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Abstract. The paper is devoted to the verification of Software Defined Network-
ing (SDN) components and their compositions. We focus on the interaction be-
tween three basic entities, an application, a controller, and a switch. When the
application submits a request to the controller, containing a set of rules to config-
ure, these rules are expected to be ‘pushed’ and correctly applied by the switch of
interest. However, this is not always the case, and one of the reasons is the pres-
ence of races or concurrency issues in SDN components and related interfaces.
We propose a model checking based approach for deriving test sequences that can
identify SDN races. The test generation strategy is based on model checking, and
related formal verification is performed with the use of extended automata spec-
ifying the behavior of the components of interest; Linear Temporal Logic (LTL)
formulas are utilized to express the properties to check. We generalize the races
of interest and propose an approach for deriving the corresponding LTL formulas
that are later used for verifiation. The Spin model checker is used for that purpose
and thus, Promela specifications for interacting components are also provided;
those are: the ONOS REST API, the ONOS controller and an OpenFlow Switch.
An experimental evaluation with the aforementioned components showcases the
existence of race conditions in their compositions.

Keywords: Software Defined Networking (SDN) · Races · Controller · Switch ·
Verification · Testing

1 Introduction

Software Defined Networking (SDN) technologies are actively developing nowadays
and are utilized in future network standards, such as for example 5G. Therefore, thor-
ough testing, verification and validation of the components of such networks are crucial.
A number of works are in fact dedicated to the verification and testing of SDN enabled
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switches and SDN controllers (see, for example [14], [13], [20]). At the same time,
even if two SDN components have been carefully verified up to some extent, it is still
possible that their composition can cause network misconfigurations and inconsisten-
cies. That is the reason why in this work, we focus on the interaction of three crucial
SDN components, namely an SDN application, an SDN controller and an SDN enabled
switch. Generally speaking, the communication between the latter two takes place via
the OpenFlow protocol [10], and therefore in this work we focus on the OpenFlow
specification as the base for further validation [4].

We note that the OpenFlow protocol does not guarantee that requests between the
controller and switch are delivered in the same order as they have been sent; thus races
between the requests are possible in the OpenFlow channels. In [16], the authors an-
alyze the reasons and impact of such races. In fact, they identify three types of races:
i) packet races on the data plane, ii) Post/Get/Delete races on the southbound inter-
face (between the controller and the switch), and iii) a combination of data and control
races on the southbound interface. To identify races in the components of interest, i.e.,
to simulate the races and conditions of those using a formal finite state model (or a
composition of those) we propose another classification. We identify the following race
types: races between inputs and outputs at a given state of the automaton and races in
the communication channel when two or more automata are working in a dialog mode.

We note that the problem of SDN races has been previously raised and existing util-
ities, such as for example SDNracer, are quite effective [3]. The proposed approaches
rely on the definition of a specific (partial) order between the possible SDN events and
further monitoring if the defined order is violated. For example, in [11] the authors
derive a specific HB graph (happens-before model) to identify the order of events. An-
other possibility is to take a preventive path, i.e., to derive the SDN components that are
carefully synchronized, so that races cannot show up [9].

In this paper, we propose a complementary approach which is based on proactive
testing, i.e., on generation of specific application requests that can lead to a race in an
SDN framework. Test sequences that are executed against an SDN framework under
test are derived using formal verification approaches. In particular, we employ the Spin
model checker [5] that produces a counterexample to generate a sequence of actions
that can induce a race. For this reason, we derive extended automata simulating the be-
havior of the interacting SDN components and later on verify potential (race) properties
for this composition. Such properties are described in Linear Temporal Logic (LTL) for-
mulas [1], which can be verified by Spin; likewise, the absence / presence of livelocks
/ deadlocks in the composition of interest can be verified. We highlight the necessity
of the execution of a derived counterexample signaling a potential race in a given SDN
component or in their composition. The reason is that in some cases an implementation
under test can still be race insensible even if its model does not possess this property.
Therefore, such proactive testing against SDN frameworks allows detecting races in
real SDN enabled components.

When deriving the extended automata models for interacting components we have
used both, an OpenFlow specification (OpenFlow 1.4.0), as well as the description of
one of the widely utilized controllers. In this work, the experiments have been per-
formed with the ONOS controller [2] and thus, we have extracted a state model specify-
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ing its behavior. We note however, that without loss of generality, the controller and / or
switch specifications can be easily modified / substituted. All the communicating com-
ponents have been described in the Promela language (required by Spin). The derived
composition has been later on verified by the Spin model checker. Once a counterex-
ample is returned by Spin, the proactive race testing is performed, i.e., counterexamples
for concurrency violations are applied to the implementations under study. These coun-
terexamples in fact serve as test sequences to be applied to the implementation under
test, in order to make sure the property violation over the model indeed corresponds to
a race condition in the implementation.

The main contributions of this work are therefore i) a proactive model checking
based testing method for SDN race detection; ii) extended automata specifications de-
scribing the behavior of an SDN controller, an SDN switch and a communication chan-
nel (southbound interface), as well as their Promela specifications that can be down-
loaded from [17] (which can be easily extended for specific needs); iii) the description
of the potential races of two types for the considered composition in LTL, and iv) ex-
perimental results identifying an inconsistency in a common SDN composition (ONOS
with Open vSwitch) with respect to the time constraints and delays for the rules to be
pushed.

The structure of the paper is as follows. Section 2 presents the background. Sec-
tion 3 is devoted to the description of the obtained automata together with the related
Promela descriptions of the components of interest. Section 4 proposes a solution for
deriving LTL formulas for detecting SDN races, as well as the algorithms for the race
verification in a given application-controller-switch composition and includes an as-
sessment of the probability to detect races for the SDN composition. Section 5 contains
the experimental results while Section 6 concludes the paper and presents some avenues
for future work.

2 Background

2.1 Software Defined Networking

Software defined networking is a technology that dynamically allows to centrally man-
age the network behavior via open interfaces by abstracting from the lower-level func-
tionality [4]. This is done by decoupling the control plane from the data plane responsi-
ble for forwarding the traffic. The communication between the two critical SDN com-
ponents, namely the controller and the switch, is performed according to a well-defined
protocol (referred to as a southbound protocol). As an example, one can consider the
widespread OpenFlow [4] protocol, and in fact, the specifications of the switch and
communication channel with the controller in this work are extracted from the Open-
Flow descriptions. In the OpenFlow protocol, the flow rules of the switch are configured
by the application via the controller, through a defined set of protocol messages. Each
flow rule is responsible for forwarding (or dropping) a received packet to an appropri-
ate set of output ports; at the same time, each flow rule has a predefined set of values
to which the packet header has to match. Additionally, rules can have timeouts so that
they are deleted when a certain timeout expires after their installation (hard timeouts),
or so that they are deleted after certain time units when they are not used / matched
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(soft timeouts). Finally, rules are grouped in (flow) tables and each rule has a defined
priority. Rules grouped in the tables with higher numbers are processed first, and in fact,
the rule with the highest priority matching a given packet is applied. Network packets
are processed according to the rules within flow tables. To better outline the working
principles of SDN rules, consider the following rules installed at a given switch:

ID Priority Hard Timeout TCP DST PORT DST IP Action
1 5000 10.0.1.22 OUT(2)
2 5001 22 OUT(3)
3 6000 20 10.0.1.23 CTRLLR

To simplify our explanation, and without loss of generality we consider that the rules
are installed in the first table of the SDN-enabled switch (table 0). TCP DST PORT is
the TCP destination port and DST IP is the destination IP (for further information on
basic networking concepts the reader can refer to [8]). A network packet with the desti-
nation IP address 10.0.1.22 and destination TCP port 22 will be forwarded to the output
2 (due to the higher priority of Rule 1). Likewise, a network packet with destination IP
address 10.0.1.21 and destination TCP port 22 will be forwarded to port 3 (the highest
priority rule matching the network packet). Finally, if a network packet going to the
destination IP address 10.0.1.23 (and the destination TCP port not equal to 22) arrives
within the next 20 seconds, the switch sends this packet to the controller, asking for the
action to take with the packet; after 20 seconds have passed, the rule will ‘disappear’,
and a packet with destination IP 10.0.1.23 follows the default table policy, which is
usually to drop the packet.

2.2 Extended Input / Output Automata and Related Races

In this paper, we model the SDN components by a simplified version of an Extended
Finite Input / Output Automata, EIOA, for short. An EIOA A is a tuple (S, I,O,V,T,s0),
where S is a finite nonempty set of states with the designated initial state s0; I and O are
finite input and output alphabets; V is a finite, possibly empty set of context variables
with the set DV of vectors of context variables’ values if V 6= /0; T is a set of transitions.
In our case, inputs and outputs are parameterized, i.e., inputs and outputs of the EIOA
are pairs (input, vector of input parameters’ values) or (output, vector of output param-
eters’ values) and DI (DO) is the set of vectors of input (output) parameters’ values if
the set of parameters is not empty. A transition is a 6-tuple (s,a,P,vp,vo,s′) where s,
s′ ∈ S are initial and final states of the transition; a∈ I∪O; P : DV ×DI→{True,False}
is the transition predicate; vp : DV → DV is the context update transition function. The
transition (s,a,P,vp,vo,s′) is executed only when the transition predicate P evaluates
to true and the vectors of context variables’ values and output parameters’ values are
updated according to the functions vp and vo after the transition execution. We note,
however, that the EIOA model can be more complicated, for example, the set of states
can have a defined subset of the final states or non-observable actions can be consid-
ered, etc. Nevertheless, these cases are not taken into account in the derived models for
the controller, switch and application and we furthermore demonstrate that such sim-
plification does not limit the targeted model checking with respect to the race related
properties.
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As usual, we also assume that when dealing with an EIOA, no input is accepted and
no output is produced when a transition is executed. However, when both an input and
an output are defined at a state, they can ‘compete’ between themselves, i.e., what the
machine does first - accepts the input or produces the output is nondeterministically de-
cided. We hereafter refer to such ‘competition’ as an input / output race (a race between
input and output actions).

EIOA Composition and Related Races When an EIOA works in isolation, the races
can occur within certain states, as discussed above. However, when the machine acts as
a component of a multi-agent system, other types of races can take place. In particular,
the communication channels can serve as ‘tunnels’ where the actions ‘compete’ to be
faster for reaching the output, we refer to this type of races as intra-channel races. In
this paper, we are concerned with the interactions of three entities, namely the appli-
cation, controller, and switch. Therefore, potential races in the channels cover either
the northbound or southbound interface. The interacting entities (application, controller
and switch) are depicted in Fig. 1. Races of the latter type can occur for example if a
message for deleting a rule is delivered to the switch after the rule expires via a timeout,
i.e., the deletion is not performed as defined in the OpenFlow specification. We note,
that it can also happen that due to races in the communication channel, both compo-
nents can reach states where they wait for an input. If this happens, then a deadlock in
the composition occurs as a consequence of such ‘competition’.

Northbound
Interface

Application Controller
Southbound

Interface

Channel 1

Channel 2

Switch

Fig. 1: SDN Topology considered in the paper

2.3 Linear Temporal Logic

For the race detection in EIOAs and their compositions, formal verification can be used
and in this paper, we use Linear Temporal Logic (LTL) [6] formulas and the correlation
between LTL formulas and EIOA properties.

The notion of an LTL formula is closely related to the Kripke structure [6]. A Kripke
structure is a labeled directed graph where each state (node) s is labeled by a set L(s)
of atomic propositions which are true (at s). Correspondingly, a path: π = s1 → s2 →
·· ·→ s j→ . . .sn→ . . . is a possibly infinite sequence of consecutive states of the Kripke
structure. For each j ≥ 1, π| j is a suffix s j→ . . .sn→ . . . of path π started with s j.

An LTL formula is a formula ϕ ::= a|ϕ1 ∧ϕ2|¬ϕ|Xϕ|ϕ1Uϕ2|Fϕ|Gϕ, where: a is
an atomic proposition, X denotes the ‘next’ operator, U denotes the ‘until’ operator,



6 E. Vinarskii et al.

F denotes the ‘eventually’ operator and G denotes the ‘globally’ operator. We briefly
remind the conditions when a path π = s1→ s2→ ··· → sn→ . . . satisfies (|=) the LTL
formula ϕ:

– if ϕ = a then π |= ϕ iff a ∈ L(s1);
– if ϕ = Xϕ1 then π |= ϕ iff π|2 |= ϕ1;
– if ϕ = Fϕ1 then π |= ϕ iff there exists i≥ 1 such that π|i |= ϕ1;
– if ϕ = Gϕ1 then π |= ϕ for all i≥ 1 π|i |= ϕ1;
– if ϕ=ϕ1Uϕ2 then π |=ϕ iff there exist i≥ 1 π|i |=ϕ2 and for all 1≤ j < i, π| j |=ϕ1.

In this paper, atomic propositions are rather simple; an atomic proposition is true if
and only if the value of a variable of interest is equal to a given integer.

3 Modeling the Application-Controller-Switch Interaction

In this section, we describe some of the EIOAs derived for checking the application-
controller-switch interaction. We have derived the corresponding automaton for each
of the interacting components and have elaborated a list of properties to be checked,
described as corresponding LTL formulas. We note, that the chosen level of abstraction
when modeling the SDN components’ behavior plays a crucial role in their further
verification.

We hereafter assume that the SDN infrastructure includes only one controller, one
switch and one application. The latter means we abstract from any other entity on the
data or control plane except the components of interest. To decrease the abstraction
level in this case, a composition of switches or a whole data plane can be considered in-
stead of a single switch. We however, note that even such restricted composition allows
detecting the races of interest. At the same time, we consider two input channels for the
controller, i.e., to accept inputs from the switch and the application of interest. Input
and output alphabets of the components of interest can be defined in different ways.
For the switch, for example, an OpenFlow specification provides the set of messages
which the controller and the switch use for interacting while available specifications for
the controllers of interest can also be considered. As a case study, for evaluating our
methodology we chose the ONOS controller and thus, to extract the information about
the controller-to-application interaction, we use ONOS documentation [2]. For the ap-
plication of interest, in our experiments we consider a REST service [7] which allows
defining the corresponding behavior of the application.

Given the assumptions listed above, we consider the topology shown in Figure 1.
The ONOS documentation, the OpenFlow specification and ONOS REST service doc-
umentation allow to extract the following alphabets:

– An application-controller channel alphabet: {PostFlow,DeleteFlow,GetFlow};
– A controller-application channel alphabet: {FlowRemoveExpire,ReplyFlow};
– A controller-switch channel alphabet: {PostFlow,DeleteFlow,GetFlow};
– A switch-controller channel alphabet: {FlowRemoveExpire,ReplyFlow}.
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3.1 Extended Automaton Modeling the Behavior of a Controller

In this work, the EIOA for modeling the controller behavior has three states s0,s1,s2.
These states naturally correspond to the situations when messages from the controller to
the switch (or vice-versa) change the behavior of the system. For example, at state s0 a
GetFlow (GF) request is not being processed; likewise, the DelFlow (DF) request can-
not be produced. State s1 describes the situation when a GF request has been produced
from the controller (to the switch); at this state the EIOA can get ReplyFlow (RF) and
should move to state s2. At state s2, the DF signal can be produced. We note that this
interaction is a part of the aforementioned specifications (OpenFlow, ONOS, etc.).

The EIOA has a context variable; this variable corresponds to the number of in-
stalled flow rules, and thus, its domain is the set of integers {0, . . . ,n− 1}. The EIOA
has 11 transitions, and seven of them are unconditional, i.e., the transitions have no
predicates. As an example, the transition (s0,GetFlow,s1) models the situation when
the controller has sent the GetFlow request moving to state s1. The transition diagram
of the EIOA modeling the controller behavior is shown in Figure 2.

s0 s1

s2

T1: i f (table[id] == 0) then
!(PF, id)
table[id] = 1
T2: ?(FE, id)
table[id] = 0

T3: i f (table[id] == 1) then
!(GF, id)

T4: ?(RF, id)

T5: i f (table[id] == 0) then
!(PF, id)

table[id] = 1
T6: ?(FE, id)
table[id] = 0

T7: ?(RF, id)

T8: i f (table[id] == 0) then
!(PF, id)
table[id] = 1
T9: ?(FE, id)
table[id] = 0

T10: ?(RF, id)
T11: !(DF, id)
table[id] = 0

Fig. 2: EIOA modeling the controller behavior

For further model checking, namely races’ detection, we describe the EIOA in
Promela which is accepted by Spin as an input. In this case, the Promela code con-
tains the variable IDflow, the rule’s ID. Note that for convenience and without loss of
generality the value of the IDflow is equal to the rule’s priority. Moreover, the Promela
description has an array app_table that contains all the current switch flow rules. The
description of the controller behavior includes one process. A fragment4 of the Promela
description of the controller is illustrated in Figure 3. The complete version of the re-

4 The actual description contains 632 lines.
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lated program, as well as the Promela code for other interacting components, are avail-
able at [17].

1 proctype C o n t r o l l e r ( chan AppCont , ContApp , Ch2Cont ,
2 ContCh1 ) {
3 mtype m e s s a p p c o n t ;
4 i n t i d f l o w a p p , i d f l o w c o n t ;
5 S0 :
6 i f
7 : : AppCont ? ( m e s s a p p c o n t , i d f l o w a p p ) ;
8 goto S0 ;
9 : : ( a p p t a b l e [ 0 ] == f a l s e ) −>

10 atomic {
11 do
12 : : ContCh1 ! Pos tF low ( 0 ) ;
13 a p p t a b l e [ 0 ] = t rue ;
14 mess = Pos tF low ;
15 f l o w i d = 0 ;
16 goto S0 ;
17 : : Ch2Cont ? F lowExpi re ( i d f l o w c o n t ) ;

19 ContApp ! F lowExpi re ( i d f l o w c o n t ) ;
20 a p p t a b l e [ i d f l o w c o n t ] = f a l s e ;
21 mess = FlowExpi re ;
22 f l o w i d = i d f l o w c o n t ;
23 goto S0 ;
24 : : Ch2Cont ? ReplyFlow ( i d f l o w c o n t ) ;
25 ContApp ! ReplyFlow ( i d f l o w c o n t ) ;
26 mess = ReplyFlow ;
27 f l o w i d = i d f l o w c o n t ;
28 goto S0 ;
29 : : Ch2Cont ? ReplyFlow ( i d f l o w c o n t ) ;
30 ContApp ! ReplyFlow ( i d f l o w c o n t ) ;
31 mess = ReplyFlow ;
32 f l o w i d = i d f l o w c o n t ;
33 goto S2 ;
34 od ;
35 }

Fig. 3: Controller description in Promela

3.2 Extended Automaton Modeling the Behavior of Channel 1

The EIOA that models channel 1’s behavior has two states, namely q0 and q1. These
states correspond to the state of the buffer. In particular, state q0 corresponds to the situ-
ation when the buffer is empty while state q1 reflects the opposite. The context variable
buffer.size corresponds to the number of messages in the buffer. The EIOA has four
transitions, and two of them are unconditional. As an example, a transition (q1,PF,q0)
can be considered: it models the situation when channel 1 has sent a PostFlow request
for a rule with ID id moving to state q0. The transition diagram of the corresponding
EIOA is shown in Figure 4a.

This EIOA is also described in (a fragment of) the Promela language. In this case,
the Promela code contains the IDflow variable, the identifier for a given rule. Similarly,
the Promela description has an array buffer that contains the messages in the buffer.
A fragment of the Promela description of channel 1 (channel 2) is illustrated in Fig. 4b.

Given the room constraints, we do not include the detailed EIOA descriptions of
other interacting components, such as the switch or application. For detailed description
one can access the corresponding Promela code via [17].

4 Race detection in the Application-Controller-Switch Interaction

This section is devoted to the verification of the Application-Controller-Switch (ACS)
interaction. We propose a methodology for detecting races of two types discussed above.
Namely, we propose two randomized algorithms for two types of races. These are
Monte Carlo algorithms, i.e., if a race is detected by the method then we guarantee
that such race can happen in the ACS interaction under proper conditions, namely, for
proper timeouts. However, if the algorithm returns ‘FALSE’ then this answer can still
be wrong, i.e., it cannot be guaranteed that the ACS interaction is free of races described
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q0 q1

T1: ?(PF, id)
bu f f er.push(id)

T2: i f (bu f f er.size > 1) then
!(PF, id)

bu f f er.pop(id)
T3: ?(PF, id)

bu f f er.push(id)

T4: i f (bu f f er.size == 1) then
!(PF, id)
bu f f er.pop(id)

(a) EIOA model

1 proctype Channel1 ( chan ContCh1 , Ch1Switch ) {
2 S0 : atomic {
3 ContCh1 ? Pos tF low ( c h a n n e l 1 f l o w i d ) ;
4 b u f f e r [ c h a n n e l 1 f l o w i d ] = t rue ;
5 c u r r s i z e b u f f e r = c u r r s i z e b u f f e r + 1 ;
6 goto S1 ;
7 }
8 S1 : i f
9 : : atomic {

10 ContCh1 ? Pos tF low ( c h a n n e l 1 f l o w i d ) ;
11 b u f f e r [ c h a n n e l 1 f l o w i d ] = t rue ;
12 c u r r s i z e b u f f e r = c u r r s i z e b u f f e r + 1 ;
13 goto S1 ;
14 }
15 : : ( c u r r s i z e b u f f e r > 1) −>
16 i f
17 : : ( b u f f e r [ 0 ] == t rue ) −>
18 atomic {
19 Ch1Switch ! Pos tF low ( 0 ) ;
20 b u f f e r [ 0 ] = f a l s e ;
21 c u r r s i z e b u f f e r = c u r r s i z e b u f f e r − 1 ;

(b) Promela code

Fig. 4: Channel 1 descriptions

above. The main reasons for that are the following: i) the approach relies on the Spin
model checker that does not guarantee that a counterexample is always found, and ii)
the approach depends on the time each message spends in a channel and this time is
nondeterministic.

4.1 Input / Output Races

These races can occur when there exists a state of a corresponding EIOA where an input
and an output which have a parameter in common are allowed, i.e., at a given state the
decision of accepting an input or producing an output is made nondeterministically.
However, if the system is race insensible, then this fact does not influence the system
behavior. In order to check this, the Spin model checker can be used. Therefore, the
problem is reduced to constructing an appropriate LTL formula that checks whether the
system is sensible to races between inputs and outputs at a given state.

We propose (a probabilistic approach in) Algorithm 1, that assures the presence and
the detection of an input / output race. The algorithm is based on a choice of a state s of
the EIOA, where both input i and output o related via some parameter are defined. The
Spin model checker is used for verifying the LTL formula prohibiting a race between
i and o. Let curr mess denote an input or an output action (message) at state s while
next mess denote the action at the next time instance. To guarantee that the output o is
never produced before the input i is received, an LTL formula of the following kind can
be verified: G(¬((curr mess == o)→ (next mess == i))) 5.

If the formula of interest can be violated for the component of interest, then Spin
produces a counterexample α. Note that not each counterexample is feasible for the
topology of interest; further checking should be performed by applying a sequence of
inputs simulating α, with appropriate timeouts to an implementation (component of in-
terest). Determining such timeouts is a separate task which for the moment is performed

5 The reader might notice that the formula is quite generic and can be adjusted accordingly for
various particular cases, for example, states, input / output parameters can be added.
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heuristically for input / output races; while for intra-channel races (see Section 4.2), we
propose an algorithmic solution (Algorithm 3). As the approach proposed in this pa-
per is proactive, we execute the derived counterexample α potentially leading to a race
against the implementation of the SDN framework. For that reason, we rely on an au-
tomated script; the script is executed at most N times, simulating α as an input to the
component of interest. If during the execution of the script the competition between
an input and output can be observed, then the script returns T RUE. Therefore, when
Execute script(S) returns T RUE a race is indeed detected in the implementation. Note
that the execution of the script can be performed against any application, controller, and
switch, from different providers, as long as the corresponding versions are compatible.

Algorithm 1: Input / output race detection
Input : A composition Promela model M ; a number n of flow rules; a number N of

testing iterations
Output: A Boolean value indicating if the race is detected
Choose an SDN component C of interest from the composition M
Choose a state s of C where both, input i and output o are defined 6

Derive an LT L-formula Φ simulating that the output o was produced before the input i
was accepted

Verify Φ over M (e.g., using Spin)
if a counterexample α is found (by Spin) then

if Obtain timeout vector(α) == FALSE then
// Obtain timeout vector heuristically derives a timeout vector if

it is feasible
return FALSE

Given the timeout vector, and the counterexample α, derive script S stimulating the
SUT with α

foreach i ∈ {1, . . . ,N} do
if Execute script(S) == T RUE then

return T RUE

return FALSE

An important step of Algorithm 1 concerns the choice of the component of interest
and its state (or a subset of those) for further verification. As an example, consider an
SDN controller whose model is presented in Figure 2. Note that, at state s2 both input
(FE, id) and output (DF, id) are defined. These actions can compete and it must be
assured that indeed (DF, id) occurs first. In other words, it should be checked that the
controller can send a DelFlow message to remove a flow rule with the f low id number
only if this rule currently exists. This property can be expressed using the following LTL
formula: G(((mess == DelFlow)&&( f low id == id))→ ( f low table[id] == true)).

Algorithm 1 is a randomized algorithm that can be trusted on a race detection.
The probability of such reply significantly depends on the structure of the specification

6 The procedure can be repeated iteratively for a subset of states J ⊆ S.
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EIOA A. If the simulation of this EIOA represents a Markov chain then the probability
of success and, in some cases, its limit, can be evaluated.

Assume that the transitions of the EIOA A of interest are augmented with their
probabilities of execution. In the simplest case, we assume that all the transitions are
equally probable at a given state. Let Π denote the stochastic matrix for the related
Markov process, i.e., Π = {pi, j}, and pi, j is the probability to reach s j from state si.
Let also J ⊆ S denote the set of critical states of A where a given input can compete
with certain output. The probability of Algorithm 1 to terminate with a positive reply
depends on the probability of reaching one of the states j ∈ J from the initial state
s0 ∈ S. The latter is determined by the following proposition.

Proposition 1. Pr(s1
α→ j ∈ J) = ∑

j∈J
[p1, j]

m, where {[pi, j]
m}= Πm, and |α|= m.

Proof. Indeed, matrix Πm consists of items [pi, j]
m for i, j ∈ {1, . . . , |S|}. Moreover, state

s j is reached from state si via a sequence α, |α| = m, i.e., i α→ j with the probability
[pi, j]

m. Therefore, the probability of reaching any state of set J via a sequence of length
m equals ∑

j∈J
[p1, j]

m. ut

Corollary 1. If the sum ∑
j∈J

[p1, j]
m has the limit, then the probability of reaching a state

where a race is possible equals lim
m→∞

∑
j∈J

[p1, j]
m.

The matrix Πm can be computed by direct multiplication of Π matrices, or in some
cases, the spectral decomposition of Π can be utilized (for more details one can see
[15], for example), to improve the scalability of the Πm as well as for the checking the
criterion when such decomposition is possible.

We note also that the race sensibility in the SDN components of interest can be
avoided by setting appropriate timeouts for processing inputs and producing outputs.
However, as our experiments show (Section 5), for the ONOS controller those timeouts
are not appropriately set.

4.2 Intra-channel Races

Having discussed the input / output races at a given state, we now turn to the detection of
another type of races. In particular, this subsection is devoted to the intra-channel races,
when for example the rules or requests submitted into a channel by a given component
can be permutated. In other words, the order of the rules / requests can not necessarily
be preserved once submitted into the channel. In the case of our experimental evaluation
those are the rules submitted by the controller and later on pushed to the switch. Such
detection is essential as it leads to different ‘understanding’ of a current network state
at the control and data plane, and thus can cause network misconfigurations. In order
to detect if there exists a potential permutation in the channel, we try to proactively
create this race condition. To do so, the SDN application installs rules with their ID
in chronological order; moreover, each rule has a hard timeout equal to its ID. For
instance, the SDN application installs a rule with ID i and timeout i before installing the
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rule i+1 with timeout i+1. Thus, to check the possibility of permutations, we propose
Algorithm 4 that either detects an intra-channel race or returns FALSE if a race cannot
be detected. The Promela model M of the composition of interest serves as one of the
inputs. At the first step, the LTL formulas are derived via the call to Algorithm 2. The
strategy to detect this type of races is to stimulate ‘competing’ messages in a channel.
In order to better understand the properties that are investigated, we further explain the
motivation behind them.

– Consider the following property: G((table[id] == true)→ (table[id′] == true)).
This guarantees that if the rule with the id number is pushed before the rule with
id′ number and has a timeout value less than that of id′, then the id rule should be
deleted before the id′ one. In other words, the presence of the id rule in the flow
table implies the presence of the id′ as well.

– Consider the property: (mess == (PF, id))→ ((mess 6= (DF, id))U(table[id] ==
true)). This means that if a controller requested to push the rule with the id number,
then at some point this rule will be pushed. Moreover, the rule cannot be deleted
unless it was pushed.

Algorithm 2: Deriving LTL formulas
Input : The global variables of the Promela model (VM )
Output: Φ, LTL-formulas to check intra-channel races
return the following formulas
foreach i ∈ {1, . . . ,size o f (table)−1} do

G((table[i+1] == 0)→ (table[i] == 0));

G((app send mess == (Post f low, id))→ F(table[id] == 1))
G((app send mess == (Delete f low, id))→ F(table[id] == 0))

At the next step, the derived properties together with the original model are ‘fed’ to
Spin. If Spin does not detect a violation of any of the properties then not a single race of
interest can be detected. This does not necessarily guarantee the absence of such races.
On the other hand, if a counterexample α is produced then its feasibility is first veri-
fied (Algorithm 3). A non-feasible counterexample again results in the ‘not detected’
conclusion. On the contrary, if α is feasible, the result is a vector τ representing the
timeouts for each of the n rules. Similar to Algorithm 1, at the last step each feasible
counterexample is executed N times as it is possible that the system does not incur into a
race condition at all times. In this case, we analyze the probability of success to actually
observe the race in the given implementation. In other words, given a counterexample
α produced by Spin and a vector τ = (τ1, . . . ,τn) of timeouts, we further define the
probability of the randomized Algorithm 4 to terminate returning a FALSE verdict.

A message may spend an unknown time in a channel, we assume that this time
is bounded by certain interval [Tmin,Tmax]; ti defines the time that a message i spends
in a channel, and there is no guarantee that the time spent in the channel is closer ei-
ther to the left or to the right bound. Let us denote the timeout for a given rule i as
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Algorithm 3: Permutation feasibility check
Input : Tmin - the minimum time a message spends in a given channel; Tmax - the

maximum time a message spends in a given channel; n - the number of messages
(rules) to submit to the channel

Output: A vector τ of timeouts or FALSE if races are not possible
Solve the following inequality7

ti + τi ≥ t j + τ j

where
ti, t j ∈ [Tmin,Tmax]

i < j

τi < τ j

τi > 0

τ j > 0

if the inequality has a feasible solution (t ′i , t
′
j,τ
′
i,τ
′
j) then

select any τ = (τ1, . . . ,τ
′
i, . . . ,τ

′
j, . . . ,τn) where

0 < τ1 < τ2 < · · ·< τ′i < .. . < τ′j < · · ·< τn
return τ

return FALSE

Algorithm 4: Intra-channel race detection
Input : A composition Promela model M ; A minimal and a maximal time Tmin, Tmax to

cross the controller-to-switch Openflow channel by messages; A number n of
f low rules; A number N of testing iterations

Output: A Boolean value indicating if the race is detected
Obtain a set of LT L-formulas Φ = Deriving LTL formulas (VM )// VM represents

the global variables of M
Verify Φ over M
if a counterexample α is found then

if (τ == Permutation feasibility check (Tmin,Tmax,n)) then
Obtain the script S = Produce script(α,τ)

else
return FALSE

foreach i ∈ {1, . . . ,N} do
if Execute script(S) == T RUE then

return T RUE

return FALSE

τi, and the differences between the neighbour rule timeouts as di, i.e., d1 = τ2− τ1,
d2 = τ3− τ2, . . . , dn−1 = τn− τn−1. Note that the rules in a switch are installed without
permutations if and only if ∀i ∈ {1, . . . ,n− 1} 0 < τi < τi+1, ti ∈ [Tmin,Tmax] it holds
that ti + τi < ti+1 + τi+1. The latter means that ∀i ∈ {1, . . . ,n− 1} τi+1− τi > ti− ti+1,
i.e., di > ti− ti+1. We assume that for all i, ti are absolutely continuous random vari-
ables defined over the interval [Tmin,Tmax] with the probability density functions fi(z).
We denote the length of this interval as D = Tmax − Tmin. We therefore assume that
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ti, i ∈ {1, . . . ,n− 1}, are independent and uniformly distributed on [Tmin,Tmax], i.e.,

∀i ∈ {1, . . . ,n} fi(z) =

{
1
D , z ∈ [Tmin,Tmax]

0, z 6∈ [Tmin,Tmax]
. In this case, ci = ti− ti+1 are absolutely

continuous random variables defined on the interval [−D,D] with the probability den-
sity function ϕi(z), for each i ∈ {1, . . . ,n− 1}. Taking into account the uniform dis-
tribution hypothesis for ti and ti+1, for all i ∈ {1, . . . ,n− 1}, ci are also independent
and uniformly distributed on the interval [−D,D] with the probability density functions

ϕi(z) =

{
1

2∗D , z ∈ [−D,D]

0, z 6∈ [−D,D]
.

Proposition 2. Given the uniform distribution hypothesis, the probability that no rules
are permutated, i.e., no races occur in the channel, is equal to Pr(no permutations) =

1
(2∗D)n−1 ∗

n−1
∏
i=1

(D+di).

Proof. According to the independence of random variables [19], it holds that: Pr(no permutations)=

Pr(d1 > c1, . . . ,dn−1 > cn−1) = Pr(c1 < d1)∗ · · · ∗Pr(cn−1 < dn−1) =
d1∫
−D

ϕ1(z)dz∗ · · · ∗

dn−1∫
−D

ϕn−1(z)dz.

Under the assumption that c1, . . . ,cn−1 are uniformly distributed, and di ∈ [0,D], it

holds that Pr(no permutations) = 1
(2∗D)n−1 ∗

n−1
∏
i=1

(D+di). ut

Therefore, the probability of having races, caused by the rules’ permutation in the

channel is Pr(permutations) = 1−Pr(no permutations) = 1− 1
(2∗D)n−1 ∗

n−1
∏
i=1

(D+di).

We however note that the probability distribution for the time a rule spends in a
channel is crucial. If it is known in advance the probability density function should be
recalculated accordingly, for example, due to an experimental evaluation of the channel
and corresponding communicating components. This affects the success of the random-
ized Algorithm 4, i.e., the positive reply when the races are detected. In our experiments,
we however relied on the uniform distribution assumption and were able to detect the
permutation and related races for the controller and switch of interest.

5 Experimental Results

Experiments were performed with the ONOS Controller and the Mininet [12] simula-
tor, executed under a virtual machine running on VirtualBox Version 5.1.34 for Ubuntu
16.04 LTS with 4GB of RAM, and a quad AMD A6-7310 APU with AMD Radeon
R4 Graphics processor. Our experimental setup corresponds to the topology in Fig-
ure 1, i.e., the simulated network contains a single switch running Open vSwitch ver-
sion v2.11.0 and a single application implemented as a Perl [18] script. The goal of the

7 Can be done using classical approaches, see for example Gauss-Jordan elimination [15].
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experiments was to estimate the efficiency of the proposed algorithms for race detection
and their impact on available SDN components of wide use, namely, on the communi-
cation between the ONOS controller and an Open vSwitch. All the Perl scripts utilized
in the experimental setup are accessible at [17].

5.1 Input / Output Races

The first set of experiments was performed to detect the potential input / output races
(at a given state). In this case, the component under test is the ONOS controller. With
the proposed approach (Algorithm 1) we managed to detect a race at state s2 for the
specification provided in Figure 2. Consider the property: an input (DelFlow, f low id)
should not be sent if the rule with the number f low id is not defined in the flow table.
The corresponding LTL formula in this case is as follows: G(((mess == DelFlow)∧
( f low id == id))→ ( f low table[id] == true)).

A flow rule with a timeout with the number f low id may expire in the switch before
the controller sends the DelFlow request to remove the flow rule with this number. Thus,
in such composition, the controller can be sensible to this type of races.

To detect such a race we used three rules (n = 3). The probability of success of the
race detection can be estimated using the EIOA in Figure 3. Assume that the transitions

at each state are equally probable, then the stochastic matrix Π =

[
1/2 1/4 1/4

0 2/3 1/3
1/2 0 1/2

]
. The

spectral decomposition allows computing Pr(s1
α→ s3) = lim

m→∞
pm

1,3 =
1
3 .

Given the probability of success, we executed the model checking and Spin found
a counterexample (available at [17]) of length 21. To comply with the order of the re-
quests in the counterexample α, following Algorithm 1 we derived a vector of timeouts
τ that were implemented with the sleep() procedure. The counterexample α (together
with the values τi in the comments of the Perl script) can be checked at [17]. The script
of interest was executed 10 times, i.e., N = 10 and at the 4-th iteration an unexpected
behavior was observed. A rule deleted via a timeout, produced a FlowExpire mes-
sage from the switch to the controller, however, the controller at a later time instance
produced a FlowDelete message for the same rule ID. The latter means that the flow
table of the controller can be dis-synchronized, i.e., the controller’s knowledge of the
network state is not always relevant and up-to-date. Moreover, it cannot be predicted
which action removed the rule: FlowExpire or DelFlow. The detailed logs of the script
execution and race detection are also available at [17]. In the files logs/test_1.txt,
logs/test_2.txt and logs/test_3.txt the FLOW REMOV ED signal is sent 5
times, however, in logs/test_4.txt the FLOW REMOV ED signal is sent 3 times.
This means that to delete a rule with number 5000 in first 3 cases the controller sent
FLOW REMOV ED signal and in the fourth case the switch sent a FLOW EXPIRE
message earlier. Thus, the input / output race is possible.

5.2 Intra-channel Races

When detecting races of this type in an SDN framework, we focused on the channel
1, i.e., the controller-to-switch interface. In particular, in our experiments we tried to
detect a race between the PostFlow requests in the related channel.
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For that reason, Algorithm 4 was executed with the following parameters: Tmin =
0, Tmax = 1.5, n = 5, N = 10 and for each i, di = 1. Therefore D = 1.5, and thus,
Pr(no permutations) = 2.54

34 . Consequently, Pr(permutations) = 1− 2.54

34 ≈ 0,52.
The counterexample α produced by Spin contains 10 requests (5 inputs and 5 out-

puts); the vector τ provided by Algorithm 3 is as follows: τ = 〈5,6,7,8,9〉. Thus, for a
rule with ID 5000+ i, its timeout value is set to i+5 seconds. Following Algorithm 4,
the counterexample α was executed with the timeouts τ, using the corresponding Perl
script. We executed the Perl script N = 10 times and at the 8-th execution an unexpected
behavior was observed. Figure 5 showcases the flow table in the controller, which ex-
hibits a race condition; Fig. 5a presents the rules as initially installed while Fig. 5b
presents the rules at the end. Note that the rules 5003 and 5004 expired, however, the
rule 5002 is still present, although the value of the timeout in the rule 5002 is set to 7
seconds while the timeout of the rules 5003 and 5004 are set to 8 and 9 seconds, cor-
respondingly. Indeed, the nondeterministic behavior of the controller can lead to a rule
permutation in the channel. In the counterexample of interest, two rules with the IDs 2
and 3 accordingly happened to permutate. The iterative execution of a Perl script allows
to detect such permutations. Likewise, the permutation of rules with the numbers 5002
and 5003 can be observed (Figure 5). The latter means, that the sequence of actions
executed by the controller can be different from the implemented sequence of actions.

(a) Initial rules (b) Final rules

Fig. 5: Rule permutation

6 Conclusions

In this paper, we considered concurrency issues in the SDN framework. In particular,
we studied two different types of races for an application-controller-switch compo-
sition. For each of these types, we proposed a proactive testing approach for detect-
ing such concurrency. The proposed approach complements the existing ones that are
mostly based on effective monitoring and run-time verification, i.e., a model checking
based design of test sequences that can push certain race to show, can be integrated into
monitoring systems and thus, can later serve for the SDN components’ certification.

This work opens a number of directions for future work. First, additional types of
races should be considered, taking into account other types of interfaces, such as for
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example between controllers. Despite the fact that the proposed approach is generic,
experiments were only carried for the ONOS controller and one Open vSwitch, more
experiments are needed to investigate other SDN components of wide use and their
(in-)tolerance to certain types of races. The proposed approach relies on the LTL based
model checking solutions for describing and detecting races in SDN; in the future, we
plan to investigate other formal verification and model checking techniques and their
applicability to the problem of interest. We plan to extend the proposed approach for
stating clear recommendations for avoiding races in SDN frameworks, probably, taking
advantage of some other model based techniques, such as for example Game Theory.
Moreover, adaptive approaches are of a particular interest of the authors, namely we
plan to investigate various testing strategies that could be used depending on the im-
plemented race-avoidance mechanisms in an SDN framework. Finally, the application
areas of the proposed approach are not limited with SDN, and in the future we plan to
consider other distributed systems and related race conditions.
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