] A.D. Bazykin, A. losifovich Khibnik and B. Krauskopf, Nonlin-
ear Dynamics of Interacting Populations, World Scientific, 1998,
193 pages.

[3] K.P. Hadeler and H.l. Freedman, Predator-prey populations with
parasitic infection, J. Math. Biol. 27, (1989) 609-631.
http://dx.doi.org/10.1007/BF00276947

[4] E. Venturino, The influence of diseases on Lotka-Volterra sys-

() I g e—( o) tems, Rocky Mt. J. Math. 24, (1994) 381402.
) ) p [5] R. Anguelov, Y. Dumont, J. M. S. Lubuma and M. Shillor,
Fig. 4. Phase portraits of SysteH (2) for < 7 andd < p(z2). Comparison of some standard and nonstandard numerical meth-
Unstability of C;, C2 and Cs. ods for the MSEIR epidemiological model, Proceedings of the

International Conference of Numerical Analysis and Applied
Mathematics, Crete, Greece, 18-22 September 2009, American

Biomath 1 (2012), 1210231, http://dx.doi.org/10.11145/j.biomath.2012.10.231 Page GOU


http://dx.doi.org/10.1007/BF00276947
http://dx.doi.org/10.11145/j.biomath.2012.10.231

J. Tewa et al., Predator-Prey Model with Prey Harvesting, Holling Response Function of Type IlI...

Institute of Physics Conference Proceedings-AlP 1168, Volume functions—A comparative study, Journal of Theoretical Biology,
2, (2009) 1209-1212. 248 (1), (2007) 10-25, ISSN 0022-5193.
[6] J.J. Tewa, R. Fokouop, B. Mewoli and S. Bowong, MathematicEl0] Krishna Padas Das, Kusumika Kundu, J. Chattopadhyay, A
analysis of a general class of ordinary differential equations com- predator-prey mathematical model with both populations affected
ing from within-hosts models of malaria with immune effectors, by diseases, Ecological Complexity 8, (2011) 68-80.
Applied Mathematics and Computation 218, (2012) 7347-7361. |http://dx.doi.org/10.1016/j.ecocom.2010.04.001
http://dx.doi.org/10.1016/j.amc.2011.10.085 [11] M. Haque, J. Zhen, E. Venturino; Rich dynamics of Lotka-
[7] J.J. Tewa, S. Bowong, C. S. Oukouomi Noutchie; Mathematical Volterra type predator-prey model system with viral disease in
analysis of two-patch model of tuberculosis disease with staged Prey species; mathematical methods in the Applied Science 32,
progression, Applied Mathematical Modelling 36, (2012) 5792— (2009) 875-898.
5807. [12] J. J. Tewa, V. Yatat Djeumen, S. Bowong, Predator-prey model
[8] M. Haque, D. Greenhalgh, When predator avoids infected prey: With Holling response function of type Il and SIS infectious
A model based theoretical studies. IMA J. Math. Med. Biol. 27, _ disease, Applied Mathematical Modelling, (2012) to appear.

(2009) 75-94 [13] Y. A. Kuznetsov, Elements of Applied Bifurcation Theory:
http://dx.doi o.rgllo 1093/imammb/dgp007 Third edition, Appl. Math. Sci. 112, Springer Vergal, New York,
R ' 2004.

[9] N. Bairagi, P. K. Roy, J. Chattopadhyay; Role of infection on
the stability of a predator-prey system with several response

Biomath 1 (2012), 1210231, http://dx.doi.org/10.11145/j.biomath.2012.10.231 Page 7 Oﬂj


http://dx.doi.org/10.1016/j.amc.2011.10.085
http://dx.doi.org/10.1093/imammb/dqp007
http://dx.doi.org/10.1016/j.ecocom.2010.04.001
http://dx.doi.org/10.11145/j.biomath.2012.10.231

	Introduction
	The Model Formulation
	Results
	Results for the Model (??) with Disease only in Prey Population
	Results for the Model (??) with Disease only inside Predator Population

	Hopf Bifurcation
	Numerical Simulations
	Conclusion
	References

