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Abstract

When sizing a renewable energy power plant in a grid-connected scenario, the optimal solution depends on the energy
exchange rates between the actors of the electrical network. This study presents an optimization method that can be
adapted to various power plant configurations to obtain the best size for each component, depending on the weather
and the consumption. The optimization problem is solved in two steps. A Multi-Objective Particle Swarm Optimizer
gives the trade-off between the cost of the components and the amount of non-renewable energy used, then the post-
treatment takes into account the energy exchange tariffs and presents the solutions that minimize the production cost
for any import and export rates. Those results can be used to evaluate the feasibility of an installation or to define the
exchange tariffs with the grid regulation entity. This study also showcases the effect of the economic assumptions and
of the choice of the energy management strategy on the optimal solution. The results show that the variation of the
optimal production cost is limited but the component size has to be adapted accordingly. In the same way, the Energy
Management Strategy used influences the plant design without affecting significantly the production cost.
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Introduction
With the global warming threat and the new incentives to increase the renewable
power integration, more and more green energy production facilities are being
installed [1, 2]. Those power plants are spread out on the territory and inject
power in the electrical grid in remote nodes, as opposed to the usual centralized
production. Decentralized energy can also help non or poorly interconnected
areas to increase their power quality with a better grid stability [3].

The most common production means from Renewable Energy Sources (RES)
are Hydro-Electricity, PhotoVoltaic (PV) and Wind Turbines (WT). However
wind and solar powers are not controllable and can be tough to predict [4, 5,
6]. Hybrid production systems using both PV and WT can improve the RES
penetration [7] and can be coupled with Fuel Generators or with Energy Storage
Systems (ESS) to provide energy when the RES are not available. Several ESS
exist like Battery Storage (BS), Pumped Hydro storage (PH), Hydrogen storage
(H2), etc, but storing electrical energy is still a big challenge.

Developing and installing new production plants is expensive and can be an
economic risk for the investors. As such, they should be thoughtfully sized so
that they provide the best performances with the lowest cost. This is a complex
optimization problem that is often encountered in the literature [8].

The algorithms are for the most part developed for a specific test case such as
PV/WT/BS plants [9, 10], PV/H2 [11] and many other configurations [12, 13].
The optimization methods usually try to minimize the energy production cost
[14] while keeping a low Loss of Power Supply Probability (LPSP) [15]. When
Renewable Energy Sources are coupled with another production mean (like Fuel
Generators), the fuel price is also taken into account in the production cost [16].
The solving method can be straightforward for problems with few parameters
[17, 18] or more complex like Genetic Algorithm [19], Grey Wolf Optimizer
[20], Mixed Integer Linear Programming [21, 22] or Particle Swarm Optimizers
[23, 24].

Hybrid production microgrids can be categorized as stand-alone or grid con-
nected. For stand-alone applications, the energy market costs do not affect the
optimal solution. Providing energy to consumers without relying on the grid
requires a heavy infrastructure with an important storage reserve or controllable
production means. It also implies that any exceeding energy is lost when the
storage is full.

The methodology presented in [25] aims to optimize a PV, Wind, Diesel
and Battery stand-alone power plant. The algorithm changes the size of the
components within a loop until the constraints are satisfied. It also allows
some low priority load to be switched off to save energy. This solution can be
adapted to several configurations but, since it performs an exhaustive search, it
would require too much computation time if the number of components to size
increases.

In [26], the authors use a Genetic Algorithm to size a Photovoltaic array
associated with a Pumped Hydro storage in stand-alone configuration. It is a
bi-objective optimization that minimizes both the cost of the system and the
LPSP. Since the plant is not grid connected, any exceeding energy that cannot
be stored is lost. Performing the same study with a grid connection would need
to consider the energy exchange rates and would result on different optima.

Grid-connected applications may be more profitable as they can trade energy
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with other partners [27]. The exchange rates costs depend on the demand and
on the energy wholesale markets and have to be considered in the optimal sizing
problem [28].

The method presented in [29] uses a mono-objective Genetic Algorithm to
minimize the Net Present Value of a Photovoltaic, Wind and Biomass power
system. The plant is connected to the grid and can sell the energy it produces.
It does not however include a storage system and cannot export energy at the
most profitable time periods.

Another approach can be found in [30]. The authors use and improve a bat
optimization algorithm in order to size the components of a microgrid with a
Micro-Turbine, a Fuel Cell, a PV array, a Wind Turbine and a Battery storage.
The objective is to minimize the total cost, including the exchanges with the
main grid. In those studies, the exchange rates are defined prior to the opti-
mization so any change in those tariffs would require new and time consuming
computations.

In poorly or non-interconnected area, such as islands, the energy market is
not always available. In this case, the tariffs are fixed by the grid management
entity or can be negotiated during call for tenders. Moreover, producing energy
in those areas is expensive (above 300€/MW.h produced [31]) and due to their
access difficulty and their small size, those areas also suffer from bad distribution
quality [32].

This paper presents a sizing optimization for a grid-connected hybrid power
plant associated with a storage. The aim is to obtain the size of each component
of the plant so that the energy production cost is the lowest for any energy
import and export tariffs. The study also includes a sensitivity analysis of the
solution to showcase the importance of the economic assumptions and the choice
of an Energy Management Strategy.

The methodology presented in this paper is a two-step algorithm. To avoid
the need of a new study if the exchange rates vary, a bi-objective optimiza-
tion minimizes the system cost and the amount of non-renewable energy used,
without the trading costs. The results form a Pareto front where each point rep-
resents a plant sizing. The importation and exportation tariffs are introduced
in a second step and the energy production cost is computed for each solution
of the Pareto front. The plant which has the lowest production cost is then
selected as the optimal solution.

The Pareto front is obtained with the method described in [33, 34]. The
model uses 12 parameters and can be adapted to various plant configurations
by deactivating the components that are not used. The model simulates the
behavior of a given plant according to an Energy Management Strategy (EMS)
and returns the amount of non-renewable energy that has to be imported to ful-
fill the power demand. The optimization problem is solved by a Multi Objective
Particle Swarm Optimizer (MOPSO) [35, 36]. The results are then post-treated
to take into account the energy exchanges and return the plant with the lowest
production cost. The solution is presented as four contour maps that represent
the optimal plant sizings depending on the energy importation and exportation
tariffs.

The optimal solution depends on several factors, including the economic
assumptions and the way the power are exchanged in the microgrid. To quantify
their effect, the optimization is run with different cost assumptions and Energy
Management Strategies.
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The first section of this paper presents the plant model and the algorithm
used to solve the optimization problem. Section 2 describes the post-treatment
where the optimization results are used to define the solution that minimizes
the production cost for any importation and exportation tariffs. The method-
ology is then illustrated with two examples in Greece and in France. The third
section details the economic sensitivity analysis and shows the effects of price
variations on the Pareto front, the plant performances and the sizing of the
optimal solutions. Finally the fourth section presents four energy management
strategies and how they can affect the results.

1 Optimization problem

Figure 1: Algorithm configuration for a Wind Turbine, PV array, Battery stor-
age microgrid.

A framework to optimize the size of each component for a given plant has
been proposed in [33]. The method aims to reduce the amount of energy not
produced by renewable sources –refered as imported energy– and the total cost
of the equipments. The algorithm presented can easily be adapted to a wide
array of plant configurations. As it is coded in Matlab, it is more flexible than
the commercial simulation tools [37].

The plant components are modeled by their maximum power and their ef-
ficiency, that depends on the input power. The powers produced by the Re-
newable Energy Sources (RES) are obtained from meteorological data using
numerical models. Those powers are then routed to the load or to the storage,
taking into account the power limitations and the efficiencies of each component.
If needed, energy can be imported to back up the RES. Those importations can
come from an external grid or from controllable sources such as Fuel Generators.

If the production is above the consumption, the algorithm keeps track of
the exceeding power and labels it as power available for export. In the post
processing, this energy will be discarded or sold to the grid if exportation is
possible. In the same way, energy can be exported if the production exceeds the
consumption. More details on this algorithm can be found in [33].

The optimization is done using a Multi Objective Particle Swarm Optimizer
(MOPSO) set to minimize the amount of energy imported and the Annualized
Cost of System (ACS). Particle Swarm algorithms are derivative-free stochas-
tic methods that can solve efficiently large scale optimization problems under
constraints. Unlike some algorithms that use the derivative of the objective
function, the MOPSO only need the simulation results to move the particles.
This avoids the time consuming phase of computing the derivative of the objec-
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Figure 2: Pareto front result for Tilos Island. Annualized Cost of System in dark
blue vs. energy importations. The green, yellow and blue lines show respectively
the size of the Wind Turbine, the PV panels and the Battery bank.

tive function that must be done via finite differences in the case of the sizing
optimization problem.

In the MOPSO, each particle is a vector containing the sizes of all the com-
ponents in a plant configuration. A first swarm is randomly set up in the study
domain and the plant behavior is computed with the plant model described
above. The particles are then moved depending on the swarm best perfor-
mances and on their owns. This process is iterated until the swarm converges
or a maximum iteration threshold is reached.

The optimization results form a Pareto front of the ACS versus the Energy
Importations. The costs of the importation and eventual exportation are not
taken into account in this part of the optimization but will be used in the post-
processing described in the next section.

As a first example, we will use a hybrid power plant in Tilos Island, Greece
[38]. Tilos is located in the Aegean Sea (36°26′0′′N, 27°22′0′′E) that hosts
around 500 inhabitants in winter and nearly 2000 during the summer. The
average power consumption is 370 kW with spikes up to 1 MW for an annual
consumption of 3.6 GW.h [31]. In the scope of this study, the consumption
profile has been majored by 20% to factor in the expected growth in the future
years [39]. Tilos is currently powered from an undersea cable connected to the
Kos-Kalimnos islands. However, it is the last node in the network and is often
subject to disconnections. In that case, a 1.45 MW Fuel Generator is used as
a backup but, depending on the weather conditions, several days can be spent
before firing up the generator.

With this in mind, a H2020 European project aims to develop a smart grid
using solar and wind resources to reduce the energy imported and even make
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Figure 3: Energy repartition for each plant in the Pareto front for Tilos Island.
The values are normalized with respect to the yearly load consumption ECA =
3.6 GW.h.

the island partially autonomous [40, 41]. The renewable resources are indeed
abundant with an average yearly solar irradiation of 1750 kW.h/m2 and an
average wind speed of 6 to 7 m/s.

The system is made up of a Wind Turbine, a Photovoltaic array and a
Sodium-Nickel-Chloride battery bank (NaNiCl2). The powers produced are
converted to high voltage AC and routed either to the load or to the energy
storage. Before reaching the batteries, the power is converted to DC and reg-
ulated by inverters. Those inverters convert the current back to AC when the
batteries are discharged. Figure 1 presents the algorithm set up to model this
configuration.

The weather data comes from measurement stations installed on purpose
in Tilos. The PV production is estimated from the global irradiance and the
temperature and the wind power from the wind speed. Although the data is
recorded every minute, the simulations are run with one hour resolution to
reduce the computation time needed. For one year simulation, the difference in
the model outputs induced by the new timestep is not significant. Furthermore,
the plant modeling has been tested during the H2020 project and has proven to
be representative of the real plant behavior.

The cost of the system includes the investment cost of each equipment, its
maintenance and replacement costs, taking into account the actualization rate.
The cost data is taken from [42] for PV, from [43] for WT and from [44] for
the storage. The total cost of system is then divided by the plant lifetime (25
years) to obtain the ACS.

The optimization results are presented in Figure 2. Above 35% of imported
energy, the optimal solution is to install only the Wind Turbine and import
energy when there is not enough wind. Between 15% and 35% the best solutions
are obtained by pairing the Wind Turbine with PV panels, still without storage.
The highest autonomy requirements (below 15% imported energy), are reached
by adding the battery bank. However the Pareto slope is steep and gaining
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autonomy results in an important additional cost.
As mentioned before, this optimization is done without taking into account

the energy trading costs. Although more importation means a lesser cost of
system, the energy has to be bought nonetheless and, depending on the import
rate, it can result in a higher annual cost. More autonomy means an excess
of energy produced, as presented in Figure 3. Selling this energy can help the
plant financial balance if the exportation tariff is high enough.

The next section proposes a Graphical Decision Tool to quickly obtain the
best plant configuration based on the energy exchanges costs.

2 Graphical Decision Tool
The optimization does not define an optimal plant size as it is. Instead, it
proposes Ns solutions forming a Pareto front. Since the energy importation
and exportation costs have not yet been taken into account, the total cost of
energy production is unknown ; however, for each plant, the algorithm gives how
much and when energy is imported or exported. By knowing the import and
export tariffs, it is possible to compute the financial amount spent and earned
during one year exploitation, even if those tariffs are time dependent. Producers
in poorly interconnected areas do not have access to the Energy Spot market.
The exchanges rates are fixed in the tender with the energy regulation entity.
They can be fixed or depend on time (seasonal, peak/off-peak prices).

For the sake of simplicity, the tariffs are assumed constant in this paper.
Let Cin being the importation and Cout the exportation prices (€/MW.h). The
yearly load consumption is denoted ECA (MW.h). The ith plant in the front has
an Annualized Cost of System ACS(i), an amount of energy imported EIA(i)
and exported EEA(i). Its energy production cost (in €/MW.h) can be written
as follows:

Cprod(i) = ACS(i) + EIA(i) · Cin − EEA(i) · Cout

ECA
(1)

In order to represent the cost for the local consumers, the total price is normal-
ized with respect to the energy consumed by the load rather than with the total
energy produced.

By assuming an importation and an exportation cost, the Figure 4 can be
drawn to illustrate the effect of each element on the production cost. As ex-
pected, a plant relying on importations spends high amounts to buy energy.
On the other hand, almost autonomous plants import only a little energy, have
important costs for buying and maintaining the equipments but produce more
energy than needed and can export it to reduce the final balance.

The solution i∗ minimizing the production cost, for given importation and
exportation tariffs, is chosen among the Ns solutions:

i∗(Cin, Cout) = argmin
i∈[0,Ns]

Cprod(i) (2)

Cin and Cout are discretized and, for each couple, the best solution i∗(Cin, Cout)
is obtained. It is a linear computation and is done instantaneously. It is then
possible to draw the maps of the optimal cost of system (Fig. 5a), the percentage
of imported energy (Fig. 5b), the amount of exceeding energy (Fig. 5c) and the
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Figure 4: Cost repartition with Cin = 200 €/MW.h and Cout = 30 €/MW.h in
Tilos Island.

energy production cost (Fig. 5d) depending on the importation and exportation
rates.

With such figures, it becomes easy to quickly evaluate the plant feasibility
and the reachable objectives. They may be used in the project pre-studies or
during tariff negotiations with the grid regulation entity.

In the example of Tilos Island, if the import cost is 200 €/MW.h and the
export cost is 30 €/MW.h, Figure 5a gives that the optimal solution has an ACS
of 176 k€, 13.7% imported energy (Fig. 5b) and produces 2.3 GW.h more than
it is consumed. Assuming that all this exceeding energy can be sold, (Fig. 5c),
the production cost goes down to 63.6 €/MW.h (Fig. 5d). The size of each
component can also be read on the right axis of Figure 2 for 13.7% imported
energy and are summed up in Table 1.

The same study can be done for Ajaccio in Corsica (41°55′36′′N, 8°44′13′′E).
To keep the same size factor, only a community of around 500 inhabitants is
considered. The objective is to power an eco-neighborhood with renewable
energy sources and a grid connection as backup or for exporting the exceeding
energy. The consumption profile is taken from EDF Open Data [45] scaled down
to 500 inhabitants and the weather data come from measurements realized in
our experimental platform. The results are presented in Figure 6. In Ajaccio,
the energy production cost is higher than in Tilos and it is more expensive to
reach the same autonomy. It can be explained by the lack of wind power and
the increased need of storage capacity to supply energy at night. Assuming
the same exchange rates as in Tilos, the optimal solution costs 304 k€ every
year and offers only 74.5% autonomy. Even when accounting for the sell of
exceeding energy, the production cost reaches up to 129 €/MW.h but stays
below the actual production cost in Corsica [32].
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(a) Annualized Cost of System map (b) Imported Energy map

(c) Exceeding energy map (d) Total Production cost map

Figure 5: Graphical Decision Tool maps for Tilos test case.

Wind Turbine PV array Batteries ACS Autonomy Prod. cost
Tilos 1120 kW 341 kW 800 kW.h 176 k€ 86.3 % 63.6 €/MW.h
Ajaccio 837 kW 1660 kW 2650 kW.h 304 k€ 74.5 % 129 €/MW.h

Table 1: Comparison of optimal solutions for Tilos and Ajaccio under the same
exchange rates assumptions.

The solutions for Tilos and Ajaccio are presented in Table 1. The plant in
Ajaccio logically relies on a smaller Wind Turbine than in Tilos. To satisfy the
power demand, it however needs five times the PV power installed and three
times the battery capacity. This is the main cause to the cost increase between
the two locations.

The results presented here are based on economic assumptions from [46].
These values vary with time and depend on the location for taxes and workforce
salary. They can affect the optimal solution and make a plant less profitable.
The next section focuses on the results sensitivity to the cost assumptions.

3 Sensitivity analysis
A change in the cost assumptions can affect the optimization results significantly,
either by moving the Pareto front or by changing the optimal component sizes
for an individual solution. The three next subsections show the effects of a price
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(a) Annualized Cost of System map (b) Imported Energy map

(c) Exceeding energy map (d) Total Production cost map

Figure 6: Graphical Decision Tool maps for Ajaccio test case.

variation on the Pareto front, on the optimal solution for a given exchange rate
and on the size of the components of that solution. For the sake of concision,
only the results for Tilos are presented in this paper. The optimizations are
run using the Priority List as the Energy Management Strategy. The optimal
sizing may also depend on the EMS used. As such, its influence will be studied
in Section 4.

The solution presented in Section 2 will serve as reference. From the previous
cost assumptions, five parameters will be increased by +10% one after the other.
The values that will be altered are:

• The energy importation cost (Import tariff)
• The wind turbine buying cost (WT CapEx)
• The battery buying cost (Bat. CapEx)
• The wind turbine maintenance cost (WT OpEx)
• The PV panel buying cost (PV CapEx)
The optimization problem is written so that the energy exchanges costs do

not affect the Pareto front so only four additional optimizations need to be
done. The optimizer is run once again from the start with the same parameters
so that the results can be compared with the reference solution.

3.1 Pareto Front sensitivity
The four fronts obtained are presented in Figure 7. Despite the change in the
cost assumptions, the Pareto fronts stay similar to the reference. This means
that, for a given autonomy, the optimal cost of system stays stable even if the
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Solution ACS Imports Prod. cost
Reference 176 k€ 13.7 % 63.6 €/MW.h
Import tariff 176 k€ 13.7 % 66.4 €/MW.h
WT CapEx 173 k€ 15.3 % 68.9 €/MW.h
WP OpEx 171 k€ 14.9 % 65.9 €/MW.h
Battery CapEx 165 k€ 15.2 % 64.5 €/MW.h
PV CapEx 165 k€ 15.3 % 63.8 €/MW.h

Table 2: Plant performances for different economic assumptions.

equipment costs vary. The algorithm is able to balance one component cost
increase with the other elements to keep the same amount of renewable energy
used. It does not ensures however that the energy production cost is not affected.
Its variation is assessed in the next section.

3.2 Optimal solution sensitivity
While the Pareto front changes only slightly, the optimal solution for given
importation and exportation costs is affected. As an example, the importation
rate is assumed to be 200 €/MW.h and the exportation rate to 30 €/MW.h. In
this case the optimal solution for the base assumptions offers 86.3% autonomy
for an ACS of 176 k€ and an Energy Production cost of 63.6 €/MW.h.

The optimal solutions for the test cases are identified as colored dots in
Figure 7 and their performances are presented in Table 2. As expected, changing
the economic assumptions affects the optimal solution: the ACS varies between
165 and 176 k€ and the imported energy fraction between 13.7 and 15.3%. The
energy production cost is also altered and suffers a 8.2% increase in the worst
case. The biggest variation is a 11.6% rise in the energy imported. Although
the changes are significant, the algorithm gives a good estimation of the ACS
and of the autonomy despite the uncertainties.
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3.3 Components size sensitivity
Despite the optimal solutions having relatively similar performances, the size
of the components is heavily affected by the different assumptions. The Fig-
ure 8 details the relative deviations from the reference solution. As seen before,
the production cost stays stable but if the costs associated with a component
increase, the optimizer logically reduces its size and compensates with other
elements.

The sizing obtained with the increase of the import cost is the same than
the reference. The difference is not significant enough to change the optimal
configuration due to the finite number of optimal solutions computed. The
energy production is however more expensive. An increase of the initial cost
or the maintenance cost of any component logically results in a solution with
a smaller component. For example, if the PV panel buying cost increases by
10%, the installed PV power is reduced by almost 30%. The storage capacity
is also reduced while the Wind Turbine power is slightly increased. It leads to
a cheaper plant but those savings are nullified as the plant relies more on the
importations to mitigate the lack of PV power.

In conclusion, if the economic assumptions vary, the Pareto front and the
optimal performances are stable but the size of each component may change
significantly. The next section presents different Energy Management Strategies
and their effects on the solution.

4 Energy Management Strategies
The plant ability to power the consumers with renewable energy depends on
the storage management strategy. A real life implementation should include
technical limitations (maximum power, ramp rate, start-up delays, battery cy-
cling, . . . ), regulatory limitations (guaranteed power, profile limitation, . . . )
and weather and consumption forecast.

The development of smart Energy Management Strategies (EMS) is a com-
plex task that is abundantly studied in the literature [47]. The EMS often
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require an optimization (Linear Programming, Model Predictive Control) to ob-
tain the best plant operation. Complex solution are not suitable in our study.
Since a lot of simulations have to be done, the EMS must run quickly otherwise
the optimization would require too much computation time. The EMS used here
are simple strategies that run without optimization and do not use forecasts for
load or production.

4.1 Priority list
Priority list is the simplest strategy presented here and is the one that has been
used for the previous simulations. In order to minimize the importations, the
load is first powered from the renewable energy sources then from the battery
bank. When it is not sufficient, the remaining energy is imported. If the RES
production exceeds the consumption, the storage is charged and when it is full,
the exceeding energy is exported.

This management strategy offers the best autonomy for a given plant. How-
ever, it stresses the storage with numerous charging cycles and gives imported
and exported powers with important variations. To reduce the sudden change
when the storage gets completely emptied, its power can be limited when the
storage State of Charge reaches a given limit. It slightly degrades the perfor-
mances while smoothing the grid power. However, it still may not be allowed
by the grid provider.

4.2 Peak Shaving
In the Peak Shaving strategy, the storage is used to power the load when the
consumption is maximum [48]. This helps reducing the size of the power com-
ponents and the maximum imported power.

The load consumption peak and the RES production peak do not occur in
the same time. The idea behind the Peak Shaving strategy is to store the energy
excess during the peak production and use it during the peak consumption. To
reduce the size of the storage needed, its State of Charge is brought back to
50% by mean of a proportional controller when enough power is available. In
poorly interconnected areas and small micro grids, this strategy is particularly
useful as it allows to use smaller controllable sources (e.g. a Diesel Generator)
and smaller power transmission lines to the main grid.

4.3 Grid power moving average
Another simple strategy is to force the grid power to be the average of the
consumption minus the RES power. In this way, the power drawn or sent to the
grid varies slowly and the variations are absorbed by the storage. This strategy
stresses the storage as it is forced to compensate for every deviation from the
average, even in case of small variations that would not have disturbed the grid.
To achieve slow power variations, the average has to be done on a wide time
window, resulting in long periods when the storage is used but it requires an
important capacity.
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Figure 9: Relative deviation in percent from the Priority List for Peak Shaving
strategy (Peak Sh.), Grid Moving Average (Grid M. Avg) and Grid Ramp Rate
Control (Grid RRC).

4.4 Ramp Rate Control
The Ramp Rate Control aims to reduce the maximum power variation for a
given component. Unlike moving average, it only triggers when the variation
exceeds a threshold and avoids unnecessary charge-discharge cycles. According
to [49], a Ramp Rate Control strategy can reliably limit the power variations
from and to the grid. It can be applied to the grid power (the storage takes the
difference and is stressed) or to the storage power (the grid takes the difference
and the import/export vary).

The algorithm implemented is inspired from the work presented in [50, 51]
and is described in details in [52]. It is configured so that the grid power
ramp rate stays below 10% of the installed power per hour. The strategy also
implement a State of Charge controller aiming to keep the storage half charged.

4.5 Effect on the optimal sizing
Three additional optimizations are run with the strategies presented above and
their result is compared with the Priority list. As before, the comparison is done
with an importation rate of 200 €/MW.h and an exportation rate of 30 €/MW.h.
The deviations from the reference are presented in Figure 9.

The Peak Shaving strategy requires bigger energy sources. As the battery
bank is only used during peak hours, its size can be reduced. It yields a more
expensive system with the same autonomy. In the end, the production cost and
the exported energy are the same as the results obtained with the Priority List.

The optimal solution with the Grid Moving Average Strategy also offers the
same production cost than the reference. It needs bigger Wind Turbines and
PV array, hence a higher cost of system. This cost is balanced by a reduction in
energy importations and an increase on the exportations. However this strategy
stresses heavily the storage system with numerous charge cycles and it can
increase the replacement cost in the long run. To compensate, it may be possible
to negotiate better exchange tariffs since the power exchanged is smoothed.

For the Ramp Rate Control strategy the storage capacity can be reduced
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as the batteries only need to compensate the quick power variations. The au-
tonomy stays the same so the requirement for PV and WT is increased to
compensate for the lack of storage. The system is more expensive and results
on a 8% increase of the production cost. On the other hand, this strategy guar-
antees that the exported power variations are limited so it may be sold at a
better price.

The EMS affects the optimal solution and must be chosen in accordance with
the local grid code and the performances wanted. The Priority List results in
the lowest cost of system and production cost but has to rely on imported power.
The Peak Shaving strategy would be better suited if the import power is limited
but comes with a reduction in autonomy. The Grid Moving Average strategy
generates smoother power exchanges but would need a storage able to tolerate
quick and frequent variations. Finally the Ramp Rate Control strategy should
be used in small networks where important power variations can disturb the
distribution grid. For example, the Diesel Generators usually used to produce
electricity on islands cannot accommodate for those variations. They are often
paired with expensive combustion turbine generators that drastically increase
the energy cost when they are fired [31, 32].

5 Conclusion
This paper presents an optimization for a grid-connected hybrid power plant
associated with a storage. The optimization is done with a Multi Objective
Particle Swarm Optimizer. The post-treatment then takes into account the
energy importations and exportations to choose the plant offering the lowest
energy production.

The algorithm is applied to the sizing of a Wind/Photovoltaic/Battery plant.
Two locations are examined: Tilos in Greece and Ajaccio in France and the
results are compared for 200 €/MW.h importation cost and 30 €/MW.h for the
exports.

In Tilos, the algorithm finds a solution with an energy production cost of
63.6 €/MW.h and an autonomy of 86.3%. This plant can power the island
with Renewable Energy Sources while being cost competitive with the undersea
cable. In Ajaccio however, the lack of wind causes the optimal solution to have
only 74.5% autonomy. The production cost reaches 129 €/MW.h but is still
below the current production cost [32]. If the exchange rates are modified,
the new optimum can immediately be found with the Graphical Decision Tool
developed.

The solution can depend on the component costs and on the Energy Man-
agement Strategy. A sensitivity analysis has been done for the results in Tilos.
Increasing the cost of components by 10% has little effect on the production cost
but can change drastically the plant sizing. In the same way, the production
cost remained relatively constant for the EMS tested but the component sizes
have to be adapted to the chosen strategy. It may also be possible to negotiate
better import and export tariffs since the power exchanges follow additional
constraints.

This optimization method can reliably give the optimum production cost
depending on the plant location, the load consumption, the EMS strategy and
the grid trading costs. To obtain the optimal size for the plant elements with
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confidence, it is mandatory to have trustworthy data on their buying cost, main-
tenance and life expectancy.

In future works, we will focus on implementing new management strategies
that complies with the grid code so that the modeling can more accurately
represent a real life power plant. We will also include peak and off-peak energy
pricing in the strategy and in the decision tool. As the data collected from the
Tilos installation supports our results, it is also envisaged to use our algorithm
in order to size a small scale PV power plant associated with a storage to supply
a smart-village in Corsica.
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[39] Direction des Systèmes Energétiques Insulaires, Bilan Prévisionnel de
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