

Detection of Vegetation Coverage in Urban Agglomeration of Brussels by NDVI Indicator Using eCognition Software and Remote Sensing Measurements

Polina Lemenkova

► To cite this version:

Polina Lemenkova. Detection of Vegetation Coverage in Urban Agglomeration of Brussels by NDVI Indicator Using eCognition Software and Remote Sensing Measurements. GIS and Remote Sensing. GIS Day, Nov 2014, Tsaghkadzor, Armenia. 10.13140/RG.2.2.18120.26880. hal-02448415

HAL Id: hal-02448415 https://hal.science/hal-02448415

Submitted on 22 Jan 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

ABSTRACT

The study focuses on the semi-automatic detection of the vegetation on the satellite panchromatic image covering area of Brussels, Belgium. Using functions of the Normalized Difference Vegetation Index (NDVI) and spectral reflectance parameters of the image, the vegetation was identified on the satellite scene. The research question was to assess, how NDVI measurements can be used for urban studies using remote sensing data. The aim is to distinguish and separate on the map built-up areas from the green spaces (parks, gardens, etc) within the urban landscape. The research is supported by the raster imageand the eCognition software for image analysis. The results show detected vegetation areas in eastern part of Brussels. The research demonstrated methodological applicability of eCognition software for GIS-based urban mapping and ecological assessment (areas and sizes of vegetation coverage).

INTRODUCTION

Study area encompasses selected regions of the Brussels municipality, Belgium. In the past years the city of Brussels is experiencing intensification of the density of building structures. Unlike some other European cities where the problem is urbanization and expansion of the city margins to the suburbia, urban structure of Brussels is intensification of the buildings density in the city centre and existing dwelling districts.

RESEARCH PROBLEM

City structure tends to become more intense and dense, due to the process of filling empty spaces in the urban patterns and high level of housing. Another example of urban processes in Brussels is reorganization of the industrial areas. At the same time, monitoring vegetation areas is essential for environmental sustainability of the capital. Lack of the green spaces may cause ecological instability and increase atmospheric pollution. Remote sensing data (raster image) were used together with NDVI function, in order to detect areas covered by city parks aimed to highlight specific problems of Brussels.

DATA

Data include vector and raster types. Raster data consists o fVHR Pléiades satellite imagery covering Brussels city. The image IMG_PHR1A_P has been provided by the Astrium, EADS company, projected in UTM (Universe Transverse Mercator projection system), 31°N, WGS84 reference ellipsoid. Vector data include ground topographic map in shp format (ArcGIS), a part of the municipal project of Brussels URBIS.

RESEARCH OBJECTIVE

Research objective: to evaluate, how to efficiently use object oriented image analysis for mapping land cover types using raster images. Detecting vegetation and built-up areas using remote sensing (RS) data enables to assess the percentage of the coverage of the city by newly created building. Vegetation areas were masked to highlight urban growth. This method is based on use of RS and cadastral data, processed by modelbased sub-pixel supervised classification and non-parametric ML method.

eCognition enables object oriented multi-resolution processing of raster images. It is the first object-oriented image analysis commercial software on geospatial market. It provides appropriate link between RS imagery and GIS. Principle of eCognition: images processing by information contained in the image as not by single pixels but rather by objects and their topology. Using segmentation algorithm and extraction of image object primitives (parks, gardens, buildings), it classifies the whole segments of the homogeneous image, recognized as objects.

Detection of vegetation coverage in urban agglomeration of Brussels BY NDVI INDICATOR USING ECOGNITION SOFTWARE AND REMOTE SENSING MEASUREMENTS Polina Lemenkova

Presented at: 3rd International Conference on GIS and Remote Sensing, 17-19 November 2014 | Tsaghkadzor, Armenia

SOFTWARE: ECOGNITION

Step I. Panchromatic image was loaded and processed. Step II. Image was segmented using principle of the Multires- Step IV. Vegetation extraction. Logical condition for vegetaolution Segmentation. This operation consists in splitting tion detection: we assign all objects with NDVI values >0.3 as image into segments, to simplify the complexity of the ini-vegetation. This is based on the vegetation properties: dense tial image. It is done by the machine embedded logic based tree canopy usually have positive values of NDVI (0.3 to 0.8). on mathematic algorithms and simplifying models. The gen- On the contrary, all other objects have low NDVI values. E.g.: eral rule divides the area into regions according to the prin- water bodies have low reflectance in both spectral bands (band ciple "neighbour pixels have similar parameters" (spectral re- 3 and band 4), therefore, they have very low positive and flectance value, texture, form, shape). Step III. Vegetation coverage was detected and separated from local hydro-chemical conditions, depth). Bare soils usually other objects (impervious structures) using natural character- have small positive NDVI values (0.1 to 0.2), as their spectral istics of its spectral reflectance. The arithmetic expression for reflectance in near-infrared bands is larger than in red ones. Normalized Difference Vegetation Index (NDVI) was created Based on this, the NDVI formula was applied and green areas in eCognition operators by formula for spectral reflectance in within the city were distinguished. The objects with NDVI visible (VIS) and near infrared (NIR) bands. This enabled to values >0.3 were assigned to the 'vegetation' class. detect pixels of vegetation: NDVI=(NIR-VIS)/(NIR+VIS). It

Current work has been supported by Bourse d'excellence, Service de Bourse d'étude, Wallonie-Bruxelles International for author's 2-months research stay at l'Université libre de Bruxelles (01/09/2012 - 30/10/2012). Grant Nr. SOR/2011/36604.

2007), 58 pp.

and applied aspects (2012). ¹⁴H. W. Schenke and P. Lemenkova, "Zur Frage der Meeresboden-Kartographie: Die Nutzung von AutoTrace Petschora-See", German, Hydrographische Nachrichten 25, 16–21 (2008)

¹⁵I. Suetova, L. Ushakova, and P. Lemenkova, "Geoecological Mapping of the Barents Sea Using GIS", in Di Proceedings of the International Cartographic Conference (2005).

METHODS

was added to the conditions of objects processing thereafter. sometimes slightly negative NDVI values (depending on the

CONCLUSIONS

Urban landscapes have com- management system. Using plex environmental and socio- object-oriented approach toeconomic function and serve gether with GIS techniques as habitat and agricultural applied to the RS data ensurface in the surroundings. ables to perform geospatial Land cover studies supported analysis with special focus on by satellite image contribute urban landscapes and a case to the development of urban study of Brussels.

ACKNOWLEDGEMENT

BIBLIOGRAPHY

Author's publications on Geography, Remote Sensing and GIS:

¹S. Gauger, G. Kuhn, K. Gohl, T. Feigl, P. Lemenkova, and C. Hillenbrand, "Swath-bathymetric mapping", The 2006. Berichte zur Polar- und Meeresforschung // Rep. on Polar and Marine Res. **557**, 38–45 (2007).

²K. Gohl et al., Crustal and Sedimentary Structures and Geodynamic Evolution of the West Antarctic Continental Margin and ³M. Klaučo, B. Gregorová, U. Stankov, V. Marković, and P. Lemenkova, "Landscape metrics as indicator for eco in Ecology and environmental protection, Proceedings of International Conference (2014), pp. 85–90

⁴M. Klaučo, B. Gregorová, U. Stankov, V. Marković, and P. Lemenkova, "Determination of ecological significant Natura 2000 protected area", Central European Journal of Geosciences 5, 28-42 (2013).

⁵G. Kuhn et al., The response of quaternary climatic cycles in the South-East Pacific: development of the opal belt and dynamic ⁶P. Lemenkova, "Monitoring changes in agricultural landscapes of Central Europe, Hungary: application of II applied aspects (2013).

⁷P. Lemenkova, "Geospatial Technology for Land Cover Analysis", Middle East and Africa (MEA) Geospatial ⁸P. Lemenkova, "Impacts of Climate Change on Landscapes in Central Europe, Hungary", in Current Probl protection, Vol. 2 (2012), pp. 134–136.

⁹P. Lemenkova, "Seagrass Mapping and Monitoring Along the Coasts of Crete, Greece", M.Sc. Thesis (University Enschede, Netherands, Mar. 8, 2011), 158 pp.

¹⁰P. Lemenkova, "Using ArcGIS in Teaching Geosciences", Russian, B.Sc. Thesis (Lomonosov Moscow State U

¹¹P. Lemenkova, Ecological and Geographical Mapping of the Baltic Sea Region in the Gulf of Finland, Russian, Moscow, Russ ¹²P. Lemenkova and I. Elek, "Clustering Algorithm in ILWIS GIS for Classification of Landsat TM Scenes: a

environment, Near-surface geophysics, Proceedings 3rd International Conference (2012). ¹³P. Lemenkova, B. Forbes, and T. Kumpula, "Mapping Land Cover Changes Using Landsat TM: A Case Study

he expedition $ANTARKTIS-XXIII/4$ of the Res. Vessel 'Polarstern' in
d Pine Island Bay (Bremerhaven, Germany, 2006).
nce based on geostatistical assessment: a case study from the Slovak
ics behavior of the West Antarctic ice sheet (Bremerhaven, Germany, 2006).
LWIS GIS for image processing", in Geoinformatics: theoretical and
Digest (2013). lems of Ecology Ecological monitoring and management of natural
y of Twente, Faculty of Earth Observation and Geoinformation (ITC),
University, Faculty of Educational Studies, Moscow, Russia, June 5,
ssia: Lomonosov Moscow State University, Mar. 30, 2002, Term Paper.
Case Study of Mecsek Hills Region, Hungary", in Geosciences and
of Yamal Ecosystems, Arctic Russia", in Geoinformatics: theoretical
Digitizer für die Vektorisierung der Bathymetrischen Daten in der
rigital cartography & gis for sustainable development of territories,