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the set of all connected graphs of order n, having d > 0 cycles, girth g and k pendent vertices. In this paper, we give a partial characterisation of the structure of all maximal graphs in G(n, d, g, k) for the number of connected induced subgraphs. For the special case d = 1, we find a complete characterisation of all maximal unicyclic graphs. We also derive a precise formula for the maximum number of connected induced subgraphs given: (1) order, girth, and number of pendent vertices; (2) order and girth; (3) order.

Introduction

All graphs considered in this paper are simple (i.e., finite, no parallel edges, no loops and undirected). A simple graph is called unicyclic if it has only one cycle. Unicyclic graphs are among the most popular tree-like structures studied in chemical graph theory. Various graph parameters have been studied in the class of unicyclic graphs of a given order (number of vertices). For instance, Gao and Lu [START_REF] Gao | On the Randić index of unicyclic graphs[END_REF] gave sharp lower and upper bounds on the Randić index of unicyclic graphs; Ou [START_REF] Ou | On extremal unicyclic molecular graphs with prescribed girth and minimal Hosoya index[END_REF] investigated the unicyclic graphs with given girth and minimal Hosoya index. Xia and Chen [START_REF] Xia | Ordering unicyclic graphs with respect to Zagreb indices[END_REF] determined the unicyclic graphs with the first five largest, as well as the first two smallest Zagreb indices; Du, Zhou and Trinajstić [START_REF] Du | Sum-connectivity indices of trees and unicyclic graphs of fixed maximum degree[END_REF] found the unicyclic graphs with a given maximum degree that have the maximal sum-connectivity index.

In this work, we study the extremal problem of maximising the total number of connected induced subgraphs of a unicyclic graph under some type of restrictions. An induced subgraph of a simple graph G is a graph that contains a nonempty subset of vertices of G together with all edges incident with them in G. A graph is said to be connected if there is path to get from vertex v to vertex w for any v, w ∈ V (G) (where by V (G), we mean the vertex set of G). Connected induced subgraphs have been studied extensively for trees (connected acyclic graphs): Chung, Graham and Coppersmith [START_REF] Graham | On trees containing all small trees. The Theory and applications of graphs[END_REF] determined the smallest asymptotic order of a tree that contain all trees of order n as subtrees; Jamison [START_REF] Jamison | On the average number of nodes in a subtree of a tree[END_REF][START_REF] Jamison | Monotonicity of the mean order of subtrees[END_REF] studied the average order of a subtree of a tree. Székely and Wang [START_REF] Székely | On subtrees of trees[END_REF][START_REF] Székely | Binary trees with the largest number of subtrees[END_REF] investigated the extremal trees for the number of subtrees.

Very recently, the author of this note [START_REF] Dossou-Olory | Graphs and unicyclic graphs with extremal connected subgraphs[END_REF] studied the following parameters in general graphs as well as unicylic graphs of a prescribed order: the total number of subgraphs, the total number of induced subgraphs, the total number of connected induced subgraphs. In particular, he found the unicyclic graphs that have the smallest and the largest number of connected induced subgraphs, respectively. Things change decisively if additional restrictions are taken into account. For example, the extremal unicylic graphs for the number of induced connected subgraphs are not known if girth is prescribed. The girth of a simple graph G is the minimum number of vertices among all the cycles of G. Thus, the notion of girth makes more sense if the graph is not a tree (connected acyclic graph). In this paper, we provide a complete solution to this problem. Furthermore, we consider an additional restriction, the number of pendent vertices (number of vertices of degree 1): we shall characterise all maximal unicyclic graphs for the number of induced connected subgraphs given simultaneously order, girth and number of pendent vertices.

Our approach consists of the following steps: we first introduce a main graph transformation (Lemma 1) together with some of its properties. Then we discuss certain techniques to characterise the graphs for which the maximum number of connected induced subgraphs is reached (Proposition 2). Thereafter, we restrict the study to unicyclic graphs with the following prescribed parameters: order, girth and number of pendent vertices. We give further intermediate results ( Lemmas 3,[START_REF] Graham | On trees containing all small trees. The Theory and applications of graphs[END_REF][START_REF] Hong | On the Wiener index of unicyclic graphs[END_REF][START_REF] Jamison | Monotonicity of the mean order of subtrees[END_REF] and their combination allows us to give a complete characterisation of the structure of all maximal unicyclic graphs given simultaneously order, girth and number of pendent vertices (see Propositions 7, 9, 10 and Theorem 11 in Section 2). In Section 3, we compare unicyclic graphs with different number of pendent vertices. In particular, we characterise all maximal (with respect to the number of induced connected subgraphs) unicyclic graphs given order and girth (Theorem 12) and order only (see Theorem 13). As an interesting side, we notice that all our maximal graphs were shown to minimise the Wiener index (sum of distances between all unordered pair of vertices).

For a graph G and two vertices v, w of G, we shall write G -{v} (resp. G -{v, w}) to mean the induced subgraph consisting of all vertices of G except v (resp. all vertices of G except v, w). We shall also refer to a graph having the maximal number of connected induced subgraphs as optimal.

From now on, whenever we write subgraph, we always mean induced subgraph.

Getting to the optimal graphs

We begin with some auxiliary results from which the proofs of our main theorems will be derived. The underlying technique is to apply a series of graph transformations that affect the total number of connected subgraphs while preserving a number of other parameters of the graph (such as order, number of pendent vertices, etc). For a graph G and two vertices u, v of G, we shall denote by N (G) u (resp. N (G) u,v ) the number of connected subgraphs of G that contain u (resp. both u and v).

The operation described in the following lemma increases the number of connected subgraphs of G at least by 1, while preserving the order and some other parameters of the graph G. Lemma 1 has a counterpart for the Wiener index, see [START_REF] Hong | On the Wiener index of unicyclic graphs[END_REF].

Lemma 1. Let L, M, R be three connected graphs whose vertex sets are pairwise disjoints. Let l ∈ V (L), r ∈ V (R), u, v ∈ V (M ) be fixed vertices such that u = v. Denote by G the graph obtained from L, M, R by identifying l with u, and r with v. Similarly, let G be the graph obtained from L, M, R by identifying both l, r with u, and G the graph obtained from L, M, R by identifying both l, r with v. See Figure 1 for a diagram of all three graphs G, G , G . Proof. Classify all connected subgraphs of each of the graphs G, G , G by the following cases:

l, u v, r L R l, u, r v L R u v, l, r R M M M L G G G
(1) those containing u and v;

(2) those containing u but not v;

(3) those containing v but not u;

(4) those containing neither u nor v. From this classification, we obtain

N (G) = N (G) u,v + N (G -{v}) u + N (G -{u}) v + N (G -{u, v}) = N (L) l • N (M ) u,v • N (R) r + N (L) l • N (M -{v}) u + N (M -{u}) v • N (R) r + N (L -{l}) + N (M -{u, v}) + N (R -{r})
for the number of connected subgraphs of G. Likewise, we have

N (G ) = N (G ) u,v + N (G -{v}) u + N (G -{u}) v + N (G -{u, v}) = N (L) l • N (M ) u,v • N (R) r + N (L) l • N (M -{v}) u • N (R) r + N (M -{u}) v + N (L -{l}) + N (M -{u, v}) + N (R -{r})
for the number of connected subgraphs of G , and

N (G ) = N (G ) u,v + N (G -{v}) u + N (G -{u}) v + N (G -{u, v}) = N (L) l • N (M ) u,v • N (R) r + N (M -{v}) u + N (L) l • N (M -{u}) v • N (R) r + N (L -{l}) + N (M -{u, v}) + N (R -{r})
for the number of connected subgraphs of G . It follows that

N (G ) -N (G) = (N (R) r -1)(N (L) l • N (M -{v}) u -N (M -{u}) v )
and

N (G ) -N (G) = (N (L) l -1)(N (R) r • N (M -{u}) v -N (M -{v}) u ) .
Since N (R) r -1 > 0 and N (L) l -1 > 0 by assumption, we deduce that

N (G ) > N (G) if N (M -{v}) u ≥ N (M -{u}) v and N (G ) > N (G) if N (M -{v}) u ≤ N (M -{u}) v .
This completes the proof of the lemma.

The setup presented in Lemma 1 also shows that except possibly vertices l, r, u, v, all parameters of G that solely depend of the feature of the single graphs L, M, R are preserved. For instance, the number of pendent vertices of G is preserved under this transformation provided that neither u, nor v has degree 1 in M (in which case the number of pendent vertices of both G and G is at least one more that of G). Lemma 1 will be used repeatedly under specialisations.

Denote by G(n, d, g, k) the set of all connected graphs of order n, having d > 0 cycles, girth g and k pendent vertices. The following proposition gives a partial characterisation of the structure of every optimal tree in G(n, d, g, k). By C n we shall mean the cycle of order n (so n > 2). Proposition 2. Let H n,d,g,k be a graph that maximises the number of connected subgraphs over all graphs that belong to the set G(n, d, g, k). Then H n,d,g,k has precisely the shape of the graph depicted in Figure 2, where H is a graph of order n -g + 1, having d -1 cycles and k pendent vertices.

v 0 v 1 v 2 v g-1 H C g Figure 2.
The shape of every optimal graph in G(n, d, g, k).

Proof. Take M to be the cycle of order g. Then a repetitive application of Lemma 1 to every newly constructed graph (always choosing M = C g ) yields graphs all of which have precisely the shape of the graph shown in Figure 2. It is clear that the prescribed parameters: order, number of cycles, girth and number of pendent vertices are all preserved at every step of the application of Lemma 1. This proves that H is indeed a graph of order n -g + 1, having d -1 cycles and k pendent vertices.

For the special case where H is a tree in Figure 2, one can even be more precise about the shape of every optimal graph. This situation corresponds to the case d = 1. The same graph transformation presented in Lemma 1 can be used to increase the number of connected subgraphs further (for the special case d = 1), while preserving the parameters n, g, k. This is shown in the next lemma.

For a graph G and a vertex u of G, we shall denote by deg G (u) the degree of u in G (i.e., the number of edges incident with u in G).

Lemma 3. Let G be a connected graph and T a subgraph of G. Assume that T is a rooted tree whose root is z and that G -{V (T ) -{z}} is connected. Further, assume that there are two distinct vertices x = z and y = z of T such that deg T (x) ≥ 3 and deg T (y) ≥ 3. Then G cannot be an optimal graph in the set G(n, 1, g, k).

Proof. Denote by x 1 , x 2 , . . . , x p all neighbors of x in T and by y 1 , y 2 , . . . , y q all neighbors of y in T . Let x 1 (resp. y 1 ) be the unique neighbor of x (resp. y) that lies on the unique path from x to y in T (it is possible to have x 1 = y or y 1 = x or x 1 = y 1 ). Furthermore, we let x 2 (resp. y 2 ) be the unique neighbor of x (resp. y) that lies on the unique path P x,z from x to z (resp. the unique path P y,z from y to z) in T if x 1 does not lie on P x,z (resp. y 1 does not lie on P y,z ). For every i ∈ {3, 4, . . . , p} (resp. j ∈ {3, 4, . . . , q}), denote by L x i (resp. R y j ) the subtree of T consisting of x i (resp. y j ) and all its descendents in T . Let L (resp. R) be the rooted tree whose all branches are L x 3 , L x 4 , . . . , L xp (resp. R y 3 , R y 4 , . . . , R yq ). Thus, L (resp. R) is a rooted subtree of G rooted at vertex x (resp. y). Therefore, we can move R to L to produce a new graph G , and L to R to generate a new graph G through the operation given in Lemma 1 (see Figure 1) as |V (L)| > 1 and |V (R)| > 1. Hence, at least one of these moves strictly increases the number of connected subgraphs of G. This completes the proof of the lemma.

It is important to note that the assumption T is a tree (in Lemma 3) is essential to ensure that there is precisely one path between the two vertices of T that have degree greater than 2 in T . Of course, it may happen in the general case (where T is not necessarily a tree) that there are three distinct vertices x, y, z in T with precisely one path between any two of them: in this case, the same reasoning used in the proof of Lemma 3 can still be applied to them provided that deg T (x) ≥ 3 and deg T (y) ≥ 3.

An immediate consequence of Proposition 2 alongside Lemma 3 is that a graph H n,1,g,k maximising the number of connected subgraphs over all graphs in the set G(n, 1, g, k) must have at most two vertices of degree greater than 2. On the other hand, the condition n > g already guarantees at least one vertex of degree greater than 2 (which is vertex v 0 as shown in Figure 2) in H n,1,g,k . This leaves us with only two main possibilities for the structure of every optimal graph in G(n, 1, g, k), namely the graph H has precisely one vertex w = v 0 of degree greater than 2, or no vertex w = v 0 of degree greater than 2. In the next lemma, we find a somewhat condition that differentiates between these two main possibilities. We shall formulate it as part of a general result.

Let us first mention the following simple fact about the path P n of order n.

Lemma 4. We have

N (P n ) = n+1 2 and N (P n ) u = n if u is a pendent vertex of P n .
Proof. It is clear that N (P n ) u = n as all u-containing connected subgraphs of P n are subpaths of P n . Also, we have N (P n ) = N (P n ) u + N (P n-1 ) since P n -{u} = P n-1 . Solving this basic recursion, we obtain N (P n ) = n(n + 1)/2. Lemma 5. Let L, M, R be three vertex disjoint graphs such that l ∈ V (L), m ∈ V (M ) and r ∈ V (R). From vertex m, draw a path of length t + 1 ≥ 1 and let w be the other pendent vertex of this path. Denote by H the resulting graph. Construct from H the two graphs G 1 and G 2 as follows:

• Identify both l, r with w to obtain the graph G 1 ; see Figure 3; • Consider H: identify l with w, and r with m to obtain the graph G 2 ; see Figure 3.

x 1 x t M m l, w, r G 1 L R x 1 x t M m, r l, w G 2 L R Figure 3.
The graphs G 1 and G 2 described in Lemma 5.

Assume that |V

(R)| > 1. Then N (G 1 ) > N (G 2 ) if and only if N (L) l > N (M ) m . Moreover, N (G 1 ) = N (G 2 ) if and only if N (L) l = N (M ) m .
Proof. Categorise all subgraphs of G 1 and G 2 according to the maximal subset of {m, w} that they contain as vertices. By grouping all 4 cases and using Lemma 4, we obtain

N (G 1 ) = N (L -{l}) + N (M -{m}) + N (R -{r}) + N (P t ) + (t + 1)(N (M ) m + N (L) l • N (R) r ) + N (L) l • N (M ) m • N (R) r
for the number of connected subgraphs of G 1 . Likewise, we have

N (G 2 ) = N (L -{l}) + N (M -{m}) + N (R -{r}) + N (P t ) + (t + 1)(N (L) l + N (M ) m • N (R) r ) + N (L) l • N (M ) m • N (R) r
for the number of connected subgraphs of G 2 . The difference N (G 1 ) -N (G 2 ) is given by

N (G 1 ) -N (G 2 ) = (t + 1)(N (R) r -1)(N (L) l -N (M ) m ) ,
which proves the lemma as N (R) r > 1.

The following lemma is also important for our analysis.

Lemma 6. If v is a vertex of the cycle C n then N (C n ) v = 1 + n 2 .
Proof. It is proved in [START_REF] Dossou-Olory | Graphs and unicyclic graphs with extremal connected subgraphs[END_REF] that the cycle C n has n 2 -n+1 connected subgraphs. Since deleting vertex u from C n yields the path of order n -1, the proof of the lemma follows.

For the rest of the paper, we always assume that k ≥ 2 since there is only one unicyclic graph with at most one pendent vertex for every given order n and girth g: this graph corresponds to the specialisation H = P n-g+1 (the path of order n -g + 1) rooted at one of the pendent vertices of P n-g+1 in Figure 2. An extended star is a tree in which all vertices have degree 1 or 2, except only one vertex w called central, which has degree greater than 2. Hence, if H n,1,g,k (see Figure 2) is an optimal graph in the set G(n, 1, g, k), then H must be an extended star (provided that k ≥ 2). Proposition 7. Let H n,1,g,k (see Figure 2) be an optimal graph in G(n, 1, g, k). We have the following:

• If g 2 < (n -g)/k , then H has precisely one vertex w = v 0 of degree greater than 2;

• If g 2 > (n -g)/k
, then H has no vertex w = v 0 of degree greater than 2; • If g 2 = (n -g)/k , then both possibilities are present for H. Proof. By Proposition 2 alongside Lemma 3, for every optimal graph H n,1,g,k (see Figure 2) in the set G(n, 1, g, k), the subgraph H of H n,1,g,k has either precisely one vertex w = v 0 of degree greater than 2, or no vertex w = v 0 of degree greater than 2.

• Assume that g 2 < (n -g)/k . Suppose (for contradiction) that H has no vertex w = v 0 of degree greater than 2. Since H is a tree rooted at vertex v 0 , let n k be the maximum order among the k branches of H. We claim that n k ≥ 2 + g 2 . To see this, simply note that if

n k ≤ 1 + g 2 , then n -g = |V (H -{v 0 })| ≤ k(1 + g 2 )
which implies that g 2 ≥ (n -g)/k (a contradiction). Therefore, n k ≥ 2 + g 2 . Now take M to be the cycle of order g, L the path of order n k rooted at one of its pendent vertices l, and t = 0 as a specialisation in Lemma 5. Thus H n,1,g,k = G 2 in Figure 3 where R is the rest of H (note that |V (R)| > 1 as k ≥ 2). Using Lemmas 4 and 6, we get

n k = N (L) l > N (M ) m = 1 + g 2 ,
which contradicts the optimality of G 2 = H n,1,g,k (see Lemma 5). • Assume that g 2 > (n -g)/k . Suppose (for contradiction) that H has one vertex w = v 0 of degree greater than 2. Denote by w 0 the unique neighbor of w that lies on the unique path from w to v 0 in H (it is possible to have w 0 = v 0 ), and w 1 , w 2 , . . . , w k the other neighbors of w in H. Recall that H is a tree rooted at vertex v 0 . For every j ∈ {1, 2, . . . , k}, let L j be the subtree of H consisting of w j and all its descendents in H. Denote by n 1 = |V (L 1 )| the minimum order among the trees L 1 , L 2 , . . . , L k . We claim that n 1 ≤ g 2 -1. To see this, simply note that if n 1 ≥ g 2 , then

k g 2 ≤ |V (H -{v 0 })| -1 = n -g -1 ,
which implies that g 2 ≤ (n -g)/k (a contradiction). Therefore, n 1 ≤ g 2 -1. Now make the specialisation M = C g (the cycle of order g) and L = P 1+n 1 (the path of order 1 + n 1 ) rooted at one of its pendent vertices l in Lemma 5. Thus H n,1,g,k = G 1 (for some t ≥ 0) in Figure 3. Using Lemmas 4 and 6, we get

1 + n 1 = N (L) l < N (M ) m = 1 + g 2 ,
which contradicts the optimality of G 1 = H n,1,g,k (see Lemma 5). It is now clear from the proof that both possibilities are present for H in the case where g 2 = (n -g)/k . To be precise, H has no vertex w = v 0 of degree greater than 2 if k divides n -g, and precisely one vertex w = v 0 of degree greater than 2, otherwise.

We show in Figure 4 the two possibilities for the shape of every optimal graph in the set G(n, 1, g, k).

Proposition 7 raises the question for the number of vertices of each of the k paths P n 1 , P n 2 , . . . , P n k , or k + 1 paths P n 0 , P n 1 , . . . , P n k of H when H is an extended star (see Figure 4). Lemma 8 below determines, as a special case, the precise order of the paths P n 1 , P n 2 , . . . , P n k . Lemma 8. Let H l,r be a graph obtained by identifying one pendent vertex of two vertex disjoint paths P l and P r with the same vertex z of another graph H. Assume that |V (H)| > 1 and r ≥ l ≥ 1. Then we have

N (H l,r ) > N (H l-1,r+1 ) .
Proof. Denote by u (resp. v) the fixed pendent vertex of P l (resp. P r ) that is identified with vertex z of H. By distinguishing between subgraphs of H l,r that contain z and those

C g v 0 v 1 v 2 v g-1 P n 1 w P n 2 P n k P n 0 v 0 v 1 v 2 v g-1 P n 1 P n 2 P n k g 2 < (n -g)/k or g 2 = (n -g)/k but k n -g g 2 > (n -g)/k or g 2 = (n -g)/k C g Figure 4.
The two possibilities for the shape of every optimal graph in G(n, 1, g, k) for k ≥ 2 (see Proposition 7).

that do not contain z, we obtain

N (H l,r ) = N (P l ) u • N (P r ) v • N (H) z + N (P l -{u}) + N (P r -{v}) + N (H -{z}) .
Using Lemma 4, we get

N (H l,r ) = l • r • N (H) z + l 2 + r 2 + N (H -{z})
which implies that

N (H l,r ) -N (H l-1,r+1 ) = (r -l + 1)(N (H) z -1) > 0 .
Iterative application of Lemma 8 immediately shows that the order of all k ≥ 2 paths P n 1 , P n 2 , . . . , P n k (Figure 4) must be as equal as possible. In particular, we now kwow the complete structure of every optimal graph for the case where H has no vertex w = v 0 of degree greater than 2; see Figure 4. It remains to know the order of the path P n 0 for the case where H has precisely one vertex w = v 0 of degree greater than 2 (Figure 4). As it turns out, n 0 can only take on very few values. Proposition 9. Let H n,1,g,k (see Figure 2) be an optimal graph in G(n, 1, g, k), where H is an extended star whose central vertex is w. Denote by 1 + n 0 the order of the path joining v 0 to w in H (see Figure 4). Assume that n 0 / ∈ {1, n -g -k}. Then we have

n -n 0 -g k -1 - g 2 ≤ n 0 ≤ 1 - n -n 0 -g k - g 2 .
In particular, the only possible values for n 0 are 1 and n -g -k.

Proof. Let H n,1,g,k be as chosen in the statement of the proposition. Further, denote by 1 + n 1 , 1 + n 2 , . . . , 1 + n k the order of the paths from w to each of the k leaves of H, respectively. Based on Figure 4, we first provide a formula for N (H n,1,g,k ). Using Lemma 4, we obtain

N (H n,1,g,k ) = N (C g ) v 0 • k j=1 (1 + n j ) + n 0 • N (C g ) v 0 + n 0 • k j=1 (1 + n j ) + N (P g-1 ) + N (P n 0 -1 ) + k j=1 N (P n j ) .
Suppose (for contradiction) that

n 0 < n -n 0 -g k -1 - g 2 .
Construct from H n,1,g,k a new graph H n,1,g,k obtained by replacing n 0 with n 0 = n 0 + 1 and n k = max 1≤j≤k n j with n k = n k -1 (note that n k > 1 as k = n -g -n 0 ). Thus, we have

N (H n,1,g,k ) = N (C g ) v 0 • (1 + n k ) k-1 j=1 (1 + n j ) + n 0 • N (C g ) v 0 + n 0 • (1 + n k ) k-1 j=1
(1 + n j )

+ N (P g-1 ) + N (P n 0 -1 ) + N (P n k ) + k-1 j=1 N (P n j ) , which implies that

N (H n,1,g,k ) -N (H n,1,g,k ) = (n k -n 0 -N (C g ) v 0 ) k-1 j=1
(1 + n j ) -1 using Lemma 4 and after simplification. It follows from Lemma 6 that N (H n,1,g,k ) > N (H n,1,g,k ) as

n k = max 1≤j≤k n j = n -n 0 -g k > n 0 + 1 + g 2 .
This contradicts the optimality of H n,1,g,k . Likewise, suppose (for contradiction) that

n 0 > 1 - n -n 0 -g k - g 2 .
Our main theorem can now be formulated as an immediate consequence of all that is discussed above: Theorem 11. Among all unicyclic graphs of order n, girth g and k ≥ 2 pendent vertices, the following hold:

(1) If g 2 < (n -g)/k , then the graph O 1 n,g,k shown in Figure 5 uniquely realises the maximum number of connected subgraphs.

(2) If g 2 > (n -g)/k , then the graph O 2 n,g,k shown in Figure 5 uniquely realises the maximum number of connected subgraphs.

(3) If g 2 = (n -g)/k , then the two graphs O 1 n,g,k and O 2 n,g,k shown in Figure 5 uniquely realise the maximum number of connected subgraphs:

N (O 1 n,g,k ) = N (O 2 n,g,k ) = 1 + g 2 1 + n -g k k + g 2 + k • 1 + n-g k 2 . w v 0 v 1 v 2 v g-1 P n 1 P n 2 P n k v 0 v 1 v 2 v g-1 P n 1 P n 2 P n k g 2 < (n -g)/k or g 2 = (n -g)/k but k n -g g 2 > (n -g)/k or g 2 = (n -g)/k O 1 n,g,k O 2 n,g,k C g Figure 5.
All optimal graphs in G(n, 1, g, k): the values of n 1 , n 2 , . . . , n k are all as equal as possible.

Ordering optimal graphs by number of pendent vertices

In this section, we find all unicyclic graphs having the maximum number of connected subgraphs given simultaneously order and girth. We also find all unicyclic graphs having the maximum number of connected subgraphs given order only.

Theorem 12. Let the order n, girth g and number of pendent vertices k ≥ 2 of a uniyclic graph be given. Then the following hold:

(1) The graphs O 1 n,g,k and O 1 n,g,k+1 (Figure 5) satisfy N (O 1 n,g,k+1 ) > N (O 1 n,g,k ) provided that both graphs exist.

(2) The graphs O 2 n,g,k and O 2 n,g,k+1 (Figure 5) satisfy N (O 2 n,g,k+1 ) > N (O 2 n,g,k ) provided that both graphs exist. In particular, the graph O 2 n,g,n-g uniquely realises the maximum number of connected subgraphs among all unicyclic graphs of order n and girth g:

N (O 2 n,g,n-g ) = 1 + g 2 • 2 n-g + g 2 + n -g .
Proof. We make use of the setup presented in Lemma 1.

(1) By virtue of Theorem 11, both graphs O 1 n,g,k and O 1 n,g,k+1 exist if g 2 < (n-g)/(k + 1) , or g 2 = (n -g)/(k + 1) = (n -g)/k and neither k or k + 1 divides n -g. Also, we have n-g -1 ≥ k +2 by assumption. Denote by v 0 , w 1 , w 2 , . . . , w k all k +1 neighbors of vertex w (see Figure 5) where v 0 is the vertex belonging to the cycle C g . So without loss of generality, w 1 (resp. w k ) belongs to the path P n 1 (resp. P n k ) and also n 1 , n k > 1. Let M be the graph obtained by deleting all vertices of the paths P n 1 and P n k except vertices w 1 and w k . Further, let L and R be the rooted paths P n 1 and P n k rooted at vertices w 1 and w k , respectively. Thus, by moving L to R, or R to L using the setup depicted in Lemma 1, we create precisely one more pendent vertex. Moreover, at least one of the moves increases the number of connected subgraphs of O 1 n,g,k . Hence, N (O 1 n,g,k+1 ) > N (O 1 n,g,k ). ( 2) By virtue of Theorem 11, both graphs O 2 n,g,k and O 2 n,g,k+1 exist g 2 > (n -g)/k . Also, we have n -g ≥ k + 1 by assumption. Denote by v 0,1 , v 0,2 , . . . , v 0,k all k neighbors of vertex v 0 (see Figure 5) that do not belong to the cycle C g . So without loss of generality, v 0,1 (resp. v 0,k ) belongs to the path P n 1 (resp. P n k ).

• Assume that n-g ≥ k +2. Then without loss of generality, we have n 1 , n k > 1.

Let M be the graph obtained by deleting all vertices of the paths P n 1 and P n k except vertices v 0,1 and v 0,k . Further, let L and R be the rooted paths P n 1 and P n k rooted at vertices v 0,1 and v 0,k , respectively. Thus, by moving L to R, or R to L using the setup depicted in Lemma 1, we create precisely one more pendent vertex. Moreover, at least one of the moves increases the number of connected subgraphs of O 2 n,g,k . Hence, N (O 2 n,g,k+1 ) > N (O 2 n,g,k ). • Assume that n -g = k + 1. We use direct calculations which yield

N (O 2 n,g,k ) = N (C g ) v 0 • 3 • 2 k-1 + N (P g-1 ) + k + 2 , N (O 2 n,g,k+1 ) = N (C g ) v 0 • 2 k+1 + N (P g-1 ) + k + 1 . Hence, N (O 2
n,g,k+1 ) > N (O 2 n,g,k ). It follows that O 2 n,g,n-g uniquely realises the maximum number of connected subgraphs among all unicyclic graphs of order n, girth g and at least two pendent vertices: we have N (O 2 n,g,n-g ) = N (C g ) v 0 • 2 n-g + N (P g-1 ) + n -g .

Figure 1 .

 1 Figure 1. The three graphs G, G , G described in Lemma 1.

Construct from H n,1,g,k a new graph H n,1,g,k obtained by replacing n 0 with n 0 = n 0 -1 (n 0 ≥ 2 by assumption) and n 1 = min 1≤j≤k n j with n 1 = n 1 + 1. Thus, we have

using Lemma 4 and after simplification. It follows from Lemma 6 that N (H n,1,g,k ) > N (H n,1,g,k ) as

We conclude that n 0 ∈ {1, n -g -k}.

Next, we show that the situation n 0 = n -g -k cannot occur and hence n 0 = 1.

Proposition 10. Let H n,1,g,k be an optimal graph (see Figure 2) in G(n, 1, g, k) where H is an extended star whose central vertex is w (see Figure 4). Denote by 1 + n 0 the order of the path joining v 0 to w in H. Then n 0 = 1.

Proof. Denote by 1 + n 1 , 1 + n 2 , . . . , 1 + n k the order of the paths from w to each of the k leaves of H, respectively. We know from Proposition 9 that n 0 ∈ {1, n -g -k}. Suppose (for contradiction) that n 0 = n -g -k > 1. Then we have

Based on Figure 4 and using Lemma 4, we obtain

Replace n k = 1 with n k = 2, and

and therefore, using Lemma 4, we get

after simplification. Hence, N (H n,1,g,k ) > N (H n,1,g,k ) as N (C g ) v 0 = 1 + g 2 by Lemma 6. This contradicts the optimality of H n,1,g,k . In view of Proposition 7, we conclude that n 0 = 1. However, it is easy to see that N (O 2 n,g,n-g ) has superiority over the two unicyclic graphs of order n, girth g and having at most one pendent vertices. This completes the proof of the theorem.

As a consequence of Theorem 12, we obtain: Theorem 13. Among all unicyclic graphs of order n ≥ 6, precisely the graph O 2 n,3,n-3 maximises the number of connected subgraphs.

Proof. Assume n ≥ g + 2. Then we have

Consequently, we get

On the other hand, if n = g + 1 then O 2 n,g+1,n-g-1 is precisely the cycle C g+1 and so

It is now easy to see that O 2 n,3,n-3 uniquely maximises the number of connected subgraphs if n ≥ 6.

An alternative proof of Theorem 13 was given in [START_REF] Dossou-Olory | Graphs and unicyclic graphs with extremal connected subgraphs[END_REF].