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A detailed comparison of control allocation techniques on a realistic
on-ground aircraft benchmark

Edouard Sadien?, Clément Roos†, Abderazik Birouche�, Mathieu Carton?, Christophe Grimault?,
Louis Emmanuel Romana? and Michel Basset�

Abstract— To achieve a high performance level during
ground operations, the lateral dynamics of an aircraft must
be controlled using all available actuators (rudder, nose wheel
steering system and brakes), which gives rise to a challenging
allocation problem. This provides an excellent benchmark to
compare various kinds of control allocation techniques. In this
paper, an exhaustive literature review is first presented. The
most relevant allocation methods are then applied to an on-
ground aircraft model, which has been previously validated
against a high-fidelity Airbus simulator [1]. An extensive
evaluation is finally performed based on a set of performance
indicators such as the number of iterations, the convergence
time, the error and the actuators consumption.

I. INTRODUCTION

Aircraft control is an important application where actuator
redundancy is required, i.e. where the number of actuators
must exceed the number of states to be controlled. The
need for redundancy is motivated by high performance level
requirements, the ability to quickly recover from off-nominal
conditions and the tolerance towards actuator failures. This
gives rise to control allocation problems, which are of-
ten solved by aircraft manufacturers using simple ad hoc
techniques. But as the number of control inputs increases,
the latter are no longer sufficient, and more systematic
allocation methods must be implemented. Several ones are
compared in [2] on an airborne aircraft, such as continuous-
time and discrete-time versions of direct allocation, linear
programming, quadratic programming, as well as variations
of the weighted pseudo-inverse approach including a cas-
caded generalized inverse. But their efficacy is difficult to
assess from a general point of view, and it seems preferable
to compare them on specific applications [3].

This article moves in that direction and focuses on ground
control just after touchdown, which is a particularly demand-
ing phase. Indeed, the aircraft motion is usually controlled
manually by the pilot, who must act simultaneously on
throttle levers, rudder pedals, handwheels and brake pedals.
This is especially demanding in adverse conditions such as
contaminated runways and severe crosswinds. So there is
a strong motivation to develop enhanced control allocation
algorithms able to manage multiple devices with different
characteristics. At present, solutions are rare and often only
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partial. Several design strategies have been proposed to
control the aircraft using the nose-wheel steering (NWS)
system only, or less frequently with the rudder as well (see
e.g. [4] and [5]). A lot of progress has also been made in
the longitudinal energy management and control [6], such as
the Brake To Vacate function developed by Airbus [7]. But
one of the most challenging on-ground control problems –
which currently lacks a satisfactory solution – occurs at
intermediate speed, where the rudder and the NWS system
are less efficient. The main objective is to ensure that the lat-
eral deviation with respect to the runway centerline remains
acceptable despite wind, varying runway state and comfort
constraints. Achieving good performance during this worst-
case scenario makes it necessary to use differential braking
in addition to classical control devices (rudder and NWS
system), which gives rise to a control allocation problem.

In this context, the main contribution of this paper is to
implement the most relevant control allocation techniques
available in the literature (see e.g. [8], [3]), to apply them
to the aforementioned allocation problem, and to perform
a thorough comparison on a realistic worst-case scenario.
Using an accurate yet tractable on-ground aircraft model
developed in [1], the proposed benchmark takes into account
all existing actuators (rudder, NWS system and brakes),
including their dynamics and limitations. It also considers
changes in the actuators efficiencies due to the variations of
normal load and aircraft velocity during the roll-out phase. A
set of indicators is introduced to quantify the performance of
the on-ground control allocators. It comprises some classical
indicators proposed in [9], such as convergence time and
number of iterations. Some others are also included based
on Airbus expertise in world civil aviation.

The paper is organized as follows. The general control
allocation problem is formulated in Section II. The testing
framework is thoroughly described in Section III, including
the considered scenarios and performance indicators. The
various selected methods are briefly described in Section IV.
Detailed numerical results are finally presented in Section V.

II. CONTROL ALLOCATION IN A NUTSHELL

A two-step strategy is usually applied when an allocation
problem arises. First, a high level controller is designed to
compute the total control effort that should be applied to
fulfill the control objectives. Then, an allocation module
is implemented to distribute this effort among the redun-
dant set of actuators. Mathematically, the allocator solves
an underdetermined system of equations, often subject to



additional constraints. It is fed by a vector of virtual inputs
v(t) ∈ Rk (typically a number of forces and moments that
equals the number of degrees of freedom to be controlled),
and it delivers the true control inputs u(t) ∈ Rm to be sent to
the actuators, where m > k. In the literature, effector models
are almost always linear in u. Thus given v(t), the allocation
problem reduces to the computation of u(t) such that:

Bu(t) = v(t) (1)

for all t ≥ 0, where B ∈ Rk×m is the control effectiveness
matrix of rank k. Moreover, actuator rate and position limits
are incorporated such that:

upmin ≤ u(t) ≤ upmax , urmin ≤ u̇(t) ≤ urmax (2)

where inequalities apply componentwise. The allocator being
embedded in a digital system, rate limits are often converted
into effective position limits. The applied limits are then the
most restrictive of the position or the converted rate limits:

u(t) = max {upmin, u(t− T ) + Turmin}
u(t) = min {upmax, u(t− T ) + Turmax}

(3)

where T is the sample time. Therefore, the standard con-
strained linear control allocation problem is as follows:

Bu(t) = v(t) such that u(t) ≤ u(t) ≤ u(t) (4)

However, problem (4) is not convex when sufficient control
power is available. In this case, an infinite number of
solutions exist and a secondary objective is defined such as
minimizing control power. On the contrary, in case of control
power deficiency, no exact solution exists and the selected
one usually mininizes the L2-norm ‖Bu− v‖.

III. BENCHMARK

The considered on-ground benchmark is shown in Fig. 1.
It is based on the aircraft model described in [1].
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Fig. 1: Benchmark architecture
A. Scenario

In practice, a dynamic inversion based high level con-
troller computes a virtual input v = ṙactc corresponding
to the commanded yaw acceleration to be produced by the
actuators. This controller is not included in the benchmark,
and an ṙactc profile recorded during a real landing with
difficult operating conditions is used instead. This is indeed
a convenient way to push the allocation module to the
limits for a better evaluation, and explains why an open-loop
benchmark is considered here. In this work, the ṙactc issued
by the Scenario block corresponds to a landing with 30 kts
of crosswind turbulence, as well as 20 kts of lateral gust
occurring when the aircraft speed Vx is 100, 60 and 40 kts.

B. Actuators

The yaw motion of the aircraft is controlled by the braking
systems located on the left and right main landing gears
(denoted MGL and MGR in the sequel), the NWS system
and the rudder, whose models form the Actuators block.

Each braking system is approximated by a first order
dynamic model of nominal gain Gbrk and time constant τbrk,
with position and rate limits Lpbrk and Lrbrk:

τbrkṖbrkk + Pbrkk = Pbrkkc with

{
0 ≤ Pbrkk ≤ Lpbrk
|Ṗbrkk | ≤ Lrbrk

(5)

where Pbrkk and Pbrkkc are the actual and the commanded
braking pressures, and k ∈ {MGL,MGR}. Moreover,
braking starts only if Pbrkk is above a threshold P0, so as
to overcome the restoring force of springs located between
the brake discs and the brake pistons. The torques Tbrkk
produced by the braking systems are thus obtained as:

Tbrkk = max (0, Gbrk (Pbrkk − P0)) (6)

The NWS (resp. the rudder) actuation system is approx-
imated by a first order dynamic model of unitary gain and
time constant τNW (resp. τδr) with position and rate limits
LpNW and LrNW (resp. Lpδr and Lrδr):

τNW θ̇NW + θNW = θNWc with

{ |θNW | ≤ LpNW
|θ̇NW | ≤ LrNW

(7)

τδr δ̇r + δr = δrc with

{
|δr| ≤ Lpδr
|δ̇r| ≤ Lrδr

(8)

where θNW and θNWc (resp. δr and δrc ) are the actual and
the commanded nose-wheel (resp. rudder) deflections.

C. Computation of the yaw acceleration

The Yaw block computes the actual yaw acceleration ṙact
produced by the actuators. From [1]:

ṙact = ṙNW + ṙδr + ṙbrkMGL + ṙbrkMGR (9)

The yaw acceleration produced by the rudder is:

ṙδr =
qdScCnδrδr

Izz
(10)

where qd =
1

2
ρVa

2, S, c, Cnδr and Izz are the dynamic
pressure, the reference surface, the mean aerodynamic chord,
the yaw stability derivative due to the effect of the rudder
deflection δr and the inertia around the vertical axis of the
aircraft respectively. In addition, ρ is the air density and Va
is the Euclidean norm of the aerodynamic velocity.

The yaw acceleration produced by the nose wheel is:

ṙNW =
DxNW

Izz
F̂syNW (11)

where DxNW is the longitudinal distance between the air-
craft center of gravity and the nose landing gear, and:

F̂syNW = NtNW sat[
µ̄λsyNW

FzNW
NtNW

](KyNW

FzNW
NtNW

θNW

)
(12)



The saturation operator in equation (12) is defined such that
sat[F ](x) = x if |x| < F and sat[F ](x) = F sign(x) other-
wise. Moreover, NtNW , λsyNW , FzNW and KyNW denote the
number of tires, the lateral friction fraction [1], the normal
load and the reduced lateral cornering gain respectively.
FzNW is obtained by a moment balance at the main landing
gears around the lateral axis of the aircraft:

FzNW =
mgDxMG − Fza (DxMG − c (cA − cG))

DxNW +DxMG
(13)

where m, g, DxMG and Fza = qdSCz0 denote the aircraft
mass, the standard gravity, the longitudinal distance between
the aircraft center of gravity and the main landing gears, and
the lift force which depends on the lift stability derivative
Cz0 respectively. In addition, the weight and the aerody-
namic effects act at points located along the fuselage axis,
whose distances w.r.t. the center of gravity are −cG . c and
−cA . c respectively, cG and cA being positive dimensionless
coefficients. Finally, KyNW depends on the runway state:

KyNW =
KyMAXNW

2
3 + 1

3µ̄

(14)

where KyMAXNW is defined for a dry runway, and the
relative friction coefficient µ̄ is considered equal to 1 for
dry, 0.74 for wet and 0.29 for snowy runways.

Remark 1: The yaw acceleration produced by the nose
wheel rolling resistance is negligible compared to that pro-
duced by the lateral slip force and is hence neglected in (11).

The yaw accelerations produced by the left and right
braking systems are:

ṙbrkMGL = −DyMG

Izz
FsxMGL

ṙbrkMGR =
DyMG

Izz
FsxMGR

(15)

where DyMG is the lateral distance between the aircraft
center of gravity and the main landing gears, and:

Fsxk = NtMG sat[
µ̄λsxMG

FzMG
NtMG

](Tbrkk
Re

)
(16)

where k ∈ {MGL,MGR}. NtMG , λsxMG , FzMG and
Re denote the number of tires, the longitudinal friction
fraction [1], the normal load and the main landing gear wheel
rolling radius respectively. In the same way as before, FzMG
is obtained by a moment balance at the nose landing gear
around the lateral axis of the aircraft:

FzMG =
mgDxNW − Fza (DxNW + c (cA − cG))

2 (DxNW +DxMG)
(17)

Remark 2: A complete set of numerical values represen-
tative of a commercial aircraft is provided in TABLE I.

D. Control Allocator

The control allocator implemented in the Control Alloca-
tion block receives the virtual control input v = ṙactc and
computes the true control inputs u to be sent to the actuators.
In order to minimize the effect of differential braking on the
longitudinal motion, ganging of the left and right braking

Parameter Unit Typical value
m kg 60× 103

Izz kg.m2 3.70× 106

S m2 122

c m 4.2

cG / cA - 0.30 / 0.42

DxNW / DxMG / DyMG m 11.45 / 1.19 / 3.80

Cnδr / Cz0 - −2.01 / 0.905

KyMAXNW /rad 3.56 (wrong value in [1])
Re m 0.50

λsyNW / λsxMG - 0.68 / 0.51
NtNW / NtMG - 2 / 2
τbrk / τNW / τδr s 10−3 / 0.1 / 0.2
Gbrk Nm/Pa 4× 10−3

Lpbrk / P0 Pa 175× 105 / 15× 105

Lrbrk Pa/s 20× 105

LpNW / Lpδr deg 74 / 30
LrNW / Lrδr deg/s 20 / 30
LpbrkCA Pa 30× 105

LpNWCA / LpδrCA deg 6 / 30

TABLE I: Benchmark values

systems is considered: δPbrkc = PbrkMGRc − PbrkMGLc is
computed, and PbrkMGRc = 0.5δPbrkc and PbrkMGLc =
−0.5δPbrkc are then applied in the Actuators block. Thus,
the number of outputs of the control allocator reduces to
m = 3 and the matrices of (4) are given by:

u =
[
θNWc δrc δPbrkc

]T
v = ṙactc

B =

[
∂ṙact
∂θNW

∂ṙact
∂δr

1

2

(
∂ṙact

∂PbrkMGR
− ∂ṙact
∂PbrkMGL

)]
=

[
DxNWKyNW FzNW

Izz

ρVa
2ScCnδr
2Izz

DyMGNtMGGbrk
IzzRe

]
The saturations of the ground reaction forces (12) and (16)
are dropped in the computation of the control effectiveness
matrix B. They are taken into account indirectly by more
restrictive actuator position limits:

upmax = −upmin =
[
LpNWCA

LpδrCA LpbrkCA

]T
(18)

E. Key Performance Indicators
To be deemed flight worthy, the control allocator should

converge in a minimum time (less than the sample time), and
in a minimum number of iterations. Most if not all virtual
controls should be attained within the capacity of the actu-
ators, therefore minimizing an equivalent yaw acceleration
”energy”. Lastly, actuator use should be minimized as far as
possible. Thus, the following indicators are chosen to assess
the performance of the control allocation techniques:
• Mean and maximum number of iterations,
• Mean and average of 10% maximum convergence time,
• Integral of squared error:

∫
(ṙactc − ṙact)2 dt,

• Normalized consumption:
∫ [
upmax

−1
]T |u| dt.

Remark 3: The first four classical indicators are given per
sample time (T = 40 ms for the considered benchmark).



IV. CONTROL ALLOCATION TECHNIQUES

From an exhaustive control allocation literature review
including [3], [8], [10], a wide set of methods have been
identified. The most appropriate ones are summarized in this
section, based on their applicability to the control of an on-
ground aircraft. Indeed, to be considered flight worthy, a
control allocation algorithm must reliably produce smoothly
varying actuator controls, that do not chatter back and forth
from one time step to the next. Furthermore, it should
achieve all the virtual control the actuators can produce,
or minimize the allocation error in some sense in case of
control deficiency [11]. Other factors influencing the choice
of some methods over others are determinism, required com-
puting power and certification aspects. Consequently, some
techniques are discarded due to their intrinsic chattering
likelihood or their potential certification issues. For instance,
methods based on model predictive control require that a
certain desired trajectory be known during a future horizon,
which is incompatible with the existing generalized control
law. Moreover, methods based on linear matrix inequalities
require a prohibitive computational time, while those using
online training neural networks are not compatible with the
deterministic criteria of the certification authorities. In the
sequel, the time t is omitted unless it is necessary for the
understanding of the paper.

A. Unconstrained Methods

The constraint u ≤ u ≤ u is ignored. It means that
Bu = v has an infinite number of solutions, among which
the optimal one in the sense of a certain criterion is selected.

Weighted pseudo-inverse [3]: It is the solution of the
following minimum 2-norm problem:

arg min
u∈Rm

1

2
uTW−1

p u subject to Bu = v (19)

where Wp ∈ Rm×m is a weighting matrix (chosen here as
diagonal and composed of the squared position limits of the
actuators). The solution is given by:

u = WpB
T (BWpB

T )−1v (20)

Frequency-apportioned control allocation [12]: The
desired virtual control v is partitioned into low- and high-
frequency components using a low-pass filter L(s):

vl = L(s)v, vh = [1− L(s)]v (21)

A weighted pseudo-inverse is used to allocate both compo-
nents according to the actuators position and rate limits:

ul = B†pvl = WpB
T (BWpB

T )−1vl

uh = B†rvh = WrB
T (BWrB

T )−1vh
(22)

where Wp and Wr are weighting matrices (chosen here as
diagonal and composed of the squared position and rate
limits respectively). The control vector is then given by:

u = [B†pL(s) +B†r(1− L(s))]v (23)

A key element in this approach is the selection of the low-
pass filter time constant. A method is described in [12].

Linear filter [13]: The allocation does not only depend
on the current control distribution, but also on the allocation
at the previous time step. The following problem is solved:

arg min
u(t)∈Rm

∥∥∥W−1/2
p u(t)

∥∥∥2

+
∥∥∥W−1/2

r [u(t)− u(t− T )]
∥∥∥2

(24)

such that Bu = v, where Wp,Wr are chosen as above.
The solution is:

u(t) = Fu(t− T ) +Gv(t) (25)
where:

F = (I −GB)W−2W−2
r

G = W−1(BW−1)T ((BW−1)(BW−1)T )−1

W = (W−2
p +W−2

r )1/2

(26)

B. Basic Constrained Methods
Cascaded generalized inverse [14]: It is an iterative

heuristics based on the pseudo-inverse method. Position
saturated controls are removed from subsequent pseudo-
inverse solutions until either all control effectors saturate or
a solution is found that does not violate actuator constraints.

Daisy chaining [3]: A hierarchy is established between
the control effectors, which are separated into different
groups. The control inputs are computed assuming that only
the first group of effectors is used. If it exceeds the position
limits, the overflow is sent to the second group and so on.
For the purpose of the benchmark, the first group consists
of the classical actuators, i.e. the NWS system and the
rudder, and the second one consists of differential braking.
Allocation within the first group is done using the pseudo-
inverse method as described in Section IV-A.

Remark 4: Allocation within the first group can be done
with any allocation technique, but the pseudo-inverse method
is used here for its low computational power requirement.
C. Solver-based Methods

Weighted least squares (LS): It consists of solving:
arg min

u≤u≤u
‖Bu− v‖2 + γ‖W−

1
2

p u‖2 (27)

where Wp ∈ Rm×m is a weighting matrix chosen here as
in (19) and γ is set to a small value, indicating the priority
of error minimization over that of control minimization. This
can be done using the MATLAB quadprog solver, an active
set solver [13], an interior point solver [15] or a fixed-point
iteration algorithm [16].

Sequential least squares [13]: It consists of solving the
following sequential least squares problem using an active
set solver, where Wp is chosen here as above:

arg min
u∈Ω

∥∥∥W− 1
2

p u
∥∥∥ where Ω = arg min

u≤u≤u
‖Bu− v‖ (28)

Minimal least squares [13]: A minimal least squares
problem (see [17]) formulated in the same way as (28) is
solved using a two-stage active set method. Wp must be di-
agonal, which is the case here. However, this implementation
does not handle the case of coplanar controls.

Direct allocation [18]: The following problem is
solved:

max ρ
ρ≤1

subject to Bu = ρv and u ≤ u ≤ u (29)



which consists of finding the best approximation of v sat-
isfying the control constraints and being colinear to v. An
equivalent linear programming problem is derived and solved
using the simplex method in [18].

Dynamic allocation [13]: It extends regular quadratic
programming control allocation by also penalizing the actu-
ator rates and is formulated as follows:

arg min
u(t)∈Ω

∥∥∥W−1/2
p u(t)

∥∥∥2

+
∥∥∥W−1/2

r [u(t)− u(t− T )]
∥∥∥2

where Ω = arg min
u(t)≤u(t)≤u(t)

‖Bu(t)− v(t)‖
(30)

where the matrices Wp and Wr are chosen here as above.
Problem (30) is solved using an active set solver in [13].

D. Iterative Methods

Nullspace-based pseudo-inverse [19]: The pseudo-
inverse is used as a primal solution, which is then modified
using the nullspace of the control effectiveness matrix. This
method handles non-symmetric actuator limits, hence rate
limits (see (3)). Moreover, an appropriate solution is given
even in the presence of singularity and is guaranteed with a
predefined computational burden, which is a non-negligible
advantage over linear and quadratic optimization methods.

Fixed point methods [9]: The constrained control allo-
cation problem is formulated into an equivalent fixed point
problem. Two algorithms are proposed:
• a sequential method similar to [16], but which adopts a

different approach to satisfy the convergence criteria,
• a Newton method, where the consideration of the satu-

ration function leads to a nonsmooth zero finding prob-
lem, and which guarantees superlinear convergence.
Dynamical pseudo-inverse [20]: Under the assumption

that at least one solution to the allocation problem under
saturation exists, two algorithms are proposed which provide
a suitable symmetric positive weighting matrix W leading to
that solution:
• a linear control allocation algorithm which computes W

for the following allocation law linear in W :

u = [I + (I −BT (BBT )−1B)W ]BT (BBT )−1v (31)

• a nonlinear control allocation algorithm which computes
W for the following allocation law nonlinear in W :

u = WBT (BWBT )−1v (32)

W is adjusted only during saturation until values of u are
found which satisfy the constraint u ≤ u ≤ u. However, such
an approach does not generally minimize the total control
effort, which is often an important requirement.

Karush-Kuhn-Tucker (KKT)-based algorithm [21]: It
consists of solving several systems of equations to find
all the local optimal solutions, and consequently the global
one through a simple comparison between all realistic local
minima. This algorithm is independent on the selection of
initial conditions, since the considered nonlinear optimiza-
tion problem is converted into classical eigenvalue problems.

E. Update Law-based Methods

Dynamic control allocator [22]: It aims at injecting an
arbitrary signal in certain input directions, which does not
modify the state response or the steady-state output response.
This arbitrary signal is the output of a suitable number of
integrators, whose state is adjusted online based on certain
gains intuitively chosen to promote or penalize the different
actuators based on their rate or magnitude saturation levels.

V. RESULTS AND ANALYSIS

The control allocation methods presented in Section IV are
now compared on the benchmark described in Section III.
The performance indicators mentioned in Section III-E are
shown in TABLE II, where N/A means ”not applicable”.
Matlab implementations of all solver-based algorithms, ex-
cept the Matlab quadprog solver, are available in the QCAT
toolbox [13] and have been slightly adapted for the bench-
mark. All the other algorithms have been coded from scratch.

All methods except direct allocation make use of a user-
defined 3-parameter weighting matrix, which allows the rel-
ative minimization of the weighted control vector W−1/2

p u.
The frequency-apportioned, the linear filter and the dynamic
allocation methods also use an additional weighting matrix
Wr, which penalizes actuator rates. The time constant of the
filter L(s) in the frequency-apportioned method depends on
the choice of Wp and Wr.

The convergence time should be interpreted with caution,
since it was obtained using the MATLAB tic / toc functions,
which depend on the CPU consumption of background
applications. However, the mean convergence time and mean
10% maximum convergence times are useful for relative
comparison. The former is within the same order of magni-
tude for all methods except direct allocation, which is almost
10 times slower. A similar comparison was reported in [23].

For the weighted LS problem (27), where the tuning pa-
rameter γ was set to 10−3, the active set solver outperforms
the MATLAB quadprog solver. Indeed, it uses the solution
from the previous sample as an initial guess to hot start the
algorithm, which yields faster convergence. The cascaded
generalized inverse does not guarantee the full utilization
of the actuators’ capabilities and may fail to obtain the
desired virtual control v if bad choices are made early in
the iterations [18]. The number of iterations of the KKT-
based algorithm is equal to 3m, which corresponds to all
the combinations of the 3 possible states of each of the m
actuators (lower or upper saturated, or not saturated). The
fixed-point iteration algorithm [16] converges to the optimal
solution as the number of iterations goes to infinity. Here,
the maximum number of iterations is limited to 100 and
therefore, this method presents the highest allocation error
and normalized actuators consumption. Finally, an identity
weighting matrix W = I is used by the interior point
solver [15] implemented in QCAT. So results could probably
be improved by using a diagonal matrix composed of the
squared position limits of the actuators, as it is done for
several other algorithms.



Methods Mean # of Max # of Mean conv. Mean 10% max
∫

squared error Normalized
iterations iterations time [ms] conv. time [ms] [×10−3 deg/s3] consumption

Weighted pseudo-inverse [3] N/A N/A 2.77 3.31 1.0389 81.3319
Frequency-apportioned control allocation [12] N/A N/A 2.82 3.36 1.2341 84.9120
Linear filter [13] N/A N/A 3.27 5.10 1.6442 88.5882
Cascaded generalized inverse [14] 1.0 2 2.84 3.41 1.0389 81.3322
Daisy chaining [3] N/A N/A 2.39 5.78 1.3013 75.3898
Weighted LS - quadprog solver 3.4 5 7.75 10.36 1.0562 81.6594
Weighted LS - active set solver [13] 1.0 2 2.92 3.51 1.0389 81.3228
Weighted LS - interior point solver [15] 1.7 2 2.97 3.55 1.7884 108.7635
Weighted LS - fixed-point algorithm [16] 100 100 2.97 3.55 1.8588 110.0601
Sequential LS [13] 2.0 3 3.08 3.68 1.0389 81.3322
Minimal LS [13] 2.0 3 3.00 3.63 1.0389 81.3322
Direct allocation [18] 1.3 2 20.42 26.33 1.6106 107.4062
Dynamic allocation [13] 1.0 2 3.10 3.73 1.0430 81.3329
Nullspace-based pseudo-inverse [19] 1.0 2 3.24 4.01 1.0389 81.3321
Fixed point - sequential method [9] 28.1 47 2.97 3.60 1.0390 81.3316
Fixed point - Newton method [9] 2.0 4 3.04 3.63 1.0389 81.3315
Linear dynamical pseudo-inverse [20] N/A N/A 2.84 3.38 1.5504 104.1167
Nonlinear dynamical pseudo-inverse [20] N/A N/A 2.86 3.40 1.5853 105.7331
KKT-based algorithm [21] 27 27 3.71 5.81 1.0389 81.3321
Dynamic control allocator [22] N/A N/A 3.08 3.80 1.0359 81.8253

TABLE II: Benchmark synthetic results

VI. CONCLUSION

This paper compares many control allocation techniques
on a realistic benchmark, namely the yaw control of an
on-ground aircraft. Several performance indicators are com-
puted, such as the number of iterations, the convergence time,
the error and the actuators consumption. The most relevant
methods in this context are the weighted pseudo-inverse [3],
the daisy chaining [3], the linear filter [13] and the dynamic
allocator [22] due to their implementation ease and their
small convergence time. They require a small computation
effort, and they attempt to minimize virtual control error and
actuator use. But the weighted pseudo-inverse and the linear
filter could lead to disappointing results in case of actuator
saturations, which are not taken into account. This issue will
be addressed in a future work, as well as robust control
allocation and the consideration of actuator dynamics.
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