
HAL Id: hal-02449003
https://hal.science/hal-02449003

Submitted on 22 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Large scale dynamics of a high Reynolds number
axisymmetric separating/reattaching flow

R. Pain, Pierre-Elie Weiss, Sébastien Deck, Jean-Christophe Robinet

To cite this version:
R. Pain, Pierre-Elie Weiss, Sébastien Deck, Jean-Christophe Robinet. Large scale dynamics of a high
Reynolds number axisymmetric separating/reattaching flow. Physics of Fluids, 2019, 31, pp.125119-1
- 125119-20. �10.1063/1.5121587�. �hal-02449003�

https://hal.science/hal-02449003
https://hal.archives-ouvertes.fr


Large scale dynamics of a high Reynolds number axisymmetric
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2)DynFluid, Arts et Métiers, ParisTech, 75013 Paris, France

(Dated: 18 November 2019)

A numerical study is conducted to unveil the large scale dynamics of a high Reynolds

number axisymmetric separating/reattaching flow at M∞ = 0.7. The numerical sim-

ulation allows to acquire a high rate sampled unsteady volumetric data set. This

huge amount of spatial and temporal information is exploited in the Fourier space

to visualize for the first time in physical space and at such a high Reynolds num-

ber (ReD = 1.2 · 106) the statistical signature of the helical structure related to the

anti-symmetric mode (m = 1) at StD = 0.18. The main hydrodynamic mecha-

nisms are identified through the spatial distribution of the most energetic frequen-

cies, i.e. StD = 0.18 and StD ≥ 3.0 corresponding to the vortex-shedding and

Kelvin-Helmholtz instability phenomena, respectively. In particular, the dynamics

related to the dimensionless shedding frequency is shown to become dominant for

0.35 ≤ x/D ≤ 0.75 in the whole radial direction as it passes through the shear layer.

The spatial distribution of the coherence function for the most significant modes as

well as a three-dimensional Fourier decomposition suggest the global features of the

flow mechanisms.

More specifically, the novelty of the study lies in the evidence of the flow dynamics

through the use of cross-correlation maps plotted with a frequency selection guided

by the characteristic Strouhal number formerly identified in a local manner in the flow

field or at the wall. Moreover and for the first time, the understanding of the scales

at stake is supported both by a Fourier analysis and a Dynamic Mode Decomposition

in the complete three-dimensional space surrounding the afterbody zone.

a)peweiss@onera.fr; http://www.onera.fr/en/staff/pierre-elie-weiss
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I. INTRODUCTION

The study of axisymmetric afterbody flows is mainly motivated by aerospace problems1–4.

Indeed, this geometry is a very simplified prototype of the main stage of a space launcher’s

after-body. The understanding of the structure of turbulent shear flows with separation

and reattachment is of major importance for many engineering applications. In some con-

figurations, the flow is the seat of pressure fluctuations resulting in large non-axisymmetric

aerodynamic forces on the structure. The aim of this work is to better understand the

physical mechanisms responsible for these pressure fluctuations. Eventually, the knowledge

of the spatial organization of the fluctuating flow field permits to guide the design of flow

control devices.

Separating/reattaching flows are characterised by the presence of a recirculation region

which is governed by a complex dynamics5,6. As it is often accompanied by a highly unsteady

fluctuating pressure field, it is usually preferable to avoid such unsteadiness as it may induce

interfering vibrations on the geometry. Among the wide variety of separation/reattachment

scenarios, flow separation induced by a leading edge has been well documented in the last

decades. For instance, Armaly et al. 7 carried out an experimental investigation of a 3D

backward facing step flow and evidenced that the length of the recirculation bubble increases

with the Reynolds number in the laminar regime while it decays in the fully turbulent stage.

Furthermore, the authors have put forward the limitations of 2D modelling of such flow at

Re > 400 for the fact that the recirculation region becomes three-dimensional. By extension

to bluff body cases, axisymmetric backward facing step flows are of particular interest since

the fluctuations in the recirculation zone interact with the wall of the emerging cylinder and

expose the geometry to unsteady loads. Deck and Thorigny 8 showed that there exist some

similarities between the subsonic two-dimensional backward facing step flow and its axisym-

metric counterpart mainly in terms of the shear layer properties. They also performed a

spectral analysis of the fluctuating pressure field for a few sensors located in the vicinity of

the recirculation zone. The authors derived some main frequencies whose energetic contri-

bution evolves spatially. In particular, the pressure fluctuations at a normalised frequency

based on the largest diameter of the geometry StD = 0.2 were shown to be associated with

the antisymmetric azimuthal mode m = 1. Later, Weiss et al. 9 extended the fluctuating
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pressure spectral analysis to the wall which unveiled a highly energetic area for StD = 0.2

fluctuations related to the vortex-shedding. Such area was located approximately in the

middle of the recirculation zone (0.35 < x/D < 0.75). A linear stability analysis conducted

by the authors showed in addition the absolutely unstable nature of the m = 1 azimuthal

mode. This result corroborates the investigations on a supersonic axisymmetric wake behind

a bluff body by Sandberg and Fasel 10 who suggested the co-existence of both absolutely

unstable global modes and convectively unstable shear-layer modes.

From the experimental point of view, Deprés, Reijasse, and Dussauge 11 characterised

the axisymmetric backward facing step flow at transonic regime both in terms of statistics

(Mean and Root Mean Square wall pressure coefficients) and of spectral content of the wall

pressure signal. The flow conditions of this experiment are used in this paper. These au-

thors revealed two main Strouhal numbers. The first one corresponds to the vortex shedding

StD ≃ 0.2, which they associated with an antisymmetric large scale formation by means

of a two-point correlation. The second one is related to the convection of turbulent eddies

in the shear layer at StD ≃ 0.6. On top of StD ≃ 0.2, Deck and Thorigny 8 outlined the

contribution of an extra low frequency phenomenon associated with the flapping motion of

the mixing layer at StD ≃ 0.07 observed by Driver, Seegmiller, and Marvin 12 for a planar

case. Although the overall unsteady flow phenomena have been addressed in the past, their

spatial organisation as well as their time evolution remain not fully understood. Indeed, the

identification of characteristic mechanisms of highly turbulent flows is still a great challenge

for experimentalists and numericists due to the wide variety of scales to deal with.

The wake developing downstream of a sphere, a disk or more generally a bluff-body

develops coherent energetic and compact hairpin type structures. This characteristic is

particularly observed when the flow is incompressible or in a low subsonic regime. When

the Reynolds number increases but remains at a moderate Mach number (subsonic), the

wake initially dominated by hairpin structures type (or double hairpin) disappears gradu-

ally giving way to structures like vortex rings. In this regime, the large scales are relatively

axisymmetric and intermediate scales developed from shear instabilities and developing non-

linearly in the form of vortex structures of the chevron or hairpin type (but much smaller

than the previous ones). However, for higher Reynolds numbers ReD ≥ 104 several articles
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TABLE I. Studies dealing with the helical mode in axisymmetric separating/reattaching flows at

several Reynolds numbers. RT : Reattachment Type, Fl: Fluid, So: Solid, E: Experimental, N:

Numerical, LS: Linear Stability, D : Disc, ABB : Axisymmetric Bluff Body, ABBWE : Axisymmet-

ric Bluff Body With Extension, TCA: Three-Cylinder Afterbody, S: Sphere, J : Jets, W: Wakes,

HMHM: Helical Mode Highlighting Method, 1: Single-point Spectra, 2: Two-point Spectra (i.e.

Correlation), 3: Spectral Map, POD or Planar DMD, 4: Volume spectra or Koopman modes

(DMD), V: Visualization

Authors Study Topology RT ReD StD HMHM

Achenbach 13 E S Fl 400 6 ReD 6 5× 106 0.1 6 StD 6 0.2 1,2,V

Taneda 14 E S Fl 104 6 ReD 6 106 / V

Fuchs, Mercker, and Michel 15 E J + W Fl 104 6 ReD 6 106 0.3 1,2

Monkewitz 16 LS ABB Fl ReD 6 3.3× 103 0.17 6 StD 6 0.21 LS

Berger, Scholz, and Schumm 17 E D + S Fl 1.5× 104 6 ReD 6 3× 105 0.135 1,2,3,V

Cannon, Champagne, and Glezer 18 E D Fl ReD = 1.32× 104 0.15 1,2,V

Weickgenannt and Monkewitz 19 E ABB Fl 3× 103 6 ReD 6 5× 104 0.25 1,V

Sevilla and Martinez-Bazan 20 E + LS ABB Fl 500 6 ReD 6 1.2× 104 0.25 LS,1,V

Deprés, Reijasse, and Dussauge 11 E ABBWE So ReD = 1.2× 106 0.2 1,2

Sandberg and Fasel 10 N + LS ABB Fl 5000 6 ReD 6 2× 105 / LS,V

Shenoy and Kleinstreuer 21 N D Fl 10 6 ReD 6 300 0.113 1,V

Pier 22 LS S Fl ReD 6 350 0.11 6 StD 6 0.21 LS

Simon et al.
23 N ABB Fl ReD = 2.9× 106 0.26 1,2,3

Deck and Thorigny 8 N ABBWE So ReD = 1.2× 106 0.2 1,2,3

Weiss et al. 9 N + LS ABBWE So ReD = 1.2× 106 0.2 LS,1,2,3

Meliga, Sipp, and Chomaz 24 N + LS ABB Fl ReD = 1.2× 106 0.2 LS,1

Meliga, Sipp, and Chomaz 25 LS ABB + S Fl ReD 6 1500 0.063 + 0.11 LS

Pain, Weiss, and Deck 26 N ABBWE So ReD = 1.2× 106 0.2 1,3,4,V

Marié et al.
2 E TCA Fl ReD = 1.2× 106 0.2 - 0.5 1,3

Pain, Weiss, and Deck 27 N TCA So ReD = 1.2× 106 0.2 1,3,4,V

Statnikov et al. 28 N ABBWE Fl ReD = 1.73× 106 0.25 6 StD 6 0.85 1,3,V

Present study N ABBWE So ReD = 1.2× 106 0.2 1,2,3,4,V

have shown including Yun, Kim, and Choi 29 or Weickgenannt and Monkewitz 19 that the

flow develops an anti-symmetric dynamics with an azimuthal wave number m = ±1. The

recent work of Statnikov, Meinke, and Schröder 30 does not contradict these conclusions.

Then, Seidel et al. 31 and Cannon 32 also show the existence of this dynamics of the anti-

symmetric (helical) type.

A common feature of axisymmetric wakes with or without an interaction with a solid wall

concerns the dominant characteristic large-scale structure identified as a single or double

helix corresponding to a shedding-type instability. Such a correspondence results from an
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analogy made on the classical frequency range observed in planar base flows. Table I gathers

studies investigating the helical mode in axisymmetric separating/reattaching flows. One

can note that the vortex spiral has mainly been observed experimentally at low to high

Reynolds numbers based on the diameter D of the axisymmetric body of interest (namely

O(100) 6 ReD 6 O(106)) on spheres (Taneda 14 and Berger, Scholz, and Schumm 17), discs

(Cannon, Champagne, and Glezer 18 and Berger, Scholz, and Schumm 17), jets and wakes

(Fuchs, Mercker, and Michel 15), or base flows with a reattachment occurring at a wall

(Deprés, Reijasse, and Dussauge 11 , Gentile et al. 33), denoted by ‘solid’, or without (We-

ickgenannt and Monkewitz 19 , Sevilla and Martinez-Bazan 20 , Grandemange, Gohlke, and

Cadot 34 , Grandemange et al. 35 , Grandemange, Gohlke, and Cadot 36 , Gentile et al. 37 , Gen-

tile et al. 38 ,39, Rigas et al. 40 , Rigas, Morgans, and Morrison 41), denoted by ‘fluid’. In the

aforementioned studies a predominant dimensionless Strouhal number based on D has been

returned through single-point spectral analyses in the range [0.1, 0.25]. Such a frequency

range was confirmed analytically thanks to linear stability studies as in Monkewitz 16 and

Sandberg and Fasel 10 on subsonic and supersonic base flows, respectively, Meliga, Sipp, and

Chomaz 25 on axisymmetric wakes, Pier 22 on a sphere and Weiss et al. 9 on an axisymmetric

backward facing step. The characteristic properties of the helix for ReD 6 104 can be

clearly distinguished due to the fact that the spectral content intrinsic to the flow is not

as broad as for high Reynolds number flows, i.e. ReD > 106. Indeed, a direct observation

or a phase-locked visualization performed on the streamwise velocity (Weickgenannt and

Monkewitz 19 ) allows to evidence the helical mode.

However, at higher Reynolds numbers, a deep signal analysis becomes mandatory due

to the wide variety of scales involved. Hence, for afterbody flows at ReD = O(106), Simon

et al. 23 , Deck and Thorigny 8 , Weiss and Deck 42 and Weiss et al. 9 have realised various

spectral analyses based on numerical studies using Zonal Detached Eddy Simulation (ZDES)

(Deck 43 , Deck 44). Single-point spectra have permitted to reveal the predominant frequen-

cies in the flow (StD = 0.08, 0.2, 0.6 corresponding to the flapping, shedding, and breathing

of the recirculation bubble which is enclosed by an impinging shear layer, respectively).

Two-point correlations evidenced the modal organisation of the flow in the azimuthal di-

rection. Spectral maps allowed to access to the signature of the fluctuating pressure at the

wall. This has permitted to identify a potential area of receptiveness of the separated flow
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related to an absolute instability. Similar results regarding the frequencies leading the flow

dynamics are reported by Marié et al. 2 with a POD analysis applied to the flow surrounding

a simplified generic launcher configuration. Finally, Pain, Weiss, and Deck 26 presented a

methodology based on either 3D Fourier analysis or Dynamic Mode Decomposition (DMD)

to identify the occurrence of helical features in broadband spectrum flows which has allowed

to map the most excited frequency in the separated area of a three-cylinder afterbody (see

Pain, Weiss, and Deck 27) and, even more recently, a supersonic base flow (see Statnikov

et al. 28) or a generic transonic backward-facing step configuration (see Statnikov et al. 45).

Thus, the evidence as well as the space-time organisation of a helical mode at high

Reynolds number on an axisymmetric base flow with a solid reattachment has only been

conjectured through local analyses of the spectral content.

In this context, the hereby study aims at drawing a detailed profile of the whole three-

dimensional unsteady pressure field in axisymmetric backward facing step flows in order to

uncover the helix properties at high Reynolds number.

First, a simulation overview is provided in § II with a description of the test case and

salient features of the flow. Then, § III is dedicated to the analysis of the spatial or-

ganisation of the fluctuating flow. The energy distribution in the Fourier space and the

three-dimensional azimuthal coherence organisation are thoroughly analysed in the neigh-

bourhood of the axisymmetric step. The last part of this paper (§ IV) is devoted to the

modal decomposition of the whole pressure field. Finally, results are summarized in § V

together with a discussion about the leading flow mechanisms.

II. SIMULATION OVERVIEW

A. Test case and description of the computation

The geometry studied consists of an axisymmetric backward facing step similar to the

existing experimental S3Ch wind tunnel configuration studied by Deprés, Reijasse, and Dus-

sauge 11 and Meliga and Reijasse 46 . This configuration is composed of a cylinder extended
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FIG. 1. Geometry of the axisymmetric backward facing step with a downstream cylinder of finite

length. L/D = 1.2 and d
D

= 0.4 ; (→) main direction of the flow with U∞ corresponding to the

free stream velocity. The red edges define the bounds of the domain where the instantaneous flow

data was sampled.

by another cylinder of finite length and smaller diameter as represented in figure 1. The

characteristic aspect ratios are L
D

= 1.2 and d
D

= 0.4, L being the length of the smallest

cylinder, D and d the diameters of the largest and smallest cylinder, respectively. The

hereby study focuses on the transonic flow regime with a free stream Mach number M∞

equal to 0.7. The Reynolds number based on D is ReD = 1.2 · 106 and the boundary layer

thickness at the edge of the largest cylinder is δ0
D

= 0.2. The free-stream dynamic pressure

is q∞ = γ

2
M2

∞P∞ ≈ 24, 815 Pa.

The size of the computational domain represented in figure 2 together with a close-up of

the mesh in the afterbody zone is approximately equal to 29D in the streamwise direction

and 10D in the radial direction. The backward facing step beginning at the end of the larger

cylinder is located at x = 174.3D with respect to the inflow which permits to obtain the

expected values of the integral properties of the boundary layer at the separation point.

The numerical simulation contains four types of boundary conditions:

1. At the inlet : a condition based on an uniform thermodynamic state defined using

stagnation quantities

2. At the wall : a no-slip adiabatic condition
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FIG. 2. Sizes of the computational domain and close-up view of the mesh in the separated zone of

interest

3. On top of the domain in the normal direction : a non-reflecting boundary condition

to avoid spurious wave reflections

4. At the outlet : a far field condition

The present analysis is focused on the deep understanding of the flow dynamics in the

separated area located in the neighbourhood of the smallest cylinder (see figure 1). This

volume of interest contains Ni×Nj ×Nk = 171×112×240 points with a streamwise length

Lx = 1.2D, a radial extent Lr = 1.05D and lθ = 0.4πD and Lθ = 2.5πD for the inner and

outer perimeters, respectively. The entire computational domain for this study is made up

of a multi-block structured grid containing 12 · 106 cells. For the ZDES approach of such a

configuration a grid sensitivity study has already been performed by Deck and Thorigny 8 .

These authors used three grids containing 5.5, 7 and 8.3 million points showing a convergence

for the first- and second-order statistics of the pressure (i.e. Cp and Cprms). The present

grid has been generated taking into account this previous result. The azimuthal direction,

which has formerly been identified as a crucial one beside the streamwise direction for the

flow dynamics (Fuchs, Mercker, and Michel 15 , Berger, Scholz, and Schumm 17 ), is discretised

with 240 points providing a resolution of 1.5◦ cell−1. Moreover, the separated areas have
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been designed to follow the LES requirements in terms of number of points and cell isotropy.

As advised by Simon et al. 23, the early stages of the vorticity thickness development are

modelled with 15 points.

As represented in figure 3, this resolution rapidly increases with the mixing layer

growth reaching almost 60 points in the radial direction after the middle of the exten-

sion (x/D ≈ 0.6). In practice, the grid resolution is not calculated adaptively. The vorticity

thickness δω = ∆U/max
y

(
∂U

∂y
) is plotted with ∆U = U1 −U2 where U1 and U2 stand for the

characteristic streamwise velocities on both sides of the shear layer. U1 is approximately

equal to 237 m.s−1 and U2 varies rapidly from −78 m.s−1 to 5 m.s−1. Then, selected reso-

lution is related to the aforementioned empirical observation performed by Simon et al. 23 .

The number of points clustered in the mixing layer grows rapidly due to the topology which

has been adapted to encompass the shear layer. The time-averaged location of the shear has

been determined on the basis of a preliminary RANS simulation with the same mesh. Such

a grid refinement has been shown by Lele 47 to be sufficient to discretise the layer of fluid

linking the vortices inside the mixing layer (i.e. the braids). Indeed, the author used 7 to 8

grid points to resolve the braid region whereas in the present case, the radial discretisation

rapidly exceeds 20 points after the separation occurring at the end of the larger cylinder.

Finally, the grid parameters in wall units for x 6 0 in the region treated using ZDES mode

0 (i.e. URANS) are (∆x+,∆r+,∆s+) = (130, 4, 200). The minimum and the maximum

values of ∆x/D, ∆r/D and ∆s/D (where s = θD/2 stands for the grid arc distance)

are (∆x/D,∆r/D,∆s/D)min = (0.003, 0.00015, 0.01309) and (∆x/D,∆r/D,∆s/D)max =

(0.2, 0.5, 0.1309). It has to be noted that the dominant azimuthal wavelength along the

streamwise direction found in the following is λθ = πD/2. As a consequence, the dimen-

sionless wavelength of interest is λθ/D ≈ 1.57 which has to be compared to the azimuthal

resolution characterised by the grid arc distance which is approximately 100 times lower

(i.e. ∆s/D ≈ 0.013) in the mixing layer region. Such a resolution allows to simulate

the upstream attached boundary layer in RANS mode. The separation is sharp on such

a configuration which means that the integral properties of the upstream boundary layer

are the most important to reproduce the flow features. The boundary layer thickness at

the separation (δ/D = 0.2) is the one predicted by the RANS calculation based on the

Spalart-Allmaras turbulence which is well acknowledged to predict attached flows. Given

the location of the separation is prescribed by the geometry, the integral properties of the
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FIG. 3. Streamwise evolution of the number of points clustered in the vorticity thickness δω =

∆U/max
y

(
∂U

∂y
) with ∆U = U1 − U2 where U1 and U2 stand for the characteristic streamwise

velocities on both sides of the shear layer.

upstream boundary layer is of first importance compared to fluctuations. Such a point has

been investigated experimentally by Morris and Foss 48 . These authors have shown that the

interaction between a separated turbulent flow and the fluctuations in an upstream bound-

ary layer can be assumed to be negligible for high Reynolds number flows. This supports the

fact that no additional synthetic fluctuations are needed in the incoming boundary layer.

In practice, Holmes, Lumley, and Berkooz 49 suggested the existence of a communication

between a mixing layer and a boundary layer for a laminar separation and argued that this

is not true for high Reynolds number turbulent boundary layers. As a consequence, a slow

depletion of Cp is indeed observed which evidences the strong influence of the recirculation

zone on the incoming boundary layer which concerns the properties of the mean part of the

flow field and not the fluctuating one. Finally, Scharnowski et al. 50 performed a numerical

simulation on a similar test case with a longer extension for the same Mach number namely

M∞ = 0.7 using Synthetic Turbulence Generation and obtained no difference in the recom-

pression process (i.e. the same slow depletion of Cp with the same levels).
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B. General description of the numerical set up

The finite-volume solver FLU3M code developed by ONERA51 is used to solve the

compressible Navier-Stokes equations on multi-block structured grids. Time integration is

performed by means of a second-order accurate backward Gear scheme. Spatial discretisa-

tion is obtained by a modified AUSM+ scheme proposed by Liou 52 . The accuracy of the

solver for multi-resolution calculations has been assessed in various applications including

afterbody flows8,23,53. In these last references, the numerical results are thoroughly com-

pared to the available experimental data including spectral and second-order analysis.

The approach used to model this flow is the Zonal Detached Eddy Simulation (ZDES)

proposed by Deck 43,44 which belongs to the RANS/LES approaches (see Sagaut, Deck, and

Terracol 54 for a review). Within ZDES three different length scale formulations entering

the destruction term of the eddy viscosity equation, also called modes, are optimised to be

employed on three different flow topologies (Deck 44 , Deck et al. 55).

The selection process of the chosen mode is guided by the intrinsic nature of the flow

separation (see figure 4). The separation locus can be either triggered by the geometry

(ZDES mode I), a pressure gradient on a smooth surface (ZDES mode II) or the dynamics

of an incoming boundary layer (ZDES mode III). This latter mode can be interpreted as a

Wall-Modelled Large Eddy Simulation (WMLES) (Deck et al. 56 ,Deck et al. 57).

An example, where all these modes are used in the same calculation, is provided in Deck

and Laraufie 58 in the frame of a three-element airfoil.

As a consequence, the present case is treated using ZDES mode I (for x > 0) meaning

the area located downstream the separation point is computed with LES while the area

upstream (for x < 0) is solved using the URANS approach (mode 0 of ZDES).

C. Salient features of the flow

As a first glimpse to the global dynamics of the axisymmetric separating / reattaching

flow, an overview of the flow topology is provided in figure 5 (a) with the visualisation of

an iso-surface of the normalised Q-criterion (QU2
∞/D2 = 50) coloured by the streamwise

velocity component coupled with a numerical pseudo-schlieren in a streamwise cut-off plane
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FIG. 4. Taxonomy of classical separated flows. I: separation fixed by the geometry, II: separation

induced by a pressure gradient on a curved surface, III: separation strongly influenced by the

dynamics of the incoming boundary layer (adapted from Deck 44 ).

and at the wall. The dimensionless Q-criterion is represented in order to evidence the

coherent structures of the instantaneous flow. Q is a second-order invariant of the velocity

gradient tensor ∇u and is defined as follows:

Q =
1

2
(ΩijΩij − SijSij) = −

1

2

∂ui

∂xj

∂uj

∂xi

> 0 (1)

where Sij and Ωij are respectively the symmetric and antisymmetric components of ∇u.

It is observed that the coherent structures originating from the edge of the body feature

a toroidal shape and rapidly distort to become fully three-dimensional as they are convected

downstream. The numerical pseudo-schlieren allows to visualise the wide diversity of length

scales in the flow and enables to picture the unsteadiness of the position of the solid reat-

tachment point. Figure 5 (b) provides the mean and instantaneous organisation of the flow

in a cut-off plane. First, the visualisation of the isolines of QU2
∞/D2 is coupled with the rep-

resentation of four main locations where unsteady phenomena (Kelvin-Helmholtz instability,

shear layer flapping motion, impact of coherent structures on the wall, and vortex-shedding)

are dominating. The mean streamlines evidence the different recirculation regions that are

located around the geometry. Finally, figure 5 (c) presents the streamwise evolution of the

mean Cp = p−p∞
q∞

and fluctuating CpRMS = pRMS

q∞
wall pressure coefficients. Three charac-

teristic areas can be distinguished. For x/D ≤ 0, a slow depletion of Cp is observed which

evidences the strong influence of the recirculation zone on the integral properties of the in-

coming boundary layer. After the separation, Cp values decrease due to the acceleration of

the backflow for x/D ∈ [0, 0.55]. Then, a recompression process dominates the mean pres-
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sure field at the wall until x/D ≈ 1, 2. Concerning the root mean square coefficient of the

fluctuating pressure CpRMS, a steady increase is observed in the range x/D ∈ [0, 0.85] due

to the organised shear layer structures (Hudy, Naguib, and Humphreys 59 ). This monotonic

growth ends with the occurrence of a plateau in the area x/D ∈ [0.85, 1.1]. Such a behaviour

is observed for many separated flows (Mabey 60 ,Coe 61 among others). For both quantities,

i.e. mean and rms pressure, ZDES reproduces well the experimental distribution shown in

Deprés, Reijasse, and Dussauge 11 and Meliga and Reijasse 46 .

One can observe from figure 5 (b) that the present geometry and flow regime involve a

solid mean reattachment point which is located at approximately x/D = 1.1.

The literature related to axisymmetric backward facing step flows provides a background

knowledge for the hereby dynamics analysis. Four normalised frequencies based on the

greatest diameter D were identified to be responsible for the most energetic loads applied on

the afterbody. The areas where each frequency is dominant were located and associated with

coherent structure scales. For instance Deprés, Reijasse, and Dussauge 11 related the large

scale vortices in the wake region to StD = 0.2. Weiss et al. 9 evidenced the absolute nature

of the m = 1 antisymmetric mode mainly responsible for the side loads and associated

with StD = 0.2 by means of a local linear stability analysis. Furthermore, these latter

authors confirmed the helical behaviour of the absolute instability as suggested by previous

studies14,17.

Huerre and Rossi 63 carried out a stability analysis on a free shear layer and derived an

expression for the evolution of the frequency f in the streamwise direction as a function of

the vorticity thickness of the shear layer (denoted δω).

These authors thus put forward that the Kelvin-Helmholtz instability which occurs in the

mixing layer originating from the separation point at the edge of the cylinder of diameter

D is characterised by the range of normalised frequency 6 < StD < 8.

The frequency range around StD = 0.07 was linked to the mixing layer flapping motion

as exposed by Driver, Seegmiller, and Marvin 12 . Finally, it was evidenced by Deck and

Thorigny 8 that the reattaching point on the emerging cylinder oscillates at StD = 0.6.
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FIG. 5. (a) Isosurfaces of the normalised Q-criterion (QU2
∞/D2 = 50) coloured by the streamwise

velocity and numerical pseudo-schlieren (gray scale) in a cut-off plane and on the skin of the emerg-

ing cylinder. (b) Figure adapted from Marié, Deck, and Weiss 62 - Mean (bottom) and instantaneous

(top) organisation of the flow with mean streamlines (bottom) and isolines of QU2
∞/D2 = 50 (top) :

1. Mixing layer, 2. Recirculation zone, 3. Mean reattachment point, 4. Second recirculation zone,

5. Corner flow, 6. Turbulent wake - I. Kelvin-Helmholtz instabilities 6 ≤ StD ≤ 8, II. Flapping of

the mixing layer 0.07 ≤ StD ≤ 0.1, III. Coherent structures impingement on the wall StD ≈ 0.6,

IV. Vortex-Shedding StD ≈ 0.2. (c) Streamwise evolution of the mean (top) and RMS (bottom)

pressure coefficient. (—) Zonal Detached Eddy Simulation (ZDES) from Weiss et al. 9 against

experimental data from: (⋄) Deprés, Reijasse, and Dussauge 11 (kulites) ; (△) Deprés, Reijasse,

and Dussauge 11 (steady tabs) ; (•) Meliga and Reijasse 46
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III. SPATIAL ORGANISATION OF THE FLUCTUATING PRESSURE

FIELD

This section aims at characterising the spatial organisation of the fluctuating pressure

field around the backward facing step of finite length (figure 1). For that purpose, the

instantaneous static pressure field within the computational volume shown in figure 1 was

sampled through the ZDES numerical simulation.

The domain located behind the short cylinder in the wake is not sampled. This choice

is motivated by the investigation by Deck and Thorigny 8 which concerned the same ge-

ometrical configuration as the present one with a major difference namely the inclusion

of a supersonic jet located at the base of the short cylinder to represent the effect of a

nozzle. In this case, the supersonic jet issuing from the nozzle is acting as a wall for the

surrounding flow. Thus, in this former study, there is no secondary recirculation bubble

in the wake downstream the short cylinder as in the present case. Comparing numerous

relevant quantities for these two configurations (i.e. with and without jet), such as the

streamwise evolution of the mean and fluctuating pressure coefficients or the characteristic

frequencies resulting from spectral analyses (e.g. single-point and two-point spectra), no

significant differences were observed. These results are fully in line with the experimen-

tal investigation by Deprés, Reijasse, and Dussauge 11 on this transonic axisymmetric step

flow. Finally, this would suggest that the secondary recirculation is not of first importance

in the flow dynamics given the a priori weak interactions with the primary recirculation zone.

The timestep of the simulation is equal to 2 µs. However, the sampling is not performed

at every timestep which would correspond to fsamp = 500 kHz. In practice, the fluctu-

ating quantities are stored every 5 timesteps leading to a sampling frequency of 100 kHz.

This choice is supported by the fact that no energy is observed in the spectra anymore for

frequencies higher than 100 kHz allowing to limit the data storage. Thus, the numerical

sampling time is Tacq U∞/D = 476 (i.e. Tacq = 0.2 s) and the sampling rate is fsamp = 100

kHz in order to avoid any aliasing problem. The resulting database is composed of 20,000

snapshots with ∆t U∞/D = 0.024 representing 2 Terabytes of data storage.

As discussed in Sagaut and Deck 64 there is a contradictory aspect between the needs
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for statistics and the constraints imposed by CFD. Indeed, to perform a statistical analysis

in good conditions, the signal has to be well sampled on a sufficient duration because the

spectral information needs to be averaged on many blocks to be statistically converged. In

practice, unsteady signals issued from CFD are most often oversampled on a short duration

(due to high CPU cost). Thus, a compromise has been found between the number of averaged

blocks and the frequency resolution. The useful unsteady calculation of T.U∞/H = 1580

which means that 200 ms of physical time have been simulated which is quite significant in

term of CPU time consumed. Considering the fact that the main frequency of interest is

here StD = 0.2 corresponding to 474 Hz (i.e. almost 0.002 s) we gather 100 periods of the

shedding phenomenon. This sampling is already expensive. The timestep was equal to 2 µs

providing a minimal frequency that can be captured of 5 Hz. Considering a resolution for

the spectrum of 60 Hz, we manage to average the spectral information over 23 blocks with

a 50% -overlap using a Hamming window.

A Discrete Fourier Transform (DFT) is applied to this unsteady data set. Then the fluc-

tuating pressure field distribution is investigated looking at the three-dimensional spectral

content in the frequency and wavelength spaces. Another approach, namely a two-point

correlation analysis as performed by Fuchs, Mercker, and Michel 15 , also reveals the spatial

organisation of the fluctuating field.

A. Energy distribution in Fourier space

First the frequency content of the separated region is investigated by means of a temporal

Discrete Fourier Transform. The temporal Discrete Fourier Transform provides Fourier

modes X(f) defined on a given frequency range. The spectral investigations are carried out

on a frequency window ranging from 5 Hz to 100 kHz by steps of ∆f = 60 Hz (∆StD ∼

0.025). At each location in the computational volume (see figure 1), DFT is applied in

order to compute the Power Spectral Density (PSD) of the local fluctuating static pressure

p′(x, y, z, t) = p(x, y, z, t)− p(x, y, z). The one-sided PSD is here denoted Gp′(f) and reads:

σ2 =

∫ ∞

0

Gp′(f)df =

∫ ∞

−∞

f ·Gp′(f)d[log(f)] (2)
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FIG. 6. Contours of the Power Spectral Density local maximum max[Gp′(f)] in [Pa2.Hz−1] (top,

left) against contours of the local maximum normalised PSD max[fGp′(f)/σ
2] (bottom, left) in

plane (x/D, z/D). Contours of the corresponding Strouhal numbers: (top, right) StD(max[Gp′(f)])

against StD(max[fGp′(f)/σ
2]) (bottom, right).

Where σ is the standard deviation of the input signal. Gp′(f) indicates how power is

distributed in the frequency domain. Once the PSD spectrum has been computed at each lo-

cation, the local maximum value for Gp′(f) and the corresponding frequency f(max[Gp′(f)])

are extracted. Each leads to a set of Ni ×Nj ×Nk values averaged over the azimuth which

is plotted in figure 6. The top two plots present the contours of max[Gp′(f)] (grey scale)

and StD(max[Gp′(f)]) (coloured scale) the normalised frequency fD/U∞ based on the di-

ameter D and the free stream velocity U∞. The spectra are averaged in the homogeneous

azimuthal direction. Thus, the graphic representation is reduced to plane (x, z). In order

to combine different levels of information, the contours of max[fGp′(f)/σ
2] (grey scale) and

StD(max[fGp′(f)/σ
2]) (coloured scale) are depicted in figure 6 (bottom). While Gp′(f) pro-

vides the energetic level of each frequency, fGp′(f)/σ
2 returns the relative contribution of

each frequency with respect to the total signal characterised by σ2 (see Eq. 2).

In order to illustrate the representativeness of the PSD peaks selected to plot two-

dimensional maps of the PSD maxima, single-point spectra for the radial velocity ur are
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FIG. 7. Contour map of the streamwise vorticity sign (blue for negative and orange for positive)

along the location of two sensors (left) used to plot single-point spectra at two characteristic

locations inside (middle) and outside the mixing layer (right).

shown for two locations in figure 7. The definition of Gur
(f) is similar to those of Gp′(f) in

Eq 2. The numerical sensors are located inside and outside the mixing layer. Despite the

two different frequency ranges which can be noticed, in both cases a broad band spectrum is

observed along with a very prominent peak allowing an unambiguous selection of the max-

imum. The frequency content evolves a lot from point 1a to point 2a. Point 1a is located

inside the mixing layer and exhibits two harmonics namely StD = 3 and 6 which correspond

to typical high frequencies related to the vortex pairing phenomenon. The dimensionless

frequency StD = 0.18 which is characteristic of the vortex shedding phenomenon can be

distinguished. However, the shedding at point 1a is clearly overwhelmed by the shear layer

process and is far less prominent than at point 2a which shows a clear peak at StD = 0.18.

This physical interpretation is supported by figure 6 (right).

The spectral map in figure 6 (top, left) indicates that the fluctuations with the highest

levels are located on the second half of the emerging cylinder (0.55 ≤ x/D ≤ 1.0), within

the recirculation bubble (z/D ≤ 0.5). Besides, traces of intense fluctuations are captured

in the area 0 ≤ x/D ≤ 0.4 and z/D = 0.5. The corresponding Strouhal numbers in this

latter region are of the order of those expected in an early shear layer stage (StD ≥ 3.0) as

shown in figure 6 (top, right). The most significant unsteady feature of the flow appears to

be related to the dimensionless frequency StD = 0.18. The selected locus of this frequency

is confined in a stripe-shaped area which lies from the emerging cylinder wall up to the free

stream, passing through the mixing layer. This implies a very robust and dominant local
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dynamics which seems to propagate in the radial direction. Such result corroborates those

of Weiss et al. 9 who carried out a linear stability analysis on the present axisymmetric flow

and put forward the absolutely unstable nature of the area 0.35 ≤ x/D ≤ 0.75. This area

is represented in grey dashed lines in figure 6. For x/D ≥ 1.0, the wake dynamics feedback

occurring at StD = 0.18 and StD ∼ 0.6 can be interpreted as the signature of the classical

vortex-shedding phenomenon found in the wake region (16,65).

Considering figure 6 (bottom, left), a beam of high max[fGp′(f)/σ
2] values is observed in

the mixing layer. This area highlights that the major part of the fluctuating energy arises

from the Kelvin-Helmholtz instabilities. The corresponding Strouhal number map (figure

6 (bottom, right)) clearly depicts a linear spreading of the most amplified frequency which

reflects the behaviour of a free mixing layer. In the second part of the cylinder extension, the

inner part of the impinging shear layer presents a blurred distribution of the spectral content.

In particular, the symmetry in the shear layer beam is broken at x/D ∼ 0.3 and z/D ∼ −0.3

with a wider frequency range dominated by the Strouhal number value StD ≥ 1.0. Such a

breakdown in the symmetry may be the consequence of the intermittency of the reattachment

point as shown by Weiss and Deck 53 resulting in an upstream and downstream convection

of the impinging Kelvin-Helmholtz structures (Hudy, Naguib, and Humphreys 59).

On top of this major source of turbulence, secondary patterns whose limits are indicated

by two vertical dashed lines can be distinguished in the spectral map in figure 6 (bottom,

left): one close to the wall in the absolutely unstable zone and two located in the outer part

of the Kelvin-Helmholtz instability. According to figure 6 (bottom, right), those patterns

correspond to the aforementioned StD = 0.18 dynamics. This suggests that the first half of

the recirculation region is mainly driven by mechanisms of Kelvin-Helmholtz type whereas

the far field dynamics is led by vortex-shedding periodicity.

It is distinguished an area with StD ∼ 0.07 close to the separation point, spreading on

the outer part of the shear layer. Such low frequency dynamics are ascribed to the flapping

motion of the mixing layer12. Finally, the high StD region in the far field (around z/D ∼ −1

and x/D ∼ 0.9) may be associated with turbulent noise radiating from the K-H instabilities.
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B. Azimuthal coherence distribution

As previously done by Fuchs, Mercker, and Michel 15 behind a circular disk, a modal

decomposition in the azimuthal direction has been performed in order to quantify the cor-

relation between two time signals in space. In the cylindrical coordinate system (r, θ, x), let

ǫ1(r1, θ1, x1, t) be the signal at sensor 1 which will be considered as the reference input. Let

ǫ2(r2, θ2, x2, t) be the second signal to be compared. Finally, a measure of the correlation

between both signals by means of the coherence function is given by:

C(f, r1,∆r, θ1,∆θ, x1,∆x) =
G12(f, r1,∆r, θ1,∆θ, x1,∆x)√
G1(f, r1, θ1, x1)G2(f, r2, θ2, x2)

= (Cr + jCi)(f, r1,∆r, θ1,∆θ, x1,∆x) (3)

(4)

Where G1 and G2 are the autospectrum of each signal and G12 is the corresponding inter-

spectrum. ∆r,∆θ,∆x respectively define the radial, azimuthal and axial relative positions

between the two sensors. Here the azimuthal direction is investigated, thus the computation

of C reduces to pairs of sensors with r1 = r2 = r and x1 = x2 = x. Larchevêque et al. 66

emphasized that prior to physical interpretations one should determine the threshold be-

yond which the coherence γ becomes statistically significant. Such a threshold denoted

γ99% depends on several parameters detailed in the literature67. On the basis of a Fisher

law with a confidence interval of 99%, a level of γ2 stands for an effective correlation if

γ > γ2
99% with : γ2

99% & 1 − 10

(
−4

ndof

)

according to Koopmans 67 . In the definition of γ2
99%,

ndof = 18
11
nb corresponds to the Welch’s degrees of freedom Welch 68 with nb the number

of blocks over which the spectra are averaged. For the present case the estimation of such

threshold returns γ > γ2
99% ∼ 0.40 where γ = ‖Cr + jCi‖.

At this point it is important to be reminded of two major assumptions about the corre-

lation function:

• Azimuthal homogeneity: C does not depend on the azimuthal position of the reference

sensor (sensor 1) but only on the relative offset between the signals (∆θ).
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• Azimuthal isotropy: statistically, the fluctuations should equally propagate in the

positive and negative sense along the azimuthal direction. This assumption leads to

Ci = 0.

Finally, the resulting Cr function is 2π-periodic with respect to ∆θ and can be expressed

thanks to a Fourier tranform in azimuthal modes. In the present case:

Cr(f,∆θ) =

∞∑

m=0

Cr,m(f)cos(m∆θ) (5)

where, Cr,m(f) denotes the relative contribution of mode m to the fluctuating energy at

frequency f since
∑

m

Cr,m = 1.

On the experimental side, Deprés, Reijasse, and Dussauge 11 carried out a similar decom-

position. In Weiss et al. 9 , the study of the spatial organization of the energy for a given mode

m was performed at the wall and not in the flow field as in the present work. By performing

a coherence analysis in planes normal to the flow at three stations (x/D = 0; 0.12; 0.55)

on the wall of the emerging cylinder, the authors put forward that the highest levels of

coherence for StD ∼ 0.2 occur for an interval ∆θ = π between the pressure sensors. They

deduced that this frequency is driven by the azimuthal mode m = 1.

In the hereby numerical simulation, this assumption is verified in figure 8 (left) in which

the first azimuthal mode clearly dominates at StD = 0.18 along the x/D direction with

a maximum value of the coherence value Cr,m=1 = 0.8 reached at x/D = 0.5. Figure 8

(right) shows the distribution at the wall of the real part of the coherence function for the

azimuthal mode m = 1. The map illustrates that on the first half of the separated flow, the

dynamics involving two diametrically opposite points (∆θ = π) is mainly governed by the

shear layer flapping motion (StD ∼ 0.07) while the second half exhibits high correlations

around StD ∼ 0.2. It is worth noting the co-existence of both frequencies in the area

0.3 ≤ x/D ≤ 0.75 followed by the drop of Cr,m=1 for StD ∼ 0.07 to the benefit of StD = 0.18.

This suggests that the absolutely unstable zone may confine the effect of the flapping motion

in the upstream region for m = 1.

In order to elucidate the origins of the Cr,m=1 distribution at the wall, a coherence anal-

ysis in the radial direction has been performed for the main frequencies in figure 9. This

latter depicts the spectral map (x/D, r/R) of the first azimuthal mode for StD = 0.07 and
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FIG. 8. (left) Evolution of the real part of the coherence function for the first four azimuthal modes

for StD = 0.18 along the streamwise direction at the wall. (right) Spectral map (StD, x/D) of the

first azimuthal pressure mode Cr,m=1 at the wall (r/R = 0.4, with R the radius of the greatest

cylinder).

FIG. 9. Spectral map of the first azimuthal pressure mode Cr,m=1 along the streamwise (x/D) and

radial (r/R) directions for Strouhal numbers StD = 0.07 (left) and StD = 0.18 (right).

StD = 0.18. As in figure 8 (right), only the first half of the separated flow features high

correlation levels at StD = 0.07. Nevertheless, an area of high correlation is found in the

range 0 ≤ x/D ≤ 0.5 above the mixing layer (r/R ∼ 1), where the flow dynamics is not dis-

turbed by any turbulent fluctuations. It is also worth reporting some significant coherence

areas underneath the mixing layer. This suggests that the flapping dynamics constitutes a

robust feature of the turbulent shear layer and significantly affect the organisation of the

recirculation area.
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High correlation levels in the mixing layer also occur in the interval 0.3 ≤ x/D ≤ 0.8

for StD = 0.18 as shown in figure 9 (right). One should remark that the specific position

x/D ∼ 0.3 corresponds to the locus where the Kelvin-Helmholtz fluctuations become less

intense according to figure 6 (left). Finally, by the end of the emerging cylinder, the feedback

of the wake vortex-shedding is captured as it was mentioned previously.

In this subsection, it has been put forward that the unsteady dynamics is governed by

the first azimuthal mode m = 1 which implies that fluctuations at two diametrically op-

posed points are paired in time. Then, the spatial distribution of the most excited Strouhal

numbers is typical of the flapping motion of the mixing layer (StD = 0.07). This dynam-

ics dominates in the first part of the emergence before being overwhelmed by the vortex-

shedding phenomenon (StD = 0.18). The dynamics of the flow phenomena related to these

two frequencies appears to be stronger in the free stream.

More globally, the three-dimensional fluctuating field has been characterised both in the

Fourier space and in terms of azimuthal coherence. This analysis provides a detailed profile

of the unsteady axisymmetric backward facing step flow. Yet, a further insight is required

in order to shed light on the three-dimensional spatial organisation of each characteristic

frequency of the fluctuating field. Practically, such an analysis is usually performed by

decomposing the flow structures into modes. In this study, the Fourier mode decomposition

method is used. Results are discussed in the next section in which a comparison with the

recent Dynamic Mode Decomposition method is also performed, to cross-check the first

analysis.

IV. MODAL DECOMPOSITION OF THE THREE-DIMENSIONAL

PRESSURE FIELD

A. Fourier modes

It is reminded that the temporal Discrete Fourier Transform provides Fourier modes X(f)

defined on a given frequency range and that the spectral investigations are carried out on a

frequency window ranging from 5 Hz to 100 kHz by steps of ∆f = 60 Hz (∆StD ∼ 0.025).

The previous analysis focused on the Power Spectral Density Gp′(f) of each Fourier mode,

i.e. the square modulus of X(f) over the integration period for each frequency band ∆f .
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In this section, each Fourier mode is considered in its complex form at each point in the

computational volume (shown in figure 1). The complex Fourier modes associated with

the four characteristic frequencies identified in the preliminary investigations (StD = 0.07,

0.18, 0.60, 6.21 (±0.025)) were extracted. The specific value of the dimensionless frequency

StD = 6.21 has been selected to illustrate the shape of the mode related to the characteristic

frequency observed in the early stages of the shear layer. This value decreases downstream

in the mixing layer far from the separation as shown in Weiss and Deck 53 . In the early

stages of the mixing layer the characteristic high frequencies are ranging from StD = 5 and

StD = 8. Both the Fourier and DMD modes have similar shapes in this range. Modes

are represented for each characteristic frequency range namely StD = 0.07 for the flapping

phenomenom, StD = 0.18 for the shedding phenomenom, StD = 0.6 for the oscillation of

the reattachment point of the recirculation bubble along the extension, StD = 6.21 for the

K-H instability.

Weiss et al. 9 showed thanks to a linear stability analysis that the axisymmetric body

dynamics is led by a significant unstable area centered around x/D ≈ 0.55 suggesting a

global instability mechanism. Let us be reminded that in that case, the flow can behave as

an oscillator and imposes its own dynamics. Self-sustained oscillations are observed which

are charactised by a well-defined frequency f0 (or wavelength λ0). This behaviour is clearly

educed in figure 8 showing the spatial distribution of its energy and the antisymmetric

nature of the corresponding mode has been investigated by the azimuthal Fourier transform

of the interspectrum of pressure fluctuations at frequency StD = 0.18 (figure 9).

As an additional way to investigate this major property of the flow, one can also consider

directly the spatial distribution of the local single-point time Fourier transform. As a pre-

liminary example, let us consider the complex exponential mode of pure harmonic behavior

i.e. characterised by its frequency f0 (or wave length λ0) Ae
2jπf0t (or Ae

2jπ λ
λ0 ) which has a

constant modulus A.

Figure 10 reminds that there are different ways of considering such a signal by either

its real R(•) and imaginary part I(•) or its amplitude and phase φ = Atan
(

I(•)
R(•)

)
. To

get further insight into the spatial organisation of the intrinsic dynamics of the flow, the

complex Fourier transform X(f) of the fluctuating pressure field p′(t) is analysed.
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FIG. 10. Different depictions of the model Ae2jπf0t (or Ae
2jπ λ

λ0 ).

First, figure 11 displays the imaginary part of the Fourier mode (I(XStd=cst(f))) on each

grid point for a set of selected frequencies of interest. Contours are normalised by the

sampling frequency fsamp to directly obtain a data representation in a physical unit, i.e.

Pascals (Pa). The selected computational volume allows to extract half of a wavelength

in the streamwise direction for this specific Strouhal number. As expected, considering

the spatial distribution of the observed patterns, the wavelength decreases as the Strouhal

number grows. Besides, contours of ℑ[XStD=cst(f)] at StD = 0.18 clearly exhibit a sequence

of diametrically opposed positive and negative patterns with alternating orientation in the

direction transverse to the flow. One can note that both experimentally and numerically, the

flow is likely to adopt one single orientation due to local perturbations (surface roughness,

numerical methods).

In contrast to the fully antisymmetric behaviour observed at StD = 0.18, a large ax-
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isymmetric pattern located on the second half of the emerging cylinder is evidenced at

StD = 0.07. Such a difference is consistent with the results of Deck and Thorigny 8 who

unveiled that the shear layer flapping motion around StD = 0.07 is associated with the

azimuthal mode m = 0 while the vortex shedding is related to the antisymmetric mode

m = 1. Then, two diametrically opposed zones are observed close to the separation edge.

This spatial distribution corroborates the results of section IIIB. In this section, the area

0 ≤ x/D < 0.55 is characterised by a high coherence level for the first azimuthal mode (see

figure 9) which rapidly falls to low levels of Cr for x/D ≥ 0.55).

The spatial distribution of the Fourier mode related to StD = 0.60 is similar to that

of StD = 0.18 with a shorter streamwise wavelength. One should note, that for this fre-

quency range, the pressure contours are extended in the radial direction and slightly tilted

downstream. This feature may be related to the acoustic propagation and the tilting to the

advection effect66.

The isosurfaces of I[X(f)] · fsamp = ±200 [Pa] at StD = 6.21 in figure 11 (bottom, right)

clearly show the presence of toroidal structures that are convected along the direction of the

shear layer and remain well organised as a sequence of alternated positive and negative high

fluctuating pressure zones. Such a distribution is characteristic of the Kelvin-Helmholtz

convective instabilities as discussed by Huerre and Rossi 63 .

To further investigate the dynamics associated to a given frequency Stcs, the focus is put

on the inverse Fourier Transform of the pressure Fourier mode. Indeed, the inverse Discrete

Fourier Transform states that the initial discrete pressure signal p′(ti) (i = 1, ..., N) can be

rebuilt from all the Fourier modes (X(fk))fk= k
N
fsamp,[k=0,...,N−1].

Due to the Hermitian symmetry of the discrete Fourier transform X(fk) = X∗(fN−k),

the reconstructed fluctuating pressure field p′r(ti) is real-valued:

p′r(ti) =
1

N

N−1∑

k=0

X(fk) · e
2πj k

N
ti (6)

Then, following this reconstruction step, only one mode for each characteristic fre-

quency of the flow dynamics is selected. Let Stcs be the characteristic selected frequency,

p′r(ti)|Stk=Stcs = X(fk)|Stk=Stcs · e
2πj k

N
ti|Stk=Stcs is complex-valued while p′r(ti) defined by all
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FIG. 11. Contours of ℑ(X(f)) · fsamp [Pa] and isosurfaces ℑ(X(f)) · fsamp = 200 (red) and

ℑ(X(f)) ·fsamp = −200 (blue) of the Fourier modes associated with (from top left to bottom right)

StD = 0.07, StD = 0.18, StD = 0.60 and StD = 6.21 (the flow goes from right to left).

modes (see Eq 6) is real-valued.

The physical interpretation of ℑ(X(fk)|Stk=Stcs · e
2πj k

N
ti|Stk=Stcs) is not commonly used but

in practice this quantity is simply related to the time derivative of p′(ti)
69 which is relevant

to evidence a large scale unsteady process.

To complete the representation of the mode both the real and imaginary parts of the

DMD modes as well as the corresponding phase are plotted (see figures 14,15,16).

Figure 12 shows four snapshots of the inverse Fourier mode dynamics associated with

StD = 0.18 with a time interval ∆t = T/6|St=0.18 between each other so that half of a period
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is reproduced. Organisation at t = T0 has been discussed above and is consistent with the

conclusion of the spectral study in the wave number space which evidenced the dominance

of λθ = πD/2. Snapshot at time T0+T/6|St=0.18 illustrates the convection of the large scale

pairs at the extremity of the emerging cylinder towards the wake region. This is coupled with

a slight convection downstream close to D/4 and a growth in size of the upstream negative

fluctuating pressure pattern (represented in blue). Snapshot T0 + 2T/6|St=0.18 depicts the

appearance of an extra pair of structures close to the separation edge while the initial ones

keep convecting downstream. The last figure exhibits a switch in the organisation of the

first snapshot since the exponential term in equation 6 provides the periodic aspect of the

dynamics and bears the intrinsic pulsation of StD = 0.18.

It is remarked that the most amplified pressure patterns (snapshots T0 and T0 +

T/2|St=0.18) occur at specific locations along x. The first one is located in the absolutely

unstable area (0.35 ≤ x/D ≤ 0.75) identified by Weiss et al. 9 while the second one is

located by the edge of the emergence (0.75 ≤ x/D ≤ 1.2). This suggests that the dynamics

in the radial direction is mostly driven by the intrinsic pulsations of the absolutely unstable

region. Periodically, large scale coherent structures emerge from that region. As they con-

vect downstream and reach the edge of the small cylinder, they are likely to induce large

scale vortices, rotating in the streamwise plane, due to the radial pressure gradients and

constitute the von Kármán alley in the wake region.

In this paragraph, the spatial distribution of the Fourier mode is investigated by consid-

ering the phase φ(X(f)) = atan[ℑ(X(f))/ℜ(X(f))] which therefore provides the location

of the Fourier mode in the complex plane. The regions of positive and negative values for

the phase φ(X(f)) exhibit a helical shape for StD = 0.18. This is emphasized in figure 13

with the isosurfaces φ(X(f)) = ±0.02 which bound the two different areas. Direction x in

the figure was stretched for graphical purpose. Such a spatial structure of the pressure fluc-

tuations related to the vortex-shedding is consistent with the experimental observations of

Taneda 14 and Berger, Scholz, and Schumm 17 who put forward the assumption that the flow

past a sphere might adopt a helical organisation. Monkewitz 16 showed that the preferred

instability mode in the axisymmetric wake is a spiral which was explicitly evidenced by

Weickgenannt and Monkewitz 19 on an axisymmetric bluff body wake at ReD = 3×104 with

a representation of the phase-locked velocity. To the authors’ best knowledge, this helical

mode is highlighted for the first time in physical space thanks to a Fourier analysis of the
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FIG. 12. Visualisation of the computed inverse Fourier mode dynamics (imaginary part) associated

with StD = 0.18. The values of the two isosurfaces are ℑ(X(f)) · fsamp = 200 (red) and ℑ(X(f)) ·

fsamp = −200 (blue). Each picture is ∆t = T/6|St=0.18 apart from top left to bottom right (the

flow goes from right to left).

fully three-dimensional fluctuating field. Besides, the coexistence of absolute helical (m=1 )

unstable global modes within the recirculation region and convectively unstable shear layer

modes corroborates the results of Sandberg and Fasel 10 on supersonic axisymmetric wakes.

Since the large scale helical structure is captured at the early separation stage of the flow, it

suggests that the spiral organisation exposed by Monkewitz 16 derives from the convergence

of the hereby helix, as it convects downstream, towards a location on the axisymmetric

axis. The data provided in this study does not allow to confirm such an assumption since

the computational volume of acquisition is restricted to the recirculation area. In addition,
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the presence of the emerging cylinder may certainly affect the evolution of the spiral radius

compared to the case of a single axisymmetric bluff-body.

For bluff-body flows the analogy between a low-Reynolds (laminar and incompressible)

configuration, such as the cylinder plate or sphere case6,20,70–72, and higher Reynolds number

(and high subsonic M∞ = 0.7 ) is hardly comparable. Indeed, the flow around a sphere at

Re = 300 is the seat of a self-sustained instability around the Strouhal number of 0.135.

This dynamics generates vortex-shedding formed by coherent structures such as hairpins.

The higher Reynolds number dynamics has different characteristics. Although a fully tur-

bulent flow may also be the site of a global instability (dynamics temporally self-sustained),

like its laminar counterpart (see Weiss et al. 9), the spatial development of these instabilities

is generally very different. The reason is that there are also highly unstable convective

instabilities (and sensitive to different environmental forcings) at high Reynolds numbers

that interact and blend with the global instabilities generating complex structures formed

by an aggregate of smaller structures. The helical structure described in this paper is obvi-

ously not a coherent structure as can be the hairpin at low Reynolds number but rather a

cluster of spatio-temporally correlated structures. The preexistence of coherent structures

upstream can further complicate the spatio-temporal dynamics.

The rapid phase variation of the azimuthal Fourier mode m = 1 observed at x/D ≈ 0.9

in figure 13 is indeed quite brutal because it corresponds to a sudden change in dynamics.

The beginning of the emergence (x/D < 0.5) corresponds to the development of the vortex

structures attached to the mean shear-layer and driven mainly by the mean local vorticity

thickness δω(x). Around x/D ∼ 0.5, the structures attached to the mean shear-layer are

shedded, the coherent structures no longer follow the mean shear-line, this is the vortex-

shedding phenomenon. The global motion is then mainly helical (with an azimuthal wave

number m = 1, see9). On the other hand, the existence of an absolute (global) instability in

the zone9 of an azimuthal wave number m = 1 represents the presence of a helical dynamics

which drives the flow downstream.

As for the validity of a linear stability analysis for a turbulent flow, it has indeed been carried

out for a long time with sometimes a real success but without real theoretical justification.

Recent studies are beginning to better lay the theoretical framework of such an analysis73–75.
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In the study by Statnikov, Meinke, and Schröder 30 a cross-flapping motion of the shear

layer is observed at StD ≃ 0.2, triggered by antisymmetric vortex shedding. The present

results firstly introduced in Pain, Weiss, and Deck 26 show the same thing. The main dif-

ferences lie in the interpretation of the dynamics of the antisymmetric character. In both

simulations, there are hairpins, lambda vortices, stripes and structures on the scales of the

order of the vorticity thickness of the shear profile. These structures do not play a direct

role in the antisymmetric dynamics at StD ≃ 0.2. A major difference lies in the jet of the

nozzle which is included in the work of Statnikov, Meinke, and Schröder 30 and not in the

present study. Taking this jet into account can significantly alter the overall dynamics of

the wake and could lead to different conclusions. However, it is important to note, that the

presence of the jet does not alter the existence of a StD ≃ 0.2 dynamics that originates in

an absolutely unstable zone around the extension and not in the near wake (Weiss et al. 9).

The near wake, which is of convective (and not absolute) nature, is then forced by this

temporally self-sustaining dynamics and develops convectively unstable instabilities. The

latter are strongly influenced by the local topology of the flow and therefore by the presence

or absence of the jet.

As it was mentioned above, the helix seems to feature an anti-clockwise oriented rotation

when facing the flow. Although here the helix pitch is not constant along x due to the

stretching of the x direction, it can be measured that the isosurface φ(X(f)) = 0.02 cov-

ers an angle π across a distance lπ ∼ 0.9D leading to an approximated pitch α ∼ 0.29D

[m.rad−1]. The complete rotation is thus expected to be performed for l2π ∼ 1.8D. This

is of the order of the absolute wave length λ0 from Weiss et al. 9 who derived the stream-

wise evolution of λ0 by means of a linear stability analysis and obtained λ0 = 2.05D in the

absolutely unstable region. Even though Weickgenannt and Monkewitz 19 investigated the

axisymmetric bluff body wake in the Reynolds number range 3× 103 ≤ ReD ≤ 5× 104, the

authors did not report the effect of ReD on the geometrical characteristics of the spiral. Yet,

from the downstream evolution of the phase-locked velocity 〈Vx〉/V∞
19, the approximated

spiral pitch is αbluff-body ∼ 0.64D [m.rad−1] at ReD = 3×104. This conjectures that the higher

the Reynolds number, the lower the pitch and the more spin the spiral gains. Armaly et al. 7

experimentally evidenced on a three-dimensional backward facing step that the length of

the recirculation bubble decays as the Reynolds number increases. This would support the

previous assumption that the helical dynamics is compressed to a smaller volume as the
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FIG. 13. Isosurfaces φ(X(f)) = ±0.02 of the phase φ(X(f)) = atan(ℑ(X(f))/ℜ(X(f))) of the

Fourier mode associated with StD = 0.18 (the flow goes from right to left).

reattaching length decreases.

To conclude, the spatial organisation associated with the main frequencies identified in

section III namely StD has been evidenced. The analysis of the imaginary part of the Fourier

modes highlighted the antisymmetric nature of the fluctuating pressure 3D distribution

associated with StD = 0.18 as opposed to axisymmetric structures for StD = 0.07. A

temporal reconstruction of the Fourier mode associated to StD = 0.18 has been performed

in order to investigate the radial dynamics of the vortex-shedding phenomenon. Finally, the

visualisation of the phase of X(f)|St=0.18 put forward the helical nature of that mode.

B. Dynamic modes

In the diversity of modal decomposition methods, the Dynamic Mode Decomposition

(DMD) derived by Rowley et al. 76 and Schmid 77 has been used in this section with the view

to support the results of the previous section. This method relies on the spectral analysis

of a linear operator called the Koopman operator76. Each dynamic mode is characterised

by its own frequency. As such, this method is a well-adapted tool to compare with the

above results. Chen, Tu, and Rowley 78 have mathematically shown that DMD on mean-

subtracted input data is equivalent to the temporal Discrete Fourier Transform. The aim

of this section is to apply the Dynamic Mode Decomposition on such an input data contest
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with the view to cross-check the spatial distribution that has been derived above with an

alternative approach.

The main purpose of this study is to show that the nonlinear dynamics of a flow around

an axisymmetric backward-facing step with downstream cylinder has a large-scale helical

structure as well as a hierarchy of structures at intermediate scales. To best of the authors’

knowledge, the illustration of such a result by two different methods constitutes a novelty.

Concerning the equivalence between the temporal discrete Fourier transform and the DMD,

there are several works giving a framework to this equivalence. Historically, Rowley et al. 76

and Schmid 77 proposed the DMD which has the advantage to be a frequency modal de-

composition easily accessible. Appendix A has been added for a detailed description of

this method. The advantage of the DMD, relative to other frequency decomposition such

as for example Fourier decomposition, is to better grasp the real physical mechanisms, in

particular for transient or non-equilibrium phenomena. The DMD can be used with both

experimental and numerical data. The main constraint is to have access to sufficiently

time-resolved data. One important difference between for example another decomposition

like POD and the DMD algorithm is that the mean is not first subtracted for DMD. This

is important to note, as it can be shown that subtracting the mean before applying DMD

gives results identical to a temporal discrete Fourier transform Chen, Tu, and Rowley 79 , if

the equation yk+1 = Ayk, k = 1, · · · , m (see Appendix A) is satisfied exactly (e.g., if the

first m snapshots are linearly independent). Generally, this equivalence is obtained when

the flow is statistically stationary.

In our case, although the flow is fully turbulent, the latter is massively separated, which

a priori does not allow to be certain to be ”statistically stationary”. Indeed, there is in

particular a self-sustained dynamic that is weakly dependent on the scales characteristic of

turbulence9. In this type of regime, the DMD is well posed and not totally equivalent to a

DFT, so it is interesting to cross methods to confirm (or deny) the robustness of physical

mechanisms observed (here the large-scale helical movement).

Table II sums up the differences between Fourier and DMD approaches in terms of input

and output data as well as 3D representations.

Starting from the same dataset containing the fluctuating signal at each point of a given
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volume, the Fourier analysis focuses on a sole variable (e.g. the pressure p) whereas the

DMD needs multiple variables depending on the definition of the scalar product Chen, Tu,

and Rowley 78 , Aubard, Robinet, and Gloerfelt 80 . Then, a major difference lies in the need

for a matrix inversion to obtain the DMD spectrum from the whole computational domain

Ω while the space-time representation of the spectral content using a Fourier analysis can be

obtained computing one PSD spectrum for each point in Ω. The Nijk operations required to

calculate the PSD spectra are easy to parallelize. At the opposite, DMD operations Rowley

et al. 76 , Schmid 77 , Schmid et al. 81 involving matrix inversion needing a rapidly increasing

memory storage are far more expensive.

A summary of the computational costs required for the computation of the 3D Fourier

and DMD modes is gathered in Table III.

Indeed, Table III shows an estimation of the needed CPU time for the DMD based on the

same dataset as for the Fourier analysis. Such a post-processing would lead to 1, 200 days

on a single processor. Even a massive parallelization of the DMD algorithm distributed over

2, 400 cores and taking O(400) h CPU time as the one performed by Statnikov, Meinke, and

Schröder 30 allows only to treat 512 snapshots (requiring 0.65 Gb of storage) and containing

Nijk = 16.5× 106 points.

Thus, such computational costs justify the use of both a coarser mesh and a reduced

snapshot dataset which clearly enables a drastic reduction in CPU time and memory cost.

A critical assessment of Fourier and Dynamic modes can be done. In fact, a major advantage

of the Fourier analysis lies in the opportunity to use the complete available dataset which

ensures to get access to all the spectral content with the sole limitation imposed by the

total duration of the signal and the sampling frequency and the Nyquist-Shannon criterion,

consequently.

In the present study, the input raw numerical data for this modal analysis consists in a

set of N = 10, 000 snapshots of the 3D fluctuating pressure field sampled from the initial

data set used in the previous section (Tacq U∞/D = 476 i.e. Tacq = 200 ms). The sampling

frequency of the DMD modes is 50 kHz which has to be compared to the one used for the

Fourier modes which is higher and equal to 100 kHz. Besides, the dynamic modes were

computed on a coarser grid consisting of 35 × 23 × 121 points. This coarser mesh derived
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TABLE II. Sketch summarising the main differences between PSD and DMD approaches.

Fourier PSD DMD

I :

fluctuating signal at one point (one

variable : pressure p)

fluctuating signal at one point

(multi-variables : depends on the

scalar product)

O :

one PSD spectrum for each point

in Ω

one DMD spectrum for the whole

computational domain Ω

3D :
requires Nijk PSD operations 1 3D DMD operation

I: Input data, O: Output data.
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TABLE III. CPU time and storage requirements for both the DMD and Fourier analysis on a single

core.

Nijk [points] Storage [Gb] N [snapshots] TTOTAL [h]

present DMD 0.1× 106 4 10,000 O(88)

DMD with Fourier analysis requirements 4.5× 106 2,000 20,000 O(2.8 × 104)

present Fourier analysis 4.5× 106 2,000 20,000 O(20)

from the initial one, exposed in section IIA, using space modulo in the three directions.

The aim for such reductions in both the temporal and space parameters is to reduce the

CPU time involved. The Arnoldi algorithm for the computation of the dynamic modes was

provided in an in-house sequential code. It consists in two main steps that are first the

computation of a so-called Companion matrix and finally the resolution of the eigenproblem

associated with that matrix.

Each of the eigenvalues computed is associated with one dynamic mode Kj whose fre-

quency is given by fj = ℑ(log(λj))/2π∆t where λj is the eigenvalue associated with Kj and

∆t is the time step between the snapshots (∆t = Tacq/N). As a comparison with the Fourier

modes, contours of the real part, the imaginary part and the phase of the dynamic modes

associated with StD = 0.07; 0.18; 0.60; 6.21 are shown in figure 14. In particular, the phase

plotted for DMD modes shows a continuous helical shape.

The global spatial distribution provided by the dynamic modes is consistent with those

of the Fourier method as the wavelengths fit well with each other. Although the dynamic

mode associated with StD = 0.07 is axisymmetric and is in agreement with contours of

ℑ(X(f))|St=0.07, the sequence of the positive and negative pressure patterns is inverted

compared to the Fourier results. Moreover, ℑ(Kj) at StD = 6.21 exhibits significantly less

coherent structures than ℑ(X(f))|St=6.21 which is the consequence of the coarser grid.
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FIG. 14. DMD isosurfaces and contours of ℑ(Kj) : StD ≃ 0.07, StD ≃ 0.18, StD ≃ 0.60,

StD ≃ 6.21 (the flow goes from right to left).

FIG. 15. DMD isosurfaces and contours of ℜ(Kj) : StD ≃ 0.07, StD ≃ 0.18, StD ≃ 0.60,

StD ≃ 6.21 (the flow goes from right to left).
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FIG. 16. DMD isosurfaces and contours of φ(Kj) : StD ≃ 0.07, StD ≃ 0.18, StD ≃ 0.60, StD ≃ 6.21

(the flow goes from right to left).

V. CONCLUSIONS

The base flow of an axisymmetric bluff body extended by a finite-length cylinder with

smaller diameter has been investigated numerically using ZDES at ReD = 1.2 × 106. In

particular, the detailed characteristics of the coherent structures and their intrinsic behaviour

have been scrutinised.

First, the energy distribution of the fluctuating pressure at every vertex in a computa-

tional volume around the emerging cylinder was studied in both the frequency and azimuthal

wave number space.

It was evidenced an energetically dominant area with 0.4 ≤ x/D ≤ 0.75 spreading in the

radial direction from the wall up to the far field and associated with the vortex-shedding

at StD = 0.18. Moreover, the radial expansion of the high Power Spectral Density area

with StD = 0.18 is assumed to be the consequence of the absolutely unstable nature of the

vortex-shedding evidenced by Weiss et al. 9 .

Thus, the dominant azimuthal wavelength along the streamwise direction and at three

radial stations is λθ = πD/2 which is consistent with the analysis of Deck and Thorigny 8

who put forward that the characteristic azimuthal wave number involves two diametrically

opposed points. It was shown by means of spectra of pressure fluctuations in the azimuthal

wave number space Gp′(kθ) analysis, that such an azimuthal organisation arises at several
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locations around the emerging cylinder and at various range of Strouhal numbers.

In terms of azimuthal coherence, it was put forward that the most coherent dynamics

is related to StD = 0.18 for the azimuthal mode m = 1. It is evidenced that the areas

with the highest levels of coherence are mainly located above the mixing layer where the

flow is isolated from the shear flow turbulence. It is thus inferred that the robustness of the

antisymmetric dynamics in the far field deeply impacts the self-sustained pulsation of the

recirculation region.

In order to elucidate the three-dimensional organisation of the fluctuating pressure field

related to each of the characteristic frequencies a three-dimensional modal analysis has been

performed. The reference Fourier analysis was cross-checked by a dynamic mode (DMD)

analysis.

The imaginary part of the StD = 0.18 Fourier mode clearly put forward the antisym-

metric distribution in the direction transverse to the flow. It occurred that the Fourier

mode associated with the flapping motion of the shear layer evolves from an antisymmetric

organisation close to the separation edge, to a fully axisymmetric nature on the second half

of the emerging cylinder.

Thus, the assumptions made in the former studies regarding the physical interpretation

of the flow dynamics using local 0D, 1D and 2D analyses have been supported using ex-

tensive spectral analyses in the three-dimensional volume surrounding the separated flow of

interest.

Then, the nonlinear dynamics of a flow around an axisymmetric backward-facing step with

a downstream cylinder has a large-scale helical structure as well as a hierarchy of structures

at intermediate scales. This result has been illustrated by two different methods namely a

decomposition into Fourier modes and a DMD study to show the robustness of the afore-

mentioned conclusions.

Last but not least, a plot of the spectral map of the first azimuthal pressure mode Cr,m=1

along the streamwise (x/D) and radial (r/R) directions for Strouhal numbers StD = 0.07

and StD = 0.18 has been performed. Such a post-processing required to compute a spectral

map made with the coefficient of the two-point correlation for m = 1. This procedure

allowed to determine the locations where the flapping phenomenom (StD = 0.07) and the

shedding phenomenom (StD = 0.18) are dominant namely above the axisymmetric shear
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layer and in the absolute instability area previously identified by Weiss et al. 9 near the

middle of the emergence.

With a view to change the global dynamics of the flow, these locations constitute areas of

potential receptiveness to a control device.

Finally, the helical organisation put forward by Weickgenannt and Monkewitz 19 in the

wake of a bluff body by means of phase locked velocity was here evidenced with an alternative

tool. The visualisation of the phase in the complex plane of the Fourier mode at StD = 0.18

suggested the combined translation-rotation of positive and negative fluctuating pressure

patterns around the streamwise axis.

In some future work, it should be of interest to focus on the interaction between the

various pressure distributions evidenced here. An analysis of the temporal reconstruction of

the combined Fourier modes could lead to some insights in the modal interactions. Note that

such an approach could provide improved understandings of the mechanisms responsible for

the shear layer flapping motion transition from m = 1 azimuthal mode to m = 0.
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Appendix A: Dynamic Modal Decomposition (DMD)

The modal decomposition of fluid dynamics is a frequently employed technique, capa-

ble of providing tools for studying dominant and coherent structures in turbulent flows.

The coherent structures represent spatially or temporally evolving vortical motions, either

growing with one rate, oscillating with one frequency or containing the largest possible

kinetic energy. A complex turbulent flow often consists of a superposition of such coherent

structures, whose development is responsible for the bulk mass, energy transfer or hydro-

dynamic instability. DMD is a data-driven computational technique capable of extracting

dynamical information from flow fields measured in physical experiments or generated by

direct numerical simulations. DMD is a powerful method of spectral decomposition, built
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to represent statistically recurring and transients events. The DMD modes are extracted

from the data snapshots and a unique frequency is associated to each mode.

The coherent features of turbulent separated bubble around the axisymmetric backward

facing step are identified by modal decomposition techniques in order to describe the under-

lying mechanism. An advantage of modal decomposition is the possibility to reduce the large

scale dynamics to a fewer number of degrees of freedom. To extract the coherent motion

from a given dataset, we consider a sequence of m discretized and equi-distributed velocity

fields uj = u(xi, tj) ∈ R
n, tj = j∆t, j = 0, 1, · · · , m− 1 as

Um = [u0,u1, · · · ,um−1] ∈ R
n×m, (A1)

where n is the total number of degrees of freedom at one time instant (number of grid

points multiplied by the number of velocity components). This number is usually large com-

pared to the number of snapshots m in the flow problem, n ≫ m. In modal decomposition,

the flow dynamics is splitted into space and time dependent parts as

u (xi, tj) =

m−1∑

k=0

φk (xi)ak (tj) , (A2)

where φk(xi), k = 0, · · · , m− 1 is spatial basis (the modes) and ak = ak(tj) are temporal

coefficients (amplitudes). This decomposition is not unique and depends on the choice of

the base φk. In DMD, the snapshots are generated by a dynamical system. It is possible,

without explicit knowledge of the evolution operator, to extract frequencies, growth rates,

and their related spatial structures. DMD splits the flow into different spatial modes at a

given frequency. Rowley et al. 76 present the theoretical framework to compute the Koop-

man decomposition from a finite sequence of snapshots. Schmid 77 provides a more stable

method to compute dynamic modes: the DMD algorithm. To compute this decomposition,

a sufficiently long, but finite time serie of snapshots is considered. A time-evolving physical

situation may be approximated by the action of a linear operator to the flow field uj such

that

u (xi, tj+1) = uj+1 = eÃ∆t
uj = Auj, (A3)

where A = eÃ∆t is the evolution operator. It is then possible to write
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u (xi, tj) =

m−1∑

k=0

φk (xi)ak (tj) =

m−1∑

k=0

φk (xi) e
iωkj∆t =

m−1∑

k=0

φk (xi) λ
j
k, (A4)

where iωk and λk are the eigenvalues of the matrices Ã and A, respectively, and the φk

are the corresponding eigenvectors. The relation linking the eigenvalues λk and the more

familiar complex frequencies iωk is

λk = eiωk∆t

It is then possible to write φk = vkdk where vT
kMvk = 1. We define dk as the amplitude

and d2k as the energy of the dynamic mode φk.
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