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Abstract: The discovery of ferrocene is often associated with the rapid growth of organometallic
chemistry. Dendrimers are highly branched macromolecules that can be functionalized at will at all
levels of their structure. The functionalization of dendrimers with ferrocene derivatives can be carried
out easily as terminal functions on the surface, but also at the core, or at one or several layers inside the
structure. This review will focus on phosphorhydrazone dendrimers functionalized with ferrocene
derivatives, on the surface, at the core, at all layers or within a single layer inside the structure. The
first part will describe the synthesis; the second part will concern the electrochemical properties; and
the last part will give several examples concerning catalysis, with complexes of ferrocenyl phosphines
used as terminal functions of dendrimers.

Keywords: ferrocene; dendrimer; catalysis; electrochemistry

1. Introduction

Thousands of publications concern ferrocene derivatives, and their discovery represented a
turning point in organometallic chemistry, as the leading member of the metallocene family. Ferrocene
consists of two cyclopentadienyl rings bound on opposite sides of a central Fe2+ atom. It has been
shown to have excellent thermal and photochemical stability, and to undergo a facile and reversible
one-electron oxidation to ferrocenium cation. The functionalization of one or both cyclopentadienyl
units has led to their grafting to numerous types of molecules, and to polymers and to dendrimers.
Dendrimers are a very special class of polymers, constituted of repetitive branching units but not
synthesized by polymerization reactions. Their step-by-step synthesis ensures a perfectly defined
and highly reproducible structure [1]. Each layer constitutes a generation. The grafting of ferrocenes
to dendrimers was carried out early on the periphery, in particular for carbosilane dendrimers [2].
This dendrimer is represented in two different ways in Figure 1A: either the full structure in the left
part or in a linear way, with parentheses after each branching point (each generation) in the right part.
All the other ferrocenyl dendrimers are represented in this linear way. Diverse properties of ferrocenyl
dendrimers have been also discovered early, such as redox sensors for the recognition of small inorganic
anions with amido ferrocene dendrimers (Figure 1B) [3], as guests for the inclusion of β-cyclodextrin
with polyamine ferrocene dendrimers (Figure 1C) [4], as mediators in amperometric biosensors with
carbosilane ferrocene dendrimers (Figure 1D) [5], or as liquid crystals with ferrocene-based cholesterol
dendrimers (Figure 1E). In this last case, the ferrocene is not on the top of the dendrimer surface but is
linked by a long alkyl chain to cholesteryl units [6]. Several hundreds of papers concerning diverse
types of ferrocenyl dendrimers have since been published.
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Figure 1. Early examples of ferrocenyl dendrimers. Dendrimer A is drawn two times: the full structure
is on the left and the linear structure is on the right. The other dendrimers (B to E) are drawn linearly.

Among the diverse types of dendrimers, phosphorhydrazone dendrimers, which possess one
phosphorus atom at each branching point [7], occupy a special place among “inorganic” dendrimers [8]
thanks to their easy and versatile functionalization, in particular on their periphery [9], and to the
numerous properties that have been already demonstrated with them. For instance, they have been
used as catalysts [10–12] for materials [13], in biology [14–16], and in nanomedicine [17]. Figure 2
displays the chemical structure of phosphorhydrazone dendrimers of generation 2, built either from
P(S)Cl3 (1-G2) or cyclotriphosphazene N3P3Cl6 (2-G2) [18]. Their synthesis necessitates the repetition
of two quantitative reactions: the reaction of hydroxybenzaldehyde with P-Cl functions and the
condensation of the aldehydes with phosphorhydrazide H2NNMeP(S)Cl2.

Figure 2. Structure of second generation phosphorhydrazone dendrimers. Left: built from P(S)Cl3 as
core; right: built from N3P3Cl6 as core. Upper part: full structure; lower part: linear structures with
parentheses to draw the same dendrimers.
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In this review, we will focus on the synthesis and electrochemical and catalytic properties of
ferrocenyl phosphorhydrazone dendrimers.

2. Synthesis of Ferrocenyl Phosphorhydrazone Dendrimers

Depending on the desired location of the ferrocenes in the structure of phosphorhydrazone
dendrimers, the ferrocenes should be functionalized differently. For the grafting to the surface, the
ferrocene should bear a phenol group, suitable to react in substitution reactions with the P(S)Cl2
terminal groups of the dendrimers. To be used as core, the ferrocene should have two aldehyde
functions, from which the synthesis of the dendrimer will be carried out. To be introduced in the
branches, at all layers or within a single layer, the ferrocene should replace hydroxybenzaldehyde;
thus, it should bear both a phenol and an aldehyde. The synthesis part will be presented depending on
the location of the ferrocenes in the structure of the phosphorhydrazone dendrimers.

2.1. Ferrocenes on the Periphery of Dendrimers

The functionalization of ferrocene was carried out thanks to several efficient syntheses [19–22]. All the
ferrocenes that have been linked to the surface of phosphorhydazone dendrimers are functionalized by
a phenol, and possibly by another function, in particular a phosphine. The different types of these
ferrocenes are shown in Figure 3. The ferrocene derivative 3 was linked to the surface of dendrimers
of type 1-Gn (P(S)Cl3 as core), up to generation 9 (3-G9, 1536 ferrocenyl groups) [23]. The chiral
ferrocene derivative 4 (planar chirality) was linked to the surface of the same type of dendrimers, up to
generation 3 (4-G3, 24 ferrocenyl groups), whereas the chiral ferrocene derivative 5 was linked to the
eleventh generation (5-G11, 6144 ferrocenyl groups) [24]. The chiral phosphino ferrocene 6 was also
linked to the surface of the same dendrimers, up to generation 9 (6-G9, 1536 ferrocenyl groups) [24].
The chiral phosphino ferrocene 7 was linked to the surface of dendrimers of type 2-Gn (N3P3Cl6 as
core), up to generation 4 (7-G4, 96 ferrocenyl groups) [25]. The phosphino ferrocenes 8, 9, and 10 have
been linked to the surface dendrimers 2-Gn, up to generation 3 (8-G3, 9-G3, and 10-G3, respectively,
48 ferrocenyl groups in all cases) [26].

Figure 3. Ferrocenylphenols that have been linked to the surface of phosphorhydrazone dendrimers.

The synthesis of such functionalized ferrocenes is not trivial, and necessitates in all cases several
steps from commercially available ferrocenes. Ferrocenes having a planar chirality (ferrocenes 4, 5, 6,
and 7) are all synthesized starting from a common precursor, ferrocene carboxaldehyde, as illustrated
in Figure 4. The first steps are also identical for all compounds. The aldehyde is quantitatively
converted to the acetal using neat trimethylorthoformate. Trans acetalization was carried out with
(S)-(-)-1,2,4-butanetriol, to provide another acetal, having the cis-1,3-dioxane structure. Methylation
of the hydroxyl group is then carried out using NaH and MeI. Ortho-deprotonation was carried out
using t-BuLi. The lithium derivative is the last common precursor, which is reacted with diverse
electrophiles [27]. The electrophile used is MeI for the synthesis of ferrocene 4 (way A), ICH2CH2I for
ferrocene 5 (way B), and Ph2PCl for ferrocenes 6 and 7 (way C) (Figure 4). The deprotection of the
acetal to recover the aldehyde is carried out in all cases using p-toluene sulfonic acid (PTSA) and water.
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Figure 4. Synthesis of ferrocenes 4, 5, 6, and 7, starting from the common precursor ferrocene carboxaldehyde.

The next step in way A is the reaction of 4-lithioanisole obtained by transmetalation of
4-bromoanisole by n-butylithium on the aldehyde, followed by deoxygenation with sodium
cyanoborohydride in presence of titanium tetrachloride. Finally, the methoxy group is transformed
to hydroxyl group by reaction with boron bromide, to provide the ferrocene 4, after 9 steps from
ferrocene carboxaldehyde [24]. The ferrocene derivative functionalized with both an aldehyde and
an iodine (way B) is reacted in a Suzuki coupling reaction with 4-methoxyphenylboronic acid to
yield enantiomerically pure 4-methoxyphenyl group on the 2 position of ferrocenecarboxaldehyde.
The aldehyde is then converted to a methyl group using sodium cyanoborohydride in presence of
titanium tetrachloride Finally, the methoxy group is deprotected to provide compound 5 after 9 steps,
as was obtained ferrocene 4 [24]. The (S)-2-(diphenylphosphino) ferrocene carboxaldehyde obtained
in way C is the precursor of both ferrocenes 6 (way C1) and 7 (way C2). In way C1, 4-lithioanisole
is first reacted on the aldehyde; then, the phosphine is protected with BH3. Reactions with sodium
cyanoborohydride in presence of titanium tetrachloride and then with boron bromide are carried
out as in way A, to provide compound 6-BH3. The phosphine is finally deprotected using DABCO
(1,4-diazabicyclo[2.2.2]octane) to provide the ferrocene 6 after 11 steps [24]. In way C2, the aldehyde
is reduced to alcohol and the phosphine is oxidized to thiophosphine using sulfur. In a second
step, 4-hydroxythiophenol is reacted on the alcohol, providing directly a phenol. The last step is the
reduction of the thiophosphine with tris (dimethylamino)phosphine, providing the ferrocene 7 in 9
steps (Figure 4) [25].

The ferrocenes functionalized on both cyclopentadienyl rings (compounds 8, 9, and 10) are easier
to synthesize, as shown in Figure 5. The common precursor in these cases is 1,1’-dibromoferrocene,
on which one bromine is treated with 4-bromoanisole in a Negishi cross-coupling reaction. The
direct grafting of diphenylphosphine on the other cyclopentadienyl ring is carried out by lithiating
the ferrocene, then quenching with diphenylchlorophosphine. The deprotection of the phenol
using tetrabutylammonium fluoride provides the ferrocene 8 after only three steps (Figure 5) [26].
A slightly different procedure is used for introducing a linker between the ferrocene and the phosphine
(compounds 9 and 10). The lithiated ferrocene in presence of ZnCl2 and [Pd(PPh3)4] is treated with
either 4-bromophenyl-diphenylphosphane sulfide or 4’-bromobiphenyl diphenylphosphane sulfide.
The corresponding phenol is obtained as previously using tetrabutylammonium fluoride. The last step
is the deprotection of the thiophosphine, using Raney nickel, to provide ferrocenes 9 or 10 in only four
steps, depending on the linker used (Figure 5) [26].
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Figure 5. Synthesis of ferrocenes 8, 9, and 10, starting from the common precursor 1,1’-dibromoferrocene.

2.2. Ferrocene at the Core of Dendrimers

Ferrocene derivatives usable as core should have at least two identical functions. The commercially
available 1,1’-ferrocene dicarboxaldehyde 11 was used as core to grow the dendrimer up to generation
4 (11-G4, 64 aldehyde terminal functions) (Figure 6) [23].

Figure 6. 1,1’-ferrocene dicarboxaldehyde used as core of dendrimer 11-G4.

2.3. Ferrocenes as Branches of Dendrimers at one or Several Layers

The functionalization of ferrocenes usable as branches of phosphorhydrazone dendrimers
necessitates one to have a phenol on one side and an aldehyde on the other side. Several ferrocene
derivatives have been synthesized bearing both suitable functions, and have been used either at several
layers of small dendrimers (ferrocenes 12 and 13, Figure 7) or at a single layer inside the structure of
large dendrimers (ferrocenes 14 and 15, Figure 7). The methods of synthesis are relatively similar to
those shown in Figure 4. In particular, the ferrocene 14 is obtained by transformation of the methoxy
to hydroxyl group in the final step, after seven steps shown in Figure 4 [24]. The main difference
between the reactions in Figures 4 and 7 concerns the reaction of ferrocene carboxaldehyde with
the lithium salt of N-methylpiperazine, which, after additional reaction with t-BuLi, generates the
lithation of the other cyclopentadienyl ring [19]. Reaction with electrophiles such as ICH2CH2I or
Bu3SnCl are then carried out. The iodoferrocene is first reacted in a Suzuki coupling reaction with
4-methoxyphenylboronic acid, and then the methoxy group is deprotected with BBr3 to provide the
ferrocene 12 [23]. The stannyl derivative is first reacted on the aldehyde with 4-lithioanisole, and then
the alcohol is reduced with BH3,SMe2. The tributylstannyl group is converted to an aldehyde using
butyl lithium, dimethylformamide, and then water. The final step for the synthesis of compound 15 is
the cleavage of the methoxy group to provide the phenol, as done previously for compound 12.

Ferrocene 13 is obtained in a different way, as the starting compound for its synthesis is the
1,1’-ferrocene dicarboxaldehyde. A first aldehyde is protected with ethylene glycol, then the second
aldehyde is reacted with 4-methoxybenzyltriphenylphosphonium chloride in the presence of n-BuLi to
yield a mixture of diastereoisomer (E/Z = 1) by a Wittig reaction. Reaction with iodine in refluxing
toluene followed by an acidic hydrolysis provides a complete conversion to the E-isomer of the
corresponding aldehyde. The last step to get ferrocene 13 is the deprotection of the methoxy group to
hydroxyl, as carried out for many other ferrocenes shown in this review.
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Figure 7. Methods of synthesis of ferrocenes functionalized by both a phenol and an aldehyde, which
are suitable to be used as branches inside dendrimers. The seven steps for the synthesis of 14 are shown
in Figure 4.

2.3.1. Ferrocenes at all Layers of Dendrimers

The bifunctional ferrocene 12 was first reacted with the P(S)Cl3 core; then, it was used alternately
with the phosphorhydrazide H2NNMeP(S)Cl2, up to the second generation 12-G2 (21 ferrocene
derivatives and 12 aldehyde terminal groups) (Figure 8) [23].

Figure 8. Bifunctional ferrocene 12 used at all layers of dendrimer 12-G2.

The same process was applied to the other bifunctional ferrocene 13, and was carried out up to
the first generation 13-G1 (9 ferrocene derivatives and 6 aldehyde terminal functions) (Figure 9) [28].

Figure 9. Bifunctional ferrocene 13 used at all layers of dendrimer 13-G1.

2.3.2. Ferrocenes at a Single Layer Inside Dendrimers

The chiral ferrocene 14 was introduced at a single layer in phosphorhydrazone dendrimers. It
was used first on the surface of dendrimer 1-G3, providing dendrimer 14-G3 [24], then the growing of
the dendritic shell was carried out to obtain 14-G3+1, then 14-G3+2, as illustrated in Figure 10 (24
ferrocenyl groups for all). The same type of experiment was carried out starting from 1-G5 and 1-G9,
providing 14-G5+2 (96 ferrocenyl groups) and 14-G9+2 (1536 ferrocenyl groups), respectively [29].

Figure 10. Bifunctional ferrocene 14 used at a single layer of dendrimer, and dendrimer 14-G3+2.
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Other dendrimers bearing a single layer of ferrocenes were also obtained, starting from the
dendrimer 2-G2, onto which 24 ferrocenyl derivatives 15 were grafted. The growing of the dendrimer
was continued in order to get water-soluble ferrocenyl dendrimers. Ammonium derivatives have been
linked to the surface, providing the positively charged dendrimer 15-G3+, whereas carboxylates have
been used to provide the negatively charged dendrimer 15-G3- (Figure 11) [30].

Figure 11. Bifunctional ferrocene 15 used at a single layer of water-soluble dendrimers 15-G3+ and
15-G3−.

3. Electrochemical Properties

Due to the well-known facile and reversible one-electron oxidation of ferrocene to ferrocenium
cation, the electrochemical properties of most of the ferrocenyl phosphorhydrazone dendrimers have
been studied. For ferrocenes on the periphery of dendrimers, such as the family 3-Gn (n up to 9),
a single oxidation wave at ca. 500 mV is observed, corresponding to a multielectronic transfer of the
equivalent and electrochemically independent ferrocenyl terminal groups. The fact that this behavior
is still observed for the ninth generation 3-G9 confirms the absence of steric hindrance on the surface
of this family of dendrimers. The multiferrocenium salt obtained upon exhaustive electrolysis deposits
onto the Pt gauze electrode surface to form a blue-green conducting film, which totally dissolves upon
reduction. The theoretical number of transferred electrons is never completed; however, 23/24 of the
FeCp2 sites are oxidized for 3-G3, 94/96 for 3-G5, and 1352/1536 for 3-G9. This observation must
not be systematically correlated to defects on the surface. Indeed, even very simple monoferrocenyl
compound gives less than 100% charge recovery [23]. Even for the eleventh generation 5-G11, which is
at the limit of dense packing, 87% of the theoretical number FeCp2 sites are oxidized, to be compared
with 88% for the fifth generation 5-G5, showing that there is no influence of the generation on the redox
properties [24]. No electrochemical study was attempted for dendrimers having ferrocenyl phosphines
as terminal functions, except when the phosphine was complexed with ruthenium (case of compounds
8-Gn, 9-Gn, and 10-Gn, n = 1 to 3). In these cases, a fully reversible one-electron redox process was
observed for the ferrocenes between 0.42 and 0.55 V. The behavior of the Ru complex depended on the
generation and on the linker: the monomer and the first generation 8-G1-Ru showed an irreversible
oxidation of Ru2+, whereas the higher generations and dendrimers having the other linkers (9-Gn-Ru
and 10-Gn-Ru) displayed a reversible oxidation of Ru2+ [26].

The electrochemical response of dendrimers having a single ferrocene at the core (dendrimers
11-Gn) is highly dependent on the generation. The cyclic voltammograms of the monomer and of
the lower generation dendrimers 11-G0 show characteristic quasi reversible single electron oxidation
processes with production of soluble and stable cations. The first generation dendrimer 11-G1 exhibited
a slightly more irreversible process, which increased for compound 11-G2, whereas a flat current
response was obtained for 11-G3. The electroactive core of dendrimers presenting sufficient steric
hindrance cannot approach the electrode close enough, and so no current could be detected for high
generations [23].

The case of dendrimers having several layers of ferrocenes, such as the family 12-Gn, is particularly
interesting, as the ferrocenes are in a different environment, depending on their location. Dendrimer
12-G0 presents 3 ferrocenyl moieties, which are equivalent. Dendrimer 12-G1 possessing two layers of
ferrocenyl moieties exhibits a first wave at E1/2 = 0.68 V, and a second one at E1/2 = 0.83 V. The presence
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of two different waves unambiguously proves that both layers behave independently. Bulk electrolysis
at controlled potential allowed one to count three electrons (with a 95% oxidation ratio) involved in the
first transfer. Further electrolysis of this dendrimer was impossible to perform due to deposition upon
the Pt working electrode. Nevertheless, the second wave was assigned to the outermost ferrocenes,
comparing the current peak intensities measured by square wave voltammetry technique (Figure 12).
Dendrimer 12-G2 has three levels of ferrocenes, but only two waves were observed either in cyclic
or square wave voltammetry at E1/2 = 0.66 and 0.80 V. Exhaustive oxidation at 0.70 V allowed for
the counting of 10 electrons instead of the nine electrons expected for both the first and the second
layers, probably due to a partial oxidation of the third layer resulting from the poor resolution of the
second signal [23]. The other dendrimer having two layers of ferrocenes (13-G1) behaved similarly to
12-G1 [28].

Figure 12. Cyclic voltamperometry and square wave voltamperometry of dendrimer 12-G1 in
acetone/THF (1:2), versus standard calomel electrode (SCE).

The dendrimers having a single layer of ferrocenes in their structure produced different results,
depending on the degree of “burying” of the ferrocenes. The value of the half-wave potential strongly
depends on the direct chemical environment of the ferrocenes. The replacement of the aldehyde of the
14-Gn family by the hydrazone induced a shift of ca 160 mV toward anodic potentials, whatever the size
of the dendrimer considered. By continuing the growing of the dendrimers, the rate of the electronic
transfer decreased, and the reversibility of the system decreased when the generation of the dendrimer
increased within the same series. These phenomena can be explained by the decreased accessibility of
the electrode for the redox centers, which was gradually excluded from the electronic transfers for the
14-Gn to 14-Gn+2 families. These families of dendrimers being chiral, the chiroptical properties were
also investigated. The molar rotation, the [α]mol value, indicates a large variation between the 14-Gn
and 14-Gn+1 series and a very small variation between the 14-Gn+1 and 14-Gn+2 series. The [α]mol

value divided by the number of chiral units is a constant for each series considered. In conclusion, only
the number of chiral groups and their chemical environment influenced the chiroptical properties and
not their placement within the dendrimer. On the contrary, the electrochemical behavior is extremely
dependent on the generation considered and on the degree of burying within the dendrimer [29]. The
electrochemical study of the water-soluble dendrimers 15-G3+ and 15-G3− could not be performed,
due to a poor solubility in the media used [30].

4. Catalysis Experiments with Ferrocenyl Phosphine Complexes on the Periphery of Dendrimers

The presence of phosphines on the surface of dendrimers enabled the complexation of metals,
and the study of their catalytic properties [31]. The first attempt was carried out with the chiral family
7-Gn (n = 1–4), complexing [PdCl(allyl)]2, and used for catalyzing asymmetric allylic substitution
reaction. The reaction was carried out with 1,3-diphenylprop-2-enyl acetate and dimethyl malonate,
in the presence of potassium acetate and N,O-bis(trimethylsilyl)acetamide (BSA), using 2.1 mol%
of phosphine (in dendrimers 7-Gn)and 2 mol% of palladium as catalyst (Figure 13). Isolated yields
were very high, and enantioselectivities were very close to the one observed for the corresponding
monomeric species; no positive or negative dendritic effects [32] were observed in this reaction [25].
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Figure 13. Asymmetric allylic substitution reaction, catalyzed by dendrimers 7-Gn.

The ruthenium complexes of the dendrimers functionalized by the ferrocenyl phosphines 8, 9, and
10 were used in the catalytic isomerization of the allylic alcohol 1-octen-3-ol to 3-octanone (Figure 14).
Turnover frequencies (TOF: mol product/(mol catalyst × time) were calculated at the time (t) at which
the yield was 100% (table in Figure 14). The dendritic catalysts clearly exhibit higher activities than
their monomeric analogues, and among the three families, the 9-Gn-Ru family is the most active [26].

Figure 14. Ruthenium complexes of dendrimers 8-Gn, 9-Gn, and 10-Gn, used as catalysts for the
isomerization of the allylic alcohol 1-octen-3-ol to 3-octanone. Lower part: efficiency of the catalysts:
TOF at 100% yield, and temperature at which it occurs.

The most efficient family, especially the monomer (9-Ru) and the corresponding first generation
(9-G1-Ru), were chosen to be used in a redox-switchable catalytic process. This was the very first
example of a dendrimer used in such type of process. The catalyzed reaction was the same as in
Figure 14, i.e., the isomerization of the allylic alcohol 1-octen-3-ol to 3-octanone. By adding a chemical
oxidant ([Fe{η5-C5H4C(O)Me}Cp][BF4]) or reductant ([FeCp*2] (Cp* = C5Me5)) (Figure 15), it was
possible to reversibly switch the catalytic activity of the complexes. The ferrocenium moiety obtained
after oxidation withdraws electron density from the phosphine. The resulting electron-poor ruthenium
center shows much lower activity, and the reaction rate is markedly reduced [33].



Molecules 2020, 25, 447 10 of 12

Figure 15. Oxidation of dendrimer 9-G1-Ru, and then reduction of the ferrocenium dendrimer.

5. Conclusions

The marriage between dendrimers and ferrocene derivatives is indeed fruitful, with each
component providing its specificities. The presence of ferrocenes inside the structure of dendrimers
induces a detrimental influence on the electrochemical properties, as the ferrocene’s burial in the
structure increases. On the contrary, the presence of ferrocenes on the surface of dendrimers provides
clean electrochemical data, even for very high generations, such as the eleventh generation. The
presence of a phosphine in close proximity of the ferrocene on the surface provides additional properties
after the complexation with a metal, in particular for carrying catalysis experiments. Several examples
have been already proposed, such as the complexation of palladium for catalyzing asymmetric allylic
substitution reaction, and the complexation of ruthenium for the catalytic isomerization of the allylic
alcohol 1-octen-3-ol to 3-octanone. In the latter case, the oxidation of the ferrocene induces a strong
decrease of the catalytic properties, which are recovered upon reduction of the ferrocenium to ferrocene.
This is the very first example of a switch ON/OFF/ON of a dendritic catalyst. Work is in progress to
expand the scope of the catalytic properties of ferrocenyl dendrimers.
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