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A Plane Wave Scattering Dedicated Integral Equation
B. Alzaix, L. Giraud, B.L. Michielsen, J.-R. Poirier

Abstract—We present a variant of a boundary integral equation
proposed by M. Herberthson in 2008-2010 for high-frequency
plane wave scattering by perfectly conducting obstacles which
is entirely dedicated to one chosen direction of incidence. The
solution of this new integral equation is a “pseudo-current”
being the physical current distribution multiplied by the complex
conjugate of the incident plane wave’s phase function.

The major advantage of this new integral equation is that the
pseudo current has small total variation on large parts of many
scattering obstacles and, hence, requires much less degrees of
freedom to obtain a correct approximation. Restoring the physical
current distribution is a trivial and numerically cheap operation.

The price to pay is that, since the operator of this integral
equation depends on the propagation direction of the incident
plane wave, a new Galerkin matrix must be computed for each
direction of incidence. In this paper, we show how this re-
computation can be done very efficiently by making an explicit
representation of the difference between the operator of the
new integral equation and a conventional EFIE. This leads to
a performance gain with respect to the EFIE even for multi-
incidence problems.

Keywords—Plane Wave Scattering, Boundary Integral Equations,
Model Reduction

I. INTRODUCTION

THE scattering of a plane wave by an impenetrable obstacle
can be studied numerically using universal methods like

boundary integral equations (Electric Field Integral Equation
(EFIE) or Magnetic Field Integral Equation (MFIE)). In this
paper, we follow a different strategy in which the compu-
tational technique is completely dedicated to the scattering
of a given incident plane wave. This has the disadvantage
that if the plane wave changes, one needs to reconstruct
the model. However, it has the possible advantage that the
dedicated model leads to more efficient computations. Such
“goal-oriented” approaches to plane wave scattering have been
developed before, in particular, with high-frequency scattering
problems in mind. The work of Abboud, Nédélec and Zhou
(see [1], [2], [3]) published in 1995, is one of the first boundary
integral equations where a physical optics approximation is
combined with the EFIE. These authors modified the edge
element discretisation by multiplying the edge elements with
the phase function of the incident wave. In a certain way, this
makes solving the EFIE to compute a correction with respect
to the physical optics approximation. Later work by Darrigrand
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(see [4]) extended this approach to an alternative integral
equation method proposed by B. Després. In these earlier
publications, error estimates, based on asymptotic expansions
of the solution in the transition to the shadow region, showed
that, for convex obstacles, the phase regularisation method
is warranted to be efficient at high frequencies because the
required mesh size decreases in the order of only λ 1/3.

In 2008, Herberthson followed a different track with the
same purpose of improving the EFIE performance at high
frequencies (see [5], [6], [7]). In his formulation, the inci-
dent wave’s phase function was incorporated in the kernel
distribution of the integral equation, thereby obtaining an
integral equation for a pseudo-current defined as the product
of the complex conjugate of the incident plane wave’s phase
function and the physical current distribution. He observed
that multiplying both sides of the integral equation with this
conjugate phase function yields an exact gradient in the right-
hand side. He exploited this further to reduce the conventional
EFIE to a system of coupled integral equations for two
scalar potentials. Where the previous method was applicable to
convex scatterers, Herberthson’s version is based on specific
topologies (with genus equal to 0) such that the Helmholtz
decomposition holds. Roughly speaking, the two points of
view lead to increased performance for nearly the same type
of geometries.

In this paper, we study a variant of Herberthson’s version
of the EFIE in order to overcome the restriction to obstacles
with special topology. As with the previously mentioned work,
the integral equation is specific for plane wave scattering with
one chosen direction of incidence. However, representing the
operator as an additive perturbation of the conventional one,
the perturbation part, which is the only part depending on the
phase function of the incident plane wave, can be computed
very efficiently.

This splitting allows for the design of a new Galerkin system
relaxing the usual constraint of the EFIE with regards to the
mesh size and offers the possibility to reduce the number
of degrees of freedom required to get an accurate solution
of the problem. Considering the conventional equation, and
the diffraction of a plane wave with a frequency f0, a good
approximation of the surface current requires the edges of the
mesh to have a maximum size h, smaller than λ0/7. Working
with the pseudo-current and this perturbation splitting, it will
be shown that we can effectively work mesh sizes of the order
of λ0/4.

When considering several directions of incidence, the re-
computation of only the perturbation operator leads to a rather
low computational overhead.
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II. HERBERTHSON’S WORK AND A NEW FORMULATION

In this section, we present Herberthson’s modified version
for the EFIE. Most of the development can be found in [5],
[6], [7]. To set the notations, we assume that an incoming
plane wave, with radian frequency ω , illuminates a surface Γ.
The plane wave electric field is given in Cartesian coordinates,
r ∈R3, by Einc(r) = eψ(r) where ψ(r) = e− jkθ ·r (we write r
for the vector representation of the coordinates r) is the phase
function of the wave with θ the unit vector in the direction of
propagation and k = ω

c the wavenumber. The polarisation given
by e is transverse to the propagation direction, θ ·e= 0. The
associated magnetic field is given by H inc(r) = Y0θ ×eψ(r)
(Y0 = 1

µ0c ). We let J denote the surface current. With these
notations, the EFIE reads

∀r ∈ Γ tr

[
(ζI− 1

η
∇∇·)AJ

]
(r) = tr(eψ)(r), (1)

where ζ = jωµ0, η = jωε0 and the vector potential, AJ , is
defined by

AJ(r) =
∫

r′∈Γ

G(R(r,r′))J(r′)A (r′).

Here G(R) is the Green function of the Helmholtz operator
defined by

G(R) =
e− jkR

4πR
,

with

R : R3×R3 3 (r,r′) 7→ ‖r− r′‖ ∈ R+

the Euclidian distance function. For a vector-valued function
X on R3, we note tr(X)(r) ≡ X |TrΓ the restriction of X to
the tangent spaces at any r in Γ. Finally, A (r′) denotes
the area element on Γ which, in a local parameterisation
µ : R2 ⊃U 3 (x,y) 7→ µ(x,y)∈ Γ takes the form A (µ(x,y)) =
det|µ ′(x,y)|dxdy. In the rest of this paper, we shall leave these
area elements implicit in the definition of the integral over Γ

and use
∫

Γ
f ≡

∫
Γ

f A =
∫

r∈Γ
f (r)A (r).

Now, Herberthson observed that, modulo the phase function
ψ , the right-hand side of (1) is the gradient of a scalar function,
e=∇(e ·r). By multiplying both sides of (1) with the complex
conjugate of the phase function of the incident plane wave, ψ̄ ,
he obtained the following equation,

tr

[
ψ̄(ζI− 1

η
∇∇·)Ã

Ĵ

]
(r) =−e|TrΓ, (2)

with

Ã
Ĵ
(r) =

∫
r′∈Γ

G(R(r,r′))ψ(r′)Ĵ(r′)A (r′)

for a new unknown, Ĵ(r′) = ψ̄(r′)J(r′), which we refer to as
the pseudo-current.

The second element introduced by Herberthson, is the
Helmholtz decomposition. For the special case that Γ is a
closed surface diffeomorphic to a sphere, every vector field

J on Γ can be decomposed as the sum of a gradient and a
co-gradient,

J = ∇sΦ+n×∇sΨ, (3)

where Φ and Ψ are two scalar functions. In this way, the
integral equation (2) can be further transformed into a system
of two coupled equations for the scalar potentials Φ and Ψ. In
the Galerkin discretisation of this system of equations a natural
2× 2 block structure appears according to the two potentials
and in the right-hand side the terms corresponding to Φ have
the value zero.

At this point, our development differs from the one chosen
by Herberthson. We remain with the pseudo current vector dis-
tribution as the fundamental unknown on an arbitrary surface
Γ. The resulting integral equation can, of course, also be seen
as a system of coupled equations for the two components of the
vector distribution. In that formulation, we can use a special
case of the Hodge decomposition which splits off ker(div).
This also gives zero values in the right-hand side corresponding
to the testing with ker(div) functions (with the usual edge finite
elements for surface current distributions one can identify a
conformal subspace of divergence free functions). Because we
have, as yet, not obtained any numerical advantages of using
such a decomposition, this aspect will not be further developed
here.

III. ALGEBRAIC PROPERTIES

A. Algebraic equivalence between conventional and modified
equations

The modified integral equation (2) and the conventional
EFIE (1), are actually algebraically equivalent. To show this,
we give a description of the two operators E and H which
define the two equations:

E : H−1/2
div (Γ)−→ H−1/2

rot (Γ)

u 7−→ tr

[
(ζI− 1

η
∇∇·)Au

]
H : H−1/2

div (Γ)−→ H−1/2
rot (Γ),

v 7−→ tr

[
ψ̄(ζI− 1

η
∇∇·)Ãv

]
,

where H−1/2
div Γ) and H−1/2

rot (Γ) are two spaces of distributions
on Γ defined as:

Hs
div(Γ) = {u ∈ Hs(Γ)| div(u) ∈ Hs(Γ)},

Hs
rot(Γ) = {u ∈ Hs(Γ)| rot(u) ∈ Hs(Γ)}.

With these notations, the conventional EFIE reads

E u =−tr(E inc),

whereas the new formulation can be written as:

H v =−tr(ψ̄E inc). (4)

Then, if we introduce the operator Ψ to denote the multiplica-
tion by the Γ-trace of the analytic phase function and Ψ−1 its
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conjugate and inverse, the system (4) can easily be re-written
as:

H v = [Ψ−1 ◦E ◦Ψ]v =−Ψ
−1tr(E i). (5)

Because ψ is a nowhere vanishing C∞ function, the operator
Ψ is a homeomorphism in Hs(Γ) for any s. For the domain
of div or the domain of rot, we have the following. For any
u ∈ H−1/2

div (Γ),

div(ψu) = ∇ · (ψu) = (∇ψ) ·u+ψ(∇ ·u)

is also in H−1/2
div (Γ), because (∇ψ) · u is a sum of H−1/2

coefficients multiplied by C∞ functions, and ψ(∇ · u) is the
product of a C∞ function and a H−1/2 function, by the
definition of u. Similarly, for any u ∈ H−1/2

rot (Γ),

rot(ψu) = ∇ · (ψu×n) = (∇ψ) · (u×n)+ψ∇ · (u×n),

where, again, the first term of the right-hand side is a linear
combination of components of u× n which are in H−1/2(Γ)
whereas the second term on the right-hand side is in H−1/2(Γ)
by definition of u and the regularity of ψ .

We conclude that the conventional EFIE and the modified
EFIE are algebraically equivalent. This means that if the
EFIE has a unique solution the modified EFIE also has a
unique solution and vice versa. We know that on closed
surfaces at discrete frequencies of internal resonance, non-
radiating surface currents of undetermined amplitude destroy
the uniqueness of the EFIE solution. The algebraic equivalence
means that the modified integral EFIE on such closed surfaces
has the same non-uniqueness problem at the same set of
discrete frequencies. The way these uniqueness problems do
actually appear in the discretised integral equation depends on
the specific implementation and on the way the resulting linear
systems are solved approximately.

IV. GALERKIN DISCRETISATION OF THE EQUATIONS

Approximate solutions for the integral equations can be
obtained by a Galerkin finite element discretisation of the
variational formulation.

A. Discretisation of the conventional equations
The variational formulation for the conventional EFIE is:

Find J such that for all J ′ the following equality is satisfied:

ζ aE(J
′,J)+

1
η

φE(J
′,J) =−〈J ′,e〉,

where 〈,〉 is the standard distribution evaluation and the
bilinear forms in the left-hand side are defined by

aE(J
′,J) =

∫∫
(r,r′)∈Γ2

G(R(r,r′))J ′(r) ·J(r′)

and

φE(J
′,J) =

∫∫
(r,r′)∈Γ2

G(R(r,r′))(∇ ·J ′)(r)(∇ ·J)(r′),

respectively. A conformal finite element discretisation follows
by restricting J and J ′ to a finite dimensional subspace of
H−1/2

div (Γ), such as the usual edge element spaces on triangu-
lations.

B. Discretisation of the modified equations
The weak formulation of the modified EFIE:

Find J , such that for any tangent vector distribution J ′ on
Γ,

ζ aH(J
′,J)+

1
η

φH(J
′,J) =−〈J ′,e〉, (6)

where

aH(J
′,J) =

∫∫
(r,r′)∈Γ2

H(r,r′)J ′(r) ·J(r′),

φH(J
′,J) =

∫∫
(r,r′)∈Γ2

∇ · (ψ̄J ′)(r)G(R(r,r′))∇ · (ψJ)(r′)

and where we introduced the kernel

H : R3×R3 3 (r,r′) 7→ H(r,r′) = ψ̄(r)G(R(r,r′))ψ(r′).

C. The modified EFIE as a perturbation of the EFIE
If we describe the operator H as the sum of the conven-

tional EFIE operator, E , and a perturbation, K , defined by

K = H −E , (7)

we have isolated the part of H which depends on the plane
wave’s direction of incidence. This will appear to be an
essential feature of the modified formulations.

For the corresponding bilinear forms aK = aH−aE and φK =
φH −φE of the perturbation, we obtain

aK(J ,J
′) =

∫∫
(r,r′)∈Γ2

H1(r,r′)J ′(r) ·J(r′),

with

H1(r,r′) = H(r,r′)−G(R(r,r′)),

and

φK(J ,J
′) =

∫∫
(r,r′)∈Γ2

G(R(r,r′))(∇ · (ψ̄J ′))(r)(∇ · (ψJ))(r′)

− (∇ ·J ′)(r)(∇ ·J)(r′),

which we split into four terms,

φK(J ,J
′) =

∫∫
(r,r′)∈Γ2

H1(r,r′)(∇ ·J ′)(r)(∇ ·J)(r′)

+ k2
∫∫

(r,r′)∈Γ2
H(r,r′)(θ ·J ′(r))(θ ·J(r′))

+ jk
∫∫

(r,r′)∈Γ2
H(r,r′)(θ ·J ′(r))(∇ ·J)(r′)

− jk
∫∫

(r,r′)∈Γ2
H(r,r′)(∇ ·J ′)(r)(θ ·J(r′)).



IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. XX, NO. Y, MONTH 2004 4

The integrals involved in aK and φK are regular enough to be
evaluated numerically since they present no real singularities.
This regularity can be shown regarding the kernel’s behaviour
for r→ r′. The smoothness of the phase function implies that
the kernel H has the same regularity as the Green function
of the Helmholtz operator. This means that the numerical
evaluation of the bilinear forms in finite element discretisations
can be done with the same techniques as used in the imple-
mentations of the conventional EFIE. The kernel H1 is more
regular than the Green function of the Helmholtz operator.
Indeed, we have

H1(r,r′)≈− jkθ ·η(r,r′)+O(‖r− r′‖) r→ r′,

with

η(r,r′) =
(r− r′)
‖r− r′‖

,

which is a bounded function (albeit with an undefined value
in r = r′). This implies that we can numerically compute the
internal integrals of aK and φK (with Gaussian integration) by
applying a specific treatment to the kernel which accounts for
this asymptotic behaviour when r is close to r′.

In the end, the computation of the perturbation only involves
numerical integrations (with Gauss’ methods, for example) and
a few integrals of singular expressions that are also present in
the EFIE and for which efficient implementations have already
been found (see, for example, [8, Chapter 2, Section 2.2.1] for
a summary of such techniques and further references).

We give in Table I an overview of the floating-point oper-
ation count of the computation of H regarding this choice of
implementation.

Table I. FLOATING-POINT OPERATION COUNT FOR THE COMPUTATION
OF E AND ADDITIONAL COST FOR THE COMPUTATION OF THE MATRIX H .

NG Operation count for E Additional cost for K

3 ∼2.600 F2 ∼1.150 N2 ∼1.482 F2 ∼659 N2

7 ∼13.200 F2 ∼5.850 N2 ∼5.694 F2 ∼2.531 N2

(F : number of faces, N: number of internal edges, NG: number of Gauss points
considered).

V. REDUCTION OF THE NUMBER OF DEGREES OF
FREEDOM

A. Ideas and motivations
In the previous section, we have presented, the formulation

of the modified integral equation. However, we did not yet
show how to take benefit from its potential advantages. With
the modified integral equations, we are solving for a pseudo-
current Ĵ , which is less oscillating than the physical current
J on large parts of the surface (see [1]). Fig. 1 illustrates this,
with the exact current and pseudo-currents, for the case of
plane wave scattering by a perfectly conducting sphere.

Even though the pseudo current distribution can be accu-
rately discretised on a rather coarse triangulation, the Galerkin
coefficients require integration against a kernel function with

z

x

y
k

ϑ

E
H

-0.006

-0.004

-0.002

 0

 0.002
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 0  0.5  1  1.5  2  2.5  3

Re(J)

-0.002

-0.001

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0  0.5  1  1.5  2  2.5  3

Re(PsiJ)

Figure 1. Comparing the oscillations in the physical surface current (on
the left) and the pseudo-current (on the right) induced on a unit sphere by
a plane wave at 1GHz (k = kθ). The curves represent, in standard spherical
coordinates, the real parts of Jϑ and ψ̄Jϑ as a function of ϑ for ϕ ≡ 0

possibly great oscillations. On the triangles of a coarse mesh
this would require integration rules of much higher order than
those usually associated with finite elements. As has already
been demonstrated in [1], this makes that the modified EFIE
suffers from the same constraint as the conventional EFIE. In
the following paragraphs, we elaborate a technique to deal with
this problem.

Figure 2. On the left, a fine mesh satisfying the constraints for the EFIE at a
given frequency f = f0. On the right, coarse mesh on which we could expect
the modified EFIE to give correct results at the same frequency.

B. Macro elements and reduced system
In order to cope with the computational problem observed

above, we consider two meshes: a fine mesh satisfying, h <
λ0/7 (see Fig. 2 on the left), well adapted to work with the
EFIE at given frequency f0 and allowing proper computations
of the Galerkin coefficients, and a coarse mesh, on which we
want to discretise the pseudo-currents in the modified equation
and which does not necessarily comply with the constraint
h < λ0/7 (see Fig. 2 on the right).

To avoid ambiguities in the interpretation of the compar-
isons, we consider the polyhedron of the coarse mesh to be
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the true geometry. In this way, the finite element spaces in
which the modified integral equations are discretised are true
subspaces of finite element spaces over a finer mesh. This
contrasts to practical applications, where one should use the
fine mesh to get a better geometric approximation to the actual
boundary surface of the scattering object (For example, by
slightly re-distributing the vertices on the actual surface). We
shall from now on speak of macro edge elements on macro
cells even though the two finite element spaces are more tightly
related.

For practical reasons, we start with the coarse mesh and
derive the fine mesh from it. For this, we divide each triangle
of the coarse mesh into four small triangles by adding a new
vertex on the middle of each edge. In this way, starting from a
coarse mesh with Vc vertices, Ec edges and Fc faces, we end up
with a finer mesh with Vf =Vc +Ec vertices, E f = 2Ec +3Fc
edges and Ff = 4Fc faces. For a closed surface where 3F =
2E, we also have E f = 4Ec, such that the dimension of the
edge element space on the fine mesh equals four times the
dimension of the edge element space on the coarse mesh. The
given refinement divides the mesh size by two.

The set of edges of the fine mesh can be partitioned using
the macro edges and macro triangles containing them,

E f =

{ ⋃
Γ∈Ec

EΓ
f

}
∪

{ ⋃
T∈Fc

ET
f

)
,

where

EΓ
f = {Γ−,Γ+}

the pair of micro edges arising from the subdivision of the
macro edge Γ and

ET
f = {γT

0 ,γ
T
1 ,γ

T
2 }.

the triplet of micro edges in the interior of macro triangle T .

v0
v1

v2

∂0T∂1T

∂2T

∂0T∂1T

∂2T

T

v0
v1

v2

γT
0 γT

1

γT
2

Figure 3. Relation between edge basis functions defined on the coarse mesh
and edge basis functions defined on the fine mesh.

The above relations allow us, to construct the Galerkin
coefficients of a reduced system over the coarse mesh, using
the computations as for the micro elements on the fine mesh,
in an update algorithm. Let HRED be the Galerkin matrix over
the coarse mesh and HFIN the Galerkin matrix over the fine
mesh. As can be inferred from Fig. 3, each macro edge carries
a degree of freedom (DoF) which is a linear combination of

8 micro DoF’s. We can therefore express the matrix reduction
as

HΓ′,Γ
RED = ∑

γ ′∈eΓ′
∑

γ∈eΓ

cΓ′
γ ′ c

Γ
γ Hγ ′,γ

FIN .

using eΓ for the set of 8 micro edges carrying the micro DoF’s
contributing to the macro DoF on Γ. The eight coefficients cΓ

γ

have the values 1
2 or ± 1

4 (see the appendix for the details).
Because the kernel of the perturbation operator is more

regular than the original kernel of the H operator, we propose
an alternative discretization,

HRED,alt = ERED +KCOA,

where KCOA is the Galerkin matrix of the perturbation operator
K, computed directly in the macro element space, whereas
ERED is the reduced EFIE Galerkin matrix defined in the same
way as HRED. Again, the coefficients of HRED and ERED can be
updated “on the fly” from the computation of the coefficients
of HFIN and EFIN, respectively, which themselves do not need
to be stored (except when we want to use the EFIE on the fine
mesh for comparison purposes, of course).

VI. NUMERICAL RESULTS

In this section, we evaluate the modified EFIE with respect
to the accuracy of the current distribution on a scattering
obstacle and the accuracy of radar cross-section coefficients.

A. Accuracy of the current distribution

In this section, we can compare the results of a conventional
EFIE solution on the fine mesh to the solution obtained via
the modified EFIE on the coarse mesh. For that purpose, the
pseudo-current distribution multiplied by the phase function of
the incident wave is represented on the fine mesh. Taking the
EFIE result as the reference the relative error is computed via
L2 norms on the fine mesh,

Error(J) =
‖J −JFIN‖L2

‖JFIN‖L2
.

1) The sphere: The first example concerns a perfectly con-
ducting sphere. However, the coarse mesh is again used as the
reference geometry and the new vertices of the fine mesh are
not displaced to lie on the sphere. In Fig. 4, we show Error(J )
as a function of frequency where 0.2 GHz is the frequency
where the mesh size of the coarse mesh equals λ/10.

We observe that HRED and HRED,alt are very close with a
slowly increasing error up to 0.4 GHz (λ/5). Beyond 0.4 GHz,
the error increases more rapidly. The error associated with
the regular EFIE based on the coarse mesh is significantly
larger and deteriorates rapidly already from 0.05 GHz. From
these results, we conclude that HRED,alt offers the best trade-off
between accuracy and computational cost.
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E

Figure 4. Evolution of the relative error in the sphere surface current for
each of the proposed discretisations (E, HRED,alt and HRED).

Figure 5. The geometry of the rough plate test case

2) A flat plate with added surface roughness: We further
investigate the accuracy of the various methods on the example
of a rectangular plate, with and without, surface roughness (see
Fig. 5). The relative errors in the surface current distributions
on those two objects obtained via the various techniques are
shown in Fig. 6. The observations made for the case of the
sphere also apply to these examples. It can be seen that the
error jump is significant for the regular EFIE for frequencies
larger than 0.5 GHz (λ/6).

0 0.2 0.4 0.6 0.8 1
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100

101

frequency (GHz)

E
rr

or
(J

)

The flat plate

HRED
HRED,alt

E

0 0.2 0.4 0.6 0.8 1

10−1

100

frequency (GHz)

E
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or
(J

)

The rough plate

HRED
HRED,alt

E

Figure 6. Evolution of the relative error in the rough plate surface current
for each of the proposed discretisations E, HRED,alt and HRED.

The results obtained for the plate and the rough plate lead to
observations similar to those for the sphere. Nevertheless we
can note here that a stronger increase of the error is observed
when the mesh size on the rough plate exceeds the value λ/10
(0.3 GHz). This may be due to the fact that, on this far-from-
convex surface, the total variation of the pseudo-current and
true surface current are comparable on a large part of the

surface.

B. Accuracy of Radar Cross Section coefficients
We further investigate the accuracy of results obtained with

the modified EFIE, but this time weakly, in Radar Cross
Section computation which amounts to evaluating the current
distributions on plane waves. For the perfectly conducting
sphere, we compare with the analytic solution computed with
the Mie series. For the flat plate and the rough plate example,
we will use the solution computed with the regular EFIE on
the fine mesh as the reference. Because, it appeared as the
most promising alternative in the previous section, we only
report on experiments with the HRED,alt version.

1) The sphere: Fig. 7 and 8 show a bistatic RCS coefficient
computed, for various mesh sizes, with the EFIE and the
modified EFIE, respectively. As we are no longer comparing
different versions of the modified EFIE, we now place the
vertices of the fine meshes on the sphere, which is what one
would do in applications of the method.
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Figure 7. Representation of the bistatic RCS obtained from the various
meshes with the EFIE at f = 0.6 GHz.
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Figure 8. Representation of the bistatic RCS obtained from the various
meshes with the modified EFIE system using HRED,alt at f = 0.6 GHz.

In Fig. 7, it can be observed that a fairly accurate solution is
obtained with the EFIE for a mesh size of λ/7. This is in good
agreement with the classical rule of thumb λ/10. Similarly, in
Fig. 8, we can see that a comparable solution can be obtained
with the modified EFIE already for mesh sizes λ/3 or λ/4.
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These experiments illustrate that the new method allows us to
relax the mesh size constraint while preserving the same level
of accuracy.

2) A flat plate with added surface roughness: For the RCS
of a plate with and without surface roughness, we come to the
same conclusions as for the example of the sphere (see Fig. 9
and Fig. 10).
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Figure 9. Representation of the bistatic RCS of the flat plate, obtained from
the various meshes at f = 1 GHz.
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Figure 10. Representation of the bistatic RCS of a rough plate obtained
from the various meshes at f = 1 GHz.

C. Performance comparison

In this section, we compare the performances of the modi-
fied EFIE and the conventional EFIE with respect to memory
and CPU time requirements, for a given desired accuracy. For
both the EFIE and the modified EFIE, we use a GMRES
(Generalized Minimal RESidual) iterative solution algorithm,
and we include the GMRES stopping criterion, εGMRES, as a
parameter.

The modified EFIE has clear advantages from a memory
point of view because, as we have seen, it requires about 4
times less degrees of freedom than the conventional EFIE for
a given accuracy. With a given amount of available memory,
this allows one to handle objects of larger size relative to the
wavelength than is possible with the EFIE. This is illustrated
in Fig. 11, where one observes that for a given available
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Figure 11. Accuracy versus memory requirements

memory, the modified EFIE can reach better precision than
the conventional EFIE.

In Fig. 12, we show, for the EFIE and the modified EFIE,
at a given required accuracy, the total execution time, i.e., the
sum of the time needed to construct the linear system and the
time to obtain the solution.
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Figure 12. Computation times.

In both Fig. 11 and Fig. 12, we observe that the two methods
have roughly the same performance. The total solution time
with the modified EFIE depends less on the stopping criterion,
εGMRES, than with the conventional EFIE. This is because the
system construction time in the examples dominates the total
execution time. The fact that for better accuracies the EFIE
results are absent is due to the fact that the EFIE memory
requirements exceeded the available memory on the computer
used.

VII. CONCLUSION AND PERSPECTIVES

We have presented a modified version of the electric field
integral dedicated to plane wave scattering problems. This
formulation allows one to escape from certain limitations of
the conventional EFIE in terms of discretisation dimensions at
high frequencies. The results of various comparisons shown in
this paper lead to the conclusion that the new formulation is
clearly advantageous. This is, above all, due to the fact that,
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for comparable accuray at identical problems, roughly 4 times
less unknowns are needed than with the conventional EFIE.
According to previous work, this ratio will be more and more
in favour of the modified EFIE when the frequency increases.

Although the numerical results obtained are promising, a
more exhaustive study deserves to be undertaken. In particular,
comparisons should be performed with numerical implemen-
tations accomodating compression techniques such as FMM
or hierarchical matrix calculations. It can also be noticed
that the new integral equation has an advantage in terms of
system solving time, when using a GMRES iterative method.
This lets us expect to obtain advantageous performance for
multiple right-hand sides (multiple incidence directions) where
the gain in solving time outweighs the additional cost needed to
construct the incidence direction dependent perturbation matrix
(K = H−E) which can be done on a rather coarse mesh.

However, these perspectives need to be confirmed by a nu-
merical study for objects of larger size. This work will include
the elaboration of acceleration techniques like FMM, ACA or
HCA with H-Matrix calculations. The HCA techniques (see
[10], [11]) will be our most favorable candidates because they
allow us to work directly on the optimization of the numerical
integration rules.
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APPENDIX

DETAILS OF THE MODEL REDUCTION

In this appendix, we present the details of the reduction of
the edge element Galerkin matrix on the fine mesh to one
on the coarse mesh. Fixing the ordering of the added edges
makes it easier to handle the relation between the edge element
spaces on the coarse and the fine mesh. Here, we choose to
order the edges added in the interior of a triangle of the coarse
mesh according to the positive orientation of this triangle (see
Fig. 3). Each macro edge Γ, corresponds to an ordered pair of
two micro edges Γ = (Γ−,Γ+) oriented consistently with the
orientation of Γ.

For the degree of freedom (DoF) associated with the macro
edge ∂pT , we have two micro DoF’s associated with the two
micro edges contained by the macro edge, and three micro-
DoF’s on the micro-edges, γT

p , p ∈ {0,1,2}, internal to each
of the two macro-triangles, T = ∂ ∗;+Γ and T = ∂ ∗;−Γ, adjacent
to the macro-edge Γ (only one of these macro-triangles, ∂ ∗;+Γ,
is shown in Fig. 3).

We write

eΓ = EΓ
f ⊕E∂ ∗;−Γ

f ⊕E∂ ∗;+Γ
f

for the ordered octuple of micro-edges associated with Γ.
Let basis functions of an edge finite element space be labeled

by the edge fixing the degree of freedom. We write JΓ for a
macro basis function associated with a macro edge Γ and jγ

for a micro basis function associated with a micro edge γ .
The macro basis function, JΓ, can be written generically as

a sum

JΓ = ∑
γ∈eΓ

cΓ
γ jγ .

The coefficients are defined as follows:

cΓ
γ =


1
2 if γ ∈ {Γ−,Γ+}
∓ 1

4 if γ = γT
p and Γ =±∂pT

± 1
4 if γ = γT

p and Γ =±∂qT with p 6= q.

The value 1
2 , is obtained because of the subdivision of any

macro edge in two equal halves. The 4 sub triangles of a
triangle T , have equal area, |T |4 , because they are spanned by
edges which are parallel to and exactly half the size of two
macro edges. As the edge elements have constant divergence,
each flow entering a micro triangle should leave it with a flow
1
4 smaller. The specific distribution of signs follows from the
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choice of orientation of the micro edges and the orientation
of the macro edge relative to the positive orientation of the
macro triangle. These must be taken as they come with the
coarse mesh (we cannot suppose any specific rule here).

It should be clear that all the mappings and associated data
structures can be defined while constructing the refinement by
sweeping through the coarse mesh for which the boundary op-
erator and all DoF administration is already available (See [16]
for more details and [14] for alternative methods).
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