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The identification problem for BSDEs driven by possibly non

quasi-left-continuous random measures

Elena Bandini
∗

Francesco Russo
†

Abstract

In this paper we focus on the so called identification problem for a backward SDE driven
by a continuous local martingale and a possibly non quasi-left-continuous random measure.
Supposing that a solution (Y, Z, U) of a backward SDE is such that Yt = v(t,Xt) where X is an
underlying process and v is a deterministic function, solving the identification problem consists
in determining Z and U in term of v. We study the over-mentioned identification problem
under various sets of assumptions and we provide a family of examples including the case when
X is a non-semimartingale jump process solution of an SDE with singular coefficients.

Key words: Backward SDEs; identification problem; non quasi-left-continuous random mea-
sure; weak Dirichlet processes; piecewise deterministic Markov processes; martingale problem with
jumps and distributional drift.
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1 Introduction

This paper considers a BSDE driven by a compensated random measure µ− ν, of the form

Yt = ξ +

∫

]t, T ]×R

f̃(s, e, Ys−, Zs, Us(e)) dζs

−

∫

]t, T ]
Zs dMs −

∫

]t, T ]×R

Us(e) (µ − ν)(ds de), (1.1)

whose solution is a triplet of processes (Y,Z,U), with Y a càdlàg adapted process, Z a predictable
process and U(·) a predictable random field. Besides µ and ν appear two driving random elements,
namely a continuous martingale M and a non-decreasing adapted càdlàg process ζ, while ξ is a
square integrable random variable, and f̃ is a random function. Often Y turns out to be of
the type v(t,Xt) where v is a deterministic function, and X is a càdlàg adapted process. The
identification problem consists in determining Z and U in terms of v.

BSDEs have been deeply studied since the seminal paper [28], where the Brownian context
appears as a particular case of (1.1), setting µ = 0, ζs ≡ s. There, M is a standard Brownian
motion and ξ is measurable with respect to the Brownian σ-field at terminal time. In that case the
unknown can be reduced to (Y,Z), since U can be arbitrarily chosen. BSDEs with a discontinuous
driving term of the form (1.1) have been studied as well; in almost all cases, the random measure
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µ is quasi-left-continuous, i.e. µ({S}×R) = 0 on {S <∞} for every predictable time S, see, e.g.,
[34], [12], [33], [5], [4]. Existence and uniqueness for BSDEs driven by a random measure which
is not necessarily quasi-left-continuous are very recent, and were discussed in [1] in the purely
discontinuous case, and in [27] in the jump-diffusion case.

When the random dependence of f̃ is provided by a Markov solution X of a forward SDE, and
ξ is a real function of X at the terminal time T , then the BSDE (1.1) is called forward BSDE.
In the Brownian context, when X is the solution of a classical SDE with diffusion coefficient σ,
forward BSDEs generally constitute stochastic representations of a partial differential equation.
If v : [0, T ] × R → R is a classical (smooth) solution of the mentioned PDE, then Ys = v(s,Xs),
Zs = σ(s,Xs) ∂xv(s,Xs), generate a solution to the forward BSDE, see e.g. [30], [29], [31], which
provide the solution to the identification problem in that particular case. Conversely, solutions of
forward BSDEs generate solutions of PDEs in the viscosity sense, or in other generalized sense,
see e.g. [11]. More precisely, for each given couple (t, x) ∈ [0, T ] × R, consider an underlying
process X given by the solution Xt,x of an SDE starting at x at time t; if (Y t,x, Zt,x) is a family of
solutions of the forward BSDE, under reasonable general assumptions, the function v(t, x) := Y t,x

t

is a viscosity solution of the related PDE. In the Brownian context, the identification problem of
Z has been faced even if v ∈ C0,1, including the infinite dimensional case, see for instance [20]
under slightly more general conditions.

In the general case when the forward BSDEs are also driven by random measures, these
equations generally constitute stochastic representations of a partial integro-differential equation
(PIDE). When v is a classical solution of the PIDE and X is a solution to a Markov jump-diffusion
equation, the identification problem was solved in [9]. Analogous results can be obtained when
X is a purely discontinuous Markov process, see [14]. In both cases, the BSDE is driven by a
compensated random measure µ − ν with µ quasi-left-continuous. In the context of alternative
BSDEs with jumps, i.e. the one of martingale driven forward BSDEs of [13], the identification
problem was discussed for instance in [26] and [10].

In [8] we extended the above-mentioned identification results in two directions. Firstly, we
generalized [14] to the case of BSDEs driven by non-quasi-left-continuous random measures, re-
lated to a special class of piecewise deterministic Markov process (PDMPs). Secondly, in the non
purely discontinuous case, we extended the study to the case when Yt = v(t,Xt), with X a special
weak Dirichlet process of finite quadratic variation and v of class C0,1. A similar technique was
used earlier in the different context of verification theorems for control problems, see [21].

Besides the survey aspects, the present paper extends the results of [8] along three lines.

1. One investigates the identification problems, going beyond the forward BSDEs formalism,
even though following the same lines of [8].

2. We generalize the results in [8] by alleviating some important hypotheses. As a matter of
fact, Proposition 3.7 improves the achievements of Proposition 2.17 in [8], since the condition

ν({S}, de) = µ({S}, de) a.s. for every predictable time S such that [[S]] ⊂ K (1.2)

is no longer needed here. This allows to formulate Theorems 4.2 and 4.5 under more
general assumptions, and extends the applicability of our results. Among others, we are
able to solve the identification result for more general jump-diffusion processes and piecewise
deterministic Markov processes, see respectively Corollaries 5.5 and 5.9.

3. We apply our results to the completely new case when X is the solution to a martingale
problem with general jumps and distributional drift, related thus to an operator of the form
β′(x) ∂∂x + 1

2σ
2(x) ∂

2

∂x2 , with β only continuous, and to some predictable random measure ν
possibly discontinuous. Martingale problems of this type have been studied in the companion
paper [6]. We solve the identification problem in this context, see Corollary 5.15.
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2 Notation and preliminaries

We fix a positive horizon T . Given a topological space E, in the sequel B(E) will denote the Borel
σ-field associated with E. We will indicate by C0,1 the space of all functions u : [0, T ]× R → R,
(t, x) 7→ u(t, x), that are continuous together their derivative ∂xu.

For a filtered probability space (Ω,F , (Ft)t≥0,P), we will always suppose that (Ft)t≥0 satisfies
the usual conditions, with F = FT . Related to it, P (resp. P̃ = P ⊗ B(R)) will denote the
predictable σ-field on Ω × [0, T ] (resp. on Ω̃ = Ω × [0, T ] × R). Analogously, we set O (resp.
Õ = O ⊗ B(R)) as the optional σ-field on Ω × [0, T ] (resp. on Ω̃). Moreover, F̃ will be σ-field
F ⊗ B([0, T ] × R), and we will indicate by FP the completion of F with the P-null sets. We
set F̃P = FP ⊗ B([0, T ] × R). By default, all the stochastic processes will be considered with
parameter t ∈ [0, T ]. By convention, any càdlàg process defined on [0, T ] is extended to R+ by
continuity. A random set A ⊂ Ω̃ is called evanescent if the set {ω : ∃ t ∈ R+ with (ω, t) ∈ A} is
P-null. Generically, all the equalities of random sets will be intended up to an evanescent set.

For a measurable process X we denote by p(X) its predictable projection, see e.g. Theorem
5.2 in [23]. A bounded variation process X on [0, T ] will be said to be with integrable variation
if the expectation of its total variation is finite. A (resp. Aloc) will denote the collection of
all adapted processes with integrable variation (resp. with locally integrable variation), and A+

(resp A+
loc) the collection of all adapted integrable increasing (resp. adapted locally integrable)

processes. In general, these notions refer to the underlying probability P; when this is not the
case, we will mention the specific probability. The significance of locally is the usual one which
refers to localization by stopping times, see e.g. (0.39) of [24].

We also recall that a random kernel φ(a, db) of a measurable space (A,A) into another mea-
surable space (B,B) is a family {φ(a, ·), a ∈ A} of positive measures on (B,B), such that φ(·, C)
is A-measurable for any C ∈ B. Finally, the concept of random measure is extensively used
throughout the paper: for a detailed discussion on this topic and the unexplained notations see
Chapter I and Chapter II, Section 1, in [25], Chapter III in [24], and Chapter XI, Section 1, in
[23]. In particular, if µ is a random measure on [0, T ] × R, for any measurable real function H
defined on Ω̃, one denotes H ⋆ µt :=

∫

]0, t]×R
H(·, s, x)µ(·, ds de).

2.1 Stochastic integration with respect to integer-valued random measures

Let (Ω,F , (Ft)t≥0,P) be a filtered probability space. In the sequel of Section 2, µ will be an
integer-valued random measure on [0, T ] × R, and ν will be its compensator, for which we will
choose the ”good” version as constructed in point (c) of Proposition 1.17, Chapter II, in [25]. Set

D = {(ω, t) : µ(ω, {t} × R) > 0}, (2.1)

J = {(ω, t) : ν(ω, {t} × R) > 0}, (2.2)

K = {(ω, t) : ν(ω, {t} × R) = 1}. (2.3)

We define νd := ν 1J and νc := ν 1Jc . Similar conventions will be used for the other integer-
valued random measures appearing in the paper. We will sometimes use the form of µ given in
Proposition 1.14, Chapter II, in [25], i.e.

µ(dt de) =
∑

s≥0

1D(s, ω) δ(s,βs(ω))(dt de), (2.4)

where β is a real-valued optional process.

Remark 2.1. (i) D is a thin set, namely D = ∪n[[Tn]] with (Tn)n random times, see Theorem
11.13 in [23].

3



(ii) J is the predictable support of D, namely J = {p(1D) > 0}, see Theorem 5.39 in [23]. This
is equivalent to 1J = p(1D).

(iii) There exists a sequence of predictable times (Rn)n with disjoint graphs, such that J =
∪n[[Rn]], see Proposition 2.23, Chapter I, in [24].

(iv) K is the largest predictable subset of D, see Theorems 11.14 in [23]. Since K is predictable,
we have p(1K) = 1K .

(v) A progressive set B contained in a thin set is also thin set, see Theorem 3.19 in [23]. In
particular, K is a thin set.

Remark 2.2. ν admits a disintegration of the type

ν(ω, ds de) = dAs(ω)φ(ω, s, de), (2.5)

where φ is a random kernel from (Ω × [0, T ],P) into (R,B(R)) and A is a right-continuous
nondecreasing predictable process, such that A0 = 0, see for instance Remark 4.4 in [1].

We recall an important notion of measure associated with µ, given in formula (3.10) in [24].

Definition 2.3. Let (Ω̃n) be a partition of Ω̃ constituted by elements of Õ, such that 1Ω̃n
⋆µ ∈ A.

MP
µ denotes the σ-finite measure on (Ω̃, F̃P), such that for every W : Ω̃ → R positive, bounded,

F̃P-measurable function,
MP
µ (W 1Ω̃n

) = E
[

W 1Ω̃n
⋆ µT

]

. (2.6)

Let us set ν̂t(de) := ν({t}, de) for all t ∈ [0, T ]. For any W ∈ Õ, we define

Ŵt =

∫

R

Wt(e) ν̂t(de), W̃t =

∫

R

Wt(e)µ({t}, de) − Ŵt, t ≥ 0,

with the convention that W̃t = +∞ if Ŵt is not defined. For every q ∈ [1, ∞[, we introduce the
linear spaces

Gq(µ) =
{

W ∈ P̃ :
[

∑

s≤·

|W̃s|
2
]q/2

∈ A+
}

, Gqloc(µ) =
{

W ∈ P̃ :
[

∑

s≤·

|W̃s|
2
]q/2

∈ A+
loc

}

.

Given W ∈ P̃ , we define the increasing (possibly infinite) predictable process

C(W ) := |W − Ŵ 1J |
2 ⋆ ν +

∑

s≤·

(1− ν̂s(R)) |Ŵs|
2
1J\K(s), (2.7)

provided the right-hand side is well-defined. By Theorem 11.21, point 3) in [23], if W ∈ G2(µ),
then 〈W ⋆ (µ− ν)〉 is well defined and

C(W ) = 〈W ⋆ (µ− ν)〉. (2.8)

We set

||W ||2G2(µ) := E [C(W )T ] . (2.9)

We also introduce the space

L2(µ) :=

{

W ∈ P̃ : ||W ||L2(µ) := E

[

∫

]0,T ]×R

|Ws(e)|
2 ν(ds de)

]

<∞

}

.
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Remark 2.4 (Lemma 2.4 in [8]). If W ∈ L2(µ) then W ∈ G2(µ) and ||W ||2G2(µ) ≤ ||W ||2L2(µ).

Moreover L2
loc(µ) ⊂ G2

loc(µ).

The following result is the object of Proposition 2.8 in [8].

Proposition 2.5. If C(W )T = 0 a.s., then ||W − Ŵ 1K||L2(µ) = 0, or, equivalently, there exists
a predictable process (ls) such that

Ws(e) = ls 1K(s), dP ν(ds de)-a.e. (2.10)

In particular, Ws(e) = 0, dP νc(ds de)-a.e., and there is a predictable process (ls) such that
Ws(e) = ls 1K(s), dP ν

d(ds de)-a.e.

We recall the following definition, fundamental for the sequel of the paper.

Definition 2.6. Given a càdlàg process X, we introduce the associated jump measure, namely
the integer-valued random measure on R+ × R defined as

µX(ω; dt dx) :=
∑

s∈]0, T ]

1{∆Xs(ω)6=0} δ(s,∆Xs(ω))(dt dx). (2.11)

The compensator of µX(ds dx) will be denoted by νX(ds dx).

We will consider the following condition for a couple (χ,Q) where χ is a random measure and
Q is a given probability (of simply for χ when Q is the self-explanatory probability P):

∫

]0,·]×R

(|x| ∧ |x|2)χ(ds dx) ∈ A+
loc. (2.12)

A more restrictive condition will be also considered, namely
∫

]0,·]×R

(|x| ∧ |x|1+α)χ(ds dx) ∈ A+
loc for some α ∈ [0, 1]. (2.13)

By abuse of notations, when χ = µX for a given càdlàg process X, we will say that X verifies
condition (2.12) or condition (2.13) (under Q).

Remark 2.7. Condition (2.13) implies in particular condition (2.12).

We will be also interested in functions v : [0, T ]×R → R of class C0,1 fulfilling the integrability
property (with respect to (χ,Q) or simply for χ when P is self-explanatory)

∫

]0,·]×R

|v(s,Xs− + x)− v(s,Xs−)− x ∂xv(s,Xs−)|1{|x|>1} χ(ds dx) ∈ A+
loc. (2.14)

Also in this case, by abuse of notations, when χ = µX for a given càdlàg process X, we will say
that v and X verify condition (2.14) (under Q).

2.2 Chain rules for special weak Dirichlet processes

Let (Ω,F , (Ft)t≥0,P) be a filtered probability space. Special weak Dirichlet processes constitute
a further development of weak Dirichlet processes, which were introduced by [17], [22] in the
continuous case and by [15] in the jump case.

O is an (Ft)-orthogonal process if [O,N ] = 0 for every N continuous local (Ft)-martingale.
We recall that [·, ·] is the covariation extending the classical covariation of semimartingales, see
[32] and Definition 2.4 in [7]. An (Ft)-local martingale M is said to be purely discontinuous if it
is (Ft)-orthogonal. A special weak Dirichlet process is a process of the type X = M + A, where
M is an (Ft)-local martingale and A is an (Ft)-predictable orthogonal process, see Definition 5.6
in [7]. When A has bounded variation, then X is a special (Ft)-semimartingale.

5



Remark 2.8 (Proposition 5.9 in [7]). Any (Ft)-special weak Dirichlet process X admits a unique
decomposition of the type

X = Xc +Md +A, (2.15)

where Xc is a continuous local martingale, Md is a purely discontinuous local martingale, and
A is an (Ft)-predictable and orthogonal process, with A0 = 0. (2.15) is called the canonical
decomposition of X.

In the sequel we will consider the following assumptions on a couple (X,Y ) of adapted pro-
cesses.

Hypothesis 2.9. X is an (Ft)-special weak Dirichlet process of finite quadratic variation with
its canonical decomposition X = Xc + Md + A, satisfying condition (2.12). Yt = v(t, Xt) for
some (deterministic) function v : [0, T ]×R → R of class C0,1 such that v and X verify condition
(2.14).

Remark 2.10. (i) [Proposition 4.5 in [7]]. If X is a càdlàg process such that
∑

s≤T |∆Xs|
2 <∞

a.s., and v : [0, T ]× R → R is a function of class C0,1, then

|v(s,Xs− + x)− v(s,Xs−)|
2
1{|x|≤1} ⋆ µ

X ∈ A+
loc. (2.16)

(ii) [Lemma 5.29 in [7]]. IfX is a càdlàg process satisfying condition (2.12), and v : [0, T ]×R → R

is a function of class C0,1 fulfilling (2.14), then

|v(s,Xs− + x)− v(s,Xs−)|1{|x|>1} ⋆ µ
X ∈ A+

loc. (2.17)

(iii) [Remark 5.30 in [7]]. Condition (2.14) is automatically verified if X is a càdlàg process
satisfying (2.12) and v : [0, T ] × R → R is a function of class C0,1 with ∂xv bounded.

Theorem 2.11 (Theorem 5.31 in [7]). Let (X,Y ) be a couple of (Ft)-adapted processes satisfying
Hypothesis 2.9 with corresponding function v. Then we have

v(t,Xt) = v(0,X0) +

∫ t

0
∂xv(s,Xs) dX

c
s

+

∫

]0, t]×R

(v(s,Xs− + x)− v(s,Xs−)) (µ
X − νX)(ds dx) +Av(t), (2.18)

where Av is a predictable (Ft)-orthogonal process.

We now need to formulate a technical assumption under which Proposition 2.14 below holds,
see item (iii) of Hypothesis 2.12. Let E be a closed subset of R on which X takes values. Given a
càdlàg function ϕ : [0, T ] → R, we denote by Cϕ the set of times t ∈ [0, T ] for which there is a left
(resp. right) neighborhood It− =]t − ε, t[ (resp. It+ = [t, t + ε[) such that ϕ is constant on It−
and It+. Let us then consider the following assumptions on a couple (X,Y ) of adapted processes.

Hypothesis 2.12.

(i) Y is an (Ft)-orthogonal process such that
∑

s≤T |∆Ys| <∞, a.s.

(ii) X is a càdlàg process and Yt = v(t, Xt) for some deterministic function v : [0, T ]×R → R,
satisfying the integrability condition

∫

]0, ·]×R

|v(t,Xt− + x)− v(t,Xt−)|µ
X(dt dx) ∈ A+

loc. (2.19)
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(iii) There exists C ∈ [0, T ] such that for ω a.s. C ⊃ CX(ω), and

(i) ∀t ∈ C, t 7→ v(t, x) is continuous for all x ∈ E;

(ii) ∀t ∈ Cc, x ∈ E, (t, x) is a continuity point of v.

Remark 2.13. Item (iii) of Hypothesis 2.12 is fulfilled in two typical situations.

1. C = [0, T ]. Almost surely X admits a finite number of jumps and t 7→ v(t, x) is continuous
for all x ∈ E.

2. C = ∅ and v|[0, T ]×E is continuous.

Proposition 2.14 (Proposition 5.37 in [7]). Let (X,Y ) be a couple of (Ft)-adapted processes
satisfying Hypothesis 2.12 with corresponding function v. Then v(t,Xt) is an (Ft)-special weak
Dirichlet càdlàg process with decomposition

v(t,Xt) = v(0,X0) +

∫

]0, t]×R

(v(s,Xs− + x)− v(s,Xs−)) (µ
X − νX)(ds dx) +Av(t), (2.20)

where Av is a predictable (Ft)-orthogonal process.

3 A class of stochastic processes X related in a specific way to

an integer-valued random measure µ

Let (Ω,F , (Ft)t≥0,P) be a filtered probability space. We will make use of the following assumption
relating a càdlàg process X and an integer-valued random measure µ(ds de) on [0, T ] × R, with
compensator ν(ds de) (the random sets D, J and K are defined in (2.1)-(2.2)-(2.3)).

Hypothesis 3.1. We suppose that X is an adapted càdlàg process with decomposition X =
Xi +Xp, where the conditions below hold.

1.a) Y := Xi is a càdlàg quasi-left-continuous adapted process satisfying {∆Y 6= 0} ⊂ D.

1.b) There exists a P̃-measurable map γ̃ : Ω×]0, T ]× R → R such that

∆Yt(ω)1]0, T ](t) = γ̃(ω, t, ·) dMP
µ -a.e. (3.1)

2. Xp is a càdlàg predictable process satisfying {∆Xp 6= 0} ⊂ J .

Remark 3.2. We recall that a random time T is totally inaccessible if 1[[T ]](ω, S(ω))1{S<∞} = 0
for every predictable random time S see Definition 2.20, Chapter I, in [25], while a process Y
is quasi-left-continuous if ∆YS1S<∞ = 0 for all predictable random time S, see Definition 2.25,
Chapter I, in [24]. Y is quasi-left-continuous if and only if there is a sequence of totally inaccessible
times (Tn), with [[Tn]] ∩ [[Tm]] = ∅, n 6= m, such that {∆Y 6= 0} = ∪n[[Tn]], see Proposition 2.26,
Chapter I, in [25].

In the sequel we will also need the following assumption on µ.

Hypothesis 3.3. J = K (up to an evanescent set).
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Remark 3.4. Hypothesis 3.3, is equivalent to ask that

D is the disjoint union of K and ∪n [[T
i
n]] (up to an evanescent set)

with (T in)n disjoint totally inaccessible times. (3.2)

Indeed, if (3.2) holds, then Hypothesis 3.3 holds true, see Proposition 2.7 in [8]. On the other
hand, assume that Hypothesis 3.3 is satisfied. Then, recalling Remark 2.1-(ii)-(iv) and taking
into account the additivity of the predictable projection operator, we have

1K = p (1D) =
p (1K) +

p
(

1D\K

)

= 1K + p
(

1D\K

)

so that p
(

1D\K

)

= 0. It follows that the predictable support of D \K is an evanescent set. By
Remark 2.1-(v) D\K a thin set, therefore D\K = ∪n[[T

i
n]], with (T in)n disjoint totally inaccessible

times, see Corollary 5.43 in [23] and Remark at page 122 in [23].

Remark 3.5. If ν({t}×R) = 0 for every t ≥ 0, then J = K = ∅ and Hypothesis 3.3 trivially holds.

Proposition 3.6 (Proposition 2.12 in [7]). Let µ be an integer-valued random measure and X be
an adapted càdlàg process, such that (X,µ) verifies Hypothesis 3.1. Then, there exists a null set
N such that, for every Borel function ϕ : [0, T ] × R → R+ satisfying ϕ(s, 0) = 0, s ∈ [0, T ], we
have, for every ω /∈ N ,

∫

]0, ·]×R

ϕ(s, x)µX(ω, ds dx) =

∫

]0, ·]×R

ϕ(s, γ̃(ω, s, e))µ(ω, ds de) +
∑

0<s≤·

ϕ(s,∆Xp
s (ω)).

Proposition 3.7. Let µ be an integer-valued random measure with compensator ν satisfying
Hypothesis 3.3, and let X be an adapted càdlàg process such that and (X,µ) verifies Hypothesis
3.1. Let ϕ : Ω × [0, T ] × R → R+ be a P̃-measurable function such that ϕ(ω, s, 0) = 0 for every
s ∈ [0, T ], up to indistinguishability, and assume that there exists a P̃-measurable subset A of
Ω× [0, T ]×R satisfying

|ϕ|1A ⋆ µ
X ∈ A+

loc, |ϕ|2 1Ac ⋆ µX ∈ A+
loc. (3.3)

Then
∫

]0, ·]×R

ϕ(s, x) (µX − νX)(ds dx) =

∫

]0, ·]×R

ϕ(s, γ̃(s, e)) (µ − ν)(ds de). (3.4)

Remark 3.8. The result above consistently improves the achievements of Proposition 2.17 in [8].
As a matter of fact, condition (1.2) is no longer asked here. This allows to solve the identification
problems under more general assumptions, see Theorems 4.2 and 4.5, and therefore it extends the
applicability of our results, see e.g. Section 5.1.

Proof. Clearly the result holds if we show that ϕ verifies (3.4) under one of the two following
assumptions: (i) |ϕ| ⋆ µX ∈ A+

loc, (ii) |ϕ|
2 ⋆ µX ∈ A+

loc. By localization arguments, it is enough to
show it when |ϕ| ⋆ µX ∈ A+, |ϕ|2 ⋆ µX ∈ A+.

Case |ϕ| ⋆ µX ∈ A+. We will separate the proof into the following steps.

1. Assume that θ : Ω × [0, T ] × R → R+ be a P̃-measurable function such that θ(ω, s, 0) = 0
for every s ∈ [0, T ], satifying

∫

]0, ·]×R

θ(s, x) (µX − νX)(ds dx) =

∫

]0, ·]×R

θ(s, γ̃(s, e)) (µ − ν)(ds de) + Γθ· (3.5)

with Γθ a predictable process. Then, Γθ = 0. As a matter of fact, Γθ is a predictable
local martingale, and therefore continuous, see Remark 4 pag 194, Chapter VII, in [23]. On
the other hand, being also a purely discontinuous martingale, it follows that it is the null
process.
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2. Let φ : Ω× [0, T ]× R → R+ be a P̃-measurable function such that φ(ω, s, 0) = 0 for every
s ∈ [0, T ], and |φ| ⋆ µX ∈ A+. Assume that φ = φ1K . Then (3.4) holds true for ϕ = φ.

3. Let ψ : Ω× [0, T ]× R → R+ be a P̃-measurable function such that ψ(ω, s, 0) = 0 for every
s ∈ [0, T ], and |ψ| ⋆ µX ∈ A+. Assume that ψ1K = 0. Then (3.4) holds true for ϕ = ψ.

4. Let ϕ : Ω× [0, T ]× R → R+ be a P̃-measurable function such that ϕ(ω, s, 0) = 0 for every
s ∈ [0, T ], and |ϕ|⋆µX ∈ A+. Then ϕ = φ+ψ, with φ := ϕ1K , ψ = ϕ−ϕ1K . In particular,
φ = φ1K and ψ1K = 0, and |φ| ⋆ µX ∈ A+, |ψ| ⋆ µX ∈ A+ . By Steps 2. and 3. and the
additivity property of the stochastic integral, it follows that (3.4) holds true for ϕ.

It remains to prove Steps 2. and 3.
Step 2. We have

∫

]0, ·]×R

φ(s, x)µX (ds dx) =

∫

]0, ·]×R

φ(s, x)1K(s)µX(ds dx)

=
∑

s≤·

φ(s,∆Xs)1K(s) =
∑

s≤·

φ(s,∆Xi
s +∆Xp

s )1K(s),

where in the latter equality we have used that (X,µ) satisfies Hypotheses 3.1 with X = Xi+Xp.
Since Xi is a càdlàg quasi-left-continuous process, ∆Xi

S = 0 for all predictable random time S.
Recalling Remark 2.1-(iii) and Hypothesis 3.3, we have

∑

s≤·

φ(s,∆Xi
s +∆Xp

s )1K(s) =
∑

s≤·

φ(s,∆Xi
s +∆Xp

s )1∪n[[Rn]](s)

=
∑

n:Rn≤·

φ(Rn,∆X
i
Rn

+∆Xp
Rn

)1[[Rn]](s)

=
∑

n:Rn≤·

φ(Rn,∆X
p
Rn

)1[[Rn]](s) =
∑

s≤·

φ(s,∆Xp
s )1K(s),

so that (3.7) yields
∫

]0, ·]×R

φ(s, x)µX(ds dx) =
∑

0<s≤·

φ(s,∆Xp
s ). (3.6)

By Proposition 3.6 together with (3.6),
∫

]0, ·]×R
φ(s, γ̃(s, e))µ(ds de) = 0. Therefore, being φ a non

negative function,
∫

]0, ·]×R
φ(s, γ̃(s, e)) ν(ds de) = 0. It follows that

∫

]0, ·]×R

φ(s, γ̃(s, e)) (µ − ν)(ds de) = 0.

Adding and subtracting
∫

]0, ·]×R
φ(s, x) νX(ds dx) in (3.6) we get that (3.5) holds for φ with

Γφ :=
∑

0<s≤·

φ(s,∆Xp
s )−

∫

]0, ·]×R

φ(s, x) νX(ds dx).

Being Γφ predictable, by Step 1 it follows that Γφ = 0, so that

∫

]0, ·]×R

φ(s, x) (µX − νX)(ds dx) = 0.

It follows that (3.4) holds true for φ, and reads 0 = 0.
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Step 3. Since (X,µ) satisfies Hypotheses 3.1 and J = K by Hypothesis 3.3, {∆Xp 6= 0} ⊂ K, so
that 1{∆Xp 6=0} ≤ 1K . We have

∑

0<s≤·

ψ(s,∆Xp
s ) =

∑

0<s≤·

ψ(s,∆Xp
s )1{∆Xp 6=0}(s) ≤

∑

0<s≤·

ψ(s,∆Xp
s )1K(s) = 0.

Therefore,
∑

0<s≤· ψ(s,∆X
p
s ) = 0, and the equality in Proposition 3.6 reads

∫

]0, ·]×R

ψ(s, x)µX(ds dx) =

∫

]0, ·]×R

ψ(s, γ̃(s, e))µ(ds de). (3.7)

Adding and subtracting
∫

]0, ·]×R
ψ(s, x) νX(ds dx) (resp.

∫

]0, ·]×R
ψ(s, γ̃(s, e) ν(ds de)) in the left-

hand side of (3.7) (resp. in the right-hand side of (3.7)), we get that (3.5) holds for ψ with

Γψ :=

∫

]0, ·]×R

ψ(s, γ̃(s, e) ν(ds de) −

∫

]0, ·]×R

ψ(s, x) νX (ds dx).

Being Γψ predictable, by Step 1 it follows that Γψ = 0, so that (3.4) holds true for ψ. This
concludes the proof in the case |ϕ| ⋆ µX ∈ A+.

Case |ϕ|2 ⋆ µX ∈ A+. This will follow from the previous one by approaching in L2(µX) the
function ϕ with ϕε(s, x) := ϕ(s, x)1ε<|x|≤1/ε 1s∈[0, T ]. Indeed, ϕε(s, x) ⋆ µ

X ∈ A+, by Cauchy-

Schwarz inequality, taking into account the fact that µX , restricted to ε ≤ |x| ≤ 1/ε, is finite,
since µX is σ-finite on [0,∞) × R. The proof is done along the same steps as above, with the
following slight modifications.
Step 2’. Set φε(s, x) := φ(s, x)1ε<|x|≤1/ε 1s∈[0, T ], and notice that φε(s, x) = φε(s, x)1K . Applying
Step 2 with φ = φε, we get that

∫

]0, ·]×R

φε(s, γ̃(s, e)) (µ − ν)(ds de) =

∫

]0, ·]×R

φε(s, x) (µ
X − νX)(ds dx) = 0. (3.8)

We remind that, by (2.7)-(2.8)-(2.9), if ||φε(s, x)−φ(s, x)||
2
G2(µX )

and ||φε(s, γ̃(s, e))−φ(s, γ̃(s, e))||
2
G2(µ)

converges to zero as ε goes to zero, then (3.4) holds for ϕ replaced by φ, and reads 0 =
0. Recalling Remark 2.4, we have ||φε(s, x) − φ(s, x)||2

G2(µX )
≤ ||φε(s, x) − φ(s, x)||2

L2(µX )
and

||φε(s, γ̃(s, e)) − φ(s, γ̃(s, e))||2G2(µ) ≤ ||φε(s, γ̃(s, e)) − φ(s, γ̃(s, e)))||2L2(µ). By the Lebesgue theo-

rem, and the fact that φε converges pointwise to φ, we have that ||φε(s, x) − φ(s, x)||2
L2(µX )

→ 0

and ||φε(s, γ̃(s, e)) − φ(s, γ̃(s, e)))||2L2(µ) → 0, and the conclusion follows.

Step 3’. Set ψε(s, x) := ψ(s, x)1ε<|x|≤1/ε 1s∈[0, T ], and notice that ψε(s, x) = ψε(s, x)1K . Arguing
as in Step 3, we get that (3.4) holds true for ψε, namely

∫

]0, ·]×R

ψε(s, x) (µ
X − νX)(ds dx) =

∫

]0, ·]×R

ψε(s, γ̃(s, e)) (µ − ν)(ds de).

The conclusion follows arguing as in Step 2’.

4 The identification problem

In the present section we address the identification problem in two cases, the first one consisting
in Theorem 4.2 and the second one consisting in Theorem 4.5.

Let (Ω,F , (Ft)t≥0,P) be a filtered probability space. Let µ be an integer-valued random
measure defined on [0, T ]× R, with compensator ν, and let M be a local martingale, with M0 =
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0. Let ζ be a non-decreasing adapted càdlàg process. We will focus on BSDEs driven by a
compensated random measure µ − ν of the form (1.1). Here ξ is an FT -measurable square
integrable random variable, f̃ : Ω × [0, T ] × R4 → R is a measurable function, whose domain is
equipped with the σ-field F ⊗ B([0, T ] × R4). A solution of BSDE (1.1) is a triple of processes
(Y,Z,U) such that the first two integrals in (1.1) exist and are finite in the Lebesgue sense,
Y is adapted and càdlàg, Z is progressively measurable with Z ∈ L2([0, T ], d〈M〉t) a.s., and
U ∈ G2

loc(µ).

Remark 4.1. Uniqueness means the following: if (Y,Z,U), (Y ′, Z ′, U ′) are solutions of the BSDE
(1.1), then Y = Y ′ in the sense of indistinguishability, Z = Z ′ dP d〈M〉t a.e., and Ut(e)−U

′
t(e) in

the sense of G2
loc(µ), namely, there is a predictable process (lt) such that Ut(e)−U ′

t(e) = lt 1K(t),
dP ν(dt de)-a.e. The latter fact is a direct consequence of Proposition 2.5. In particular, if K = ∅,
then the third component of the BSDE solution is uniquely characterized in L2(µ).

Theorem 4.2. Let µ be a random measure with compensator ν satisfying Hypothesis 3.3, and
assume that X is a càdlàg process such that (X,µ) verifies Hypothesis 3.1. Let (Y,Z,U) be a
solution to the BSDE (1.1) such that the pair (X,Y ) satisfies Hypothesis 2.9 with corresponding
function v. Let Xc denote the continuous local martingale of X given in the canonical decompo-
sition (2.15). Then, the pair (Z,U) fulfills

Zt = ∂xv(t,Xt)
d〈Xc,M〉t
d〈M〉t

dP d〈M〉t -a.e., (4.1)

∫

]0, t]×R

Hs(e) (µ − ν)(ds de) = 0, ∀ t ∈]0, T ], a.s. (4.2)

with Hs(e) := Us(e)− (v(s,Xs− + γ̃(s, e)) − v(s,Xs−)).
If, in addition, H ∈ G2

loc(µ), then there exists a predictable process (ls) such that

Hs(e) = ls 1K(s), dP ν(ds de)-a.e. (4.3)

Remark 4.3. In particular, it follows from (4.3) and Hypothesis 3.3 for µ, that Hs(e) = 0,
dP νc(ds de)-a.e. and Hs(e) = ls, dP ν

d(ds de)-a.e.

Proof. By assumption, the couple (X,Y ) satisfies Hypothesis 2.9 with corresponding function v.
We are thus in the condition to apply Theorem 2.11 to v(t, Xt). We set ϕ(s, x) := v(s,Xs− +
x) − v(s,Xs−). Since X is of finite quadratic variation and verifies (2.12), and X and v satisfy
(2.14), by (2.16) and (2.17) we see that the process ϕ verifies condition (3.3) with A = {|x| > 1}.
Moreover ϕ(s, 0) = 0. Since µ verifies Hypothesis 3.3 and (X,µ) verifies Hypothesis 3.1, we can
apply Proposition 3.7 to ϕ(s, x). Identity (2.18) in Theorem 2.11 becomes

v(t, Xt) = v(0,X0) +

∫

]0, t]×R

(v(s,Xs− + γ̃(s, e))− v(s,Xs−)) (µ − ν)(ds de)

+

∫

]0, t]
∂xv(s,Xs) dX

c
s +Av(t), (4.4)

where Av is a predictable (Ft)-orthogonal process. In particular, v(t,Xt) is a special weak Dirichlet
process. On the other hand, the process Yt = v(t,Xt) fulfills the BSDE (1.1). In particular it is
a special semimartingale, and therefore a special weak Dirichlet process. By Remark 2.8, which
states the uniqueness of the decomposition of a special weak Dirichlet process, we get (4.2) and

∫

]0, t]
Zs dMs =

∫

]0, t]
∂xv(s,Xs) dX

c
s . (4.5)
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In particular, from (4.5) we get

0 = 〈

∫

]0, t]
ZsdMs −

∫

]0, t]
∂xv(s,Xs) dX

c
s , Mt〉

=

∫

]0, t]
Zsd〈M〉s −

∫

]0, t]
∂xv(s,Xs)

d〈Xc, M〉s
d〈M〉s

d〈M〉s

=

∫

]0, t]

(

Zs − ∂xv(s,Xs)
d〈Xc, M〉s
d〈M〉s

)

d〈M〉s,

that gives identification (4.1). If in addition H ∈ G2
loc(µ), the predictable bracket at time t of the

purely discontinuous martingale in identity (4.2) is well-defined, and by (2.8) equals C(H) given
in (2.7). Since C(H)T = 0 a.s., the conclusion follows from Proposition 2.5.

If µ = µX , Theorem 4.2 simplifies in the following way.

Theorem 4.4. Let X be a càdlàg process, whose jump measure µX with compensator νX satisfies
Hypothesis 3.3. Let (Y,Z,U) be a solution to the BSDE (1.1) with µ = µX , such that the pair
(X,Y ) satisfies Hypothesis 2.9 with corresponding function v. Let Xc denote the continuous local
martingale of X given in the canonical decomposition (2.15). Then, the pair (Z,U) fulfills

Zt = ∂xv(t,Xt)
d〈Xc,M〉t
d〈M〉t

dP d〈M〉t -a.e., (4.6)

∫

]0, t]×R

Hs(x) (µ
X − νX)(ds dx) = 0, ∀ t ∈]0, T ], a.s. (4.7)

with Hs(x) := Us(x)− (v(s,Xs− + x)− v(s,Xs−)).
If, in addition, H ∈ G2

loc(µ
X), then there exists a predictable process (ls) such that

Hs(x) = ls 1K(s), dP νX(ds dx)-a.e. (4.8)

Proof. The proof goes along the same lines of the one of Theorem 4.2, the only difference being
that we replace (4.4) directly with identity (2.18) in Theorem 2.11.

Let us now consider a BSDE driven only by a purely discontinuous martingale, of the form

Yt = ξ +

∫

]t, T ]×R

f̃(s, e, Ys−, Us(e)) dζs −

∫

]t, T ]×R

Us(e) (µ − ν)(ds de). (4.9)

Theorem 4.5. Let µ be a random measure with compensator ν satisfying Hypothesis 3.3, and
assume that X is a process such that (X,µ) verifies Hypothesis 3.1. Let (Y,U) be a solution to
the BSDE (4.9), such that (X,Y ) satisfies Hypothesis 2.12 with corresponding function v. Then,
the random field U satisfies

∫

]0, t]×R

Hs(e) (µ − ν)(ds de) = 0 ∀t ∈]0, T ], a.s. (4.10)

with Hs(e) := Us(e)− (v(s,Xs− + γ̃(s, e)) − v(s,Xs−)).
If, in addition, H ∈ G2

loc(µ), then there exists a predictable process (ls) such that

Hs(e) = ls 1K(s), dP ν(ds de)-a.e. (4.11)
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Proof. Set ϕ(s, x) := v(s,Xs−+x)−v(s,Xs−). By condition (ii) in Hypothesis 2.12, the process ϕ
verifies condition (3.3) with A = Ω× [0, T ]×R. Moreover ϕ(s, 0) = 0. Since µ verifies Hypothesis
3.3, and (X,µ) verifies Hypothesis 3.1, we can apply Proposition 3.7 to ϕ(s, x). Identity (2.20) in
Proposition 2.14 becomes

v(t, Xt) = v(0,X0) +

∫

]0, t]×R

(v(s,Xs− + γ̃(s, e)) − v(s,Xs−)) (µ − ν)(ds de) +Av(t), (4.12)

where Av is a predictable (Ft)-orthogonal process. At this point we recall that the process
Yt = v(t,Xt) fulfills BSDE (4.9). Again, the uniqueness of a special weak Dirichlet process (see
Remark 2.8) yields identity (4.10). If in addition we assume that H ∈ G2

loc(µ), the predictable
bracket at time t of the purely discontinuous martingale in identity (4.10) is well-defined, and by
(2.8) equals C(H) given in (2.7). Since C(H)T = 0 a.s., the conclusion follows from Proposition
2.5.

Also in this case, the result simplifies when µ = µX .

Theorem 4.6. Let X be a càdlàg process, whose jump measure µX with compensator νX satisfies
Hypothesis 3.3. Let (Y,U) be a solution to the BSDE (4.9) with µ = µX , such that (X,Y ) satisfies
Hypothesis 2.12 with corresponding function v. Then, the random field U satisfies

∫

]0, t]×R

Hs(x) (µ
X − νX)(ds dx) = 0 ∀t ∈]0, T ], a.s. (4.13)

with Hs(x) := Us(x)− (v(s,Xs− + x)− v(s,Xs−)).
If, in addition, H ∈ G2

loc(µ
X), then there exists a predictable process (ls) such that

Hs(x) = ls 1K(s), dP νX(ds dx)-a.e. (4.14)

Proof. The proof goes along the same lines of the one of Theorem 4.5, the only difference being
that we replace (4.12) directly with identity (2.18) in Theorem 2.11.

5 Applications

5.1 The jump diffusion case

Let (Ω,F , (Ft)t≥0,P) be a filtered probability space. In the present section we consider a random
measure µ and a process X satisfying the following.

Hypothesis 5.1. µ(ds de) is an integer-valued random measure with compensator ν(ds de) =
dAs φs(de) satisfying Hypothesis 3.3. X is a solution of the equation

Xt = X0 +

∫ t

0
b(s,Xs−) dCs +

∫ t

0
σ(s,Xs) dNs +

∫

]0, t]×R

γ(s,Xs−, e) (µ − ν)(ds de). (5.1)

Here N is a continuous martingale, C is an increasing predictable càdlàg process, with C0 = 0,
such that {∆C 6= 0} ⊂ J . Moreover b, σ : Ω × [0, T ] × R → R, γ : Ω × [0, T ] × R × R → R are
P̃-measurable maps such that (ω, s, e) 7→ γ(ω, s,Xs−(ω), e) ∈ G1

loc(µ) and

∫ t

0
|b(s,Xs−)| dCs <∞ a.s., (5.2)

∫ t

0
|σ(s,Xs)|

2 d〈N〉s <∞ a.s., (5.3)

γ(s,Xs−, e)1K(s) ≡ 0. (5.4)
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We have the following results.

Lemma 5.2. Let X be a càdlàg process and µ be a random measure such that (X,µ) satisfies
Hypothesis 5.1. Then (X,µ) satisfies Hypothesis 3.1 with decomposition X = Xi +Xp, where

Xi
t =

∫

]0, t]×R

γ̃(s, e) (µ − ν)(ds de), (5.5)

Xp
t = X0 +

∫ t

0
b(s,Xs−) dCs +

∫ t

0
σ(s,Xs) dNs, (5.6)

with γ̃(ω, s, e) = γ(ω, s,Xs−(ω), e).

Remark 5.3. This result extends Lemma 2.19 in [8] in two ways. Firstly, we allow the coefficients
b, γ and σ to be random. Secondly, we no longer ask condition (1.2) on µ, and instead we ask
condition (5.4) on the coefficient γ in (5.1). This allows for instance to consider the case when µ
does not fulfills condition (1.2) and γ satisfies (5.4), which was not included in Lemma 2.19 in [8].

Proof. By (5.1)-(5.5)-(5.6), together with (5.4), it straightly follows that X = Xi +Xp. Let us
now show that Xi and Xp in (5.5)-(5.6) are respectively a càdlàg quasi-left-continuous adapted
process and a càdlàg predictable process. The fact that Xp is predictable straight follow from
(5.6). Concerning Xi, it is enough to prove that ∆Xi

S 1{S<∞} = 0 a.s., for any S predictable
time, see Remark 3.2. Recalling that by Hypothesis 3.3 we have J = K, and that γ fulfills (5.4),
we get

∆Xi
s =

∫

R

γ(s,Xs−, e)1D\K(s)µ({s}, de). (5.7)

Recalling (2.4), (5.7) can be rewritten as

∆Xi
s(ω) = γ(ω, s,Xs−(ω), βs(ω)) 1D\K(ω, s), (5.8)

= γ(ω, s,Xs−(ω), βs(ω)) 1∪n[[T i
n]]
(ω, s), (5.9)

where the second line follows by the fact that D \K = ∪n[[T
i
n]] up to an evanescent set, (T in)n

being a sequence of totally inaccessible times with disjoint graphs, see Remark 3.4. Identity (5.9)
gives, for any S finite predictable time,

∆Xi
S(ω)1{S<∞} = γ(ω, S,XS−(ω), βS(ω))

∑

n

1[[T i
n]]
(ω, S(ω))1{S<∞}

which is zero being (T in)n a sequence of totally inaccessible times. The fact that {∆Xi 6= 0} ⊂ D
also directly follows from (5.7). To prove that ∆Xi

s(ω) = γ̃(ω, s, ·), dMP
µ (ω, s)-a.e., it is enough

to show that

E

[

∫

]0, T ]×R

µ(ω, ds de) |γ̃(ω, s, e) −∆Xi
s(ω)|1Ω̃n

(ω, s)

]

= 0.

By the structure of µ it follows that, for every n ∈ N,

E

[

∫

]0, T ]×R

µ(ω, ds de) |γ̃(ω, s, e) −∆Xi
s(ω)|1Ω̃n

(ω, s)

]

6
∑

s∈]0, T ]

E
[

1D(·, s) |γ̃(·, s, βs(·))−∆Xi
s(·)|

]

,

which vanishes taking into account (5.8) and that γ fulfills (5.4). Finally, since N is continuous,
it follows from (5.6) that

∆Xp
s = b(s,Xs−)∆Cs, (5.10)

so that {∆Xp 6= 0} ⊂ {∆C 6= 0} ⊂ J .
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Lemma 5.4. Let X be a càdlàg process and µ be a random measure such that (X,µ) satisfies
Hypothesis 5.1. Assume that

∑

s∈]0, ·]

|b(s,Xs−)|
2|∆Cs|

2 +

∫

]0,·]×R

|γ(Xs−, e)|
2 ν(ds de) ∈ A+

loc. (5.11)

Then the following holds.

(i) X is a special weak Dirichlet process with finite quadratic variation such that (X,µ) verifies
condition (2.12);

(ii) if v : [0, T ]× R → R is a function of C0,1 class such that x 7→ ∂xv(s, x) has linear growth,
uniformly in s, condition (2.14) holds for X and v.

Proof. (i) By (5.1)-(5.2)-(5.3), X is a special semimartingale. In particular condition (2.12) holds,
see Corollary 11.26 in [23]. Moreover, obviously X has finite quadratic variation. (ii) For some
constant c we have

∫

]0,·]×R

|v(s,Xs− + x)− v(s,Xs−)− x ∂xv(s,Xs−)|1{|x|>1} µ
X(ds dx)

=
∑

0<s≤·

|v(s,Xs)− v(s,Xs−)− ∂xv(s,Xs−)∆Xs|1{|∆Xs|>1}

≤
∑

0<s≤·

|∆Xs|1{|∆Xs|>1}

(
∫ 1

0
|∂xv(s,Xs− + a∆Xs)| da+

∫ 1

0
|∂xv(s,Xs−)| da

)

≤ 2 c

∫

]0,·]×R

|Xs−| |x|1{|x|>1} µ
X(ds dx) +

∑

s≤·

|∆Xs|
2
1{|∆Xs|>1}. (5.12)

The first term in the right-hand side of (5.12) belongs to A+
loc, taking into account (2.12) and the

fact that Xs− is locally bounded being càglàd.
On the other hand, since X is of finite quadratic variation, by Lemma 2.10-(ii) in [7] we have

that
∑

s∈]0, T ] |∆Xs|
2 < ∞, a.s. Consequently, the second term in the right-hand side of (5.12)

belongs to A+
loc if we prove that

∑

s∈]0, ·]

|∆Xs|
2 ∈ A+

loc. (5.13)

By (5.9)-(5.10), ∆Xs = b(s,Xs−)∆Cs +
∫

R
γ(Xs−, e)µ({s}, de), so that

∑

s∈]0, ·]

|∆Xs|
2 ≤

∑

s∈]0, ·]

|b(s,Xs−)|
2|∆Cs|

2 +

∫

]0,·]×R

|γ(Xs−, e)|
2 µ(ds de),

which belongs to A+
loc because of (5.11).

LetW be a Brownian motion and µ(ds de) be a random measure with compensator ν(ds de) =
φs(de)dAt. We will focus on the BSDE

Yt = g(XT ) +

∫

]t, T ]
f(s, Xs, Ys, Zs, Us(·)) dAs −

∫

]t, T ]
Zs dWs −

∫

]t, T ]×R

Us(e) (µ − ν)(ds de),

(5.14)

which constitutes a particular case of the BSDE (1.1). The process X appearing in (5.14) is a
solution to (5.1) satisfying (5.2)- (5.3)- (5.4) -(5.11). BSDEs of the type (5.14) are considered in
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[27]; under suitable assumptions, the existence and uniqueness of a solution (Y,Z,U) ∈ S2×L2×
G2(µ) is established.

We are ready to give the identification result in the present framework.

Corollary 5.5. Let (Y,Z,U) ∈ S2×L2×G2(µ) be a solution to the BSDE (5.14). Then the pair
(Z,U) satisfies

Zt = σ(Xt) ∂xu(t,Xt) dP dt-a.e., (5.15)
∫

]0, t]×R

Hs(e) (µ − ν)(ds de) = 0, ∀t ∈]0, T ], a.s., (5.16)

where Hs(e) := Us(e)− (v(s,Xs− + γ(s,Xs−, e))− v(s,Xs−)).
If in addition H ∈ G2

loc(µ),

Us(e) = v(s,Xs− + γ(s,Xs−, e))− v(s,Xs−), dP νc(ds de)-a.e. (5.17)

and there exists a predictable process (ls) such that

Us(e) = ls, dP νd(ds de)-a.e. (5.18)

Proof. By Lemma 5.4, the pair (X,Y ) verifies Hypothesis 2.9. On the other hand, by Lemma
5.2, (X,µ) verifies Hypothesis 3.1 with Xi and Xp given respectively by (5.5) and (5.6). We can
then apply Theorem 4.2: since Xc

· =
∫ ·
0 σ(Xt) dWt and M = W , (4.1) gives (5.15), while (4.2)

with γ̃(s, e) = γ(s,Xs−(e)) yields (5.16). If in addition H ∈ G2(µ), (5.17)-(5.18) follows by (4.3)
and Remark 4.3.

Remark 5.6. This result significantly extends Corollary 4.3 in [8], where µ(ds de) where a Poisson
random measure with deterministic compensator ν(de)ds (and in particular condition (1.2) held
being K = ∅). Here we insist on the fact that we deal with a general random measure µ not
necessarily verifying condition (1.2).

5.2 The PDMPs case

We assume that X is a piecewise deterministic Markov process (PDMP) generated by a marked
point process (Tn, ζn), where (Tn)n are increasing random times such that Tn ∈]0, ∞[, where
either there is a finite number of times (Tn)n or limn→∞ Tn = +∞, and ζn are random variables
in [0, 1]. We will follow the notations in [16], Chapter 2, Sections 24 and 26. The behavior of the
PDMP X is described by a triplet of local characteristics (h, λ,Q): h :]0, 1[→ R is a Lipschitz
continuous function, λ :]0, 1[→ R is a measurable function such that supx∈]0,1[ |λ(x)| <∞, and Q
is a transition probability measure on [0, 1] × B(]− 1, 1[). Some other technical assumptions are
specified in the over-mentioned reference, that we do not recall here. Let us denote by Φ(s, x) the
unique solution of g′(s) = h(g(s)), g(0) = x. The process X can be defined as

X(t) =

{

Φ(t, x), t ∈ [0, T1[
Φ(t− Tn, ζn), t ∈ [Tn, Tn+1[,

(5.19)

and verifies the equation

Xt = X0 +

∫ t

0
h(Xs) ds +

∫

]0, t]×R

xµX(ds dx) (5.20)

with
µX(ds dx) =

∑

n≥1

1{ζn∈]0,1[}δ(Tn, ζn−ζn−1)(ds dx). (5.21)
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The knowledge of (b, λ, Q) completely specifies the law of X, see Section 24 in [16], and also
Proposition 2.1 in [2]. In particular, let P be the unique probability measure under which the
compensator of µX has the form

νX(ds dx) = (λ(Xs−) ds+ dp∗s)Q(Xs−, dx), (5.22)

where λ has been trivially extended to [0, 1] by the zero value, and

p∗t =
∞
∑

n=1

1{t≥Tn} 1{XTn−∈{0,1}} (5.23)

is the predictable process counting the number of jumps of X from the boundary of its domain.
From (5.22), we can write decomposition νX(ds dx) = φs(dx)dAs with dAs = λ(Xs−) ds+ dp

∗
s

and φs(dx) = Q(Xs−, dx). In particular, A is predictable (not deterministic) and discontinuous,
with jumps ∆As(ω) = ∆p∗s(ω) = 1{Xs−(ω)∈{0,1}}. Consequently,

J = K = {(ω, t) : Xt−(ω) ∈ {0, 1}}. (5.24)

Remark 5.7. In [8] we asked the measure µX to satisfy condition (1.2), with entails the existence
of a function β : {0, 1} →]− 1, 1[ such that

Q(y, dx) = δβ(y)(dx) a.s.,

see Lemma 4.11 in [8]. In the present paper we can avoid this assumption and work with the
whole class of PDMPs.

Let us consider a BSDE driven by the compensated random measure µX − νX , where µX

is the integer-valued random measure in (5.21) associated to a piecewise deterministic Markov
process X with values in the interval [0, 1], of the form

Yt = g(XT ) +

∫

]t, T ]
f(s, Xs−, Ys−, Us(·)) dAs −

∫

]t, T ]×R

Us(e) (µ
X − νX)(ds de). (5.25)

Existence and uniqueness results for solutions (Y,U) ∈ L2 × G2(µ) to BSDEs driven by purely
discontinuous martingales (that include (5.25) as a special case) were established under suitable
assumptions in [1] and in the recent work [3].

Lemma 5.8. We set E = [0, 1]. Let Y be a special semimartingale such that its martingale
component is purely discontinuous. Let X be a càdlàg process with values in E, with a finite
number of jumps on each compact interval. Assume that Yt = v(t,Xt) for some function v :
[0, T ] × R → R such that its restriction to [0, T ] × E is continuous. Then (X,Y ) satisfies
Hypothesis 2.12 with corresponding function v.

Proof. The proof is the same as the one of Lemma 4.13 in [8].

Corollary 5.9. Let X be a PDMP with jump measure µX with compensator νX given by (5.22),
and let (Y,U) ∈ L2 × G2(µX) be a solution to the BSDE (5.25). Assume that Yt = v(t,Xt) for
some continuous function v. Then the random field U satisfies

∫

]0, t]×R

Hs(x) (µ
X − νX)(ds dx) = 0, ∀ t ∈]0, T ], a.s. (5.26)

with Hs(x) := Us(x)− (v(s,Xs− + x)− v(s,Xs−)). If in addition Hs(x) ∈ G2
loc(µ

X),

Us(x) = v(s,Xs− + x)− v(s,Xs−) dPλ(Xs−)Q(Xs−, dx)1Xs−∈]0, 1[ds-a.e. (5.27)

and there exists a predictable process (ls) such that

Us(x) = v(s,Xs− + x)− v(s,Xs−) + ls, dPQ(Xs−, dx)1Xs−∈{0, 1} dp
∗
s-a.e. (5.28)
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Proof. Hypothesis 2.12 holds for (X,Y ) by Lemma 5.8. We are in condition to apply Theorem
4.6, which gives (5.26). If, in addition, H ∈ G2

loc(µ
X), by (4.14) together with Remark 4.3 with

µ = µX ,
Hs(x) = 0, dP νX,c(ds de)-a.e.,

and there exists a predictable process (ls) such that

Hs(x) = ls, dP νX,d(ds de)-a.e.

At this point, recalling (5.22), and being J = K, we see that

νX,c(ds dx) = νX(ds dx)1Kc(s) = λ(Xs−)Q(Xs−, dx)1Kc(s) ds,

νX,d(ds dx) = νX(ds dx)1K(s) = Q(Xs−, dx)1K(s) dp
∗
s.

Then, since by (5.24) we have K = {(ω, s) : Xs−(ω) ∈ {0, 1}}, and (5.27)-(5.28) follow.

5.3 The jump-diffusion case with distributional drift

Let σ, β ∈ C0 such that σ > 0. We consider formally a PDE operator, obtained by mollification
(see e.g. [18], [19]), of the type

Lψ =
1

2
σ2ψ′′ + β′ψ′. (5.29)

Hypothesis 5.10. We assume the existence of a function Σ(x) := limn→∞ 2
∫ x
0
β′
n

σ2n
(y)dy in C0,

independently from the mollifier. Moreover Σ ∈ Cα for some α ∈ [0, 1], the function Σ is lower
bounded, and

∫ 0

−∞
e−Σ(x)dx =

∫ +∞

0
e−Σ(x)dx = +∞.

Definition 5.11. We will denote by DL the set of all f ∈ C1 such that there exists some l̇ ∈ C0

with Lf = l̇ in the sense of [18]. This defines without ambiguity L : DL → C0.

We introduce the following definition of martingale problem. For an increasing process A, we
will use the notation At = Act +

∑

s≤t∆As. We also denote by C+(R) the set of bounded Borel
functions of R, vanishing inside a neighborhood of 0. In particular, if any two positive measures
η, η′ on R with η({0}) = η′({0}) = 0, and η(x : |x| > ε) < ∞, η′(x : |x| > ε) < ∞ are such that
η(f) = η′(f) for all f ∈ C+(R), then η = η′.

Definition 5.12. A couple (X,P) is said to solve the martingale problem related to a given
operator L of the form (5.29), a random measure ν(ds dx) = φs(dx) dAs, an initial condition
X0 = x0 ∈ R, and a domain D ⊂ DL, if the following holds.

(i) for any f ∈ D,

∫ t

0

∫

R

[f(Xs− + x)− f(Xs−)− x f ′(Xs−)] ν(ds dx) ∈ A+
loc, (5.30)

with respect to P;

(ii) for any f ∈ D, the process

Zf := f(X·)−f(X0)−

∫ ·

0
Lf(Xs)dA

c
s−

∫

]0,·]

∫

R

[f(Xs−+x)−f(Xs−)−x f
′(Xs−)1Jc ] ν(ds dx)

is a local martingale under P;
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(iii) for every g ∈ C+(R), Gg := g ∗ µX − g ∗ ν is a local martingale under P.

Remark 5.13. Assume that (ν,P) satisfies condition (2.13) for som α ∈ [0, 1]. Then condition
(5.30) holds with respect to P for any f ∈ D with

D := {f ∈ DL with f ∈ C1+α
loc , f ′ bounded}. (5.31)

Let L be an operator of the form (5.29), for which Hypotheses 5.10 holds, and let ν(ds dx) =
φs(dx) dAs be a predictable random measure. Let (X,P) be a solution to the martingale problem
in Definition 5.12 related to X0, L, ν(ds dx), and D given in (5.31), and such that (ν,P) satisfies
condition (2.13).

The following result is given in [6], where we study under suitable assumptions the well-
posedness of the martingale problem in Definition 5.12.

Proposition 5.14. X is a special weak Dirichlet process (with respect to its canonical filtration)
of finite quadratic variation with canonical decomposition X = X0+M

X +Γ, with Γ a predictable
and FX

t -orthogonal process, and MX = MX,d + Xc, satisfying condition (2.12) under P. In
particular, ν is the P-compensator of µX , and

MX,d =

∫

]0, ·]

∫

R

x (µX − ν)(ds dx), 〈Xc〉 =

∫ ·

0
σ2(Xs) dA

c
s.

We are interested in BSDEs under P driven by the compensated random measure µX − ν and
the continuous martingale Xc, of the form

Yt = g(XT ) +

∫

]t, T ]
f(s, Xs, Ys, Zs, Us(·)) dAs

−

∫

]t, T ]
Zs

1

σ(Xs)
dXc

s −

∫

]t, T ]×R

Us(x) (µ
X − ν)(ds dx). (5.32)

A consequence of our identification Theorem 4.4 is the following.

Corollary 5.15. Assume that µX(ds dx) satisfies Hypothesis 3.3. Let (Y,Z,U) ∈ S2×L2×G2(µX)
be a solution to the BSDE (5.32) Assume that Yt = v(t,Xt) for some deterministic function
v : [0, T ]×R → R of class C0,1 such that v and X verify condition (2.14) under P. Then the pair
(Z,U) satisfies

Zt = σ(Xt) ∂xv(t,Xt) dP dAct -a.e., (5.33)

∫

]0, t]×R

Hs(x) (µ
X − ν)(ds dx) = 0, ∀ t ∈]0, T ], a.s. (5.34)

with Hs(x) := Us(x)− (v(s,Xs−+x)−v(s,Xs−)). If, in addition, H ∈ G2
loc(µ

X), then there exists
a predictable process (ls) such that

Hs(x) = ls 1K(s), dP ν(ds dx)-a.e. (5.35)

Proof. We aim at applying Theorem 4.4. By assumption µX satisfies Hypothesis 3.3. On the
other hand, by Proposition 5.14, X is a special weak Dirichlet process of finite quadratic variation
with its canonical decomposition X = Xc + Md + Γ. In addition, by assumption X satisfies
condition (2.12) under P, and condition (2.14) holds for X and v under P, see Remark 5.13.
This implies the validity of Hypothesis 2.9 for (X,Y ). We can then apply Theorem 4.4: since
〈Xc

· 〉 =
∫ ·
0 σ

2(Xt) dA
c
t and M =

∫ ·
0

1
σ(Xs)

dXc
s , formula (4.6) gives (5.33), while (4.7) yields (5.34).

If in addition H ∈ G2(µX), then (5.35) follows by (4.8), recalling that ν is the P compensator of
µX .
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[28] Pardoux, É. & Peng, S. Adapted solution of a backward stochastic differential equation. Systems
Control Lett., 14(1):55–61, 1990.
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