
HAL Id: hal-02449072
https://hal.science/hal-02449072

Submitted on 22 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

GRec: automatic computation of reconfiguration graphs
for multi-core platforms

Guy Durrieu, Claire Pagetti

To cite this version:
Guy Durrieu, Claire Pagetti. GRec: automatic computation of reconfiguration graphs for multi-core
platforms. ACM Transactions on Embedded Computing Systems (TECS), 2019, 18 (5), pp.41-1 -
41-24. �10.1145/3350533�. �hal-02449072�

https://hal.science/hal-02449072
https://hal.archives-ouvertes.fr

GRec: automatic computation of reconfiguration graphs for

multi-core platforms

Guy Durrieu and Claire Pagetti
ONERA France

November 26, 2019

1 Introduction

The DREAMS [17] (Distributed REal-Time Architecture for Mixed Criticality Systems – 2013-2017) Eu-
ropean project addressed the design of a cross-domain architecture for executing applications of different
criticality levels in networked multi-core embedded systems. One of the outcome of the project was the
development of a fault-tolerant distributed middleware that supports some failures.

1.1 Fault model and recovery mechanism

A DREAMS-compliant platform is composed of several multi-core chips connected through a TTEthernet
network [53]. Two types of failures were considered during the project:

– permanent core failures. Intensive integration of small devices on chip increases the permanent
failure occurrence due to various phenomena such as aging, wear-out or infant mortality [6];

– temporal overload situations for critical applications. This occurs when non-critical (also referred
to as best-effort) applications have a too consuming access to shared resources leading to a non
acceptable slow down.

The DREAMS resource management [20, 25] was developed in order to maintain the applications exe-
cution even in the presence of these two types of failure. In case of temporal overload, an adaptation
strategy based on interrupting the best-effort applications at run-time was applied [36]. For permanent
core failure, the resource management reconfigures the platform by selecting an adequate configuration
in a set of pre-defined configurations.

1.2 Objective of the paper

We have presented the DREAMS fault-tolerant resource management [20, 25] in former papers, all of
them assuming that the set of pre-defined configurations was available. The configurations are organized
in reconfiguration graphs such that any decision is always deterministic and any combination of core
failures is anticipated. The first purpose of this paper is to formally define the notion of reconfiguration
graphs for a system composed of a set of applications hosted on a distributed platform in presence of
permanent core failures impacting one or more nodes. The second objective is to provide a constraint
programming-based approach to automatically compute the reconfiguration graphs. The last objective
is to introduce the tool, GRec (standing for Graph of Reconfigurations tool), developed during the
DREAMS project. We show on a series of benchmarks its capacity to deal with large and realistic
models.

1.3 Outline

The rest of the paper is organized as follows. Section 2 details the system model and the ressource
management principles designed in the DREAMS project. Section 3 presents the principles of the auto-
matic computation of reconfiguration graphs and introduces the GRec tool which implements the off-line
search strategy. The idea is to iterate the search of configurations according to several parameters. For
a fixed set of parameters, a configuration is computed with a constraint programming solver. Section 4

1

details the modeling of a configuration computation with constraints. The reconfiguration graphs once
computed are used in the compilation tool chain and embedded in the platform. Section 5 gives some
hints about configuration code generation. Section 6 exhibits some experimental results obtained from
case studies used during the DREAMS project.

2 System model

2.1 Platform and application model

Definition 1 (Platform) A DREAMS-compliant platform is composed of several multi-core processors
(named nodes) N = {M1, . . . ,Mn} connected via a TTEthernet network. Each multi-core processor Mk

is composed of nk identical cores. We uniformly identify all the cores of the platform using integers
ranging from 1 to nN =

∑
k≤n nk.

Each multi-core can have a specific speed and we consider the WCET (Worst-Case Execution Time)
of a software as the maximal value of its WCET on each multi-core. This assumption can be easily
leveraged by extending the WCET as a list of WCET, one per node. However, in the sequel, we assume
a unique WCET to simplify the notations and formulas.

Definition 2 (Applications) The platform hosts a series of applications A = {a1, · · · , ar}. An appli-
cation ak is composed of rk periodic tasks. We uniformly identify all the tasks of the application set using
integers ranging from 1 to rA =

∑
k≤r rk. In particular, ak = {τi = (Ci, Ti)}ek−1<i≤ek−1+rk where for all

j < r, ej =
∑
q≤j rq, Ci is the WCET (Worst Case Execution Time) and Ti is the period. A task τi can

be unrolled as a set of jobs denoted τi.j – the j-th job of τi. Moreover, each application is typed with its
criticality type(ak) ∈ {critical,best-effort}.

Applications are allocated (or distributed) to the nodes. At any time, a full application is allocated
to a unique node (or none if too many failures have occurred).

Definition 3 (Allocation) For the application set A = {ai}i≤r and the platform N = {Mj}j≤n, an
allocation is defined by the function allocp(ai) ∈ {Mj}j≤n ∪ {⊥}.

Moreover, the DREAMS resource management relies on TSP (time and space partitioning) principles
compliant with IMA (Integrated Modular Avionics) [26, 2] which is the de-facto standard for current
aircraft design. TSP is ensured by the XtratuM hypervisor [42], which was a technology involved in the
project. An application is mapped to a set of partitions where a partition is defined by one or multiple
slots. A partition cannot be shared by two different applications. To alleviate the notations, we will
assume in the sequel that a partition is composed of a unique slot. This assumption does not impact
the upcoming results, as regular partitions are simply a wrapping of slots. A slot is temporal access to
a CPU with a start time and a length. Inside a slot, several tasks can be executed. Both the partitions
slots and the schedule of tasks inside a slot are computed off-line, for instance with Xoncrete [7], the
mapping and scheduling tool provided with XtratuM. This off-line piece of information is called plan
in the XtratuM terminology.

Definition 4 (Plan on a node) For a platform N = {Mi}i≤n, an application set A = {ai}i≤r and an
allocation allocp, a plan on node Mi consists of:

– a major frame (MAF), the length of the schedule pattern repetition;

– a set of mi slots Si distributed over the cores and the MAF. A slot is defined as sl = (b, l, c) where
b is the start time, l is the length and c is the number of the core where the slot is allocated;

– a mapping of the jobs of the applications allocated to the node Mi in the slots. Jobs are unrolled on
the MAF and we know for all job in which slot it belongs to. We know moreover in which order the
jobs inside a slot are executed.

Definition 5 (Configuration) A configuration is a full description of the mapping and the scheduling
of applications. Thus a configuration is given by Conf = 〈allocp,planM1

, . . . ,planMn
〉.

As for the set of cores and application tasks, the set of slots S = ∪i≤nSi of a given configuration Conf is
uniformly identified using integers ranging from 1 to mS =

∑
k≤nmk.

2

2.2 DREAMS executive layer overview

The fault-tolerant services are implemented on top of XtratuM and consist of:

– the GRM (Global Resource Manager) which is the centralized manager;

– MON (MONitoring) service which monitors the health of cores;

– LRM (Local Resource Manager) service which manages the local configuration of a multi-core.

DREAMS choices 1 The design choices made during DREAMS were to:

1. allocate permanently the GRM on a specific multi-core;

2. suppose that the core hosting the GRM would never fail;

3. assign one LRM per core and execute them synchronously at the end of the MAF;

4. execute one MON per core and execute them at disjoint instant;

5. implement all of the services as XtratuM partitions.

Example 1 (Configuration) Let us consider an architecture N1 = {M1,M2}, see Figure 1, composed
of 2 dual-core chips (M1 = {arm1, arm2}, M2 = {arm3, arm4}) connected via a TTEthernet switch. The
application set is composed of 3 applications A = {a1, a2, a3} such that:

application tasks type allocp

a1 {τ1 = (2, 10), τ2 = (4, 100)} critical M1

a2 {τ3 = (20, 100)} best-effort M1

a3 {τ4 = (2, 20), τ5 = (4, 100)} critical M2

Figure 1: Architecture N1

Switch

arm1 arm2
M1

XtratuM

MON LRM a1 a2

arm3 arm4
M2

XtratuM

MON LRM GRM a3

Figure 2: plan1 on
M1

a1

a2

MAF

Figure 3: plan1 on
M2

GRM

a3

MAF

The services MON, LRM and GRM run on top of XtratuM, as partition. GRM runs permanently
on the arm3 of M2. The configuration consists of the 2 XtratuM plans, the one defined on M1 and the
one defined on M2. Both plans are named plan1. For each plan, the MAF is 10 units of time. The set of
slots S is composed of 15 slots and is shown in Figures 2 and 3. We have represented in white boxes the
application slots and the DREAMS services with different shades of gray boxes. The white boxes without
a name are spare partitions that would be used later in case of failure. In the sequel, we will not draw an
empty slot. Among the 15 slots, 4 are dedicated to the MON (one per core), 4 to the LRM (one per core)
and 1 to the GRM. Figure 2 shows the mapping and scheduling of the partition slots in plan1 during a
MAF. 2 LRMs (in dark gray) and 2 MON (in light gray) execute. We also observe that a1 executes on
arm1 and a2 on arm2. Figure 3 shows the plan on the second multi-core. Each application is wrapped in
a unique slot (or partition).

Figure 4: Job schedule

0.1 6.10 9.9
τ1

2 2.10 9.9

τ3

MAF

0.1 6.10 9.9
τ1

2 2.10 9.9

τ3

MAF

τ2

Figure 5: Job schedule

GRM

MAF
4 4.10 9.9

GRM

MAF
4 4.10 9.9

τ4 τ5

The scheduling inside the partition slots are not illustrated in the former figures. This is done in
Figure 4 for M1. a1’s slot has a length of 6 where τ1 and τ2 are called in sequence every 10 MAF and
τ1 is called alone 9 times over 10 MAFs. a2’s slot has a length of 2 and τ3 is preempted every MAF.
The scheduling for M2 is given in Figure 5. a3’s slot has a length of 4 where τ4 executes every even
MAF and τ5 executes on odd MAF every 10 MAFs. The complete repetition pattern is defined over the
hyper-period, that is the lcm (least common multiple) of all task periods and which is equal in our case
to 10 MAFs.

3

Usually, the mapping and scheduling need to be performed on the hyper-period. In the use cases
studied during the DREAMS project, some tasks had very short periods (e.g. 10ms) while others had
long ones (e.g. 1s). This leads to a long hyper-period and a schedule made of short time intervals. Making
failure detection and reconfiguration at those very long hyper-periods may be inefficient. Moreover,
finding such a schedule and a mapping over the hyper-period is combinatorial in the number of jobs and
thus very costly. This has lead to the DREAMS design choice 2 which consists in taking a MAF that
could either divide or multiply each period.

We thus compute a schedule on the MAF and then, there are two possibilities: either unroll the
schedule on the hyper-period, or wrap the tasks in order to not be executed every MAF if their period
is a multiple of the MAF. This is very similar to the notion of MIF (Minor Frame) and MAF on the
Integrated Modular Avionics (IMA) systems [39]. When computing over the hyper-period, the schedule
might be very long and the associated configuration files would have a large size. When computing over a
sub-window of the hyper-period, the solutions are sub-optimal in the sense that there may exist a solution
on the hyper-period but not on that sub-window. However, the schedule may be computed more easily
as it is shorter and the configuration files much smaller. This is the reason why, we choose that option
for GRec.

DREAMS choices 2 Thus, it was decided to:

– choose a MAF such that any task period is either a multiple or a divider of the MAF

∀τ ∈ ∪i≤rai, Tτ |MAF or MAF|Tτ

– consider non preemptive schedule of tasks;

– the application tasks must be wrapped in order to not be executed every MAF if their period is a
multiple of the MAF.

The different acronyms are summarized in Table 1, the terminology in Table 2 and the number of
elements in Table 3.

Acronym Signification

GRM Global Resource Management
LRM Local Resource Management
MAF MAjor Frame
MON MONitoring
TSP Time and Space Partitioning

Table 1: Table of acronyms

Terminology Signification

node a multi-core processor
partition a pre-defined slot
plan full mapping and scheduling on a

node (see definition 4)
configuration full mapping and scheduling on

the platform

Table 2: Table of terminology

Set Number of elements Number of Sub-elements in k-th Element Total Number of Sub-elements

N n nodes nk cores in the k-th node nN =
∑
k≤n nk cores in N

A r applications rk tasks in the k-th application rA =
∑
k≤r rk tasks in A

S n local sets of slots mk slots in the k-th node mS =
∑
k≤nmk slots in S

Table 3: Reminder of notations

2.3 Reconfiguration in case of failure

The purpose of the DREAMS resource management is in particular to maintain a safe execution even
in the presence of permanent core failures. When such a failure occurs, the LRM of the node where
the core has failed selects a new plan to re-assign all its local applications or let the GRM find a new
global configuration if it fails to host all them. Thus the LRM either adopts the initial configuration, or
a configuration requested by the GRM, or selects a new configuration from the ones available.

DREAMS choices 3 The reconfiguration strategy follows two rules in case not all applications could
be locally hosted after some failure(s):

4

1. critical applications are locally reconfigured first,

2. complete applications must be moved, i.e. an application cannot run on two multi-core chips at the
same time.

Example 2 (Local reconfiguration) Let us consider again example 1 and let us assume that arm1 of
M1 fails during the second MAF. The failure is detected by MON and the LRM takes a local reconfigura-
tion, that consists in moving to plan2 at the next MAF as shown in Figure 6.

plan1 plan1 plan2

a1

a2 a2 a2 a1

MAF MAF MAF
time

detection
decision

reconfiguration

Figure 6: M1 execution in case of permanent core failure.

At any time, the GRM knows the current configuration because it is periodically informed by the LRMs
of their plan. Indeed, at every MAF, each LRM sends its current plan via an update message. When an
LRM is not able to reconfigure all its local applications, it will reach a plan where not all applications
were re-allocated. This type of configuration is pre-defined and the GRM can decide whether or not a
global reconfiguration is to be performed.

Example 3 (Global reconfiguration) Let us consider again the architecture N1 of example 1 and let
us assume that arm4 of M2 fails during the MAF 1 while there is no failure on node M1. There is no
possible local reconfiguration for a3 because no spare slot is available on arm3 (see Figure 3). The LRM
detects the failure and switches to a configuration where a3 does not execute in MAF 2. The GRM receives
the update message with the current plan of M2 and deduces that a3 is off platform. The left hand side
of Figure 7 shows the scenario on node M2 during these 2 MAF whereas the right hand side shows the
scenario on node M1 during the next MAF. In that case, the GRM sends an order to the LRM of M1 to
switch to plan4 where it hosts a3.

plan1 plan2

GRM GRM

MAF 1 MAF 2
time

detection
decision

order plan1 plan4

a1

a2

a1

a2

MAF 3 MAF 4

a3
time

reconfiguration
GRM

order

Figure 7: Global reconfiguration on M1

The DREAMS design choices imply that the LRM takes local reconfiguration decisions at the end of
the MAF by collecting all failed cores. This entails that several failures may happen during a MAF and
decisions could consider multiple failures. Supporting multiple failures requires careful management of
non determinism.

DREAMS choices 4 The approach followed in the DREAMS project was to only define symmetric
behaviors, that is for a given combination of core failures, the order in which the failures occurred has no
impact on the reached configuration.

Example 4 (Symmetric behavior) Let us consider again the architecture N1 of example 1. Whether
arm1 of node M1 fails followed later by arm4 of node M2 or arm4 fails first followed later by arm1, the
reached configuration will be the same (plan2 on M1 and on M2). The critical application a4 is not
executed any longer because there is not enough CPU time for both critical applications.

2.4 Network reconfiguration

Reconfiguring the applications on different nodes has an impact on the network traffic. There are 3
classes of traffic on TTEthernet [53]:

5

– rate constraint (RC) traffic. Messages are wrapped in virtual links (VL) that are defined with their
Bandwidth Allocation Gap (BAG – minimum time interval between two successive frames) and
maximal packet size. Therefore, if an application is reconfigured on the same multi-core by a local
reconfiguration then it has no impact on the routing table. If the reconfiguration is global, then
several routing tables must be pre-defined;

– time triggered (TT) traffic. Messages are also wrapped in VL but those are emitted and transmitted
at given instants. Therefore, if an application is reconfigured on the same multi-core by a local
reconfiguration then it may require to update the instants. In case of global reconfiguration, new
paths and new instants must be pre-computed;

– For best-effort (BE) traffic, the same reasoning as for RC traffic applies.

DREAMS choices 5 The TT traffic is uniquely used for the resource management partitions which
stay on their initial core forever. For the BE and RC traffic, the reachable configurations are provided to
the tool that computes the network routing and scheduling. This provides a super schedule.

As a consequence TTplan [51] was updated during the project and is now able to compute a super
schedule for the TTEthernet that supports all the possible computed configurations. A super schedule
can be seen as the concatenation of each network schedule per configuration. Since 2 configurations
cannot be activated at the same time, conflicting traffic are avoided.

3 General approach and GRec overview

The DREAMS resource management allows to continue a safe execution even in the presence of permanent
core failures by switching from pre-defined configurations to pre-defined configurations. The purpose of
this section is to present the principles in order to pre-compute all these configurations. The ideas were
implemented in GRec.

3.1 Local and global reconfiguration graphs formalization

The LRM has been implemented as follows: it first checks that all MON have filled a dedicated shared
memory area to confirm they are alive. If no new failure occurs since the previous MAF, then nothing
is done. On the opposite, if some failures have occurred, it looks at an internal array that stores the
local reconfiguration graph and takes the transitions one by one (one per core failure). Thus, GRec
must generate those local reconfiguration graphs for each multi-core and the global reconfiguration for
the GRM.

Definition 6 (Local reconfiguration graphs) A local reconfiguration graph is a tuple 〈Q,→, 99K, q0〉
where:

– Q is a finite set of plans;

– q0 ∈ Q is the initial plan;

– →⊆ Q× N×Q is the set of local transitions from one plan to another. The integer represents the
failed core id;

– 99K⊆ Q× 2N ×Q is the set of transitions from one plan to another requested by the GRM. The set
of integers represents the failed cores id that have failed elsewhere.

Example 5 (Local reconfiguration graph) Let us consider again the system of example 1 with the
different possible reconfiguration described in the former examples. The local reconfiguration graph of M1

is given in Figure 8. We recognize the transition from plan1 to plan2 in case arm1 fails. There is another
local decision in case arm2 fails leading to plan3 that consists in moving a1 on arm2 and there is also
the global reconfiguration leading to plan4 when arm4 fails. From plan4, the plans reached after any core
failure are specified.

The local reconfiguration graph associated to the node M2 is shown in Figure 9. Whenever arm4 fails,
the reached plan is plan2. A global reconfiguration in case both cores arm1 and arm2 have failed leads to
plan3 where a1 is not executed any longer due to the lack of CPU. Since we do not know in which order
they fail, it could be either 1 or 2 that triggers the global reconfiguration. The label of the transition is
thus 1, 2.

6

plan1

plan2

plan4

plan3

fail

1
2

4

1
2

4

2

4

1

2 1

Figure 8: Reconfiguration graph of M1

plan1 plan3

plan24

1, 2

4

Figure 9: Local reconfiguration graph M2

In order to deal with multiple failures, the solution we chose was to impose the local reconfiguration
graphs to be symmetric (see DREAMS choices 4).

Definition 7 (Path, word and symmetry) Let G = 〈Q,→, 99K, q0〉 a local reconfiguration graph. A
finite path p = q0.q1 . . . qn in G is such that for all i < n, ∃li ∈ N, (qi, li, qi+1) ∈→ ∪ 99K. The word wp
associated to the path p is the sequence of integers provided by transitions, i.e. wp = l0.ln−1. The
graph is symmetric if for any two words wp1 and wp2 such that wp2 is a permutation of wp1 , the final
state reached by the paths associated to wp1 and wp2 is the same.

Example 6 The reconfiguration graph of Figure 8 is symmetric. For instance, the words w1 = 1.4 and
w2 = 4.1 leads to the state plan2.

In order to deal with any combination of failures, we chose to exhaustively enumerate all combinations
and this entails the graph to be complete.

Definition 8 (Complete graphs) Let G = 〈Q,→, 99K, q0〉 a local reconfiguration graph. Let [l, k] the
set of core ids of the multi-core. The graph is complete if

∀q ∈ Q,∀i ∈ [l, k],∃q′ ∈ Q, (q, i, q′) ∈→

Example 7 The reconfiguration graph of Figure 8 is complete. The core ids associated to this graph are
1 and 2. From any plan, there exist two outgoing transitions labeled by 1 and 2.

Definition 9 (Global reconfiguration graph) A global reconfiguration graph is a tuple 〈Q,→, 99K
, q0〉 which consists of the product of all local reconfiguration graphs 〈Qi,→i, 99Ki, qi0〉 from the LRMs.
More precisely:

– Q = Q1 × . . .×Qn,

– q0 = (q10 , . . . , q
n
0),

– 99K⊆ Q× N×Q is defined as

((q1, . . . , qn), l, (p1, . . . , pn)) ∈99K⇐⇒ ∃i ≤ n, (qi, l, pi) ∈→i ∧∀j 6= i, qj = pj

Thus a dashed transition represents a unique local reconfiguration transition taken by an LRM.

– →⊆ Q× 2N ×Q is defined as

((q1, . . . , qn), {l1, . . . , lm}, (p1, . . . , pn)) ∈→⇐⇒


∃k ≤ n, ∃i1, . . . , ik,∀l ≤ k

(qil , {l1, . . . , lm}, pil) ∈99Ki

∧∀j 6= i1, . . . , ik, q
j = pj

∧ ∀lk,∃j,∃rj (rj , lk, q
j) ∈→j

A plain transition represents a global reconfiguration requested by the GRM to some LRMs. Such a
transition can only occur after a local failure such that some application is not any longer executed.
To detect such a situation, the GRM knows the plans executed by the LRM and those requiring a
global decision.

7

q1.q1

q2.q1 q1.q2q3.q1 q4.q2

q3.q2fail.q1fail.q3 q2.q2

fail.q2

3

0 1

3

0, 1

legend: plani 7→ qi

Figure 10: Global reconfiguration graph

Example 8 Let us consider again the architecture N1 = {M1,M2} of Figure 1. The global reconfiguration
graph is drawn in Figure 10. We did not draw the label on the transition except those that target a global
transition.

Back to the reconfiguration graph of node M1 given Figure 8, once in the plan2 the GRM will not
send a global reconfiguration. But due to the distributed implementation and the temporal delays on the
processors and the network, the GRM can still believe the node is plan1 when sending the request. Such
a behavior is shown in Figure 11. However, the LRM of M1 will remain in its local plan.

M1 M2GRM

4

4

1

Figure 11: Sequence diagram illustrating an ignored global reconfiguration

3.2 Search strategy

The work was done in a collaborative context offered by the DREAMS project and our approach was to
re-use existing tools as much as possible. The overall DREAMS toolchain has been presented in [4]. In
particular Xoncrete [7] is capable of computing local plans for multi-core.

DREAMS choices 6 Thus, it was decided to:

– define manually an initial allocation of applications (allocp);

– compute for each multi-core an initial plan with Xoncrete in order to permanently fix the slots
on each node (S).

We could easily leverage these limitations in a future work, at the cost of an increased complexity. GRec
must compute an optimal configuration for any combination of permanent core failures. We have stated in
Section 2.2 that GRec searches solutions in a sub-optimal space as schedules are computed with a length
of MAF instead of lcm. Thus in our context, optimal configuration stands for executing as many critical
applications as possible. The exploration has a double dimension: a given combination of core failures
and a more classical configuration (mapping and scheduling). Our strategy for this double exploration is
shown in Figure 12.

The GRec steps are highlighted in bold on the arrows while the boxes represent the handled objects.
The inputs of the flows are the platform and application descriptions, together with the initial inputs
mentioned above. GRec then follows four main steps that are detailed below.

3.3 Step 1: failure combination generation

First GRec computes all the combinations of core failures with a python script. Such a combination is
represented by an array of size nN =

∑
k≤n nk (the overall number of cores on the platform). The value

8

- platform and application model (N , A)
- Xoncrete slots schedule (S)
- MAF
- initial mapping (allocp)

combination of core failures
(Comb={f1, . . . , f2nN })

step1: script

configuration for a given combination
(Ci associated to fi)

step2: constraint programming
approach OPL

step2: for all combination

local reconfiguration graphs
configuration files

(Yaml)

glocal reconfiguration graph
configuration files

(Yaml)

step3: script

Figure 12: Overview of GRec.

0 at index i means the i-th core has not failed while 1 means that the core has failed.

Example 9 For instance, for the architecture N1 of Figure 1, no failure will be represented by [0, 0, 0, 0]
whereas the failures of arm1 and arm3 would be represented by [1, 0, 1, 0].

The set of generated failure cases is exhaustive: all possible failure combinations are taken into account.
There is a combinatorial explosion in that dimension as the number of combinations is 2nN . We denote
by Comb the set of all failure combinations.

3.4 Step 2: configurations generation

Practically, an iterative loop calls a constraint programming solver to compute a configuration for a
given combination of core failures. As there are many rules to follow, this step is decomposed as a series
of sub-steps. Figure 13 summarizes the process guiding the computation of the set of configurations.
Practically, the new configurations are computed with the constraint solver IBM OPL Studio framework
[32] and the iteration is done with a C code.

Initially, the set of configuration is empty and the set of failures Comb to deal with is full (with all
possible combinations of failures computed by the python script). We denote by Sconf the set of all
reachable configurations.

– GRec selects a combination of failures in the set Comb computed by the step 1. The scan is ordered
from the minimal number of failures to the highest (thus the first iteration will compute the initial
configuration where no failure occurred and where the initial mapping is respected);

– GRec first tries to find an already computed configuration that is not impacted by the failed cores.
For a configuration Conf, used core(Conf) is the set of cores that are used by the configuration, i.e.
the set of cores that execute at least a slot with an application. used core(Conf) ∩ f = ∅ means
that the configuration is not impacted by the additional core failures. In that case, GRec keeps
the configuration Conf unchanged as it supports the core failures f ;

– if no already computed configuration can accept the combination of failure f , then the solver
must find a new configuration Conf′. The strategy is to try first local reconfiguration. Thus
GRec searches among Conf ∈ SConf, if the application allocations of Conf can be preserved.
allocp(Conf) = allocp(Conf′) means that the spatial allocation of application is preserved. However
the scheduling and the local mapping can be changed;

9

Sconf = ∅
Comb={f1, . . . , f2nN }

select a failure combination
f ∈ Comb

increasing order in the number of failures

∃Conf ∈ Sconf , used core(Conf) ∩ f = ∅ ?

Comb := Comb \{f}

∃Conf ∈ Sconf, ∃Conf′, allocp(Conf)=allocp(Conf ’)?

no Sconf := Sconf ∪ {Conf′}

∃Conf ∈ Sconf, ∃Conf′, allocc(Conf)=allocc(Conf ’)?

no

∃Conf′, |allocbe(Conf′)|⊥ min?

no

∃Conf′, |allocc(Conf′)|⊥ min?

no

no solution

no

yes

yes

yes

yes

yes

Figure 13: Configurations generation process.

– if no local solution can be found, GRec searches for a global reconfiguration, only moving the
spatial allocation of best-effort applications. allocc(Conf) = allocc(Conf′) means that the spatial
allocation of critical applications is preserved;

– if no such solution can be found, GRec tries to find a new spatial assignment of all applications,
while removing the least possible number of best-effort applications. For any configuration Conf,
|allocbe(Conf)|⊥ is the number of best-effort applications that have been removed from the platform;

– if no such solution can be found, GRec tries to find a new configuration while removing the least
possible number of critical applications;

– when no application can be mapped, the search reaches no solution.

Example 10 Let us illustrate the algorithm on the architecture N1 = {M1,M2}. The exhaustive enu-
meration of failures combinations is the set Comb={[0, 0, 0, 0], [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1],
[1, 1, 0, 0], [1, 0, 1, 0], [1, 0, 0, 1], [0, 1, 1, 0], [0, 1, 0, 1], [0, 0, 1, 1], [1, 1, 1, 0], [1, 1, 0, 1], [0, 1, 1, 1], [1, 1, 1, 1]}.
GRec computes the initial configuration shown in the example 1. This configuration is defined by

Conf1 = 〈allocp.1 =


a1 7→M1

a2 7→M1

a3 7→M2

,M1.plan1,M2.plan1〉

By definition, allocp describes a unique mapping of applications to nodes. Due to the computation of all
possible reconfiguration, the applications may be mapped differently on the platform. This particularly
occurs in case of global reconfiguration. We thus need to enumerate (or identify) all mappings. This is
done by numbering the occurrences of the function allocp and we use the notation allocp.k to define the
k-th allocp. As a consequence allocp.1 is the initial mapping given as an input.

For the failure combination [1, 0, 0, 0], we have seen in example 2 that a local reconfiguration can be
applied. Thus the new configuration is Conf2 = 〈allocp.1,M1.plan2,M2.plan1〉.

For the failure combination [0, 1, 0, 0], a local reconfiguration can also be applied that consists in moving
P1 on core arm1. Thus the new configuration is Conf3 = 〈allocp.1,M1.plan3,M2.plan1〉.

The failure combination [0, 0, 1, 0] is impossible because it was supposed in the DREAMS project that
the GRM could never fail. Thus all combinations [X,X, 1, X] are also impossible. This limitation could
be leveraged, but first the design of the resource management would have to be slightly modified.

The failure combination [0, 0, 0, 1], as shown in example 3, leads to a global reconfiguration Conf4 =
〈allocp.2,M1.plan4,M2.plan2〉. The M2.plan2 simply executes the GRM.

10

The failure combination [1, 1, 0, 0] leads to a global reconfiguration where a1 is lost. Conf5 = 〈allocp.3,M1. ,
M2.plan3〉.

The failure combination [1, 0, 0, 1] leads to a global reconfiguration where a3 is lost. Conf6 = 〈allocp.4,
M1.plan2,M2.plan2〉.

The failure combination [0, 1, 0, 1] leads to a global reconfiguration where a3 is lost. Conf7 = 〈allocp.4,
M1.plan3,M2.plan2〉.

The failure combination [1, 1, 0, 1] has no solution. All applications are lost. The computed configura-
tions correspond exactly to the states of the reconfiguration graph of Figure 10.

3.5 Step 3: configuration files generation

The DREAMS resource management compilation tool chain requires several configuration files, among
which some Yaml files that describe the reconfiguration graphs. Once all possible reconfigurations have
been computed, GRec generates one configuration file for each node. These Yaml files are textual and
are compiled into xml files that are used by the XtratuM hypervisor.

4 Constraint programming

Let us detail in this section how each configuration is computed with OPL Studio (this corresponds to
step 2 of Figure 12).

4.1 Input data for constraint solving

The input for GRec is the system model as described in section 2. More precisely, the following elements
are specified: the components of the platform hardware architecture (nodes, cores, etc.); the applications
hosted on the platform (tasks, periods, WCETs, etc.) and the temporal partitioning. Because of the
DREAMS choices 6, we also incorporate the Xoncrete partition slots schedule and the initial allocp
imposed by the designer. More formally, the inputs are:

– the MAF ;

– the task set defined as T = {τ1, . . . , τrA};

– the task properties defined as ∀τ ∈ T , propt[τ] = [a, T, C, type] where a is the application it belongs
to, T period, C WCET and type ∈ {critical, best-effort};

– the set of jobs defined as J = {τ1.1, · · · , τ1.j1 , · · · , τrA.jrA} where the tasks are unrolled on the
MAF. In particular, the number of jobs associated to task τk over the MAF is jk = dMAF/Tke− 1.
This unrolling is done automatically by OPL Studio;

– the job properties defined as ∀τi.j ∈ J , propj [τi.j] = [τi, ri.j , di.j], where ri.j = j × Ti is the release
time of job τi.j and di.j = (j + 1)× Ti is its deadline;

– the partition slots set S = {sl1, . . . , slmS};

– the slot properties ∀sl ∈ S, propsl[sl] =< b, l, ν, c, avail > where b is the start time, l is the slot
duration, ν is the node to which it belongs, c is the core on which the slot is allocated, avail ∈
{>,⊥, L,M,G} defines the slot availability with > equals available, ⊥ non available (e.g. because
the associated core has failed), L dedicated to LRM, M dedicated to MON and G dedicated to
GRM. The last slot is special as it represents a virtual slot where canceled applications will be
allocated.

4.2 Decision variables

Constraint solving consists in giving a value satisfying a set of constraints to a set of special variables
called decision variables. In our case, there are two decision variables:

– pi.j ∈ S specifies the allocation of each job τi.j to an available slot;

– si.j ∈ [0,MAF − 1] specifies the start time of each job τi.j within the MAF.

11

4.3 Constraints

The set of constraints specified in GRec covers different aspects that are detailed below in a mathematical
fashion, very close to their actual expression in the OPL Studio language [32].

Basic rules Only one job is active at a given time, expressed as: given two different jobs allocated to
the same slot, either the first ends before the second starts or the first starts after the second ends.

∀τi.j , τk.l ∈ J , τi.j 6= τk.l ∧ pi.j = pk.l ⇒ si.j ≥ sk.l + Ck ∨ sk.l ≥ si.j + Ci

Each job must start after its release time and must end before its deadline.

∀τi.j ∈ J , ri.j ≤ si.j ∧ si.j + Ci ≤ di.j

Partition allocation rules There is only one application within a partition slot, expressed as: given
two different jobs, if they are allocated to the same slot then they belong to the same application. As a
short cut, we write aτi.j = propt[propj [τi.j][0]][0] (the application the job τi.j belongs to).

∀τi.j , τk.l ∈ J , τi.j 6= τk.l ∧ pi.j = pk.l ⇒ aτi.j = aτk.l

A job can only be allocated to an available slot and must start and end within the slot. As short
cut, we write bi.j = propsl[pi.j][0] the beginning of the slot pi.j , li.j = propsl[pi.j][1] its length and
availi.j = propsl[pi.j][2] its availability.

∀τi.j ∈ J , bi.j ≤ si.j ∧ si.j + Ci ≤ bi.j + li.j ∧ availi.j = >

We also try to minimize the dispersion of jobs of a given task among slots. Meaning that if a slot is
long enough, greater than the period of a task, we try to allocate several jobs of the same task to it. This
constraint is not mandatory and can be removed.

∀τi.j ∈ J , si.j + Ci ≤ bi.j−1 + li.j−1 ⇒ pi.j = pi.j−1

Strategy related rules The strategy-related rules can be either activated or deactivated depending
on the current strategic phase. The strategies described in section 3.4 first try to allocate all applications.
Meaning that none is canceled status(a)= active. When several cores have failed and not all applications
could be allocated, then some are not executed anymore to search for a solution. In that case, those
applications are tagged as status(a)= cancel and are allocated to the slot m, which can be seen as a trash
slot. Implicitly, all constraints detailed before are only valid for active applications.

∀τi.j ∈ J , pi.j = m⇐⇒ status(aτi.j) = cancel

Then OPL Studio is called in sequence as long as it does not find a solution with the following
constraint:

1. in case of local reconfiguration (with short cut ci.j = propsl[pi.j][2])

∀τi.j ∈ J , ci.j = allocp(aτi.j)

2. in case of global reconfiguration where critical applications remain unmoved

∀τi.j ∈ J , type(aτi.j) = critical =⇒ ci.j = allocp(aτi.j)

3. in case of global reconfiguration, no constraint;

4. in case of canceling best-effort application, some of the best-effort applications are tagged with
cancel in the input file;

5. in case the previous strategies failed, some of the critical applications are tagged with cancel in the
input file.

12

5 Code generation

The configuration files are expressed in Yaml which is a much less verbose description than an xml.
From those files, the XtratuM xml configuration file is computed and some C code as well. Each Yaml
file includes several parts.

Description of applications The first part (apps) specifies the set of applications which can be hosted
on the considered node in some configuration computed by GRec. For each application, tasks composing
the application are listed.

Example 11 The code below shows the application description for the example 1 and node M1.

apps:
- &A1

name: a1
tasks:

- { name: tau1, func: tau1 }
- { name: tau2, func: tau2 }

- &A2
name: a2
tasks:

- { name: tau3, func: tau3 }
- &A3
name: a3
tasks:

- { name: tau4, func: tau4 }
- { name: tau5, func: tau5 }

Description of the time splitting The second part (hw desc) describes the partition slots on the
cores. For each configuration (plan), slot start time and duration are specified as well as the name of the
application that are allocated to the slot.

Example 12 The code below shows the configurations for the example 1, node M1 and core arm1. Xtra-
tuM does not support real numbers, therefore the times are given in µs instead of ms.

hw_desc:
num_cores: 2
processor_table:

- id: 0 # core arm1
plan:
- id: 1 # plan 1 on arm1

major_frame: 10000
slots:

- { id: 0, start: 0, duration: 100, dlrm: mon_cf }
- { id: 1, start: 100, duration: 6000, part: a1 }
- { id: 2, start: 9900, duration: 100, dlrm: lrm_cf }

- id: 2 # plan 2 on arm1, arm1 failed
major_frame: 10000
slots:

- id: 3 # plan 3 on core arm1, arm2 failed
major_frame: 10000
slots:

- { id: 0, start: 0, duration: 100, dlrm: mon_cf }
- { id: 1, start: 100, duration: 6000, part: a1 }
- { id: 2, start: 6100, duration: 2000, part: a2 }
- { id: 3, start: 9900, duration: 100, dlrm: lrm_cf }

- id: 4 # plan 4 on arm1, arm3 failed
major_frame: 10000
slots:

- { id: 0, start: 0, duration: 100, dlrm: mon_cf }
- { id: 1, start: 100, duration: 6000, part: a1 }
- { id: 2, start: 9900, duration: 100, dlrm: lrm_cf }

- id: 1 # core arm2
....

Description of job allocation The next part is devoted to specifying the jobs schedule inside the slot
for each configuration (plan).

Example 13 The code below shows the job schedule for a1 of example 1 on node M1.

part_desc:
- id: a1

plans:
- id: 1

slots:
- id: 1

tasks: [tau1, tau2]
...

13

Local reconfiguration graph The last part of the Yaml file is the reconfiguration table.

Example 14 The code below shows the reconfiguration table of example 1 on node M1. It consists of an
array of size = nb cores × nb plans, i.e. size= 2× 4.

reconfiguration_table:
- [2, 3] // plan 1: if core 1 fails go to plan 2, if core 2 fails go to plan 3
- [-1, -1] // plan 2: if core 1 or 2 fails, nothing to be done
- [-1, -1] // plan 3: if core 1 or 2 fails, nothing to be done
- [2, 3] // plan 4: if core 1 fails go to plan 2, if core 2 fails go to plan 3

6 Experiments

In this section, we highlight how GRec was used in the project and its capabilities. GRec was run on
the processor Intel R© Xeon R© CPU 2.40GHz including eight cores and 36GB of main memory. A time
limit parameter (the default value of which is 900 seconds) is set to stop OPL Studio. When there is a
timeout, it is supposed that no solution exists.

6.1 First DREAMS use case

The platform was composed of two Freescale QorIQ T4240QDS (Freescale QorIQ T4240) [27] and a DREAMS
Harmonized Platform [18], an heterogeneous platform based on the Xilinx ZC-706C FPGA platform (see
Figure 15).

Switch

M1: 12 cores (T4240)

XtratuM

MON LRM a1 a2 a3

M2: 2 cores (DHP)

XtratuM

MON LRM GRM

Figure 14: First DREAMS use case – vari-
ant 1

Switch

M1: 12 cores (T4240)

XtratuM

MON LRM a1 a2 a3

M2: 12 cores (T4240)

XtratuM

MON LRM a1 a2

M3: 2 cores (DHP)

XtratuM

MON LRM GRM

Figure 15: First DREAMS use case – variant 2 and more

The use case is composed of three applications:

– the MPEG server [33] developed by University of Kaiserslautern;

– the rosace [45] case study. rosace has been modified during DREAMS in order to communicate
with the MPEG server. Thus, one task has been added to send data to MPEG server and an
existing one has been modified to receive data from it;

– a new application Order generator that has been developed during the project and which aims at
sending command to rosace.

Thus the application set is defined as:

application number of tasks criticality allocp

rosace 12 critical M1

MPEG Server 1 (Mpeg2Server =(100, 1000)) best-effort M1

Order generator 1 (VacGenerator=(1, 10000)) best-effort M1

The task set for rosace is { elevator= (1, 50), q filter= (1, 100), vz filter= (1, 100), vz control= (1, 200),
engine= (1, 50), va control= (1, 200), aircraft dynamics= (10, 50), az filter= (1, 100), h filter= (1, 100),
va filter= (1, 100), altitude hold= (1, 200), ToMPEG= (1, 10000)}. Time values are here expressed in
milliseconds, but the time unit may also be parameterized.
Variant 1: MAF = 1000ms, 95 time slots, 1 Freescale QorIQ T4240QDS. In this first variant,
we consider a subset of the demonstrator with only one Freescale QorIQ T4240QDS (see Figure 14). Since
the DREAMS Harmonized Platform cannot fail, the number of failure cases is 4096. GRec computes
79 valid reconfiguration plans. The table on the left hand side below summarizes the time and space
needed by GRec to make the computation. The table on the right hand side details the number of
reconfiguration and memory footprint.

14

steps 1, 2 3

time 4m 41s 2m 20s
memory utilization 391,6 MB 251,7 MB

M1 M2

number of configurations 78 13
size of file 578.6kB 9.3kB

Variant 2: MAF = 1000ms, 3 applications, 14 cores. In this variant, we fix the number of cores at
14 and we consider two architectures. The same as in variant 1 (as in Figure 14) and the architecture of
Figure 15 with only 6 active cores per Freescale QorIQ T4240 node. The number of failures is still 4096. In
the table below we compare the results for different number of slots (where the slots are identical whether
there are 2 or 3 nodes). The value < X,Y, 2 > represents the number X of active cores in the first node
and the number Y of active cores in the second node. For each configuration, we look at 2 sub-cases:
when there is some available slot on the DREAMS Harmonized Platform which never fails or none.

number of slots 53 53 119 119
active cores < 12, 0, 2 > < 6, 6, 2 > < 12, 0, 2 > < 6, 6, 2 >
active slots on M3 2 slots 0 slot 2 slots 0 slot 2 slots 0 slot 2 slots 0 slot

overall time 15s 1m 48s 46s 3m 11s 1m 3s 2m 39s 17s 5m 4s
number of plans 77 94 26 70 73 97 14 60
size of file 485.8kB 646.2kB 118.9kB 482kB 459.7kB 533.2kB 90.6kB 530.3kB

Variant 3: MAF = 1000ms, 2 Freescale QorIQ T4240QDS, 5 applications. In this variant, we
consider the platform of Figure 15 with all cores activated. The number of failure cases is 16 777 216.
The rosace and MPEG server applications are duplicated, to increase the load on the platform. That
makes 255 jobs. We vary the number of slots.

number of slots 97 181 229

overall time 12h 59m 22h 22m 27h 33m
number of plans 3844 7722 5824
size of file 5.3Mb 6.45Mb 5.9Mb

Variant 4: MAF = 1000ms, 2 Freescale QorIQ T4240QDS, 6 applications. We keep the same
architecture as before and in the application set we add the simplified version of the FAS (Flight Appli-
cation Software) [44], the control system of the Automated Transfer Vehicle developed by EADS Astrium
Space Transportation. This application is composed of 19 tasks leading to 58 jobs, with a great variety
of periods and some very large WCET. Thus, it is more hard to schedule it. We made two experiments:
the first by reducing the large WCET, so that ∀τ , Cτ =min(Cτ , 30) and the second with the real WCET.

number of slots 97 229 97 229
WCET reduced regular

overall time 2j 15h 15m 4j 5h 31m stop at 8j stop at 8j
number of plans 20711 110882 73823 for 68164 for

1085220 configurations 170967 configurations
size of file 395.78Mb 1.05Gb - -

6.2 DREAMS demonstrator

For the DREAMS avionic demonstrator, we used the architecture of Figure 15. The use case composed
of four applications including 40 tasks has been deployed:

– the Flight Management System (FMS case study) developed by Thales Research & Technology [19];

– other proprietary applications.

Due to confidentiality issue, we will not present more details on the use case. As usual, we have varied
the number of slots and active cores.

number of slots 43 98 181
types all critical one best-effort all critical one best-effort all critical
active cores < 4, 4, 2 > < 4, 4, 2 > < 12, 12, 2 >

overall time 51s 51s 55s 57s 6h 12m
number of plans 197 201 195 216 649
size of file 68kB 64.1kB 73.6kB 73.7kB 539.1kB

15

6.3 Discussion on the results

Thanks to the decoupling between the calls to OPL Studio and the iteration with efficient scripts, the
overall principles are very efficient (for an exhaustive search) and not prohibitive in terms of memory
consumption.

Problem complexity Determining a priori the number of configuration or the exploration time is
hardly feasible. Indeed, the experimental results exhibit a great disparity between different case studies
or different variants of the same set of applications. The exploration time depends on several contributing
factors:

– time to compute one new configuration. This factor depends on the OPL Studio modeling and
used heuristics. For instance, a large variance of WCET is harmful: the cohabitation of large tasks
and very fast tasks leads to a huge lost of efficiency (regular variant 4);

– number of combination of core failures: this has an impact on the size of the loop on step 2;

– number of slots: the more slots, the more time. This clearly emerges from the experiments;

– number of reusable configurations: the variant 4 with FAS has very poor performances because
computation of new configurations is needed too often;

– ability to compute quickly reusable configurations: some configurations computed after 106 configu-
rations could have worked for many previous configurations and the overall number of configuration
would have greatly been reduced if computed at the very beginning. A way to compute better con-
figurations would be to add an optimization criterion (e.g. minimal number of cores), however
minimization problems take much longer than feasibility problems;

– initial mapping: because of the DREAMS choices 1, the DREAMS Harmonized Platform cannot fail.
If there are some available slots on the DREAMS Harmonized Platform, once a critical application
is allocated there, it would remain there during the exploration steps and this will accelerate the
search. Thus, the sooner GRec uses them, the fastest the reconfiguration graph will be computed;

– number of tasks: the variants 3 and 4 (reduced version) with 97 slots is a good illustration. Just
adding the FAS leads to an extreme degradation of performance for an equivalent number of plans;

– presence of best-effort applications: non-critical applications introduce additional steps hence in-
creasing the number of strategic rules.

Storage space and run-time efficiency The size of the configuration files could also be a limiting
factor depending on the target architecture. The current configuration file format is compliant with
XtratuM configuration file while is verbose and in xml. We made a comparison in two situations: first
we compute the reconfiguration graph on the hyper-period and second, we have wrapped the C tasks
with a counter over the hyper-period. For instance, this reduces the variant 1 from 3.2MB to 578.6kB
on M1. This is the reason why for all experiments, we use the second situation. However even in this
case, the hardware storage may become a bottleneck. There are mainly three approaches to deal with
this issue: the first is to store the reconfiguration graph as such in a large DDR memory as currently
done; the second is to store a compressed version of the configuration file or the third is to store the files
in a dedicated memory (e.g. flash). For the two last solutions, XtratuM would have to be modified. A
degraded approach would be to restrain the exploration in the depth of the number of failures per node
to keep the configuration file size below a certain threshold. Note that GRec search is independent of
XtratuM and would be able to deal with more compact formats.

The run-time execution time depends on the read memory access time to the reconfiguration graph
and on a linear contribution of the number of new failures. Indeed, let us suppose that at some instant
the LRM is in a certain reconfiguration graph state s. At the next MAF, it may that k cores i1, . . . , ik
have failed where k is bounded by the number of cores on the node. Thus, the run-time will compute the
k transitions s→i1 si1 . . .→ik sik through an enumerate instruction. As the graph is symmetric, it will
consider the ij in ascendant way.

16

7 Related work

7.1 Scheduling

Since the paper by C. L. Liu and J. W. Layland [40], scheduling studies in general imply the existence
of a dynamic scheduler which, according to a given policy, actually performs the scheduling of arriving
tasks. Thus most papers in this domain are mainly interested in improving the schedulability bound, the
calculus of which decides whether or not a given task set is guaranteed to always meet its deadlines [24],
or in empirically testing the effectiveness of the underlying theories [9]. The approach of GRec is quite
different from these ones: the certification of an avionic critical system requires the determinism of its
operation, so given a hardware configuration, GRec has to find an actual static scheduling of all periodic
tasks, by computing an accurate valid start time for each task; determinism implies there is no dynamic
scheduler, but an hypervisor for each core, controlling the execution process by launching each task at
the specified start time.

More specifically within the multi-core context, the proposed methods in general involve a partitioning
process, intended to split the tasks over the different cores [11], [23], [34], [41]. The partitions are as
far as possible made of ”compatible” tasks from the period point of view, the objective again being to
maximize the utilization bound for each core, and thus the global performance of the system. By contrast,
for GRec the partitioning is an input parameter, elaborated by the system designer according to safety
requirements (application containment) rather than performance or utilization ones. Additionally, some
of the previously cited works ([23], [34]) try to enhance the compatibility of tasks using some ”task set
scaling” algorithms; these algorithms, such as [38], adapt the ratio period/execution time of a given task
set according to a reference task (e.g. the one with the lowest period), again in order to optimize the
utilization bound of the associated core. [34] claims that doing so the utilization bound for each core
approaches 100%, but this kind of scaling algorithm would not be admissible for an aeronautic critical
embedded system: for GRec, task periods and execution times are intangible input parameters.

7.2 Reconfiguration graph

Graphs, as computer science objects, have been widely studied and used in various domains, especially
in the reconfiguration of parallel computers domain, e. g. for analyzing the validity of reconfiguration
algorithms, something which is quite close to our problem of calculating valid reconfiguration for a set of
multi-core nodes.

[16] advocates the use of Reconfiguration Graph Grammars (RGG) for supporting the design and anal-
ysis of reconfiguration algorithms in massively parallel computers. Within this context, fault-tolerance is
achieved by including spare processors in the design. When one or more processors fail, a reconfiguration
is performed which substitutes spare processors for the faulty ones by activating certain communication
lines and deactivating others within the processor array. A RGG production represents a change in the
communication lines which performs the reconfiguration. The addition of edges between nodes indicates
the activation of communication lines, and the removal of edges indicates their deactivation.

In a similar way [22] uses formal verification techniques based on graph transformations applied
to a ”visual language” to reason about the independence of simulation and reconfiguration steps in a
reconfigurable system (as running example, the paper models a railway system).

[30] addresses the problem of efficient processing of virtualized applications on a cluster. In contrast
to the usual static resource reservation scheme, the paper describes a prototype providing mechanisms
to efficiently manage a cluster-wide context switch of virtualized jobs. Again, reconfiguration graphs and
reconfiguration plans are involved in the context switch mechanism.

[55] [56] respectively present a formal investigation method and a language to describe architectures
and complex reconfiguration, the latter mainly focusing on the necessary constructions needed for an
effective but formal reconfiguration language.

7.3 Off-line computation of configuration

Automatically partitioning and scheduling a set of tasks is equivalent to multi-dimensional bin-packing,
which is NP-hard as shown by [12].

Finding off-line scheduling of real-time tasks on multi-processors is an old problem that has been tack-
led in several papers. The authors of [57] were among the first to present an algorithm to find a feasible

17

solution or prove the non feasibility of task sets. [46] defines an optimal branch and bound search algo-
rithm that maps synchronous implicit-deadline dependent task sets on a distributed architecture, taking
into account the network delays. [1] extends these results by scheduling also the messages exchanged
between the allocated tasks.

Numerous approaches use constraint programming (or SAT/SMT based search) to perform off-line
scheduling, e.g. [21, 49, 31, 5, 10, 48, 29, 8, 13, 47]. What has changed since the last years is the
capability of the solvers to deal with very large problems. If finding a configuration is quite standard in
the literature, dealing with reconfiguration graphs as we do is much more rare.

Lots of works rely on the use of heuristics as they are much more efficient than exhaustive search at
the cost of being sub-optimal.

7.4 Off-line computation with reconfiguration

The terms of computation with reconfiguration are often used in a different sense than the GRec one.
The reconfiguration in those cases is used in order to reach higher performance at lower cost: the hardware
(in general FPGAs) is dynamically reconfigured at each step of a given computation.

[15] describes a reconfigurable parallel architecture – named Modulor–, developed at ONERA in
the late eighties, whose interconnection topology could be dynamically modified in order to match the
communication characteristics of a given algorithm, according to a pre-computed strategy. The objective
of the MODULOR project was to design and build a massively parallel reconfigurable computer, as well as
the software tools needed for developing applications that efficiently use reconfiguration potentialities of
the architecture. MODULOR software included tools for partitioning and mapping parallel applications
on the parallel architecture, each phase corresponding to a different configuration.

[14] addresses the problem of hardware/software co-synthesis of dynamically reconfigurable embed-
ded systems. The goal is to generate dynamically reconfigurable heterogeneous distributed hardware
and software architecture meeting real-time constraints while minimizing the system hardware cost. A
programming interface allows the efficient reconfiguration of reprogrammable devices. Reconfiguration
delays are taken into account such that real-time deadlines are not exceeded. Reconfiguration, in this
case, is considered mainly as a way allowing to share hardware resources between functions not simulta-
neously active. Fault tolerance, however, is also considered, but as an extension. The architecture in this
case includes fault detection mechanisms (parity, checksum, address range check...). Unlike GRec, error
recovery involves spare processing elements.

In a similar manner, [35] addresses real-time periodic task scheduling on reconfigurable systems. The
objective of configurability is roughly the same as above, but in the context of real-time it is necessary to
guarantee that the deadline constraints are satisfied, taking into account the overhead introduced by the
required reconfigurations. The real-time task scheduling problem is here formulated using Mixed Integer
Linear Programming

Among the works dealing with reconfigurable systems, not so much use exhaustive search to pre-
compute configurations. The authors of [50] have formalized the notion of feasible schedule with con-
straints. During his PhD, Aymen Gammoudi [28] has formalized the reconfiguration problem to compute
reconfiguration of heterogeneous multi-core to deal with energy management.

In his PhD, Ali Syed [52] has extended the reconfiguration graphs to allow aperiodic tasks.

7.5 Fault tolerance

The hardware platform targeted by GRec achieves fault tolerance through specific MON tasks (see
section 2.2) scheduled in such a way that each one, periodically running on a given core, is able to detect
a failure on another core; a reconfiguration process is then performed. Other works, such [43][3][54], use
redundant multi-threaded processes in order to detect and recover soft errors. This is done by comparing
the results of the different copies of a process. This method allows for the detection of more subtle failures
(for example transient failures) than the GRec one, at the cost of a huge loss of processing power, since
the same code is executed in parallel several times. Additionally, the comparison requires to take into
account the potential asynchronicity between different copies of the same process.

Same redundancy principles can be implemented in hardware, at different degrees depending on
specific safety and performance application requirements [37].

18

8 Conclusion and future work

We have presented GRec, a tool developed during the DREAMS project, based on constraint solving
to automatically compute reconfiguration graphs for multi-core distributed platform in order to support
the occurrence of permanent core failures. GRec was able to deal with realistic case studies and produce
the expected valid results within a reasonable time. We will continue exploring the limiting factors. In
particular, we could add the possibility to reuse a partition slot schedule of a failed core, in which case
we would have some symmetry and this would greatly improve the exploration. We will improve the tool
and methodology in order to leverage some DREAMS choices.

The next perspective concerns the association of failure rate information on the core failure. We
would like to:

– assign a core a failure rate,

– and only compute reconfigurations down to a depth such that the evaluated global probability for
the whole system to be unable to be reconfigured is less than an acceptable level (for example
regarding the Development Assurance Levels (DAL) of avionic applications).

The problem would be then to assign a realistic failure rate to the cores of each specific node. Moreover,
it could happen that the acceptable DAL level is unreachable.

Acknowledgments

The research leading to these results has received funding from the European project DREAMS under
reference n◦ 610640 and from the ONERA project MAUSART. The authors would like to thank Valentine
Bellet for her coding in C.

References

[1] Tarek F. Abdelzaher and Kang G. Shin. Combined task and message scheduling in distributed
real-time systems. IEEE Trans. Parallel Distrib. Syst., 10(11):1179–1191, 1999.

[2] Aeronautical Radio Inc. Avionics Application Software Standard Interface –
ARINC Specification 653, 1997. https://www.aviation-ia.com/products/

653p0-2-avionics-application-software-standard-interface-part-0-overview-arinc-653.

[3] P. Ashok Kumar and B. Thanasekhar. Fault Tolerance in Multi-Core Processors Using Flexible Re-
dundant Threading. International Journal of Advanced Computational Engineering and Networking,
2(7):92–96, July 2014.

[4] Simon Barner, Alexander Diewald, Jörn Migge, Ali Syed, Gerhard Fohler, Madeleine Faugère, and
Daniel Gracia Pérez. DREAMS toolchain: Model-driven engineering of mixed-criticality systems.
In 20th ACM/IEEE International Conference on Model Driven Engineering Languages and Systems
(MODELS’17), pages 259–269, 2017.

[5] Frédéric Boniol, Pierre-Emmanuel Hladik, Claire Pagetti, Frédéric Aspro, and Victor Jégu. A frame-
work for distributing real-time functions. In Proceedings of the 6th International Conference on
Formal Modeling and Analysis of Timed Systems (FORMATS’08), pages 155–169, 2008.

[6] Shekhar Borkar. Designing reliable systems from unreliable components: The challenges of transistor
variability and degradation. IEEE Micro, 25:10–16, 2005.

[7] Vicent Brocal, Miguel Masmano, Ismael Ripoll, Alfons Crespo, Patricia Balbastre, and Jean-Jacques
Metge. Xoncrete. In Proceedings of the 5th Conference on Embedded Real Time Software and Systems
(ERTS’10), 2010. http://www.fentiss.com/documents/xoncrete_overview.pdf.

[8] Alan Burns, Tom Fleming, and Sanjoy K. Baruah. Cyclic executives, multi-core platforms and mixed
criticality applications. In 27th Euromicro Conference on Real-Time Systems (ECRTS’15), pages
3–12, 2015.

19

https://www.aviation-ia.com/products/653p0-2-avionics-application-software-standard-interface-part-0-overview-arinc-653
https://www.aviation-ia.com/products/653p0-2-avionics-application-software-standard-interface-part-0-overview-arinc-653
http://www.fentiss.com/documents/xoncrete_overview.pdf

[9] J. Calandrino, H. Leontyev, A. Block, U. Devi, and J. Anderson. LITMUSRT: A Testbed for
Empirically Comparing Real-Time Multiprocessor Schedulers. In 27th IEEE International Real-
Time Systems Symposium (RTSS’06), pages 111–126, Rio de Janeiro, Brazil, December 2006.

[10] Thomas Carle, Manel Djemal, Dumitru Potop-Butucaru, and Robert De Simone. Static mapping of
real-time applications onto massively parallel processor arrays. In 14th International Conference on
Application of Concurrency to System Design (ACSD’14), pages 112–121, 2014.

[11] C.-W. Chang, J.-J. Chen, T.-W. Guo, and H. Falk. Real-time partitioned scheduling on multi-
core systems with local and global memories. In 18th Asia and South Pacific Design Automation
Conference (ASP-DAC), pages 467–472, Yokohama, Japan, January 2013. IEEE.

[12] E.G. Coffman Jr, M.R. Garey, and D.S. Johnson. Approximation algorithms for bin packing: A
survey. In Approximation algorithms for NP-hard problems, pages 46–93. PWS Publishing Co.,
1996.

[13] Silviu S. Craciunas and Ramon Serna Oliver. Combined task- and network-level scheduling for
distributed time-triggered systems. Real-Time Systems, 52(2):161–200, 2016.

[14] B. P. Dave. CRUSADE: Hardware/Software Co-Synthesis of Dynamically Reconfigurable Heteroge-
neous Real-Time Distributed Embedded Systems. In Proceedings of Design, Automation and Test
in Europe Conference and Exhibition, pages 97–104, Munich, Germany, March 1999. IEEE.

[15] V. David, C. Fraboul, J. Y. Rousselot, and P. Siron. Partitioning and mapping communication
graphs on a modular reconfigurable parallel architecture. In L. Bougé, M. Cosnard, Y. Robert,
and D. Trystram, editors, Proceedings of the Second Joint International Conference on Vector and
Parallel Processing CONPAR 92—VAPP V, volume 634 of Lecture Notes in Computer Science, pages
43–48, Lyon, France, September 1992. Springer.

[16] M. D. Derk and L. S. DeBrunner. Reconfiguration Graph Grammar for massively parallel, fault
tolerant computers. In J. Cuny, H. Ehrig, G. Engels, and G. Rozenberg, editors, Proceedings of the 5th
International Workshop on Graph Grammars and Their Application to Computer Science, volume
1073 of Lecture Notes in Computer Science, pages 185–195, Williamsburg, VA, USA, November
1994. Springer.

[17] DREAMS consortium. DREAMS: Distributed REal-time Architecture for Mixed Criticality Systems,
2013 – 2017. http://dreams-project.eu.

[18] DREAMS consortium. DREAMS final integration. http://www.uni-siegen.de/dreams/

publications/2016-12-20-newsletter.pdf, 2016.

[19] Guy Durrieu, Madeleine Faugère, Sylvain Girbal, Daniel Gracia Pérez, Claire Pagetti, and Wolf-
gang Puffitsch. Predictable flight management system implementation on a multicore processor. In
Proceedings of the 7th Conference on Embedded Real Time Software and Systems (ERTS’14), 2014.

[20] Guy Durrieu, Gerhard Fohler, Gautam Gala, Sylvain Girbal, Daniel Gracia Pérez, Claire Pagetti,
and Simara Pérez Zurita. Dreams about reconfiguration and adaptation in avionics. In Proceedings
of the 8th Conference on Embedded Real Time Software and Systems (ERTS’16), 2016.

[21] Cecilia Ekelin. An Optimization Framework for Scheduling of Embedded Real-Time Systems. PhD
thesis, Chalmers University of Technology, 2004.

[22] Claudia Ermel and Karsten Ehrig. Visualization, Simulation and Analysis of Reconfigurable Systems.
In A. Schürr, M. Nagl, and A. Zündorf, editors, Third International Symposiumon Applications of
Graph Transformations with Industrial Relevance, AGTIVE 2007, volume 5088 of Lecture Notes in
Computer Science, pages 265–280, Kassel, Germany, October 2007. Springer.

[23] M. Fan, Q. Han, G. Quan, and S. Ren. Multi-core partitioned scheduling for fixed-priority periodic
real-time tasks with enhanced RBound. In Fifteenth International Symposium on Quality Electronic
Design, pages 284–291, Santa Clara, CA, USA, March 2014. IEEE.

[24] C. J. Fidge. Real-Time Schedulability Tests for Preemptive Multitasking. Real-Time Systems,
14(1):61–93, January 1998.

20

http://dreams-project.eu
http://www.uni-siegen.de/dreams/publications/2016-12-20-newsletter.pdf
http://www.uni-siegen.de/dreams/publications/2016-12-20-newsletter.pdf

[25] Gerhard Fohler, Gautam Gala, Daniel Gracia Pérez, and Claire Pagetti. Evaluation of DREAMS
resource management solutions on a mixed-critical demonstrator. In 9th European Congress on
Embedded Real Time Software and Systems (ERTS’18), 2018.

[26] Radio Technical Commission for Aeronautics (RTCA) and EURopean Organisation for Civil Avi-
ation Equipment (EUROCAE). DO-297: Software, electronic, integrated modular avionics (ima)
development guidance and certification considerations, 2007. https://standards.globalspec.

com/std/2018378/RTCA%20DO-297.

[27] Freescale. T4240 QorIQ: Integrated multicore communications processor family reference manual,
2014. https://www.nxp.com/docs/en/user-guide/T4240RDBUG.pdf.

[28] Aymen Gammoudi, Daniel Chillet, Mohamed Khalgui, and Adel Benzina. Mapping of periodic
tasks in reconfigurable heterogeneous multi-core platforms. In Proceedings of the 13th International
Conference on Evaluation of Novel Approaches to Software Engineering (ENASE’18), pages 99–110,
2018.

[29] Raul Gorcitz, Emilien Kofman, Thomas Carle, Dumitru Potop-Butucaru, and Robert de Simone.
On the scalability of constraint solving for static/off-line real-time scheduling. In Formal Modeling
and Analysis of Timed Systems - 13th International Conference (FORMATS’15), pages 108–123,
2015.

[30] Fabien Hermenier, Adrien Lèbre, and Jean-Marc Menaud. Cluster-Wide Context Switch of Virtual-
ized Jobs. Research Report 6929, INRIA, April 2009.

[31] Pierre-Emmanuel Hladik, Hadrien Cambazard, Anne-Marie Déplanche, and Narendra Jussien. Solv-
ing a real-time allocation problem with constraint programming. J. Syst. Softw., 81(1):132–149,
January 2008.

[32] IBM ILOG CPLEX Optimization Studio. http://www03.ibm.com/software/products/en/

ibmilogcpleoptistud/, 2017.

[33] D. Isovic and G. Fohler. Quality aware mpeg-2 stream adaptation in resource constrained systems. In
Proceedings. 16th Euromicro Conference on Real-Time Systems, 2004. ECRTS 2004., pages 23–32,
2004.

[34] A. Kandhalu, K. Lakshmanan, J. Kim, and R. Rajkumar. pCOMPATS: Period-Compatible Task
Allocation and Splitting on Multi-core Processors. In IEEE 18th Real Time and Embedded Technology
and Applications Symposium, pages 307–316, Beijing, China, April 2012. IEEE.

[35] H. Kooti, E. Bozorgzadeh, S. Liao, and L. Bao. Transition-aware Real-Time Task Scheduling for Re-
configurable Embedded Systems. In Design, Automation & Test in Europe Conference & Exhibition
(DATE 2010), pages 232–237, Dresden, Germany, March 2010. IEEE.

[36] Angeliki Kritikakou, Claire Pagetti, Christine Rochange, Matthieu Roy, Madeleine Faugère, Sylvain
Girbal, and Daniel Gracia Pérez. Distributed run-time wcet controller for concurrent critical tasks
in mixed-critical systems. In Proceedings of the 22th International Conference on Real-Time and
Network Systems (RTNS’14), pages 139–148, 2014.

[37] J.H. Lala and R.E. Harper. Architectural Principles for Safety-Critical Real-Time Applications.
Proceedings of the IEEE, 82(1):25–40, January 1994.

[38] S. Lauzac, R. Melhem, and D. Mossé. An Efficient RMS Admission Control and its Application
to Multiprocessor Scheduling. In Proceedings of the First Merged International Parallel Processing
Symposium and Symposium on Parallel and Distributed Processing, pages 511–518, Orlando, FL,
USA, USA, March–April 1998. IEEE.

[39] Yann-Hang Lee, Daeyoung Kim, Mohamed Younis, and Jeff Zhou. Scheduling tool and algorithm for
integrated modular avionics systems. In Proceedings of the 19th Digital Avionics Systems Conference
(DASC’00), 2000.

[40] C.L. Liu and J.W. Layland. Scheduling Algorithms for Multiprogramming in a Hard Real-Time
Environment. JACM, 20(1):40–61, 1973.

21

https://standards.globalspec.com/std/2018378/RTCA%20DO-297
https://standards.globalspec.com/std/2018378/RTCA%20DO-297
https://www.nxp.com/docs/en/user-guide/T4240RDBUG.pdf
http://www03.ibm.com/software/products/en/ibmilogcpleoptistud/
http://www03.ibm.com/software/products/en/ibmilogcpleoptistud/

[41] J. Liu and M. Yang. Task Scheduling of Real-Time Systems on Multi-Core Embedded Processor. In
IEEE International Conference on Intelligent Systems and Knowledge Engineering, pages 580–583,
Hangzhou, China, 2010. IEEE.

[42] Miguel Masmano, Ismael Ripoll, Alfons Crespo, Jean-Jacques Metge, and Paul Arberet. Xtratum:
An open source hypervisor for TSP embedded systems in aerospace. In DASIA 2009. DAta Systems
In Aerospace., May. Istanbul 2009.

[43] H. Mushtaq, Z. Al-Ars, and K. Bertels. Fault Tolerance on Multicore Processors using Deterministic
Multithreading. In 8th IEEE Design and Test Symposium, Marrakesh, Morocco, December 2013.
IEEE.

[44] Claire Pagetti, Julien Forget, Frédéric Boniol, Mikel Cordovilla, and David Lesens. Multi-task imple-
mentation of multi-periodic synchronous programs. Discrete Event Dynamic Systems, 21(3):307–338,
2011.

[45] Claire Pagetti, David Saussié, Romain Gratia, Eric Noulard, and Pierre Siron. The rosace case study:
From simulink specification to multi/many-core execution. In 20th IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS’14), April 2014.

[46] Dar-Tzen Peng, Kang G. Shin, and Tarek F. Abdelzaher. Assignment and scheduling communicating
periodic tasks in distributed real-time systems. IEEE Trans. Software Eng., 23(12):745–758, 1997.

[47] Quentin Perret, Pascal Maurère, Éric Noulard, Claire Pagetti, Pascal Sainrat, and Benôıt Triquet.
Mapping hard real-time applications on many-core processors. In Proceedings of the 24th Interna-
tional Conference on Real-Time Networks and Systems (RTNS’16), pages 235–244, 2016.

[48] Wolfgang Puffitsch, Éric Noulard, and Claire Pagetti. Off-line mapping of multi-rate dependent task
sets to many-core platforms. Real-Time Systems, 51(5):526–565, 2015.

[49] Klaus Schild and Jörg Würtz. Scheduling of time-triggered real-time systems. Constraints, 5(4):335–
357, October 2000.

[50] Christoph Steiger, Herbert Walder, Marco Platzner, and Lothar Thiele. Online scheduling and
placement of real-time tasks to partially reconfigurable devices. In Proceedings of the 24th IEEE
International Real-Time Systems Symposium, RTSS ’03, pages 224–235, Washington, DC, USA,
2003. IEEE Computer Society.

[51] Wilfried Steiner. An evaluation of smt-based schedule synthesis for time-triggered multi-hop net-
works. In Proceedings of the 31st Real-Time Systems Symposium (RTSS’10), pages 375–384, 2010.

[52] Ali Abbas Jaffari Syed. Model-Based Design and Adaptive Scheduling of Distributed Real-Time
Systems. doctoralthesis, Technische Universität Kaiserslautern, 2018.

[53] TTTech. TTEthernet Time-Triggered Ethernet (SAE AS 6802), November 2011. https://www.

sae.org/standards/content/as6802/.

[54] V. Vargas, P. Ramos, J.-F. Méhaut, and R. Velazco. NMR-MPar: A Fault-Tolerance Approach for
Multi-Core and Many-Core Processors. Applied Sciences, 8(3), March 2018.

[55] M. Wermelinger and J. L. Fiadeiro. Algebraic software architecture reconfiguration. In Proceed-
ings of the 7th European software engineering conference held jointly with the 7th ACM SIGSOFT
international symposium on Foundations of software engineering ESEC/FSE-7, volume 24 Issue 6
of ACM SIGSOFT Software Engineering Notes, pages 393–409, Toulouse, France, September 1999.
ACM New York, NY, USA.

[56] M. Wermelinger, A. Lopes, and J. L. Fiadeiro. A graph based architectural (Re)configuration lan-
guage. In Proceedings of the 8th European software engineering conference held jointly with 9th ACM
SIGSOFT international symposium on Foundations of software engineering ESEC/FSE-9, volume
26 Issue 5 of ACM SIGSOFT Software Engineering Notes, pages 21–32, Vienna, Austria, September
2001. ACM New York, NY, USA.

[57] J. Xu. Multiprocessor scheduling of processes with release times, deadlines, precedence, and exclusion
relations. Software Engineering, IEEE Transactions on, 19(2):139 –154, feb 1993.

22

https://www.sae.org/standards/content/as6802/
https://www.sae.org/standards/content/as6802/

	Introduction
	Fault model and recovery mechanism
	Objective of the paper
	Outline

	System model
	Platform and application model
	DREAMS executive layer overview
	Reconfiguration in case of failure
	Network reconfiguration

	General approach and GRec overview
	Local and global reconfiguration graphs formalization
	Search strategy
	Step 1: failure combination generation
	Step 2: configurations generation
	Step 3: configuration files generation

	Constraint programming
	Input data for constraint solving
	Decision variables
	Constraints

	Code generation
	Experiments
	First DREAMS use case
	DREAMS demonstrator
	Discussion on the results

	Related work
	Scheduling
	Reconfiguration graph
	Off-line computation of configuration
	Off-line computation with reconfiguration
	Fault tolerance

	Conclusion and future work

