We then use the facility offered by exponential formalism to bring out the undulatory properties of the initial state and of each of the photons:  

Part One

The de BROGLIE wave in the solutions of the DIRAC equation.

Application to the COMPTON effect I -Introduction

The DIRAC equation admits solutions in the form of stationary modes where time and space variables are separated into products of sinusoidal functions. Such solutions can be illustrated with an arbitrarily chosen example: 
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For this bispinor to be a solution to the DIRAC equation, recalled below in an expanded expression:
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Solution (I-1) must be associated with the energy conservation equation:
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In the remainder of this paper, we question the ability of a stationary solution to describe a quantum particle, particularly when the particle is in motion.

We know how to build travelling wave solutions by summing two or more standing wave solutions, but the speed of the particle is not evident in these propagative solutions.

We will show that the travelling wave that appears in the solutions to the DIRAC equation is a phase wave of de BROGLIE. Therefore, the link with the "physical" velocity of the particle will become clearer, since this velocity is equal to the group velocity associated with the phase wave.

From this observation, it becomes possible to analyze the internal changes that occur when a particle at rest receives energy from another particle. The classical experimental situation of such a situation is the one found in the COMPTON difffusion.

To analyze these transformations, we hypothesize that the particle verifies both the DIRAC equation when it is at rest, and when it has been set in motion by an energy input, such as when it is shocked by a photon. To this hypothesis, we add the usual conservation constraint: the total energy of the moving particle must be equal to the energy of the particle at rest, plus the energy brought to it during the interaction with another particle, typically a photon. This analytical work aims to better understand the role of the different energies that make up the particle and that are exchanged between them. It should also allow, in the long term, to imagine transitory scenarios of energy exchanges, when a photon meets an electron for example.

II -The wave of de BROGLIE

The work presented in Louis de BROGLIE's thesis (Louis de BROGLIE thesis) marked an important turning point in quantum mechanics. They establish for the first time an indisputable link between the mass of a particle, its velocity, and the wave that can be associated with it.

This wave is of a surprising nature: it has the property of propagating a quantity at a speed greater than that of light. It will be identified by de BROGLIE as a phase wave that does not carry energy, but in fact represents a phase shift.

We will show, in the following chapters, how this wave appears spontaneously in the solutions of the DIRAC equation, hence the motivation to devote a pedagogical chapter to it.

The notions that revolve around this particular wave are hardly obvious or intuitive. We propose in this chapter to try to shed light on some facets of it, taking advantage of the reflections and tools that a century of hindsight on special relativity has given us.

We start from de BROGLIE's historical questioning concerning the wave perceived by an observer who is in motion with respect to the mass, and we show how his answer can be interpreted using an important result of special relativity: the phase of a phenomenon, which is a scalar quantity, is invariant by a change of frame.

The calculations are elementary, but in spite of some fundamental reminders, it is undoubtedly desirable to have some notions of special relativity, in particular on four-vectors, in order to approach the following paragraphs with profit.

I -The phase wave of de BROGLIE

DE BROGLIE's fundamental hypothesis is the following: to any particle that possesses mass energy, one can associate an undulatory phenomenon, and thus a wave whose behaviour must be specified. Thus, to a resting mass m0, we can associate a pulse wave ω0 which verifies the PLANCK relation:
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For a particle moving at velocity v, the acquired relativity results are used, indicating that the kinetic energy has been stored as mass energy.

This leads to a second relation, in which the wave motion associated with the particle has changed its frequency, as it is still assumed to obey the PLANCK relation: By equating the quantity m0c² in the two relations above, we deduce that the pulses ω and ω0 must be linked by the relation:
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Let's look at these relationships from a relativistic perspective. We designate by (R0) the frame of reference in which the particle is at rest, and by (R) the frame of reference in which it is moving at the velocity v. It follows that the frame of reference (R) moves at the velocity (-v) with respect to the frame of reference (R0).

The theory of special relativity teaches us that under these conditions, the clock carried by the moving mass in the frame of reference (R) lags behind the clocks arranged in the frame of reference (R). These clocks all indicate the same time, because time is a unique datum in a given frame of reference. Classically, this property is referred to by saying that all the clocks arranged in the same frame of reference, and moving with it, are synchronized If one designates by T0 a duration measured by the clock carried by the mass m, and T the same duration measured by the clocks of the reference frame (R), then we know that the clocks in motion delay according to the relation:
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We deduce that undulatory phenomena of pulsation ω (observed in the frame of reference (R)) and ω0 (observed in the frame of reference (R0)) should be linked by the relation:
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There is an obvious contradiction between relations (II-3) and (II-5) which indicates that something has escaped us in the reasoning we have conducted. It falls to de BROGLIE to have succeeded in removing this ambiguity by establishing a theorem which he calls the "phase harmony theorem". This theorem was obtained without any calculation. It represents, in the eyes of the author, a model of physical reasoning

In the following paragraph, we will analyze the foundations of this theorem, using the relativistic transformation relations applied to the four-vectors.

II -The four-vector wave

In special relativity, the quantities that are transformed by changing the reference frame while respecting the LORENTZ transformation are called four-vectors.

In the situation dealt with in this chapter, the frame (R) moves at the speed (-v) with respect to the frame (R0) in the direction carried by the Oz axis. As a result, the four-vector representing the space-time coordinates is transformed between the two frames as follows. One can adopt notations that simplify these expressions:
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Remember that the pseudo norm s of a four-vector does not depend on the frame of reference in which it is calculated. We adopt the following signature:
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The wave four-vector is constructed by analogy with the pulse energy four-vector of relativistic mechanics, which imposes the following association: The term in parenthesis to the right of equality is the four-vector wave.

A pseudo scalar product can be defined in the MINKOWSKY space, similarly to the scalar product defined in classical vector spaces. This pseudo scalar product is calculated in the same way as in a usual vector space, but is assigned a minus sign for the spatial components, in coherence with the metric of the pseudo-norm defined in .

With the wave four-vector and the space-time four-vector representative of a point M of coordinates (x, y, z, ct), the following pseudo scalar product is obtained:
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This pseudo scalar product has the same property as for a usual vector space: it does not depend on the frame in which it is evaluated. It follows that the phase of the wave given by the relation (II-10) does not depend on the considered frame of reference.

We will apply this property to the quantities defined in the frames (R0) and (R).

In the frame (R0) the particle is at rest, so the components of the wave vector are zero. The pseudo-scalar product of the wave and position four-vectors is expressed as follows: In the frame (R) which moves at the speed (-v) along the oz axis, relative to the frame (R0), the pseudo-scalar product of the wave and position quadrivectors is expressed as follows:
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Since the phase is invariant by change of frame, this imposes:
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This is the phase harmony theorem established by Louis de BROGLIE. The phase of the wave (ω0t0) seen by an observer of the frame (R0) is identical to the phase of a progressive wave (ωt -kzz) seen by an observer of the frame (R).

We now need to remove the ambiguity regarding the relationship between ω0 and ω. For this we consider the wave four-vector. It is transformed with the help of the LORENTZ transformation. We recall that the particle being stationary in the frame of reference (R0), the three components kx0, ky0, kz0 are null.
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The reciprocal relations are obtained by changing the sign of the relative velocity of (R) with respect to (R0):
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The last relationship provides an expression between ω and ω0:
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It is therefore the relation (II-3), which expresses the conservation of relativistic energy, which is correct. For a progressive wave, it is impossible to separate the variables of space and time as was done above in obtaining relation . The correct treatment can only be done by using the formalism of four-vectors, which alone takes into account the interaction of time and space. These two aspects are always intimately linked for a propagating wave.

III -The physical interpretation of the phase harmony theorem

We have established in the previous paragraph an equal relationship between the phase of the periodic phenomenon, as seen by an observer of the frame (R0), and the phase of a wave propagating in the frame (R), as seen by an observer of the frame (R).
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The wave seen from the frame (R) is a progressive wave, the propagation speed of which we designate by vp:
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From the transformation of the wave four-vector (II-14), we derive:
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The propagation speed of the wave associated with the mobile in the frame (R) is deduced from the relation:
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It is apparent that this speed is greater than c, speed of light. De BROGLIE will conclude that this wave does not carry energy. It represents only a phase shift. He will call vp the phase velocity, and he will name phase wave, the wave associated with this shift.

He will also give another interpretation of the equality relationship of the phases, obtained by expressing the phase of the frame(R) according to ω0:
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In this new expression of phase equality, the ω0 pulse of the frame (R0) is found identically in the frame (R). The agreement of the phases expresses that the time t0 of the frame (R0) has been transformed into a time t of the frame (R), following the LORENTZ transformation.

As with other results from special relativity, the result (II-21) is hardly intuitive. It is not obvious to admit that between the wave phenomenon observed in the frame (R0), and the same wave phenomenon observed in the frame (R), the only element which has varied, and which makes the wave progressive, is due to the transformation of the time.

III -The de BROGLIE wave in the solutions of the DIRAC equation

The stationary solutions of the DIRAC equation allow the development of solutions showing travelling waves. As in the classical wave formalism, it is sufficient to add two stationary modes chosen with relevance.

We begin this chapter by highlighting a progressive wave, as solution to Dirac's equation, on a particular example. By analyzing the properties of the obtained wave, we will show that it has all the characteristics of a de BROGLIE wave.

In this and the following chapters, the solutions are expressed to a multiplicative constant close, without changing the notation for the components of the bispinor. (ψ0,ψ1,ψ2,ψ3). This simplification of writing does not seem to interfere with the understanding of the ideas that are developed. We also know that, in a more complete theory, a constant of normalization is necessary to give each term of the bispinor the dimension of the square root of a volumic density of energy.

I -Building a progressive solution

The stationary solutions of the DIRAC equation are a product of sinusoidal functions in which space and time are separated. An arbitrarily chosen example illustrates this property: 
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The pseudo-norm of the wave quadrivector (kt, kx, ky, kz) is a constant. In order for relations (II-1) to be solutions of the DIRAC equation, this pseudo-norm must check:
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In these relationships, we have put:
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By introducing these relations into solution (II-1), and multiplying them by the constant c  , we obtain an expression in which each of the terms has the dimension of an energy: 
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The pseudo-norm of the wave four-vector is then transformed into an energy conservation relationship:
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We know that these solutions cannot describe the reality of a particle like the electron or the photon, which have spherical properties, but they are a good support for reasoning, in a mathematical formalism lightened by the use of Cartesian coordinates. It is within this framework that they will be used in the remainder of this document.

It is apparent that solution (II-1) above cannot represent a moving particle. Rather, it must be considered, by analogy with the modes of an electromagnetic cavity, as a solution that can represent quantum energy enclosed in a parallelepipedal volume.

We now wish to imagine a formulation that could represent this particle moving at a velocity vz, in a direction arbitrarily chosen as being oriented towards positive z. Empirically, we then suppose that it is necessary to introduce a parameter of the form (ktxt -kzz) = (ωt -kzz) in one of the sinusoidal functions. This parameter is known to represent a wave that moves towards the positive z.

In order to simplify the presentation, we provisionally set the constants kx and ky equal to 0. The simplified expression of solution (II-1) is as follows:

0 ) x k cos( ) z k sin( jk 0 ) x k sin( ) z k cos( jk ) x k cos( ) z k cos( 3 t t z z 2 1 t t z t t t z 0           (III-6)
By removing π/2 at the phase of each of the terms, we get a new solution:
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Summing the two solutions (III-6) and (III-7) above gives a progressive solution in the Oz direction:
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This solution is called progressive because the parameter of each sine function is equal to (ktxt -kzz) = (ωt -kzz). This phase is characteristic of a wave that propagates towards the positive z. It could therefore be likely to represent a particle moving in that direction.

The association of this phase with a point particle moving at the speed vz following Oz is hardly intuitive. It questions us for at least two reasons:

-It is not clear how to show the velocity vz of the particle in the DIRAC solution, which is a real handicap to show that such a solution is likely to describe a moving particle.

-The speed of movement of this wave is greater than the speed of light. To show this, we put:
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In this expression vp represents the speed of propagation of the wave. We know that the quantities ω and kz must check the conditions of energy conservation:
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By puting this value of ω in the propagation velocity (II-9), one obtains:
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It is apparent from the above expression that the speed of propagation vp is greater than the speed of light.

In view of the previous chapter, we formulate the hypothesis that this wave, which is an exact solution of the DIRAC equation, is a phase wave, in the sense that de BROGLIE defined it in his thesis.

II -The wave-particle duality

We wish to highlight, in the progressive solutions, the characteristics of the particle and its movement. For this we use the usual correspondence between the particle and its associated wave.

We designate by m0 the mass of the particle at rest, and by ω0 the pulsation of its associated wave.

We assume that the particle is moving at constant velocity vz along the Oz axis.

We designate by m the mass of the moving particle, and by ω the pulsation of its associated wave.

Under these conditions, the rest mass energy E0, the moving mass energy E, and the pulse energy pzc take the following analogous expressions:
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The first two lines constitute de BROGLIE's fundamental hypotheses in his thesis. It is convenient and simplifying to use an undulatory expression for the pzc pulse energy, associating it with the pulse ωz. It is easy to go back to the particle aspects using the relations (III-12) above.

With this homogeneous notation in ω, the progressive solution of the DIRAC equation (III-8) is written, after multiplication by c of all the components:
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The energy conservation equation takes the simplified expression:

2 0 2 z 2      (III-14)

III -Phase velocity and group velocity

The progressive wave that appeared in the DIRAC solution has the following phase:
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The phase velocity vp of this wave has the expression:
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Since the pulse ω is greater than the pulse ω0, the phase velocity is greater than the speed of light. This property characterizes a phase wave of de BROGLIE.

We define the group velocity vg of this wave by the following expression:
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When looking at the definition of group velocity vg (III-17), the physical meaning is not obvious. We devote the following few lines to justify its importance.

From the energy conservation relationship (III-14:
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), we obtain, recalling that ω0 is a constant, a simple relationship between group velocity and phase velocity:
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We deduce that the group velocity of the progressive phase wave (ωt -kzz) can be expressed by the relation:
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Or again :
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De BROGLIE's relations associating wave and particle (III-12) are recalled for memory:
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They make it possible to achieve a new relationship between ω, ω0 and vz:
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From relations (III-20) and (III-22) it is deduced that the group velocity vg is identical to the particle displacement velocity vz along the Oz axis. It thus represents the speed of movement of the mass, or of the energy associated with the mass, along the Oz axis.

The wavelength of de BROGLIE is obtained by considering the wavelength of the phase wave. It is also the wavelength of the wave function that appears in the exact solutions to the DIRAC equation.

This wavelength is thus obtained by dividing the phase velocity by the frequency of the phase wave:
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To make the group velocity vg = vz of the particle appear, we use the relation:
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The pulsation ω is associated with the particle moving at the velocity vz according to the wave-particle relation recalled in (III-21):
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The wavelength of de BROGLIE is deduced from the 3 relations above:

z 2 2 z 2 0 z 2 p mv h c v 1 c m v c 2 v 2          (III-26)

IV -Some expressions of the DIRAC progressive solution

Depending on the terms injected into the simplified exact solution, one can rather show undulatory, energetic, particulate or purely relativistic aspects. We give in the following lines some of the multiple aspects of this solution.

In the manipulations that are proposed, we no longer take into account the physical nature of the energy represented in each of the terms. Let's consider for example the relation:
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The term to the left of equality reflects a mass energy, while the term to the right of equality reflects a wave energy: this distinction has a real physical meaning. However, from a purely mathematical point of view, we can use either term interchangeably to obtain homogeneous expressions in their formulation.

We start from a homogeneous expression already formulated in (III-13) as a function of the pulsations ω, ω0, and ωz :
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By introducing the expression of the pulse ωz, as a function of the pulses ω and ω0, then multiplying by the reduced PLANCK constant, we obtain:
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By introducing the de BROGLIE relations that link wave and particle, and the group velocity vg = vz, we obtain:

      0 z c v t c v 1 c m sin c v c v 1 c m j 0 z c v t c v 1 c m sin c v 1 c m j z c v t c v 1 c m cos c m 3 2 z 2 z 2 0 z 2 z 2 0 2 1 2 z 2 z 2 0 2 z 2 0 2 z 2 z 2 0 2 0 0 2 2 2 2 2                                        (III-30)
We call t0 the proper time of the particle, i.e. the time measured in the frame in which the particle is at rest. De BROGLIE's phase harmony theorem allows us to write:

      0 t sin c v c v 1 j 0 t sin c v 1 j t cos 3 0 0 z 2 2 z 0 2 1 0 0 2 2 z 0 0 0 0 0                      avec 2 0 0 2 z 2 2 z 2 z 0 c m z c v t c v 1 z c v t t                (III-31)
Finally, by dividing by the energy of the resting mass, we obtain a minimalist expression of the solution, each term of which is dimensionless:

            0 t sin c v j t sin c v c v 1 1 j 0 t sin j t cos t sin c v 1 1 j t cos 3 0 0 z 0 0 z 2 2 z 2 1 0 0 0 0 0 0 2 2 z 0 0 0                         (III-32)

V -Conclusion

DIRAC's equation is invariant by a change of frame under the LORENTZ transformation, which guarantees its total compatibility with de BROGLIE's phase harmony theorem, which is itself established on purely relativistic bases.

Using the wave-particle relations posed by de BROGLIE, it is therefore possible to exhibit the velocity and impulse properties of the particle in the solutions to the DIRAC equation.

The wave-particle duality appears from its construction in SCHRÖDINGER's equation, both in the speed of propagation of the wave, and in the term of kinetic energy. This gives a reassuring side to this equation which describes the propagation of a wave using characteristic quantities of the particle's motion. This duality is less apparent in the DIRAC equation, and one has to look for the representation of de BROGLIE's phase wave to find out where the speed of the particle is. The counterpart of this difficulty is found in the relativistic power of this equation which allows the proper time of the particle to emerge in complete coherence with de BROGLIE's phase harmony theorem. This contributes, in the eyes of the author, to make it truly the fundamental equation of quantum physics.

We will devote the following chapters to a further analysis of some of the energy properties of these solutions.

IV -Kinetic energy and pulse energy

From a relativistic point of view, we are led to manipulate two relationships that express energy conservation. We recall the foundations of these two relations and examine the relationships between the different forms of energy that appear.

I -Kinetic energy

The first of these relationships reflects the fact that if energy is added to a system that already has energy, the total energy will be equal to the sum of the initial energy plus the energy brought to it.

The classic relativistic example of this behaviour is given in the following lines.

Let E0 be the energy of a resting mass m0. We pose:

2 0 0 c m E  (IV-1)
We call E the energy of the same mass when it is moving with a velocity v.

2 2 2 2 0 mc c c v 1 m E    (IV-2)
We refer to the difference between these two energies as kinetic energy Ecin:

  1 c m 1 c v 1 1 c m c m c c v 1 m E 2 0 2 2 2 0 2 0 2 2 2 0 cin                        (IV-3)
The name kinetic energy comes from the fact that if we place ourselves in conditions where the speed of the particle is much lower than the speed of light, this energy corresponds to the relation that defines kinetic energy in classical mechanics:

2 0 2 2 2 0 2 2 2 0 cin v m 2 1 1 c 2 v 1 c m 1 c v 1 1 c m E                              (IV-4)
In the remainder of this paper we will assume that the total energy of a moving mass is equal to the energy of the mass at rest plus its kinetic energy.

cin 0 E E E   (IV-5)
Kinetic energy is a familiar form of energy in all problems involving classical or relativistic mechanics.

IIpulse energy

The conservation of energy is also expressed by a quadratic relation deduced from the constancy of the pseudo-norm of the energy-pulse four-vector.

    2 2 0 2 2 2 0 2 2 2 2 0 2 2 c m c c v 1 v m c c v 1 m mc                                  (IV-6)
We designate by pulse energy Eimp the energy component which is equal to the particle pulse multiplied by the speed of light:

mvc c c v 1 v m E 2 2 0 imp    (IV-7)
The quadratic relation (IV-6) between the total energy, the energy of the resting mass and the impulse energy is written as follows:

2 imp 2 0 2 E E E   (IV-8)
Impulse energy is ubiquitous in relativistic relationships, but it is rarely given physical meaning. We propose to analyze its relationship with other types of energy in order to progress in the understanding of its role in physical phenomena, and more particularly in the exact solutions to the DIRAC equation.

III -Some energy relations

We are in possession of the two fundamental relationships that express energy conservation in physical systems:

2 imp 2 0 2 cin 0 E E E E E E     (IV-9)
It is a non-linear system of two equations with 4 unknowns. It is possible to eliminate one of the unknowns E or E0 chosen as a parameter. This provides 2 other relationships between the different kinds of energy.

-Elimination of mass energy at rest:

2 E E EE 2 cin 2 imp cin   (IV-10) -Elimination of total energy: 2 E E E E 2 cin 2 imp cin 0   (IV-11)
Four other relationships can be deduced by isolating impulse energy and kinetic energy:

2 cin cin 0 2 imp 2 cin cin 2 imp E E E 2 E E EE 2 E     2 imp cin 0 2 cin 2 imp cin 2 cin E E E 2 E E EE 2 E      (IV-12)
Finally, an explicit expression of kinetic energy and impulse energy can be given. By retaining the signs that give a positive value to the kinetic energy, we obtain:

2 imp 2 0 0 cin 2 imp 2 cin E E E E E E E E        2 cin cin 0 imp 2 cin cin imp E E E 2 E E EE 2 E      
(IV-13)

The particle's speed of movement can also be expressed by means of energy relationships. An elementary algebraic calculation can be used to deduce the following:

  cin 0 imp imp 2 0 cin 2 cin 0 2 0 2 2 0 E E E c E E c v E E 1 1 1 c E E E 1 c E E 1 c v                    (IV-14)

IV -A graphic representation

The results calculated in the previous paragraph can be represented using a simple geometric figure. The rest mass energy is shown in black, the kinetic energy in blue, the pulse energy in red and the total energy in green. The result is the graphical representation of Figure I. For a massive particle, we observe that the kinetic energy is always less than the pulse energy. It can be said to be much lower when the speed of the particle is much lower than the speed of light.

For a photon on the other hand, these two energies are equal because the rest mass of the photon is assumed to be zero.. When we bring energy to a mass at rest, it appears that the role of kinetic and impulse energies is very different. In the following chapter, we propose to introduce them into the exact solutions to the DIRAC equation. We hope to be able to describe phenomena such as the COMPTON effect, in which a photon gives energy to an electron.

E0 = m0c²

Eimp

V -Energy in exact solutions to the DIRAC equation

We use the progressive solution obtained in the previous chapter as a basis for reflection.

We would like to make the different types of energy gradually appear in this solution, with the final objective of an expression that would only depend on resting energy and kinetic energy.

We take as a starting point one of the expressions obtained by introducing the proper time of the particle:

      0 t sin c v c v 1 j 0 t sin c v 1 j t cos 3 0 0 z 2 2 z 0 2 1 0 0 2 2 z 0 0 0 0 0                      with 2 0 0 2 z 2 2 z 2 z 0 c m z c v t c v 1 z c v t t                (V-1)
By introducing the energy notation of the previous chapter, we can see each type of energy in the amplitudes relative to each of the sinusoids:

  0 t sin jE 0 t sin E E j t cos E t sin jE t cos E 3 0 0 imp 2 1 0 0 cin 0 0 0 0 0 0 0 0 0 0                   (V-2)
The pulsation ω0 of the vibratory movement can be expressed as a function of the resting energy E0:

  0 t E sin jE 0 t E sin E E j t E cos E 3 0 0 imp 2 1 0 0 cin 0 0 0 0 0               (V-3)
This formulation is fully described in terms of the rest energy E0, the kinetic energy Ecin and the impulse energy Eimp. We recall that the time t0 is the proper time of the particle, i.e. the time attached to the frame in which the particle is immobile.

In the frame where the particle is moving, the proper time t0 must be replaced by the time t deduced from the LORENTZ transformation:

  0 c z v t E sin jE 0 c z v t E sin E E j c z v t E cos E 3 2 z 0 imp 2 1 2 z 0 cin 0 2 z 0 0 0                                       (V-4)
The total energy of the particle E = E0 + Ecin is also related to the rest energy E0 by the relation:

0 cin 0 E E E E     (V-5)
After substitution in the previous relation (V-4), the pulse of the phase wave which is apparent in this frame then becomes:

        0 c z v t E E sin jE 0 c z v t E E sin E E j c z v t E E cos E 3 2 z cin 0 imp 2 1 2 z cin 0 cin 0 2 z cin 0 0 0                                       (V-6)
We recall the expressions of particle velocity vz and pulse energy Eimp as a function of rest energy E0 and kinetic energy Ecin. These expressions were obtained in the previous chapter:

2 cin cin 0 imp 2 0 cin z E E E 2 E 1 E E 1 1 c v              (V-7)
The introduction of these two formulas makes it possible to obtain an expression which now depends only on the rest energy E0 and the kinetic energy Ecin:

        0 c z 1 E E 1 1 t E E sin E E E 2 j 0 c z 1 E E 1 1 t E E sin E E j c z 1 E E 1 1 t E E cos E 3 2 0 cin cin 0 2 cin cin 0 2 1 2 0 cin cin 0 cin 0 2 0 cin cin 0 0 0                                                                                              (V-8)
These latter relations are in line with the objectives set.

When the kinetic energy is zero, we admit that this solution represents a particle at rest.. When this particle receives kinetic energy from the outside, we conjecture that this solution represents the particle in motion.

In the following chapters, we will try to show the coherence of this conjecture with the COMPTON effect.

VI -The COMPTON effect interpreted in terms of exact solutions to the DIRAC equation

In this chapter, we seek to show that it is possible to go beyond the usual interpretation of the COMPTON effect. This interpretation is based on the relativistic relations of energy conservation and impulse conservation.

The relativistic nature of the DIRAC equation and its solutions must allow to associate to each particle a state before the shock and a state after the shock. Each of these states must be an exact solution of the DIRAC equation. We will show on a particular example that such solutions exist and that they verify the COMPTON effect.

We are not, at this stage, in a position to describe the transitional regime that is put in place during the shock. But if we know precisely the state of the particle before and after the shock, it becomes possible to work on transient scenarios that make it possible to move from one state to another. It is in this perspective of openness that the work of this paper is conducted.

I -Reminders on the COMPTON effect

The process of the COMPTON effect is observed when an incident photon strikes a free electron, whose velocity is admittedly low enough to be neglected in the phenomena involved. The electron is ejected using some of the energy of the incident photon. The incident photon is scattered by taking into account the energy it has given up to the electron.

The problem can be restricted to two dimensions in the plane defined by the output trajectories of the scattered photon and the ejected electron. Without losing generality, this plane can be defined using the Oy and Oz axes. (Fig. VI-1)

The following notations are used:

-m0c² : resting electron energy The conservation of energy before and after the shock is written in terms of mass energy for the electron and wave energy for the photon:

2 2 0 2 2 2 2 0 1 2 0 h c m h c v 1 c m h c m           (VI-1)
We adopt the definition of kinetic energy that we have justified in the previous chapters.

  2 1 2 1 2 0 2 2 2 0 cin h h h c m c v 1 c m E            (VI-2)
This kinetic energy is entirely provided by the difference in energy between the incident photon and the scattered photon.

The impulse conservation can be processed in a vectorial way, or can be decomposed by projection on each axis. We opt for this second possibility.

-Following the Oz axis, expressing the impulse before the shock to the left of the first equality, and the impulse after the shock to the right of this equality:

              cos c h cos v m cos c h cos c v 1 v m 0 c h 2 0 2 2 2 0 1 (VI-3)
-Along the Oy axis, similarly:

            sin c h sin v m sin c h sin c v 1 v m 0 2 0 2 2 2 0 (VI-4)
We have 3 equations 3,4). The treatment that provides the COMPTON relation is not trivial and it is easy to get lost in the meanders of the calculation.

The two impulse conservation relationships (VI-3) and (VI-4) are squared:

        2 0 2 2 2 0 2 2 1 sin vc m sin h cos vc m cos h h              (VI-5)
The angle β is eliminated by adding the two relationships obtained above. Using the trigonometric relation cos² + sin² =1, we obtain:

      2 0 2 1 2 2 2 2 1 vc m cos h 2 h h          (VI-6)
The energy conservation equation (VI-1) is squared, isolating the term that contains γ:

            2 2 0 2 1 2 2 2 0 1 2 0 2 2 2 1 2 2 0 2 2 0 2 2 1 2 0 c m h 2 c hm 2 c hm 2 h h c m c m h h c m                    (VI-7)
We subtract the two equalities (VI-7) -(VI-6):

                                                           cos 1 c m h 0 1 c v c m cos 1 h 2 c hm 2 vc m c m cos h 2 h 2 c hm 2 c hm 2 c m 2 0 2 1 2 1 2 2 2 2 2 2 0 2 1 2 2 1 2 0 2 0 2 2 0 2 1 2 2 1 2 2 2 0 1 2 0 2 2 0 (VI-8)
This relationship is generally expressed as a function of the wavelengths of the incident and scattered photons:

                  cos 1 c m h c c c 0 2 1 2 1 1 2 1 2 (VI-9)
The wavelengths of the photons are directly accessible to the experiment, which allows its verification with great precision.

In the following paragraph, we will suggest an interpretation of this relationship using the solution of the DIRAC equation detailed in the previous chapters. In a simplified approach, this solution has only one dimension along the Oz axis. We arbitrarily choose an angle θ = π in the COMPTON relations. In this particular case, the relations (VI-8) and (VI-9) become:

    c m h 2 cos 1 c m h c m h 2 cos 1 c m h 0 0 1 2 2 0 2 0 2 1 2 1                 (VI-10)

II -COMPTON effect on a DIRAC particle

The electron at rest is represented by a particle having the following wave function:

    0 0 0 t sin j t cos c m i 3 i 2 i 1 0 0 0 0 0 2 0 i 0              with     0 2 0 c m    (VI-11)
The index i in the components of the bispinor indicates that this is the initial situation of the electron before the shock.

During the shock with the electron, the photon No. 1 is absorbed by the electron, while the photon No. 2 is ejected.

The kinetic energy received by the electron has the expression:

  2 1 cin E      (VI-12)
For each photon taken individually, its total energy is equal to its kinetic energy, and also to its pulse energy. This property is the consequence of the nullity of its mass.

We deduce that the impulse energy received by the electron has the following expression, in the particular case where we have placed ourselves (θ = π):

  2 1 imp E      (VI-13)
In view of the previous chapter, we then conjecture that the new DIRAC wave function of the electron has the form below (see relationV-2). We indexed by the letter f the components of the DIRAC bispinor to indicate that this wave function corresponds to the final state of the particle after the shock.

  0 t sin jE 0 t sin E E j t cos E t sin jE t cos E f 3 0 0 imp f 2 f 1 0 0 cin 0 0 0 0 0 0 0 0 0 f 0                   (VI-14)
For reasons of simplification of writing, we will commonly adopt a homogeneous pulse notation later on. By adopting this homogeneous representation of energies in the wave form, we obtain:

      0 t sin j 0 t sin j t cos f 3 0 0 2 1 f 2 f 1 0 0 2 1 0 0 0 0 f 0                          (VI-15)
In order for this wave function to be a true solution to the DIRAC equation, it must respect the energy conservation equation, which in this particular case is written as follows:

    0 2 1 2 1 2 1 2 1 2 0 1 0 2 1 2 2 2 1 2 0 2 1 2 0 1 0 2 2 2 1 2 0 2 2 1 2 0 2 2 1 0 2 2 2 2 2 2 2 2 2                                                     (VI-16)
It so happens that the relationship obtained is precisely the COMPTON relationship. To show this, we introduce the relation that connects pulsation and frequency, as well as the relation that connects mass energy and wave energy:

2 0 0 2 1 2 1 2 1 2 1 c m 2 2 2 1                (VI-17)
The check is completed by writing:

2 0 2 1 2 1 2 0 2 0 2 1 2 1 c m h 2 c m h 2 2 1 c m 2 2 1                 (VI-18)
It remains for us to verify that the proposed DIRAC wave function (VI-14) describes well the speed with which the electron was ejected.

For that, we express the proper time t0, which is the time of the frame attached to the electron; according to the time t of the frame in which the electron moves in its final state.

            z c v t c v 1 z c v t t 2 z 2 2 z 2 z 0 (VI-9)
We obtain the DIRAC representation of the final state, in the frame of reference where the particle is moving at the velocity vz:

  0 z c v t sin jE 0 z c v t sin E E j z c v t cos E f 3 2 z 0 imp f 2 f 1 2 z 0 cin 0 2 z 0 0 f 0                                    (VI-10)
We know that the quantity vφ = c²/vz represents the velocity of the phase wave of de BROGLIE.

We also know that the velocity of energy, i.e. the speed of movement of the particle, is equal to its group velocity vg. The expression of this velocity has been given in a previous chapter (cf :

    2 1 0 2 1 2 1 0 2 1 cin 0 imp z g c c E E E c v v                        (VI-11)
Although there is no doubt that the above relationship gives the correct value, a validation can be sought by writing that the kinetic energy acquired by the electron is provided by the difference in energy between the incident photon and the diffracted photon.

  2 1 2 2 z 2 0 2 0 2 2 2 z 0 cin 1 c v 1 1 c m c m c c v 1 m E                          (VI-12)
Either still in homogeneous notation in ω:

  2 1 2 2 z 0 1 c v 1 1                        (VI-13)
We obtain by an algebraic calculation, a few steps of which are given below:

      2 2 1 0 2 0 2 2 1 0 2 2 z 2 2 1 0 2 0 2 2 z 0 2 1 0 2 2 z c v c v 1 c v 1 1                              (VI-14)
We recall the energy conservation equation in homogeneous notation:

    2 2 1 2 0 2 2 1 0 2 imp 2 0 2 E E E              (VI-15)
It is deduced from (VI-14) et (VI-15) :

        2 1 0 2 1 z 2 2 1 0 2 2 1 2 2 2 1 0 2 0 2 2 1 0 2 2 z c v c c v                                (VI-16)
This one-dimensional treatment makes it possible to describe the physics of phenomena in a lighter formalism. It is easily generalized to the two-dimensional treatment, which allows to take into account the angles of the trajectories of the ejected electron and the scattered photon. This is the subject of the next chapter.

VII -The COMPTON effect in dimension 2 in the xy plane

This generalization chapter takes up the formalism of the previous chapter, generalizing it to 2 dimensions. The xy plane has been chosen because it simplifies the DIRAC bispinor, which then has only 2 non-zero terms.

We adopt as a starting point a propagative solution of the DIRAC equation following the 3 dimensions of space:

) z k y k x k x k sin( jk ) z k y k x k x k sin( k ) z k y k x k x k sin( jk 0 ) z k y k x k x k sin( jk ) z k y k x k x k cos( z y x t t x z y x t t y 3 z y x t t z 2 1 z y x t t t z y x t t 0                            (VII-1)
We recall the notations used as well as the energy conservation equation with these notations:

2 2 z 2 y 2 x 2 t 0 t t k k k k c m ct x c k            (VI-2)
By setting the propagation constant kz equal to 0, we obtain the progressive solution that we will use in the xy plane.

) y k x k x k sin( jk ) y k x k x k sin( k 0 0 ) y k x k x k sin( jk ) y k x k x k cos( y x t t x y x t t y 3 2 1 y x t t t y x t t 0                    (VII-3)
We refer to the initial state of the particle as its resting state. This state is indicated by the index i on each term of the bispinor. We adopt a representation where each term has the dimension of an energy:

        0 0 0 t sin j t cos c m i 3 i 2 i 1 0 0 0 0 0 2 0 i 0              with 0 2 0 0 c m E     (VII-4)
The final state of the electron is obtained by taking into account the kinetic energy and the impulse energy supplied to it during the shock:

          0 0 impx 0 0 impy f 3 f 2 f 1 0 0 cin 0 0 0 0 f 0 t sin jE t sin E 0 0 t sin E E j t cos E                (VII-5)
The axes and angles chosen are shown in the figure below: The kinetic energy brought to the electron during the shock is expressed as:

  2 1 cin E      (VII-6)
The pulse energy brought to the electron can be broken down along each of the Ox and Oy axes. For a homogeneous notation in ω, we express the impulse energy in the following way:

        imp 2 y 2 x imp 2 2 2 2 1 2 impy 2 impx imp y 2 impy x 2 1 impx E sin cos E E E sin E cos E                                    (VII-7)
The total energy E of the electron after the shock is written by using this notation:

              2 1 0 cin 0 E E E (VII-8)
In a homogeneous notation in ω, the final state of the electron is written as follows:

                0 0 x 0 0 y f 3 f 2 f 1 0 0 2 1 0 0 0 0 f 0 t sin j t sin 0 0 t sin j t cos                           (VII-9)
Either by replacing ωx and ωy by their corresponding expression:

                0 0 2 1 0 0 2 f 3 f 2 f 1 0 0 2 1 0 0 0 0 f 0 t sin cos j t sin sin 0 0 t sin j t cos                               (VII-10)
For this end state to be an exact solution to the DIRAC equation, it must check the energy conservation equation, which is written in the homogeneous notation:

      2 2 2 2 1 2 0 2 2 1 0 2 y 2 x 2 0 2 imp 2 0 2 sin cos                           (VII-11)
It is the development of the latter expression that provides the relationship of COMPTON:

          2 0 0 2 1 2 1 2 1 0 2 1 2 1 2 1 2 0 1 0 2 2 2 2 1 2 2 2 2 1 2 0 2 1 2 0 1 0 2 2 2 1 2 0 2 2 2 2 1 2 0 2 2 1 0 c m cos 1 cos 1 2 cos 1 2 cos 2 2 2 2 sin cos 2 cos 2 2 2 sin cos                                                                               (VII-12)
To highlight the de BROGLIE phase wave, we replace the proper time t0 by the time of the frame in which the particle is moving and we apply the phase harmony theorem:

              2 y 2 x 0 0 0 c y v c x v t t (VII-13)
In this expression, the velocity v of the particle is equal to:

2 y 2 x v v v   (VII-14)
This velocity is also equal to the group velocity of the de BROGLIE wave:

        2 1 0 2 2 2 2 1 2 1 0 2 y 2 x cin 0 imp g sin cos c c E E E c v v                            (VII-15)
It is deduced that the components of the electron ejection velocity according to Ox and Oy have the following respective expressions:

            2 1 0 2 2 1 0 y y 2 1 0 2 1 2 1 0 x x sin c c v cos c c v                                     (VII-16)
The angle β of electron ejection verifies the relation:

                        cos sin cos sin v v tg 2 1 2 2 1 2 x y   (VII-17)
When an electron is excited by a photon, it can be modeled by a solution to the DIRAC equation in complete coherence with the COMPTON scattering. We then assume that this interaction can be generalized as described in the following chapter.

VIII -The 3 dimensional diffusion

We propose to generalize in this chapter the interaction between a photon and a particle that meet and exchange energy. As in the COMPTON effect, we will assume that this interaction gives rise to a scattered photon and we will focus on characterizing the state of the particle before and after the interaction.

We designate by kinetic energy Ecin, the energy brought by the incident photon to the particle Ecin1, minus the energy delivered by the particle to the scattered photon Ecin2.

2 cin 1 cin cin E E E   (VIII-1)
In a similar way, we define the impulse energies in each direction of space:

2 impz 1 impz impz 2 impy 1 impy impy 2 impx 1 impx impx E E E E E E E E E       (VIII-2)
The COMPTON effect has shown us that the energy brought into this interaction is accepted by the particle at rest in the form of kinetic energy and in the form of impulse energy.

Seen from the frame where the particle was at rest, this particle is now moving at a certain speed. As a result, the phase of the associated wave undergoes a shift that corresponds to the de BROGLIE wave. This shift is described by the LORENTZ transformation, between the proper time t0 of the particle at rest and the time t of the frame in which the particle is moving.

This mechanism can be progressively detailed using the exact solutions to the DIRAC equation.

At rest, considered as the initial state, the particle is modelled by a DIRAC solution in which only its energy at rest E0 appears. The time t0 represents the proper time attached to the particle.

0 0 0 t E sin jE t E cos E i 3 i 2 i 1 0 0 0 0 0 0 i 0                        (VIII-3)
When interacting, this particle receives a kinetic energy Ecin. The total energy E of the particle then becomes equal to E = E0 + Ecin. It is this term that represents the wave energy in the solutions to the DIRAC equation. This statement is directly deduced from de BROGLIE's representation in his demonstration of the phase harmony theorem.

The new solution of the DIRAC equation which takes into account this contribution of kinetic energy represents the final state. In the referential of the particle (the one in which time is called proper time), this solution is of the form:

                                            0 0 impx 0 0 impy f 3 0 0 impz f 2 f 1 0 0 cin 0 0 0 0 f 0 t E sin jE t E sin E t E sin jE 0 t E sin E E j t E cos E      (VIII-4)
Kinetic energy was added to the term representing wave energy, while the second spinor was supplemented by the terms representing impulse energy.

The rest energy E0, the kinetic energy Ecin, and the impulse energy Eimp, are linked by a quadratic relationship. This is the relation that expresses the invariance of the norm of the fourvector impulse energy:

  2 impz 2 impy 2 impx 2 0 2 imp 2 0 2 cin 0 2 E E E E E E E E E         (VIII-5)
The solution (VIII-4) is valid only in respect of this relativistic relationship of energy conservation.

One would be tempted to go further in the analysis of this relationship, by adopting a decomposition of the kinetic energy along each of the axes:

cinz ciny cinx cin E E E E    (VIII-6)
This decomposition trial is inspired by the expression of kinetic energy deduced from non-relativistic mechanics:

  2 z 2 y 2 x 2 z 2 y 2 x 2 mv 2 1 mv 2 1 mv 2 1 v v v m 2 1 mv 2 1       (VIII-7)
But in relativistic mechanics, it seems that kinetic energy is not separable in the form of a sum of 3 terms, each of which would represent the kinetic energy relative to a direction in space. The above idea of decomposition has therefore been abandoned.

Nevertheless, particle velocity in the three directions of space can be accessed through the relations:

E E c E E E c v E E c E E E c v E E c E E E c v impz cin 0 impz z impy cin 0 impy y impx cin 0 impx x          (VIII-8)
To arrive at a complete description of the final state of the particle in the frame in which it moves, we must apply the phase harmony theorem, and thus replace the particle's proper time t0 by the time t of the frame in which it moves.:

                         z c v y c v x c v t c v 1 z c v y c v x c v t c v c v c v 1 z c v y c v x c v t t 2 z 2 y 2 x 2 2 2 z 2 y 2 x 2 2 z 2 2 y 2 2 x 2 z 2 y 2 x 0 (VIII-9)
It should be remembered that the displacement velocity v of the particle is related to each of its components by the relation:

2 z 2 y 2 x 2 v v v v    (VIII-10)
All of the calculation elements detailed above can be summarised as follows:

Let us consider a DIRAC particle whose initial energy E0 is made up of its rest energy:

0 2 0 0 c m E     (VIII-11)
If this particle receives a kinetic energy Ecin during its interaction with one or more other particles, then the bispinor that describes the particle in its new state, called the final state, is written:

                                                                                                                  z c v y c v x c v t E sin jE z c v y c v x c v t E sin E z c v y c v x c v t E sin jE 0 z c v y c v x c v t E sin E E j z c v y c v x c v t E cos E 2 z 2 y 2 x 0 impx 2 z 2 y 2 x 0 impy f 3 2 z 2 y 2 x 0 impz f 2 f 1 2 z 2 y 2 x 0 cin 0 2 z 2 y 2 x 0 0 f 0      (VIII-12)
In the above relationships, the total energy of the particle is expressed in two different ways:

  0 cin 0 E E E E     (VIII-13)
The description, in the DIRAC formalism, of the change of state of a particle when it receives an input of energy that sets it in motion, has been completed.

In the next chapter, we will discuss the energy input to a DIRAC particle that is in a stationary state. We will assume, in this particular case, that the particle does not start moving, but that it evolves to a higher mode or excited mode. The total energy of this higher mode will be equal to the initial energy plus the energy received during the interaction.

IX -Energy exchange between an incident photon, a scattered photon and a stationary DIRAC particle

Previous chapters have shown that it is possible to describe a DIRAC particle before and after its encounter with a photon. This description is validated by its coherence with the COMPTON effect, whose theoretical model allows a very precise experimental verification.

We propose in this chapter to keep the same formalism to describe the interaction with a stationary particle, by restricting the problem to one dimension along the z-axis, in order to simplify the presentation of this interaction.

In the COMPTON scattering, the effect of the interaction is manifested by the setting in motion of the DIRAC particle, initially assumed to be at rest, and by the ejection of a scattered photon.

When the particle is in a stationary state, which can be assumed for an electron orbiting a nucleus, this interaction is manifested by the change in the energy level of the electron. The stationary property of the electron in this situation is suggested by the fact that it does not radiate any energy and that it obeys the BOHR relation in which the possible trajectories are dictated by resonance conditions on the wavelength of de BROGLIE We assume that the interaction is on the model of COMPTON scattering, i.e. with an incident photon numbered 1 and a scattered photon numbered 2.. These two photons have the respective energies:

2 2 1 1 E E       (IX-1)
The energy introduced during the interaction is called kinetic energy. Its value is:

  2 1 2 1 cin E E E        (IX-2)
Since we are dealing with a one-dimensional problem, we assume that the incident photon is directed towards the positive z, while the scattered photon is directed towards the negative z. For each individual photon, its total energy is equal to its impulse energy. The impulse energy received by the DIRAC particle is thus equal, in this particular situation, to:

  2 1 imp E      (IX-3)
We consider a DIRAC particle on a stationary mode with one dimension along z, chosen arbitrarily.

We label the components of the DIRAC bispinner with the letter i, to indicate that we are considering the initial state (before the interaction) of this particle. We adopt a homogeneous presentation in pulsation, where each term has the dimension of the inverse of a second (for a dimension in energy, it is sufficient to multiply each component of the bispinner by the reduced PLANCK constant):

      0 t cos c z sin j 0 c z cos t sin j c z cos t cos i 3 i zi zi i 2 i 1 zi i i zi i 0 i 0                                     (IX-4)
The pulses present in this solution verify the following relationships:

2 zi 2 0 2 i 2 0 0 c m         (IX-5)
Consistent with this description, the DIRAC particle in its final state (after the interaction) is labelled with the letter f. This state can be represented by the following bispinor:

      0 t cos c z sin j 0 c z cos t sin j c z cos t cos f 3 f zf zf f 2 f 1 zf f f zf f 0 f 0                                     (IX -6)
The pulses present in the end state description verify the following relationships:

2 zf 2 0 2 f 2 0 0 c m         (IX-7)
The contributions of kinetic and impulse energy which allow to move from the initial state to the final state are given by the relations established in the previous chapters:

2 imp 2 i 2 f cin i f E E E E E E     (IX-8)
In these relations, Ei represents the total energy associated with the initial state, and Ef represents the total energy associated with the final state.

As in COMPTON scattering, it is assumed that the kinetic energy brought by photons contributes to the total kinetic energy, while the impulse energy contributes to the total impulse energy. We deduce the relations between the representative pulsations of these energies:

    2 1 zi zf 2 1 i f               (IX-9)
In the final state, the components of the bispinor must check the quadratic relation of energy conservation (IX-8), which we write in homogeneous notation in ω:

  2 2 1 zi 2 0 2 f          (IX-10)
The development of this equality provides us with a relationship between ω1, ω2, ωi, and ωzi, thanks to the following few lines of calculation:

    2 1 2 1 zi 2 1 i 2 1 2 zi 1 zi 2 1 2 i 1 i 2 zi 2 0 2 i 2 1 2 zi 1 zi 2 2 2 1 2 zi 2 0 2 1 2 i 1 i 2 2 2 1 2 i 2 2 2 2 2 2 2                                                                  (IX-11)
In this particular case (the scattered photon returns in a direction opposite to the incident photon), the relationship obtained is similar to that describing the COMPTON effect, but takes into account the pulse energy of the initial state. The COMPTON relation is found by considering a particle at rest, i.e. by putting ωzi = 0. Using a similar approach, an analogous relationship with end states is obtained:

    2 1 2 1 zf 2 1 f 2              (IX-12)
We can summarize the set of relationships that allow us to describe the change in the energy level of a particle in this particular case:
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We deduce some simple relations between the energies of the incident and scattered photons, and the total and impulsive energies of the particle in its initial state and in its final state:
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It is also possible, by an algebraic calculation, to express the initial and final energies as a function of the energies of the incident and scattered photons. By retaining only the positive solution for the total energy, we have:

For the initial state:

        2 1 2 1 2 1 2 0 2 1 2 1 zi 2 1 2 0 2 1 2 1 i                             (IX-15)
For the final state:

        2 1 2 1 2 1 2 0 2 1 2 1 zf 2 1 2 0 2 1 2 1 f                           (IX-16)
The relations obtained above admit the geometric representation of figure (IX-1) below. The initial state of the DIRAC particle is represented in red, its final state in green, and the kinetic and impulse energy input in blue.

Figure (IX-1): graphical representation of the different forms of energy present in the initial and final states of a one-dimensional stationary DIRAC particle.

It is possible to propose a generalisation similar to the one presented for the COMPTON effect. Such a generalization leads to complex calculations, if one wishes to lead it to a complete description of the changes that can occur on the excited modes in the 3 dimensions of space. Reflection in this direction has not been further developed in the writing of this document.

ω 0 ω zi ω zf ω 1 + ω 2

X -COMPTON scattering with a moving particle

In previous chapters, the focus has been on the state of the massive DIRAC particle before and after the interaction. We found that the wave states of the particle varied during the interaction and we were able to relate these variations to the energies of the incident and scattered photons.

We wish to make progress in the description of the interaction, by highlighting the DIRAC wave functions associated with incident and scattered photons. These functions have undulatory aspects, and we wish to understand how these wave functions interact with the initial wave functions of the massive particle to provide it with its final state.

As in the previous chapters, we are mainly interested in the physics of phenomena. In this sense we adopt again a simplified one-dimensional description along the z-axis. Also, we adopt a complex formalism which lightens the calculations of the sinusoidal functions. Finally, we use a homogeneous notation in pulsation, which seems well adapted to the physics we want to describe.

Under these conditions, a DIRAC particle that moves along z>0 can be described by the following bispinor, which is an exact solution of the DIRAC equation:

  0 e 0 e i 3 c z t j zi i 2 i 1 c z t j 0 i i 0 zi i zi i                               with 2 zi 2 0 2 i      (X-1)
The initial state is characterised by the index i which is associated with each characteristic quantity of the particle.

2 0 0 c m   
represents the energy of the particle at rest. i   represents the total energy of the particle in its initial state.

zi   represents the impulse energy of the particle in its initial state.

In its particule aspect, this particle has a velocity along the z-axis. To determine it, we assume that the wave described in the phase of the exponential is a de BROGLIE wave. Its phase velocity vpi is given by the relation:

zi i pi c v    (X-2)
From the relation between the phase velocity vp and the group velocity vg (vpvg =c²), we deduce the group velocity, which is also the displacement velocity of the mass energy along the z-axis.:

zi i zi gi v c v     (X-3)
After the interaction, the particle is in a final state indexed by the letter f. The bispinor that describes this state is in every way similar to the one that describes the initial state.

  0 e 0 e f 3 c z t j zf f 2 f 1 c z t j 0 f f 0 zf f zf f                               with 2 zf 2 0 2 f      (X-4)
The incident photon is labelled with the number 1 and is a particle without mass. Its total energy is equal to its pulse energy. It can be abusively represented by the following bispinor: 

                          (X-5)
Its phase velocity is equal to its group velocity, and is equal to c. The term (t-z/c) informs us that this photon goes in the direction of z>0.

The scattered photon, which in this particular situation could be described as a reflected photon, is labelled with the number 2. It follows the same rules as the incident photon, and we adopt the following representation, which is an exact solution to the DIRAC equation: 

                             (X-6)
In particular, we note that the term (t+z/c) indicates that this photon is moving towards z<0.

When interacting, the rules we impose on ourselves are the usual rules of energy conservation and impulse conservation, translated here into conservation of impulse energy.

    2 1 zi zf 2 1 i f               (X-7)
We know from the previous chapters, that the energy conservation relationships (X-1,4 and 7) impose the following relationships between the initial and final energies and the energies brought by the photons:

        2 1 2 1 zf 2 1 f 2 1 2 1 zi 2 1 i 2 2                          (X-8)
To obtain a description of the final state as a function of the initial state, we can refer to the relations (X-7) above in the bispinor (X-4) which represents the final state.

              0 e 0 e f 3 c z t j 2 1 zi f 2 f 1 c z t j 0 2 1 i f 0 2 1 zi 2 1 i 2 1 zi 2 1 i                                                       (X-9)
In order to better understand the phenomena involved in this interaction, we are seeking to reveal the bispinors relative to the initial state and to each photon. To this end, we first perform a decomposition according to the amplitudes of the exponentials:

                          0 e e e 0 e e e f 3 c z t j 2 c z t j 1 c z t j zi f 2 f 1 c z t j 2 c z t j 1 c z t j 0 i f 0 2 1 zi 2 1 i 2 1 zi 2 1 i 2 1 zi 2 1 i 2 1 zi 2 1 i 2 1 zi 2 1 i 2 1 zi 2 1 i                                                                                                                           (X-10) e e e f 3 c z t j c z t j c z t j 2 c z t j c z t j c z t j 1 c z t j c z t j c z t j zi f 2 f 1 c z t j c z t j c z t j 2 c z t j c z t j c z t j 1 c z t j c z t j c z t j 0 i f 0 2 2 1 1 zi i 2 2 1 1 zi i 2 2 1 1 zi i 2 2 1 1 zi i 2 2 1 1 zi i 2 2 1 1 zi i                                                                                                                                                                                                                 (X-11)
We see the explicit appearance of the DIRAC wave functions of the 3 particles that interacted with each other: 

t j c z t j i 2 f 2 f 1 c z t j c z t j 02 c z t j c z t j 01 c z t j c z t j i 0 f 0 1 1 zi i 2 2 zi i 2 2 1 1 1 1 zi i 2 2 zi i 2 2 1 1                                                                                                                                   (X-12)
This last expression makes it possible to specify the role of each of the elements of the interaction:

                                                                                                                                   c z t j c z t j 32 22 12 02 c z t j c z t j 31 21 11 01 c z t j c z t j i 3 i 2 i 1 i 0 f 3 f 2 f 1 f 0 1 1 zi i 2 2 zi i 2 2 1 1
e e e e e e (X-13)

The end state appears as the sum of three terms. We can make the following observation:

-The particle in its initial state has experienced a modulation of its wave function by the wave function of each of the photons. -The incident photon has experienced a modulation of its wave function by the wave function of the initial particle and by the wave function of the scattered photon. -The scattered photon has experienced a modulation of its wave function by the wave function of the initial particle and by the wave function of the incident photon.

It is by summing these 3 modulations that we obtain the final state of the particle. In this particular case, the physics that describes the passage from the initial state to the final state seems, after all, quite elementary. It is clearly perceptible in this chapter that we have ventured into areas forbidden by the Copenhagen School.

XI -Creation-annihilation of DIRAC particles

In this chapter, we question the ability of DIRAC solutions to describe reactions in which the particle is likely to turn into a particle of a different nature. Typically, we will try to model a reaction that involves an electron and a positron. It is known that, in the simplest case, this collision can lead to the destruction of the two particles and the birth of two photons.

The treatment of this reaction will be analogous to that of the previous chapters. We will assume that the particles present in the initial state and in the final state are DIRAC particles. This implies that their state is described by a bispinor, an exact solution of the DIRAC equation, which represents their energy exchanges with vacuum energy.

Our objective is to investigate whether a deterministic approach implementing exact solutions to the DIRAC equation can provide us with additional insights into the description of the response. In this context, we will deal with the physics of this phenomenon in a simplified one-dimensional framework. The particle will evolve towards z>0, while the antiparticle will evolve towards z<0.

As before, we work in Cartesian coordinates, which forces us to admit that the photons created during the reaction will go one towards z>0, and the other towards z<0.

The first step in this study is to clarify how particles and antiparticles are identified in a DIRAC bispinor. We adopt the following convention:

-When the exchanges between mass energy and wave energy are carried by the first bispinor we admit that this bispinor describes what we will call a particle. -When the exchanges between mass energy and wave energy are carried by the second bispinor, we admit that this bispinor describes what we will call an antiparticle.

In addition, we have to propose DIRAC solutions that represent a move towards z>0 for the particle, and a move towards z<0 for the antiparticle.

I -Particle and antiparticle of DIRAC

In the rest of this chapter, we will describe a massive DIRAC particle evolving towards z>0 by the following bispinor, associated to a BROGLIE wave that we explained in the previous chapters:

0 c z t sin 0 c z t sin c z t cos j 3 z z 2 1 z z 0 0                                        (XI-1)
We have adopted a homogeneous notation in ω, in a representation similar to that of the previous chapters. By multiplying by the reduced PLANCK constant:

-ω0 represents the resting mass energy of the particle.

ω represents the total energy, or wave energy of the particle.

ωz represents the impulse energy of the particle.

We now know how to associate to the de BROGLIE wave a speed and a kinetic energy for the particle. The relativistic relationship of energy conservation is written, in the notation used:

2 z 2 0 2      (XI-2)
We remind that this is an exact solution to the DIRAC system, which is written in the notation we have adopted:

z jc y c x jc t j z jc y c x jc t j z jc y c x jc t j z jc y c x jc t j 1 0 0 3 3 0 0 1 1 2 2 0 3 2 2 1 1 0 2 3 3 0 0 0                                                                           (XI-3)
Since we are dealing with a one-dimensional problem along the z-axis, this system is reduced to two non-zero wave functions, ψ0 and ψ2 :

0 z jc t j 0 z jc t j 3 0 2 2 0 1 2 0 0 0                          (XI-4)
The solution proposed in (XI-1) is an exact solution of the system (XI-4).

The antiparticle must comply with the following two conditions: its exchanges between mass energy and wave energy are carried by the second spinor, and it moves towards z<0. We further assume that particle and antiparticle move with opposite velocities, equal in modulus, symmetrically with respect to the origin.

As a result, the bispinor that represents the antiparticle is described by the following exact solution to the DIRAC equation:

0 c z t sin c z t cos j 0 c z t sin 3 z z 0 2 1 z z 0                                          (XI-5)
The relativistic relationship of energy conservation is identical to that of the particle:

2 z 2 0 2      (XI-6)

II -The meeting of the particle and the antiparticle of DIRAC

In this paragraph, we try to imagine a scenario likely to describe the physical phenomena that take place during the meeting between the particle and its antiparticle.

We assume that any change in the state of the particle or antiparticle must stabilize in a form that is an exact solution to the DIRAC equation.

The two particles are moving towards each other. Whatever the spatial extent of the undulatory phenomena representing each of the particles, it is legitimate to assume that there will be a progressive overlapping of these phenomena. We then suppose that the bispinor that describes this state of superposition is given by the sum of the bispinors of the particle and the antiparticle, that is to say the sum of wave functions (XI-1) and (XI-5):

0 c z t sin c z t sin c z t cos j 0 c z t sin c z t sin c z t cos j 3 z z z z 0 2 1 z z z z 0 0                                                                          (XI-7)
Examination of this state of quantum vibration suggests the following hypothesis: at instants such as:

   k t k relative integer (XI-8)
The cosine terms for mass energy are equal to:

                                      c z k cos c z k cos c z t cos c z t cos z z z z (XI-8)
It is concluded that at these moments, the mass energy density vibrations of the particle and the antiparticle are in phase opposition. In other words, the mass energy density is zero at any point z. Everything happens as if the mass energy density has disappeared from the system composed of the particle and its antiparticle.

It is then assumed that the system is likely to evolve to other modal configurations, provided that these configurations verify total energy conservation, as well as the DIRAC equation.

We speculate that one of the possible evolutions is obtained by generating a new system in which the mass energy density would be zero. We deduce from the representation of the system (XI-7) that this evolution leads to the following bispinor:

0 c z t sin c z t sin 0 c z t sin c z t sin 3 z z z 2 1 z z z 0                                                   (XI-9)
In this evolution towards a new system, the relativistic relationship of energy conservation imposes a new value on spatial pulsation ωz :

2 z 2 z 2 z 2 0 2 0           (XI-10)
Under these assumptions, the system towards which the "particle plus anti-particle" combination has evolved thus admits the new representation of DIRAC:

0 c z t sin c z t sin 0 c z t sin c z t sin 3 2 1 0                                                   (XI-11)
The above system can be considered as the combination of two photons, in the sense that we have already defined them, i.e. DIRAC particles of zero mass.

The first photon moves to z>0, and admits as representation of DIRAC: 

                          (XI-12)
The second photon moves to z<0, and admits as a representation of DIRAC:

0 c z t sin 0 c z t sin 32 22 12 02                            (XI-13)
In the particular case we have treated, the energy E of each of the photons emitted during the reaction is given by the usual relation:

   E (XI-14)
This energy is equal to the total energy of each of the incident particles. If one designates by E0 the mass energy and by Ecin the kinetic energy of these particles:

E = E0 + Ecin (XI-15)

III -Conclusion

This chapter suggests a possible scenario describing the meeting and superposition of a DIRAC particle, and its associated antiparticle.

Assuming that the superposition of the undulatory phenomena is linear, it appears that the volume density of mass energy is likely to cancel over the whole volume in which the particle and its antiparticle overlap. This is particularly apparent when considering the stationary solutions in the DIRAC equation.

Let's consider a solution in which the exchange between mass energy and wave energy is carried by the wave function ψ0 of the first spinor and let's attribute this configuration to a particle of DIRAC: 

                                                                                                                             
If we look for an exact solution in which the exchange between mass energy and wave energy is carried by the ψ2 component of the second spinor, we obtain: 

                                                                                                                              
This solution is attributed to the antiparticle.

It appears that all the energy components vibrate in phase with the solution attributed to the particle, except the mass energy which vibrates in phase opposition.

When these two solutions interact, we conjecture that the system is likely to evolve to other configurations that respect both the DIRAC equation and energy conservation, and in which mass energy is no longer involved in the exchanges.

We are not able to describe the transient phenomena that allow us to pass from one state to another, but we have made progress in the interpretation of the annihilation of mass energy, showing that it can be interpreted as the superposition in phase opposition of the mass energy volume densities associated with the particle and its antiparticle.

Part Two

An energetic approach to Zitterbewegung

XII -Zitterbewegung

SCHRÖDINGER brought this phenomenon to light in the early days of quantum mechanics, and it still arouses a great deal of curiosity.

In this chapter, we propose to describe the main theoretical elements which make it possible to establish the relationship which is at the basis of the numerous discussions and interpretations relating to this phenomenon.

I -DIRAC's Hamiltonian and SCHRÖDINGER's equation

We adopt as a starting point the DIRAC equation, which we consider to be the fundamental equation of quantum physics.

We designate by wave function the mathematical object ψ(x,y,z,t) which represents a bispinor solution of the DIRAC equation:

                              t , z , y , x t , z , y , x t , z , y , x t , z , y , x ) t , z , y , x 3 2 1 0 (XII-1)
A possible formulation of the DIRAC equation is as follows:

                                                           2 0 0 3 2 1 c m z c j y c j x c j t j     (XII-2)
The squared DIRAC equation should return the KLEIN-GORDON equation.

                                                 2 2 0 2 2 2 2 2 2 2 2 2 2 2 c m ) ( z y x ) ( t c 1   (XII-3)
This condition imposes the following relationships between the matrices αi:

0 1 i j j i 2 i          (XII-4)
These matrices are not unique. We adopt the choice proposed by DIRAC:

                  1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 (XII-5)
The following three are defined from the matrices of PAULI designated by i:

            0 0 i i i           0 1 1 0 1            0 j j 0 2            1 0 0 1 3 (XII-6) Either explicitly:                 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1                   0 0 0 j 0 0 j 0 0 j 0 0 j 0 0 0 2                   0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 3 (XII-7)
In an abbreviated notation, one put often:

p . p p p ẑ c j y c j x c j 3 3 2 2 1 1 3 2 1                                                (XII-8)
This abbreviated notation looks like a "scalar product" between "vector" objects that belong to two different spaces that are assumed to be "orthogonal".. In this abbreviated notation, the DIRAC equation is written as follows:

          t , z , y , x H t , z , y , x c m p . t , z , y , x t j 2 0 0              (XII-9)
The operator that appears to the right of the equality is the Hamiltonian operator.:

    2 0 0 3 2 1 2 0 0 c m z c j y c j x c j c m p . H ˆ                                              (XII-10)
This operator has close links with the total energy of a system. To highlight these relations, we must recall the relationships that are established between energy and quantum mechanics operators:

z j p y j p x j p t j E z y x                    (XII-11)
It appears that the Hamiltonian is the translation, in terms of operator in the DIRAC system, of the right-hand term of the relativistic energy conservation equation:

      2 2 0 2 2 z 2 y 2 x 2 2 0 2 2 2 c m c p p p c m c p E       (XII-12)
The relationship that expresses the temporal variation of the wave function as a function of Hamiltonian is a particular writing of the DIRAC equation, confirming its role as a fundamental equation in quantum physics.

It can be expressed in a synthetic writing:

         H t j (XII-13)
This formulation was first used by SCHRÖDINGER to generalize his non-relativistic equation to systems whose potential energy was time-dependent. For this reason it is generally referred to as SCHRÖDINGER's equation.

But note that the invariant form of this equation under the LORENTZ transformation is the one corresponding to the DIRAC equation DIRAC's Hamiltonian, fully developed, is obtained by taking over the matrix writing of the expressions (XII-8,9 or 10) :

                                                             2 0 2 0 2 0 2 0 c m 0 z c j y c x c j 0 c m y c x c j z c j z c j y c x c j c m 0 y c x c j z c j 0 c m H ˆ            (XII-14)

II -The evolution operator

SCHRÖDINGER's equation (XII-13) describes the equivalence of two operators: the time derivative operator to the left of equality, and the Hamiltonian operator to the right of equality. This equality tells us that when these operators are applied to the same wave function, they produce the same effects.

One can then wonder if there is sufficient information to determine the temporal evolution of the wave function.

Formally, if the Hamiltonian is not time-dependent, one can attempt an integration similar to that of an ordinary differential equation with constant coefficients:

     H t j (XII-15)
The solution to such an equation is an exponential function, in which the integration constant is taken arbitrarily, in this paper, at the instant t = 0

                          t H ĵ exp t H ĵ exp ) t ( 0 0 t   (XII-16)
The term that appears in the exponential is dimensionless (this is always the case in physics). For each value of t, the exponential takes a given expression that we call:

            t H ĵ exp t U ˆ (XII-17)
The value of the mathematical object ψ(t) at time t is obtained by "multiplying" the value of the mathematical object ψ0 at time t = 0 by   t U ˆ, which is called the evolution operator. This exponential notation hides very heavy mathematical aspects. Mathematicians know how to make sense of an exponential of M matrices by using a series development:

  .... ! n M ..... ! 3 M ! 2 M M I ! n M M exp n 3 2 0 n n            (XII-18)
It is apparent that, apart from a few special cases, the exponential of a matrix remains in a purely formal writing From a mathematical point of view, however, we can deduce some properties of the matrix that represents the evolution operator. This matrix is unitary, i.e. its inverse is obtained by transposing it and then taking the conjugate of each of the terms. This property can be expressed by the relations:

I U Û Û Û ˆU Û Û ˆ1 t * 1         (XII-19)
This property is formally apparent through the complex exponential function:

      t U t H ĵ exp t U ˆt H ĵ exp t U ˆ1                        
(XII-20)

A unit matrix does not change the norm of the object to which it applies. In this case, this property is also formally apparent in the fact that the norm of a complex exponential is equal to 1.

From relation (XII-20) above, we deduce, using a formal derivation, a relation that expresses the temporal variation of the evolution operator as a function of the Hamiltonian:

        t U Ĥ ĵ t H ĵ exp H ĵ dt t U d t U Ĥ ĵ t H ĵ exp H ĵ dt t U d                                (XII-21)
In a more complete theory, the Hamiltonian operator can also be time-dependent, which complicates the expression of the evolution operator. We will not need to examine this case in the rest of this document.

III -Representation of HEISENBERG and SCHRÖDINGER

Let's consider a mathematical object Q which is the result of the application of an operator  on a wave function ψ:

  A Q (XII-22)
Suppose that as a result of a temporal evolution, the two members of the equality vary by a certain amount. We can express the variation of the object Q by formally using the variations of the two terms to the right of the equality, as is usually done for a product of functions.

       A d d A dQ (XII-23)
There are two special cases that are particularly important.

The first one consists in writing that the operator  is constant in time (d = 0). In this case, the variation of the object dQ is only due to the variation of the wave function dψ:

    d A dQ (XII-24)
This representation of the variation dQ is called SCHRÖDINGER's point of view.

The second consists in writing that the wave function ψ is constant in time: the variation of the object dQ is due only to the variation of the operator dÂ:

   A d dQ (XII-25)
This representation of the variation dQ is called the HEISENBERG viewpoint. It is associated with matrix mechanics. It is this change of viewpoint that is the meeting point between the theories developed by SCHRÖDINGER and HEISENBERG.

To fix the ideas on the two main representations, we propose to examine a simple concrete example using the identity operator Î. Consider a wave function at time t = 0. Using the identity matrix I, we can write:

    0 I 0    (XII-26)
This wave function can change over time. Concretely, when an electron interacts with two photons, its speed varies, and thus its wave function evolves over time.

At time t, we can write:

    t I t    (XII-27)
The formulation is obvious. The identity operator I has not changed and we are in representation of SCHRÖDINGER.

In the representation of HEISENBERG, we have to write:

    0 ) t ( I t   
(XII-28)

We can see that the identity I matrix has become another matrix whose terms are timedependent. Thus it appears that a time-independent operator in SCHRÖDINGER representation can become a time-dependent operator in HEISENBERG representation. We will use this property later in this section.

The identity matrix in representation of HEISENBERG necessarily depends on the evolution of the wave function ψ(t) in time, and thus on the evolution operator Û that we defined in the previous paragraph.

In the rest of this document we admit without proving it that the transition relation, for an operator Â, between the SCHRÖDINGER representation (indexed by the letter S) ÂS, and the HEISENBERG representation (indexed by the letter H) ÂH, is linked to the evolution operator Û by the following relation:

      t U Â t U t A ˆs H   (XII-29)
The sequence of the operators is important, as they are not, in general, commutative.

In the case of a free particle (which is not subject to any interaction), the total energy is a constant of motion, and the Hamiltonian is independent of time.

If one considers a time-independent operator ÂS in the SCHRÖDINGER representation, then the time variation of the associated HEISENBERG operator ÂH can be expressed in terms of the Hamiltonian.

We first use the above relationship that links the associated operators ÂH and ÂS according to the evolution operator. By a formal derivation of the operator product (remember that ÂS does not depend on time), we obtain:

                dt t U d A t U t U Â dt t U d dt t U Â t U d dt t A d s s s H       (XII-30)
The expression of the temporal variation of the evolution operator established in (XII-21) is then introduced:

                               t U Ĥ ĵ A t U t U Â t U Ĥ ĵ dt t A d s s H   (XII-31)
Either still:

          t U Ĥ Â t U t U Â t U Ĥ dt t A d j s s H       (XII-32)
The evolution operator is in the form of an exponential: it is formally deduced that it commutes with the Hamiltonian operator:

   H t U Ĥ t H ĵ exp t H ĵ exp H t U Ĥ ˆ                       (XII-33)
This property introduced in relation (XII-32) above gives the relation of HEISENBERG:

                                      H , t A t A Ĥ Ĥ t A dt t A d j H t A t A Ĥ Ĥ t U Â t U t U Â t U Ĥ dt t A d j H t U Â t U t U Â t U Ĥ dt t A d j H H H H H H s s H s s H                    (XII-34)
We have the theoretical elements that will allow us to progress in the analysis of the phenomenon highlighted by SCHRÖDINGER.

IV -The Zitterbewegung

First, we will apply the above HEISENBERG relation (XII-34) to the position operator. We adopt the following notation for each of the coordinates x, y, and z: By indicating the position operators by k = 1,2,3, the HEISENBERG relationship can be expressed as follows:

      H , t x dt t x d j k k   (XII-36)
In order to evaluate the commutator operator [.,.,], we recall how switching relations are used, applied to an arbitrary function ψ:

            0 z x z x x z z x z , x 0 y x y x x y y x y , x x x x x x x x x x , x                                                                                                                                               (XII-37)
The other necessary relationships are obtained by circular permutation.

We deduce from (XII-36) using (XII-37):

  k k c dt t x d   k = 1,2,3 (XII-38)
This relationship shows that the DIRAC matrices (which are constants) can be considered as operators similar to speed operators, to a multiplicative constant close. By treating them as operators, they can be described in the HEISENBERG representation.

As noted above for the identity matrix, these matrices then become time-dependent according to the relation (XII-29):

                             t H ĵ exp t H ĵ exp t U t U t ˆk k k   (XII-39)
We can apply the HEISENBERG relationship to them:

      H , t dt t d j k k     (XII-40)
The calculation of the commutator is particularly laborious and is not reproduced. One finally find:

      H t p ĉ j 2 dt t d k k k      (XII-41)
Pulse and Hamiltonian operators are not time-dependent. A formal integration of the time-dependent operator relative to the DIRAC matrices can then be made.

The differential equation (XII-41) above is of the form:

  b ) t ( ay dt t dy  
a and b constant (XII-42)

Assuming that the initial conditions are given at time t = 0, this differential equation admits for solution:

    a b at exp a b ) 0 t ( y t y           (XII-43)
By identifying:

    k k p ĉ j 2 b H ĵ 2 a t t y        (XII-44)
We obtain the expression of the operator associated with the matrices of DIRAC:

                       t H ĵ 2 exp H p ĉ 0 t Ĥ p ĉ t ˆ1 k 1 k k  (XII-45)
This operator is linked to the speed operator by the relation (XII-38) recalled for memory:

  k k c dt t x d   (XII-46)
This velocity operator is associated with a free particle, whose total energy is constant, and the Hamiltonian independent of time. Examination of the relation (XII-45) shows that there is a constant term equal to 1 k H p ĉ

 , but there is also an oscillating term equal to

                 t H ĵ 2 exp H p ĉ 0 t ˆ1 k  .
It is this term that represents the trembling movement called

Zitterbewegung. Its pulsation, as a function of the total energy E of the particle, is given by the relation:

 E 2  
(XII-47)

V -Conclusion

The relation obtained to express the operator associated with the matrices of DIRAC (XII-45) is a relation that fills the mathematician with happiness. Its synthetic writing uses the most subtle artifices of mathematics, and it leads to an interpretation that seems to bring to light a phenomenon typical of quantum mechanics, and unknown in other fields of physics.

But it leaves the physicist perplexed.

The physical meaning of the equations being manipulated has evaporated practically from the beginning of the reasoning.

Matrix exponentials cover an infinite sum of matrices raised to powers tending towards infinity and the terms of these matrices include complex operators, which are therefore raised to powers tending towards infinity.

It is very difficult to see behind this formalism, of an abstraction rarely achieved in physics, the slightest bit of light allowing us to get closer to a concrete physical element.

To complete this picture, it is, to say the least, surprising, for not saying contradictory, to note that a theory that denies the notion of trajectory in its basic postulates, comes to a conclusion that makes it possible to define the trajectory of a particle.

All these remarks have led some physicists to wonder about the physical meaning that can be attributed to Zitterbewegung, and some well-argued proposals have been made on this subject.

None of them seem to have completely convinced the scientific community today.

We are going to participate in this effort by proposing in the following part an energetic interpretation of this phenomenon.

To argue this proposal, we will rely on the study of the propagation of electromagnetic energy inside a waveguide, and on the notion of group velocity defined from the de BROGLIE wave. This is the subject of the following chapter.

XIII -Guided Propagation

The de BROGLIE wave that appears in the propagative solutions of the DIRAC equation makes it possible to highlight a group velocity that represents the speed of propagation of mass energy.

One area of physics where group velocity plays an important role is guided propagation. This type of propagation is implemented, for example, in optical fibers that guide a light beam, or in waveguides to propagate microwaves. In both cases, it is a device that guides an electromagnetic wave.

The simplest and most educational example, to try to better understand the physics of a group velocity associated with a phase wave, is the rectangular waveguide. This guide has the shape of a rectangular parallelepiped, with perfectly conductive walls, and open at each end. While an electromagnetic wave propagates with a velocity equal to c in free space, it appears that its propagation in a waveguide takes place in the form of a phase wave which slides at a velocity greater than c. A group velocity can be associated with this phase wave, and this group velocity represents the propagation velocity of the electromagnetic energy in the guide.

Ipropagation of the fundamental mode in a rectangular waveguide

Without going into the details of the waveguide theory that can be found in all the specialized books, we will determine heuristically an expression of the electric field Ex oriented along the x-axis.

For the sake of simplification, we look for a solution that is uniform according to x (the Ex field does not depend on the position x at which one is placed inside the guide) and we set the propagation constant kx = 0.

This field is stationary in the y-direction, i.e. its dependence on y will be of the form cos(ky.y) or sin(ky.y).

The Ex electric field is tangent to the y-plane = 0. The boundary conditions on this perfectly conductive plane impose a zero electric field, and thus a dependence on the form sin(ky.y).

The Ex electric field is tangent to the y = a plane. The boundary conditions on this perfectly conductive plane impose a zero electric field. From this it can be deduced that:

     n a k 0 a k sin y y n relative integer (XIII-1)
We choose to describe a fundamental mode, we take n =1, which sets the propagation constant:

a k y   (XIII-2)
Following the z axis, we have a progressive wave that propagates towards z > 0. We choose a z dependence of the form:

  z k t cos z   (XIII-3)
The general shape of the Ex electric field propagating in the fundamental mode guide is deduced from this:

        z k t cos y a sin E z k t cos y k sin E t , z , y E z 0 z y 0 x              (XIII-4)
To be complete, we still have to determine the propagation constant kz in the direction Oz.

The Ex electric field component obeys the MAXWELL equations. In the absence of electromagnetic field sources, it verifies the wave equation:

      0 t t , y , x E c 1 z t , z , y E y t , z , y E 2 x 2 2 2 x 2 2 x 2          (XIII-5)
By introducing the electric field expression (XIII-4) into this wave equation, one obtains:

2 z 2 y t 2 t 2 2 z 2 y k k c ck k c k k               (XIII-6)
This expression is perfectly analogous to the energy conservation expression used in DIRAC's solutions, recalled below in dimension 2:

2 t 2 2 z 2 y k k k     (XIII-7)
The only difference is in the presence of the term η which represents the mass energy, to a multiplicative constant close. Consistency with the relation (XIII-6) deduced from the MAXWELL equations is due to the fact that the mass of the photon is zero (η = 0). Similar relationships will lead to similar deductions.

The expression of the propagation constant ky is imposed by the boundary conditions on the guide walls. Its expression as a function of n is given in (XIII-1).

For a given pulse ω, we deduce from (XIII-6) the expression of the propagation constant kz in the waveguide:

2 y 2 2 z k c k          (XIII-8)
Wave propagation is modelized by the term:

  z p p z z k v v z t cos z k t cos z k t cos                          (XIII-9)
The quantity vp represents the propagation speed of the wave in the guide. When we introduce the propagation constant kz obtained in (XIII-8) into this expression, we obtain:

2 y 2 2 2 y 2 z p k c c k c k v                 (XIII-10)
When it is defined, i.e. when ω² > c²ky², it is apparent that this propagation speed is greater than c. It is a BROGLIE phase wave. The cut-off pulse is the pulse ωc such that:

y c ck   (XIII-11)
For this pulse, the phase velocity becomes infinite. For pulsations lower than the cut-off pulsation ωc, the electromagnetic wave cannot propagate in the guide.

For pulses much higher than the cut-off pulse, the phase velocity is approximately equal to the speed of light. This property can be illustrated as follows: if a laser beam is injected into the guide, it will propagate as in free space.

We adopt as the definition of the group velocity of the wave propagating along the Oz axis in the guide:

z g dk d v   (XIII-12)
The modal relation (XIII-6) is recalled for memory:

2 2 z 2 y c k k          (XIII-13)
Assuming that ky is a constant which depends only on the selected mode and the size of the guide, the following relationship between phase velocity and group velocity is deduced from (XIII-12):

2 p g 2 z z z z 2 c v v c k dk d d 2 dk k c 2        (XIII-14)
Using the phase velocity (XIII-10), this last relation allows to express the group velocity:

2 2 y 2 2 y 2 2 2 p 2 g k c 1 c c k c c v c v         (XIII-15)
We will confirm in the following paragraphs that the group velocity vg represents the propagation velocity of electromagnetic energy in the guide.

II-Fundamental mode energy in a rectangular waveguide.

The objective of this paragraph is to determine the propagation velocity of electromagnetic energy in a waveguide, using only tools derived from the MAXWELL equations.

The method is based on two different calculations of the properties of an electromagnetic wave: the energy volume density and the power density per unit area.

We designate by volume density of energy the quantity Δw, which is expressed, as a function of the electric and magnetic field components of the wave, by the expression, recalled without demonstration:

  2 0 2 0 H E 2 1 ) t , y , x ( w        (XIII-16)
We then calculate an average energy density <ΔW>, both over time and over a volume defined by a section S = ab of the guide and a propagation length dz. Following a classical method in physics, we assume that the length dz is small enough to be able to write that the volume density of energy is constant over this length. We deduce that the energy dw contained in a volume of section S=ab and length dz is equal to: dw = <Δw> S dz (XIII-17)

We designate by P  the POYNTING vector. There is no ambiguity with the impulse vector, which is not used in this chapter, but it should not be confused with the lower case letter p which designates the electromagnetic power.

H E P      (XIII-18)
The modulus of this vector is homogeneous with a surface power density Δp(x,y,t).

We then calculate the average value of this density <Δp>, both over time and over a section S = ab of the guide.

We deduce that the power p which crosses a section of the guide is equal to:

p = <Δp> S (XIII-19)
The energy propagation velocity v is obtained using the relation:

                  W p v v . S W dt Sdz W dt dW S p p (XIII-20)
The calculation elements that correspond to this reasoning are provided in the following lines.

II-1 Calculation of electromagnetic fields in the guide

The electric field Ex, which propagates in the guide in the fundamental mode, has only one component following Ox.

The energy associated with an electromagnetic field depends on both the electric field and the magnetic field. We therefore need to determine the expression of the magnetic field that complements the electric field. This is done using one of the MAXWELL equations in vacuum:

t H E 0           (XIII-21)
Or again by detailing each of the vectorial components: The Hx component is a static component, which does not vary over time, and which we set equal to 0. The other components obey the 2 temporal equations:
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Taking the integration constants as zero, we deduce the two non-zero components of the magnetic field:
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In the fundamental mode described, the field is referred to as the transverse electric field (TE) because only the electric field is orthogonal to the direction of propagation. This is a general property: a TEM field, i.e. both TE and TM, cannot propagate in a rectangular waveguide with perfectly conductive walls..

II-2 Calculation of the average of the volume energy density

The volume density of energy Δw transported by an electromagnetic wave is expressed in vacuum as follows:
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Its average value over time is expressed as:
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Its average value over a section of the guide S =a.b is given by the expression: 
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We finally obtain the volume density of the electromagnetic energy propagating in the guide:

4 E w 2 0 0    
(XIII-28)

II-3 Calculation of the norm of the POYNTING vector

For an electromagnetic wave, the POYNTING vector is a vector which indicates the direction of propagation of the energy, and whose modulus is homogeneous at a power density per unit area.

) t , z , y ( H ) t , z , y ( E ) t , z , y ( P      (XIII-29)
It therefore has three components: The py component has a time average value of zero. There is only a flow of energy along the Oz axis. Its temporal average is given by the expression:
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Its average over a section S = a.b of the guide is given by the expression:
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We now have all the elements to express the speed of energy propagation in the waveguide. This expression established in (XIII-20) is recalled for memory:
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The average velocity v of energy propagation that we have just established on purely electromagnetic bases is identical to the group velocity defined at the beginning of the chapter.

III-A geometric interpretation of group velocity.

The Ex electric field propagating in the waveguide in the Oz direction has the expression:
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This field is stationary following Oy and progressive following Oz. It can be decomposed into the sum of 2 progressive plane waves using the relation:
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In the yz plane, we can model the propagation of these 2 waves by two rays that reflect on the walls of the waveguide in the y = 0 and y = a planes. (Figure XIII-2) Such a representation can be misleading, because the modeling of a plane wave really involves an infinite number of rays in both directions of propagation. The propagation of the wave then corresponds to a sliding of these rays inside the guide. These 2 plane waves propagate at the phase velocity vp such that:

c k k v 2 z 2 y p     (XIII-36)
It is deduced that, for the rays representing these plane waves, the group velocity is also equal to c.

The propagation of these rays can be seen as an interference phenomenon. The only rays for which the interference will not be destructive are those rays for which the phase difference will remain constant at 2nπ. This condition fixes the value of the angle of reflection θ.

The height of the guide is given by a. The constructive interference condition is obtained by writing that the rays from A and from B must remain in phase. It is deduced that their path difference, obtained by considering the HD ray image of the BD ray, must be equal to an integer number of times the wavelength in vacuum:
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The angle θ can be given the following physical meaning:

The propagation velocity of the plane wave according to the angle θ is equal to c. By projecting this velocity on the axis of propagation of the energy Oz, we obtain the group velocity vg.

We are working on the fundamental mode. By posing n = 1, we obtain the expression of the group velocity given in (XIII-15):
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It follows that the phase velocity is expressed as a function of the angle θ by the relation:

   sin c v c v g 2 p (XIII-39)
For the pulse ωc such as: We have sin θ = 0, so θ = 0. The group velocity is zero, the wave is purely stationary following Oy and does not propagate any more energy. The pulse ωc is called the waveguide cut-off pulse for the fundamental mode. Waves with a pulsation lower than ωc cannot propagate in the waveguide.

IV -Conclusion

We have highlighted the notions of phase velocity and group velocity in the exact solutions to the DIRAC equation.

It appears that these notions are very similar to similar notions describing the guided propagation of electromagnetic waves. It is also recalled that the MAXWELL equations and the DIRAC equation are invariant by a change of frame in special relativity.

This analogy encourages us to reflect further on the notion of speed propagation of energy. We have found that the group velocity corresponds to an average speed of energy propagation. This average was taken both over time and over an area equal to a section of the guide.

But it appeared that the energetic movements within the guide are of a more complex nature. If we observe these movements locally and instantaneously, we see oscillations appearing which seem to have properties very close to those deduced from the Zitterbewegung.

We detail in the following chapter some additional elements on local and instantaneous energy movements inside a waveguide.

XIV -Local and instantaneous energy in a waveguide

The previous chapter allowed us to make the notion of group velocity consistent with the notion of average speed of energy propagation in a waveguide.

The MAXWELL equations are used to express the volume density of electromagnetic energy present in the guide on the fundamental mode. At an instant t, and at a point of coordinates (x,y,z), this volume density is given by the expression:
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The instantaneous POYNTING vector, at an instant t, and at a point of coordinates (x,y,z), has 3 components whose expressions are recalled below:
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Each of these components is homogeneous with a power density per unit area. We have shown in the previous chapter that the link with the energy density allows us to highlight the energy propagation velocity vx, vy, vz, in each direction of space: (XIV-3)

                  t ,
In the example discussed, since the electromagnetic field is uniform along the x-axis, there is no evolution of the electromagnetic energy in this direction.

We can define a speed of propagation of electromagnetic energy at any point in the inner space to the guide and at any time. We obtain for the component along the axis Oy: In the previous chapter, we noted that the temporal average of this speed is zero. However, the above relationship shows that there is an instantaneous energy propagation velocity that is not zero along the Oy axis.

                                                                                                              z k t sin
In each of the sinusoidal functions, it is possible to highlight a average value and an oscillating value:

                                                                                                             2 z k t 2 cos 1 y a cos a E 2 z k t 2 cos 1 y a sin k E 2 z k t 2 cos 1 y a sin E 2 1 2 z k t 2 sin y a cos y a sin a E ) t , z , y ( w t , z , y p t , z , y v z 2 2 0 2 0 0 z 2 2 0 z 2 0 0 z 2 2 0 0 z 0 2 0 y y (XIV-5)
It appears that the oscillating part admits as pulsation 2ω, that is to say twice the pulsation of the electromagnetic wave that propagates in the guide.

The velocity component following Oz has similar properties. The instantaneous velocity of energy propagation in this direction has the expression:

                                                                                                  z k t sin y a cos a E z k t cos y a sin k E z k t cos y a sin E 2 1 z k t cos y a sin k E ) t , z , y ( w t , z , y p t , z , y v z 2 2 2 0 2 0 0 z 2 2 2 0 z 2 0 0 z 2 2 2 0 0 z 2 2 0 z 2 0 z z (XIV-6)
As before, we can highlight an average value and an oscillating value at the pulse 2ω for each of the sinusoidal functions:

                                                                                                      2 z k t 2 cos 1 y a cos a E 2 z k t 2 cos 1 y a sin k E 2 z k t 2 cos 1 y a sin E 2 1 2 z k t 2 cos 1 y a sin k E ) t , z , y ( w t , z , y p t , z , y v z 2 2 0 2 0 0 z 2 2 0 z 2 0 0 z 2 2 0 0 z 2 0 z 2 0 z z (XIV-7)
This confirms that in a waveguide, electromagnetic energy does not propagate at a constant velocity, which would be the group velocity.

In each of the directions, this velocity varies with sinusoidal components that have a pulsation equal to 2ω. This behaviour presents a clear analogy with the Zitterbewegung phenomenon, as it results from the work of SCHRÖDINGER.

The link we have made between the propagation of electromagnetic energy in a waveguide and the Zitterbewegung is, for the moment, very tenuous.

By analysing in detail a few exact solutions to the DIRAC equation, we will show that, in an energetic approach, these solutions lead to a speed of energy propagation whose behaviour is very similar to that described in this chapter.

XV -Energy approach of the Zitterbewegung

When considering the solutions of the DIRAC equations in their energetic aspects, they highlight complex movements of the volume densities of energies associated with a free particle.

From the previous chapter, we know that complex energetic movements are also described by the MAXWELL equations in the field of electromagnetism.

In this chapter, we look at the complex movement brought to light by the phenomenon of zitterbewegung.

We conjecture that the speed that appears after a long and difficult work on the operators in chapter XII, is a speed that physically represents the speed of displacement of energy.

This conjecture is essentially based on the following observations. At the basis of the reasoning that leads to the notion of Zitterbewegung, we find the DIRAC equation, written in its Hamiltonian form, i.e. in a formulation that is rather called SCHRÖDINGER's equation:

     H t j (XV-1)
In this relation, the operator to the right of the equality represents the Hamiltonian of DIRAC, whose we remember the synthetic writing:

  2 0 0 c m p . H ˆ      (XV-2)
We know that the Hamiltonian is the representation, in the form of operators, of the total energy of the particle, and that in the present case, this total energy is constant since we are dealing with a free particle.

Whatever mathematical work has been done on the DIRAC equation (XV-1), if we see the expression of a velocity appearing, it does not seem unreasonable to think that, from a physical point of view, this velocity represents a speed of displacement of the energy.

I -DIRAC current reminders

In an energetic approach, the wave functions solutions of the DIRAC equation have the dimension of the square root of an energy volume density and the DIRAC currents have the dimension of an energy volume density. For a bispinor with components (ψ0, ψ1, ψ2, ψ3,), these currents are given by the following expressions:

3 * 1 2 * 0 1 * 3 0 * 2 z 3 * 0 2 * 1 1 * 2 0 * 3 y 3 * 0 2 * 1 1 * 2 0 * 3 x 3 * 3 2 * 2 1 * 1 0 * 0 t J j j j j J J J                                                 (XV-3)
These currents have remarkable properties because they are the components of a quadrivector. They are therefore transformed by a change of reference frame thanks to the LORENTZ transformation.

The first element Jt represents the total energy volume density. The elements Jx, Jy, Jz, represent the part of this volume density which evolves in the x, y and z directions.

These elements are linked by the energy conservation relationship:

        0 z t , z , y , x J y t , z , y , x J x t , z , y , x J ) ct ( t , z , y , x J z y x t             (XV-4)
If we accept this energetic representation, then we deduce, from a simple physical reasoning, the speed of displacement of the energy at a point of coordinates (x,y,z) and at an instant t:

                  t , z , y , x J t , z , y , x J c t , z , y , x v t , z , y , x J t , z , y , x J c t , z , y , x v t , z , y , x J t , z , y , x J c t , z , y , x v t z z t y y t x x    (XV-5)
We propose to illustrate these relationships concretely in the remaining part of this chapter.

We omit the multiplicative constant that gives DIRAC currents the dimension of an energy volume density, since it plays no role in the above ratios that express the speed of energy displacement.

II -Exponential solution, propagative in the z direction

We use in this paragraph an exact solution of the DIRAC one-dimensional equation, which allows us to approach these notions on a simple example:

      0 e k 0 e k 3 z k x k j z 2 1 z k x k j t 0 z t t z t t             with the notation  c m ct x c k 0 t t      (XV-6)
This solution is associated with the relativistic energy conservation equation:

2 z 2 2 t k k    (XV-7)
The corresponding DIRAC currents are:

      z t 2 * 0 0 * 2 z y x t t 2 z t 2 2 t 2 z 2 t 2 * 2 0 * 0 t k k 2 J 0 J 0 J k k 2 k k 2 k k k J                               (XV-9)
These currents are independent of the position z, and time t.

We deduce the speed of energy propagation in the Oz direction:

    2 z 2 z t z t t z t t z z k k c k k c k k 2 k k 2 J J c v           (XV-10)
This speed is equal to the group speed of the de BROGLIE wave..

III -Exponential solution, propagative in the x,y,z direction

The generalization to the three directions of space does not present any difficulties. We use the following solution:

          z k y k x k x k j y x 3 z k y k x k x k j z 2 1 z k y k x k x k j t 0 z y x t t z y x t t z y x t t e jk k e k 0 e k                     (XV-11)
This solution is associated with the relativistic energy conservation equation:

2 z 2 y 2 x 2 2 t k k k k      (XV-12)
The corresponding DIRAC currents are:

          z t 2 * 0 0 * 2 z y t 3 * 0 0 * 3 y x t 3 * 0 0 * 3 x t t 2 z 2 y 2 x t 2 2 t 2 z 2 y 2 x 2 t 3 * 3 2 * 2 0 * 0 t k k 2 J k k 2 j j J k k 2 J k k 2 k k k k 2 k k k k k J                                                      (XV-13)
From this we can deduce the velocities of energy propagation in each direction of space:

                                       z 2 t z t t z t t z z y 2 t y t t y t t y y x 2 t x t t x t t x x k c k k c k k 2 k k 2 J J c v k c k k c k k 2 k k 2 J J c v k c k k c k k 2 k k 2 J J c v (XV-14)
It can be seen that, for this kind of solution, the propagation of energy is uniform in each direction: its speed depends neither on the position (x, y, z) nor on the instant t.

IV -Sinusoidal solution, propagative in the z direction

We return to the above analysis with a propagative solution that is no longer exponential, but sinusoidal:

      0 z k x k sin jk 0 z k x k sin jk z k x k cos 3 z t t z 2 1 z t t t z t t 0               with 2 z 2 2 t k k    (XV-15)
The corresponding DIRAC currents are:

                          z k x k sin k k 2 J z k x k sin jk z k x k sin jk z k x k cos z k x k sin jk z k x k cos z k x k sin jk J 0 J 0 J z k x k sin k z k x k sin k z k x k cos J z t t 2 z t z z t t z z t t t z t t z t t t z t t z t t z 2 * 0 0 * 2 z y x z t t 2 2 z z t t 2 2 t z t t 2 2 2 * 2 0 * 0 t                                     (XV-16)
It appears that the DIRAC currents are no longer constant, but depend on the position z, and the instant t.

Their average value over time involves a ½ factor in each of the squared sinusoidal functions:

z t z y x 2 t 2 z 2 t 2 t k k J 0 J 0 J k 2 k 2 k 2 J         (XV-17)
The group velocity then appears as the ratio of the average values of these currents:

     z 2 t z 2 t t z t z z k c k k c k k k c J J c v (XV-18)
The instantaneous group velocity is composed of a set of terms each having a constant average value over time, and an oscillating part that can be highlighted:
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The pulsation of the oscillating part is equal to 2ω, which is still

 / E 2
, where E represents the total energy of the particle. There is a great coherence between this result, the pulsation that appears in the zitterbewegung, and the energy treatment that was presented for the electromagnetic energy that propagates in a waveguide.

V -Sinusoidal solution, propagative in the x,y,z direction

We start from a complete propagative solution in x,y,z:

) z k y k x k x k sin( jk ) z k y k x k x k sin( k ) z k y k x k x k sin( jk 0 ) z k y k x k x k sin( jk ) z k y k x k x k cos( z y x t t x z y x t t y 3 z y x t t z 2 1 z y x t t t z y x t t 0                            (XV-20)
DIRAC's current calculations give the following results: 

) z k y k x k x k ( sin k k 2 J ) z k y k x k x k ( sin k k 2 ) z k y k x k x k cos( ) z k y k x k x k sin( k 2 J ) z k y k x k x k ( sin k k 2 ) z k y k x k x k cos( ) z k y k x k x k sin( k 2 J ) z k y k x k x k ( sin k ) z k y k x k x k ( sin k ) z k y k x k x k ( sin k ) z k y k x k x k ( sin k ) z k y k x k x k ( cos J z y x t
                                                  (XV-21)
As in the previous example, each term includes at least one term that corresponds to a squared sinusoidal function.

We deduce the average temporal values of these currents:

z t z t y y t x x 2 t 2 z 2 y 2 x 2 t 2 t k k J k k J k k J k 2 k 2 k 2 k 2 k 2 J           (XV-22)
As well as the average velocities of displacement of energy in each direction of space:

t z t z z t y t y y t x t x x k k c J J c v k k c J J c v k k c J J c v       (XV-23)
The group velocity, or average velocity of energy propagation, has the expression:

t 2 z 2 y 2 x 2 z 2 y 2 x g k k k k c v v v v       (XV-24)

VI -Stationary solution

We treat the following stationary solution:

) x k sin( ) z k sin( ) y k cos( ) x k sin( k ) x k sin( ) z k cos( ) y k cos( ) x k cos( k ) x k sin( ) z k cos( ) y k sin( ) x k sin( jk ) x k sin( ) z k cos( ) y k cos( ) x k sin( j ) x k cos( ) z k cos( ) y k cos( ) x k sin( k 0 t t z y x z 3 t t z y x x t t z y x y 2 t t z y x t t z y x t 1 0             (XV-25)
DIRAC's current calculations are a little more laborious. One gets: 

) x k cos( ) x k sin( ) z k cos( ) z k sin( ) y k ( cos ) x k ( sin k k 2 J ) x k ( sin ) z k ( cos ) y k ( cos ) x k sin( ) x k cos( k ) x k cos( ) x k sin( ) z k ( cos ) y k cos( ) y k sin( ) x k ( sin k k 2 J ) x k cos( ) x k sin( ) z k ( cos ) y k ( cos ) x k sin( ) x k cos( k k ) x k ( sin ) z k ( cos ) y k cos( ) y k sin( ) x k ( sin k 2 J ) x k ( sin ) z k ( sin ) y k ( cos ) x k ( sin k ) x k ( sin ) z k ( cos ) y k ( cos ) x k ( cos k ) x k ( sin ) z k ( cos ) y k ( sin ) x k ( sin k ) x k ( sin ) z k ( cos ) y k ( cos ) x k ( sin ) x k ( cos ) z k ( cos ) y k ( cos ) x k ( sin k J t t
                             (XV-26)
We deduce the average values of these currents in each direction of space:

0 J ) z k ( cos ) y k ( cos ) x k sin( ) x k cos( k J ) z k ( cos ) y k cos( ) y k sin( ) x k ( sin k J z z 2 y 2 x x x y z 2 y y x 2 y x      (XV-27)
It may seem surprising that the average speed of energy propagation is not zero in a stationary mode. By factoring in the common term for <Jx> and <Jy>, we obtain:

    0 J ) y k cos( k ) z k ( cos ) y k cos( ) x k sin( ) x k cos( J ) x k sin( k ) z k ( cos ) y k cos( ) y k sin( ) x k sin( J z y x z 2 y x x y x y z 2 y y x x      (XV-28)
This non-zero average propagation velocity appears as the expression of a rotating energy in the xy plane, within the stationary system.

From another point of view, the energy conservation relationship can be (inappropriately) applied to these two terms to examine how this relationship affects each of them:

    ) x k ( sin ) z k ( cos ) y k ( cos ) x k sin( ) x k cos( k y ) x k ( sin ) z k ( cos ) y k cos( ) y k sin( ) x k ( sin k x t t 2 z 2 y 2 x x x t t 2 z 2 y y x 2 y        (XV-29) Or still:     0 ) x k ( sin ) z k ( cos ) y k cos( ) y k sin( ) x k sin( ) x k cos( k k 2 ) x k ( sin ) z k ( cos ) y k cos( ) y k sin( ) x k cos( ) x k sin( k k 2 t t 2 z 2 y y x x y x t t 2 z 2 y y x x x y      (XV-30)
The sum of these two terms is zero. Any energy variation of this part of Jx along the xaxis is compensated by an equal variation of the analogous part of Jy along the y-axis.

VII -Conclusion

We have shown in this chapter that if one adopts an energetic vision of DIRAC currents, then it is possible to have access to the speed of propagation of the energy.

The average speed corresponds to the group speed deduced from the de BROGLIE wave.

The instantaneous velocity includes oscillatory phenomena, whose pulsation is equal to twice the total energy of the particle divided by the crossed PLANCK constant.

These results are in agreement with the behaviour of the velocity which is extracted from the DIRAC equations through the Zitterbewegung.

From a physical point of view, these local energy vibrations are similar to those observed in electrical circuits, or in areas close to the electromagnetic field; and are generally referred to as reactive energy. In the viewpoint adopted in this document, Zitterbewegung appears as the description of the reactive energy that is attached to a particle.

The study of the stationary modes of the DIRAC equation also shows that this energy can be in circular motion with a constant average velocity, in accordance with the interpretations relative to electron spin.

Finally, the fact that group velocity emerges spontaneously from DIRAC currents is an additional, and significant, argument in favour of an energetic interpretation of the DIRAC equation.

XVI -The momentum-energy tensor in relativistic mechanics

I -Introduction

Classical (non-relativistic) mechanics deals with both point and solid mechanics.

Relativistic mechanics deals essentially with the mechanics of the point. A material body is assimilated to a point mass for which we can define kinematic quantities such as position, speed, acceleration, energy etc. These quantities take the form of quadri-vectors in MINKOWSKY space-time.

The energetic interpretation of quantum physics shows that around a quantum particle there are complex energy exchange phenomena.

We know that the DIRAC equation and all its solutions describe purely relativistic phenomena.

Thanks to the de BROGLIE wave, we have learned to relate the kinematic properties of a point particle to the exact solutions of the DIRAC equation which express the physics of energy exchanges surrounding a particle at rest or in uniform motion.

The objective of this part, through this and the following chapters, is to link the momentum-energy tensor of relativistic mechanics to the momentum-energy tensor of the exact solutions of the DIRAC equation. We have good reason to believe that such a relationship exists because they are two different representations of the same relativistic phenomenon. We will then show how this relation opens the way to a possible interpretation of quantum gravitation.

II -The momentum-energy tensor: a heuristic construction

It seems that the notion of momentum-energy tensor is due to MINKOWSKY. Its construction is based on a generalization of the LORENTZ force to the four-dimensional space of special relativity (for details of this construction, link in French).

It is shown that the volume density of force that applies to a volume density of charges placed in an electromagnetic field can be put in the form of a four-divergence of a tensor T µν , itself constructed from the tensor that represents the electromagnetic field. This tensor is called the momentum-energy tensor, and can be written explicitly:

      x T F µ,ν = 0,1,2,3 (XVI-1)
In this expression, the tensor of order 2, T µν , has the dimension of an energy volume density, and the tensor of order 1, F µ , has the dimension of a volume density of force. The temporal variable (ct) is represented by x0, and the spatial variables x, y, z, by x1, x2, x3.

In an analogous way, one can, in a heuristic approach, start from the definition of force in special relativity, and carry out the transformations necessary to arrive at the relation expected (XVI-1) above.

Let's take a detailed look at one of the components to see how we can move forward step by step in this process. We designate this force by the letter K, and we take as a starting point the fundamental relationship of dynamics, which is an invariant physical law under the LORENTZ transformation:

dt dm v dt dv m dt ) mv ( d K x x x x    (XVI-2)
We want to link this force component to an energy volume density. It is therefore necessary to first define a volume density of force that is exerted along the Ox axis:

dw dK F x x  (XVI-3)
where dw = .dxdydz represents the invariant volume element in special relativity. From this we deduce:

        dt dm v dt dv m dw d F x x x (XVI-4)
In this relation, only the mass m depends on the volume w according to the relation that defines the matter volume density m:

 m dm dw  (XVI-5)
Hence the expression of the force volume density:

dt d v dt dv F m x x m x     (XVI-6)
The relation of divergence (XVI-1) to which we want to arrive at involves only partial derivatives, which suggests expressing the total differentials of (XVI-6) as a function of the partial derivatives according to the relation:

t v v z v v y v v x v t v dt dz z v dt dy y v dt dx x v dt dv x z x y x x x x x x x x                         (XVI-7)
On the other hand, if we consider the volume density of matter as a perfect fluid, we can apply to it a conservation equation similar to the one that governs the conservation of charge in electromagnetism:

                 m x m y m z m v x v y v z t     0 (XVI-8)
This equation expresses the fact that for a constant volume dw, the quantity of matter which passes through the walls delimiting this volume in a time dt is precisely equal to the variation of the quantity of matter inside this volume.

When this volume element is set in motion, the mass contained inside varies, according to relativistic predictions, and equation (XVI-8) is no longer equal to 0, but represents the total variation of the mass density (or energy density to the c² coefficient close) during a duration dt:

      d dt v x v y v z t m m x m y m z m                 (XVI-9)
Carrying these partial results back into the expression (XVI-6), it comes:

                                                                                                             t z v y v x v v t v z v v y v v x v v F t z v y v x v v t v v z v v y v v x v F m z m y m x m x x m x z m x y m x x m x m z m y m x m x x z x y x x x m x (XVI-10)
Using the derivation rule of a function product, we obtain:

        t v z v v y v v x v F x m z x m y x m 2 x m x                 (XVI-11)
By writing an analogous relation for each component, and substituting ct for the time variable, we obtain the final expression of the energy impulse tensor in relativistic mechanics:

                 z z y z x z z z y y y x y y z x y x x x x z y x 2 m v v v v v v cv v v v v v v cv v v v v v v cv cv cv cv c T (XVI-12)
In this expression, ρm represents the volume density of moving matter. The contribution of the velocity four-vector (c, γvx , γvy , γvz ) can be shown in this tensor, where γ represents the usual LORENTZ transformation factor. To do this, we must express the density of matter at rest ρ0 (which is therefore invariant) as a function of the density of matter in motion ρm:

2 0 0 0 0 0 0 m dm dm dw dw dw dm dw dm          (XVI-13)
We deduce the expression of the momentum-energy tensor T µν as a function of the velocity four-vector and the rest mass volume density:

                                                z z y z x z z z y y y x y y z x y x x x x z y x 2 2 0 z y x z y x 0 0 v v v v v v cv v v v v v v cv v v v v v v cv cv cv cv c v , v , v , c v v v c V Ṽ T (XVI-14)
For an isolated system, and therefore not subjected to any external force, we deduce from (XVI-1) that the four-divergence of this tensor is zero.

0 x T      (XVI-15)

XVII -DIRAC momentum-energy tensor

The objective of this chapter is to explicitly describe a momentum-energy tensor built from a bi-spinor which is an exact solution of the DIRAC equation.

The construction of a pulse-energy tensor is not unique. In other words, if one designates T 00 as the total energy volume density associated with a free particle, there is no unique solution to the problem:

0 x T      (XVII-1)
For example, one can choose a real or complex tensor, symmetrical or non-symmetrical. The choices that have been made in this chapter do not follow a rigorous logic that would lead from a starting situation to an ending situation, but are rather the result of trials associated with conjectures that seemed to be of interest for the problem under consideration.

In the construction of this tensor, we have relied on the work of Emilie NOETHER, who analyses the properties of a system related to its invariances and symmetries. This work allows to define, in a very general way, extremely powerful tools. One of them concerns the way in which a momentum-energy tensor can be constructed, starting from a Lagrangian density that we will note ΔL, the notation L being reserved for the Lagrangian. This tensor is generally called a canonical momentum-energy tensor.

I -The canonical momentum-energy Tensor

We adopt as a starting point a Lagrangian density ΔL which can depend on several mathematical objects ψ1, ψ2, ψ3, ... and on the derivative of these objects with respect to time and space. In the rest of this document, this object will be a DIRAC bi-spinor which we designate by ψ. For the sake of simplification, we present the treatment for a single object ψ, but in a general case, this treatment must be done for each of the objects ψ1, ψ2, ψ3, ... on which the Lagrangian density depends. The mathematical object ψ generally depends on time and space variables.

The derivatives of this object      with respect to time and space can also depend on time and space variables.

As a result, the total variation of the Lagrangian density with respect to a temporal or spatial variable xν is written:

                                  x L x L dx L d (XVII-2)
In this relationship, EINSTEIN's summation rule must be used in the first term to the right of equality for each indice µ = 0,1,2,3.

The Lagrangian density verifies by definition the LAGRANGE equations:

                           L L (XVII-3)
By transferring this expression to the second term to the right of equality (XVII-2), and admitting that one can change the order of derivation, one obtains:

                                                                                                      x L x L dx L d x L x L dx L d (XVII-4)
Using the factor product derivation rule, this expression can be condensed into the form:

                                       x L dx L d (XVII-5)
When the Lagrangian density does not explicitly depend on the variables of time and space, the above relation is equal to 0, and one then obtains directly by identification the momentum-energy tensor :

                                                                                         L x L T x T T x L dx L d 0 (XVII-6)
When the Lagrangian density depends on time and space variables, a momentum-energy tensor can still be formulated using the metric tensor.

Within the framework of special relativity, this tensor is designated by η µν , and the tensor formalism makes it possible to write:

      L L dx L d             (XVII-7)
Returning to the relation (XVII-5), we obtain again by identification:

                    L x L T x T T L x L L x L dx L d                                                                                                           (XVII-8)

II -DIRAC momentum-energy tensor

We will use the most reduced form of the Lagrangian density of DIRAC:

          2 0 d c m c j L  (XVII-9)
In making this choice, we note that this tensor is not symmetrical in the roles of the bispinor ψ and the adjoint bi-spinor  . We also admit that this Lagrangian density has no particular reason to give a real value, and that therefore, generally speaking, it will give a complex values. We will examine below some consequences of these choices.

In the expression of the Lagrangian density (XVII-9), the γ µ are the DIRAC matrices. We recall their expressions which will be used later on:

                  1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0                   0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1                   0 0 0 j 0 0 j 0 0 j 0 0 j 0 0 0 2                   0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 3 (XVII-10)
It is apparent that the Lagrangian density of DIRAC ΔLd is zero for an exact solution to the DIRAC equation. It is deduced from the previous chapter that a momentum-energy tensor for a free particle (which is therefore an exact solution to the DIRAC equation), is given by the expression:

                                                                                                                x c m c j x L T x c m c j x L T 2 0 d 2 0 d   (XVII-11)
The quantity      being considered as the only independent variable, we deduce the DIRAC momentum-energy tensor:

                c j x c j T   (XVII-12)

III -Developed expression of the DIRAC momentum-energy tensor

The adjoint bi-spinor is a row matrix which is given by the relation:

      * 3 * 2 * 1 * 0 * 3 * 2 * 1 * 0 0 T * , , , 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 , , ,                                 (XVII-13)
From the general form (XVII-12), we deduce successively, by assigning the spatial derivatives with a sign -in metrics (+,-,-,-):

First line of the tensor T 0ν :

                                                                                                                                                                                                        z z z z c j T y y y y c j T x x x x c j T x x x x c j x / x / x / x / , , , c j T x / x / x / x / 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 , , , c j c j T 3 * 3 2 * 2 1 * 1 0 * 0 03 3 * 3 2 * 2 1 * 1 0 * 0 02 3 * 3 2 * 2 1 * 1 0 * 0 01 t 3 * 3 t 2 * 2 t 1 * 1 t 0 * 0 t 3 t 2 t 1 t 0 * 3 * 2 * 1 * 0 00 t 3 t 2 t 1 t 0 * 3 * 2 * 1 * 0 0 0 00        (XVII-14)
Second line of the tensor T 1ν :

                                                                                                                                                                                                        z z z z c j T y y y y c j T x x x x c j T x x x x c j T x / x / x / x / , , , c j T x / x / x / x / 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 , , , c j c j T 3 * 0 2 * 1 1 * 2 0 * 3 13 3 * 0 2 * 1 1 * 2 0 * 3 12 3 * 0 2 * 1 1 * 2 0 * 3 11 t 3 * 0 t 2 * 1 t 1 * 2 t 0 * 3 10 t 3 t 2 t 1 t 0 * 0 * 1 * 2 * 3 10 t 3 t 2 t 1 t 0 * 3 * 2 * 1 * 0 0 1 10        (XVII-15)
Third line of the tensor T 2ν :
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We have the tools that will allow us to develop the expression of this tensor for a particular solution of the DIRAC equation in the following chapter.

XVIII -The momentum-energy tensor for a sinusoidal propagative solution of DIRAC

Thanks to the de BROGLIE wave, we have shown in the previous chapters that an exact propagative solution to the DIRAC equation describes a rest mass particle m0 evolving at a velocity v.

For this particle, we know how to express a momentum-energy tensor within the framework of special relativity.

From the previous chapter, we also know how to express a quantum momentum-energy tensor deduced from the Lagrangian density of DIRAC.

In this chapter, we wish to verify the coherence of these two representations of a momentum-energy tensor which relate to the same physical phenomenon.

In this objective, we will fully develop the writing of a quantum momentum-energy tensor relative to an exact solution to the DIRAC equation.

We take as a starting point an exact dimensionless solution, expressed as a function of the kinematic quantities of the particle:
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In this solution, the term γL represents the LORENTZ factor. The L-index has been added to the usual notation to avoid confusion with DIRAC matrices. γ 0 , γ 1 , γ 2 , γ 3 . 
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The bi-spinor (XVIII-1) is an exact solution of the DIRAC system:
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Using the results of the previous chapter, we can explicitly calculate each of the terms of the momentum-energy tensor. To lighten the expressions, the parameters of the sinusoidal functions have been omitted, and we obtain: 
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The other columns are obtained immediately, because the calculations are analogous for the spatial derivatives:
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We obtain for the spatial derivatives of the second line:
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Third line of the tensor T µν :
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We obtain for the spatial derivatives of the third line:
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Fourth line of the tensor T µν :
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We obtain for the spatial derivatives of the fourth line:
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Examination of the expressions obtained for each term of the quantum momentumenergy tensor reveals two fundamental properties.

First property:

All imaginary terms have a mean value over time that is zero. The pulsation of these terms is equal to 2γLω0, its order of magnitude is of the order of 10 20 rd/s. Whatever the physical meaning given to these terms, we can consider that they are not perceptible from a macroscopic point of view.

Second property:

The temporal mean value of the terms of the quantum momentum-energy tensor is as follows:
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The normalization constant having for dimension the inverse of the square root of a volume has been omitted in the starting solution (XVIII-1) in order to avoid its presence in all calculations.

Introducing it into the tensor of mean time values (XVIII-12) above, one obtains exactly the momentum-energy tensor of special relativity (XVI-14) in which ρ0 represents the rest mass volume density:
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These two properties suggest the following physical interpretation:

DIRAC momentum-energy tensor takes into account the complex energy exchanges that exist in the vicinity of the particle. Very rapid temporal variations can be found at the pulse 2γLω0, but the temporal average is zero. These energy exchanges seem to be reminiscent of the oscillations of the Zitterbewegung, which has been attached to the notion of reactive energy defined in electromagnetism.

There remains, from a macroscopic point of view, only an average value which corresponds exactly to the momentum-energy tensor which is associated with the movement of a point particle in special relativity. Coherence is total in all relativistic aspects of the particle motion, whether in its point mass aspect or its quantum particle aspect.

We can then propose a simple conjecture about quantum gravitation.

In their energetic aspect, EINSTEIN's gravitational equations express the evolution of space-time energy volume densities, as a function of the energy volume density represented by the source tensor T µν :
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We have the assurance that, at least in temporal average value, the impulse-energy tensor resulting from quantum mechanics is correct. The conjecture consists in supposing that this tensor remains correct in instantaneous values, that is to say when the source tensor additionally describes the quantum energy evolutions of the particle. This conjecture seems consistent with the main physical theories known to date. It establishes a direct link between quantum mechanics and relativistic mechanics.

The gap between these two theories is essentially due to BOHR's principle of complementarity and HEISENBERG's uncertainty principle.

When one abandons the first, and gives an energetic interpretation to the second, there is nothing more to oppose the coherence between relativity and quantum mechanics, the two theories that constitute the foundations of contemporary physics.

XIX -The momentum-energy tensor for an exponential propagative solution of DIRAC

In view of the previous chapter, one might think that any exact propagative solution to the DIRAC equation provides a momentum-energy tensor whose mean value corresponds to that of special relativity.

We will show in this chapter that this is not the case.

A solution in the form of a complex exponential representing a plane wave does not have this property.

We analyze this peculiarity and discuss a possible interpretation.

In an analogous way to the previous chapter, we take as a starting point an exact exponential solution, dimensionless, expressed as a function of the kinematic quantities of the particle:
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The LORENTZ factor is noted as in the previous chapter:
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The bispinor (XIX-1) is an exact solution of the DIRAC system:
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We propose in the following lines some elements for a direct verification of this exact solution, omitting the expression of the exponential which is in factor, and which plays no role in the verification.

In these few lines of calculation we can see a visualization of the perfect harmony between the DIRAC equation, its solutions, and the LORENTZ factor of special relativity.

First equation of the DIRAC system:

                                                                                                                                                                                                                                    2 2 2 L 2 2 z 2 y 2 x 2 L 2 2 z 2 L 2 2 y 2 L 2 2 x 2 L 2 L 2 2 z 2 L 2 2 y 2 L 2 y x 2 L 2 y x 2 L 2 2 x 2 L 2 L L L z L 2 z L y x L 2 y L y x L 2 x L L L L z L 2 z 0 L y x L 2 y 0 L y x L 2 x 0 L L 0 L L 0 2 3 3 0 0 0 c v 1 c v v v 1 c v c v c v 1 c v c v c v v j c v v j c v 1 v c v j j jv v c v j jv v c v j j 1 j j 1 c v c v j j jv v c c v j jv v c c v j j 1 j c j 1 c z j y x j t c j c (XIX-4)
Second equation of the DIRAC system:

  3 z y 0 2 L 3 z x 0 2 L 3 z y 0 2 L 3 z x 0 2 L y x L 2 z 0 L z L 2 y 0 L z L 2 x 0 L 3 2 2 1 1 0 c v v j c v v c v v j c v v 0 jv v c c v j j c v c v j c v c v j j 0 0 z j y x j ) ct ( j c                                                                                          (XIX-5)
Third equation of the DIRAC system:

        c v c v c v c v 1 c v j j 0 0 c v j j c v 1 c v j j 0 0 c v j c j c v c z j y x j ) ct ( j c z 2 L z L z 2 L z L L z L z L L z L L 2 z 0 L z L 0 L z L 0 0 1 1 2 2 0                                                                                                (XIX-6)
Fourth equation of the DIRAC system::

                          y 2 L y L x 2 L x L y 2 L x 2 L y L x L L y L L x L y x L L y x L L 2 y 0 L L 2 x 0 L y x L 0 L y x L 0 1 0 0 3 3 0 v j v j v v v j v v j v 1 v j 1 v j j jv v j j jv v 1 c v j 1 c v j j jv v c j c j jv v c c z j y x j ) ct ( j c                                                                                                         (XIX-7)
We will use the results of chapter XVIII to calculate the T 00 term of the momentumenergy tensor. The exponentials disappear because of the conjugate that is present in each of the products of the terms of the bispinor.

                  L 0 2 L 00 2 L L 0 L 2 2 2 2 L 0 L 2 2 2 L L 2 L 0 L 00 2 2 2 L 2 L 0 L 2 2 z 2 y 2 x 2 L 2 L 0 L 00 y x y x 2 L 2 z L 2 L 0 L 00 0 L y x y x 2 L 0 L 2 z L 0 L 2 L 00 t 3 * 3 t 2 * 2 t 1 * 1 t 0 * 0 00 1 2 T 2 2 c v 1 c v 1 1 2 c v 1 2 T c v 1 c v v v 1 T jv v jv v c c v 1 T c j jv v jv v c c j c v 0 c j 1 c j T x x x x c j T                                                                                                                                                                                                                       (XIX-8)
Two significant differences appear when comparing the T 00 component of the pulseenergy tensor of the exponential solution (XIX-8) with the mean value (XVIII-4) obtained with the sinusoidal solution of the previous chapter:

- The term 0 2 L   
has been multiplied by a factor of 2: by adding a second solution to form the complex exponential, everything happens as if there were two particles moving, instead of just one for a purely sinusoidal solution from the previous chapter.

-There also appeared a multiplicative term equal to (1-γL) whose meaning seems less obvious.

For speeds far below the speed of light, the factor of LORENTZ γL is approximately 1, which indicates that the T 00 term obtained in (XIX-8) is practically zero. It is obvious that this term can no longer represent the energy density (to a factor close) associated with a mass (or two masses) m0.

In order to understand where the difference observed above comes from, we will proceed to decompose the exponential solution into two sinusoidal solutions. In other words, we will put:

                                                                               z c v y c v x c v t sin j z c v y c v x c v t cos z c v y c v x c v t j exp 2 z 2 y 2 x 0 L 2 z 2 y 2 x 0 L 2 z 2 y 2 x 0 L (XIX-9)
We designate by ψa and ψb the two bispinors that verify the decomposition (XIX-9) above, which are exact solutions of the DIRAC equation, and whose sum is equal to the bispineur ψ (XIX-1) which represents an exponential propagative solution. ψ = ψa + ψb (XIX-10)

We put:

                                                                                                                        z c v y c v x c v t sin c v j z c v y c v x c v t sin c v z c v y c v x c v t sin c v j 0 z c v y c v x c v t sin j z c v y c v x c v t cos 2 z 2 y 2 x 0 L x L 2 z 2 y 2 x 0 L y L 3 a 2 z 2 y 2 x 0 L z L 2 a 1 a 2 z 2 y 2 x 0 L L 2 z 2 y 2 x 0 L 0 a (XIX-11) And:                                                                                                                          z c v y c v x c v t cos c v z c v y c v x c v t cos c v j z c v y c v x c v t cos c v 0 z c v y c v x c v t cos z c v y c v x c v t sin j 2 z 2 y 2 x 0 L x L 2 z 2 y 2 x 0 L y L 3 b 2 z 2 y 2 x 0 L z L 2 b 1 b 2 z 2 y 2 x 0 L L 2 z 2 y 2 x 0 L 0 b (XIX-12)
The component of the momentum-energy tensor Ta 00 was calculated in the previous chapter:

cos sin c v 1 j T x x x x c j T 2 2 2 L 2 L L 0 2 L 0 00 a t 3 a * 3 a t 2 a * 2 a t 1 a * 1 a t 0 a * 0 a 00 a                                                   (XIX-13)
The calculation of the same component of the momentum-energy tensor for the ψb bispinor gives:

   cos sin c v 1 j T cos sin c v sin cos sin cos sin j cos j j T cos sin c v c v c v sin cos j cos sin j j T x x x x c j T 2 2 2 L 2 L L 0 2 L 0 00 b 2 2 2 L 2 L 2 L 2 L L 0 00 b 2 x L 2 y L 2 z L L L L 0 00 b t 3 b * 3 b t 2 b * 2 b t 1 b * 1 b t 0 b * 0 b 00 b                                                                                                                        (XIX-14)
The two particles ψa and ψb that form the complex exponential solution have the same mean energy volume density, and when the sum of the contributions of their respective energy volume densities is formed, the result is

2 L 0 00 b 00 a 2 T T      (XIX-15)
Whereas the energy volume density associated with an exponential solution has the expression:

  L 0 2 L 00 1 2 T       (XIX-16)
This result suggests that, for an exponential solution, there is a certain energy of interaction between the particle and the associated "mirror" particle. This interaction energy can be highlighted by decomposing the global momentum-energy tensor as follows:

                00 ba 00 ab 00 b 00 a 00 t 3 a * 3 b t 2 a * 2 b t 1 a * 1 b t 0 a * 0 b t 3 b * 3 a t 2 b * 2 a t 1 b * 1 a t 0 b * 0 a t 3 b * 3 b t 2 b * 2 b t 1 b * 1 b t 0 b * 0 b t 3 a * 3 a t 2 a * 2 a t 1 a * 1 a t 0 a * 0 a 00 t 3 b 3 a * 3 b * 3 a t 2 b 2 a * 2 b * 2 a t 1 b 1 a * 1 b * 1 a t 0 b 0 a * 0 b * 0 a 00 t 3 * 3 t 2 * 2 t 1 * 1 t 0 * 0 00 T T T T T x x x x x x x x x x x x x x x x c j T x x x x c j T x x x x c j T                                                                                                                                                                                               (XIX-17)
The volume density of interaction energy is associated to the sum of the two terms Tab 00 + Tba 00 :

                                                        t 3 a * 3 b t 2 a * 2 b t 1 a * 1 b t 0 a * 0 b 00 ba t 3 b * 3 a t 2 b * 2 a t 1 b * 1 a t 0 b * 0 a 00 ab x x x x c j T x x x x c j T   (XIX-18)
An explicit calculation of these two relations shows that the volume density of interaction energy is expressed as:

0 3 L 00 ba 00 ab 2 T T       (XIX-19)
To conclude this chapter, it seems that purely sinusoidal propagative solutions play a particular role in the representation of a moving particle, since they are the only ones that allow absolute coherence between the momentum-energy tensor of DIRAC and the momentumenergy tensor of special relativity.

XX -The quantum momentum-energy 4-vector for a sinusoidal propagative solution

The formal link established between de BROGLIE's phase wave and the solutions of the DIRAC equation suggests a closer look at the characteristic features of the motion of a particle.

We examine in this chapter, and in the following one, one of these fundamental quantities which is the momentum-energy 4-vector.

Since the DIRAC equation has relativistic invariance, we speculate that it is possible to construct a quantum momentum-energy 4-vector using the exact solutions of this equation.

I -The momentum-energy 4-vector for a point particle

A 4-vector can be defined as a 4-component vector. These components are transformed from one frame to another frame into a uniform translational motion using the LORENTZ transformation.

Its norm, or rather its pseudo-norm, is identical in each of the frames. The physical quantity represented by a 4-vector is the same in each frame: what changes are the components of the 4-vector. This way of seeing is in all points analogous to the representation of a classical vector, on the one hand in Cartesian coordinates, and on the other hand in cylindrical or spherical coordinates: the vector is identical in each of these representations, what changes are its representative coordinates.

There are many ways to build 4-vectors, but one of the simplest is the following.

Consider a LORENTZ transformation along the x-axis, defined from the infinitesimal elements of space and time:

              dz ' dz dy ' dy ct d dx ct d c v dx ' dx dx ct d dx c v ct d ' ct d                             avec c v c v 1 1 2 2      (XX-1)
We admit by definition that these space-time elements constitute a 4-vector :

                dz dy dx ct d (XX-2)
The principle of construction is the following: if we know an invariant quantity by changing the relativistic frame, then by multiplying or dividing a 4-vector by this quantity, we obtain another 4-vector.

The eigentime dt/γ is invariant by frame change.

By dividing the 4-vector (XX-2) by this quantity, we obtain the 4-vector speed:

                  dt / dz dt / dy dt / dx c (XX-3)
By multiplying this 4-vector by the rest mass m0 (which does not depend on the reference frame considered), we obtain the momentum-energy 4-vector: The spatial components represent the impulse of the particle in the considered frame of reference, while the first component represents the total energy of the particle divided by c. This 4-vector is of considerable importance in special relativity, because its pseudonorm is independent of the frame of reference: it must be considered as a constant. In a metric having for signature (+,-,-,-), this property is written:

                                               
cte p p p c E 2 x 2 x 2 x 2 2     (XX-5)
The constant is determined in the frame in which the particle is at rest., (px = py = pz = 0). We get:

  2 2 2 0 2 2 c c m c E cte   (XX-6)
We deduce a relation that links the energy of the mass at rest, the impulse energy, and the total energy of the particle:

          2 2 0 2 2 2 2 0 2 z 2 y 2 x 2 c m c p c m c p c p c p E       (XX-7)
The use of this relationship implies that one assimilates particles to point objects.

We know that the description of a moving particle is much richer in the solutions of the DIRAC equation. The particle can no longer be considered as a point particle, and there are extremely fast energy motions in its neighborhood.

The objective of the following paragraphs is to show that it is possible to exhibit a momentum-energy 4-vector built from these solutions.

We will require from this 4-vector two fundamental properties: --It is transformed from one frame to another thanks to the LORENTZ transformation, which is the definition of a 4-vector. --Its mean value must correspond exactly to the momentum-energy 4-vector of a point particle.

II -DIRAC's 4-vector currents

When trying to form a 4-vector using DIRAC bispinors (without including derivatives), there is, to the author's knowledge, only the 4-vector formed by DIRAC currents. This 4-vector is built by using the adjoint bispinor:

      * 3 * 2 * 1 * 0 * 3 * 2 * 1 * 0 0 T * , , , 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 , , ,                                 (XX-8)
The current 4-vector is given by the following relationship, where γ µ are the DIRAC matrices:

      J (XX-9)
By developing the calculation, we obtain the following expressions:
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In the remainder of this document, we adopt the notation J with the indices t, x, y, z, which explicitly indicate the directions of the energy flows.

It can be shown that DIRAC currents form a 4-vector, i.e. they are transformed from one frame to another using the LORENTZ transformation.

Rather than reproducing a formal demonstration that can be found in books that deal with this subject, we propose to look in detail at how this transformation operates on a particular example.

We define two reference frames (R) and (R'), moving relative to each other along the xaxis at the speed vx = v. The associated LORENTZ transformation has already been defined in (XX-1):
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Compared to the previous chapters, we remove the L-index from the LORENTZ factor γ, as there is no longer any possible confusion with the DIRAC matrices.

In the frame (R), the DIRAC currents J are defined by the relation (XX-10) above:
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In the frame (R'), the DIRAC currents J' are defined from the components of the bispinor in (R'):
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If these currents constitute a 4-vector, then they must be transformed according to the LORENTZ transformation by checking the property:
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To verify this property, we need to have the transformation relationship from the ψ bispinor of the frame (R), to the ψ' bispinor of the frame (R'). This is a non-trivial relationship, the details of which can be found in chapter XXIX of this document:
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The verification undertaken is then only an elementary mathematical work.

In the relation (XX-13) that defines the J' currents, we substitute the components of the ψ' bispinor according to the components of the ψ bispinor. We obtain for the first component:
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This expression is simplified by grouping similar terms together:
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Making use of the relationship:
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We finally get:
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An analogous work on each of the spatial components makes it possible to verify that the DIRAC currents behave like a 4-vector of special relativity, and thus verify the relationship (XX-14).

III -DIRAC currents for a sinusoidal propagative solution

As in previous chapters, we now seek to establish a relationship between two 4-vectors associated with the same moving particle.

The first 4-vector is that of special relativity: it is associated with a point particle and is given by the relation (XX-4) at the beginning of the chapter. We multiply this 4-vector by the constant c in order to make it homogeneous to an energy for each of its components: The second 4-vector is associated with a DIRAC particle, and is provided by the current 4-vector.

In order to work with a homogeneous energy notation, we need to introduce a multiplicative constant in the formulation of DIRAC. This constant can be introduced in the current 4-vector, or in the bispinor, or distributed on both.

We choose to keep the usual definition of DIRAC currents, and to make the multiplicative constant focus on the exact bispinor solution of the DIRAC equation.

We take as a starting point a dimensionless sinusoidal propagative solution obtained in the previous chapters: We recall the expression of the LORENTZ factor present in these expressions:
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We introduce in this solution the multiplicative constant which allows to make each component homogeneous at the square root of an energy.
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We then calculate the DIRAC currents using the usual formulation. We omit the parameters of the sinusoidal functions in order to simplify the writing.

First component of the current 4-vector: The mean value of this current is obtained by setting the temporal mean value of the squared sinusoidal functions equal to ½:
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We recognize in this average value, the first coordinate of the momentum-energy 4vector (XX-20): Second component of the current 4-vector: The temporal mean value of this expression corresponds to the second coordinate of the momentum-energy 4-vector (XX-20): Third component of the current 4-vector: 
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The temporal mean value of this expression corresponds to the fourth coordinate of the momentum-energy 4-vector (XX-20): 

IV -Conclusion

123 DIRAC's current 4-vector appears to be a generalization of the momentum-energy 4vector of special relativity. It corresponds exactly to it in time average value, but it also includes the quantum energy fluctuations that are present in the vicinity of the moving particle.

These fluctuations take place at the pulsation 2γω0, and are consistent with all the results of the previous chapters, both as regards the interpretation of the zitterbewegung, as well as that of the momentum-energy tensor.

One will note the great harmony of an energetic vision of the phenomena associated with a quantum particle, and its relativistic motion.

In this vision, relativity and quantum mechanics form a perfectly coherent whole.

The particle is described in its quantum universe by the DIRAC equation and its solutions. When looking at it from a macroscopic point of view, we only perceive a point element whose properties correspond to the temporal average of the microscopic point of view.

XXI -The momentum-energy 4-vector for an exponential propagative solution

As for the momentum-energy tensor, we will show that the mean value of the currents of an exponential propagative solution does not correspond to the momentum-energy 4-vector of a point particle.

The approach is in all aspects similar to that proposed in Chapter XIX.

I -The case of a massive particle

We adopt as a starting point a propagative exponential solution, which we have made homogeneous to the square root of an energy using an adequate multiplicative coefficient: In these expressions, vx, vy, vz, are the velocity components of the particle, ω0 is the fundamental pulsation of the particle, i.e. the pulsation in the frame in which it is at rest:
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The usual LORENTZ factor is represented by γ: 
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The observed differences are similar to those described for the momentum-energy tensor.

The addition of a sinusoidal solution to form an exponential solution results in a multiplication by 2 of the total energy, which therefore corresponds to the sum of the energies of the 2 particles that form the exponential solution.

In addition, there appears an interaction energy equal to 0 2    which can be revealed by decomposing the currents of the exponential solution. 
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The DIRAC currents of the exponential solution are expressed in the following way, according to the components relative to each of the particles: 
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As well as the interaction currents between particles a and b: 
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The current of the exponential solution appears as:
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The expression of the interaction currents can be checked by a calculation without difficulty which is not detailed. The result is: This observation serves as a reminder that the exponential representation used in the description of electromagnetic phenomena is not transposable, in its physical interpretation, to the exponential representation of the solutions of the DIRAC equation.

In electromagnetism, exponential representation is only a mathematical artifice that simplifies calculations. The return to the physics of the phenomena is done by taking the real part of the obtained expressions.

In the DIRAC representation, the imaginary terms that appear are related to the square root of an energy that is negatively counted in energy exchanges. This is no longer a mathematical artifice, and the return to physical interpretation can no longer be done as in electromagnetism, by considering the real part of the expressions obtained.

The case of the photon is a special case, since it is a matter of both electromagnetism and quantum physics. We examine this particular case in the following paragraph.

II -The case of a particle without mass

We will consider the DIRAC representation of a massless particle moving at speed c in the direction of z>0: We can abusively call this particle a photon. Abusively, because we elude in this representation the spin of the particle. For the subject that concerns us in this paragraph, this is unimportant, because in the energy exchanges described by relativistic mechanics, the role of spin does not appear.

The DIRAC current relative to the total energy is written:
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We note that it is equal to the sum of the average energies of the two particles that make up the exponential solution.

To obtain information on the interaction energy, the decomposition (XXI-4) is carried out as shown below: 
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It appears that the sum of the interaction currents between the two massless particles forming the exponential solution is equal to 0.

XXII -Conclusion

The de BROGLIE wave is the result of a purely relativistic reasoning. The DIRAC equation is invariant under the LORENTZ transformation, which assures its full compatibility with all the results from the special relativity.

Therefore, it is hardly surprising that the BROGLIE wave can be found in the exact solutions to the DIRAC equation.

This phase wave appears in travelling wave solutions, which are themselves constructed by summing two or more purely stationary solutions. As a result, the interpretation of stationary solutions in terms of energy exchange can be transposed to travelling wave solutions.

By associating a phase wave to a DIRAC particle, we formalize the link between the notion of wave and that of particle.

The particle is essentially characterized by its mass, velocity, and momentum. These three quantities can be seen in the de BROGLIE wave associated with a particle described by an exact solution to the DIRAC equation. This link is much more apparent in the SCHRÖDINGER equation. We recall that the heuristic construction of this equation is based on a wave equation: The propagation velocity v of the wave function associated with this equation represents the velocity of the particle, and it is by introducing the kinetic energy of the classical mechanics (1/2 mv²) of the particle and the wavelength of de BROGLIE that we finally arrive at SCHRÖDINGER's equation.

It can be assumed that this particularly apparent duality contributed to the choice of SCHRÖDINGER's equation as the fundamental equation of quantum mechanics by the Copenhagen School.

From the point of view of this school, the works presented in this document are perfectly heretical works since as long as a particle is not materialized, we cannot know anything about its state. However, when the photon meets the electron in the COMPTON scattering, neither of the two is yet materialized. This postulate of indeterminacy has led researchers to lose interest in the deterministic aspects of the solutions to the DIRAC equation. Attention has focused on the probabilistic aspects; and the total and absolute coherence of the probabilistic approach with the experimental results has led physicists to recognize this theory as perfectly adapted to the quantum world.

It seems that the probabilistic model is gradually reaching the limits of the information it is able to provide us on the infinitely small world.

We want to show, in the approach that has been adopted in this document, that further progress can be made in this area, in a deterministic approach to the evolution of energies. This conviction is based on the following observation: for a resting particle of mass m0, any solution to the DIRAC equation involves a sinusoidal function of pulsation or frequency: It is clear that the phenomena induced by periodic oscillations of this frequency are not accessible, nowadays, to the experiment in their temporal representation.

When an evolution occurs in phenomena at this frequency, we can only see the result of evolution or interaction; and it is indeed on this concept that the theory supported by the Copenhagen School is based. In this sense, we are in full agreement with this theory.

But if we follow the Copenhagen School by affirming that before materialization, which is the result of evolution or interaction, the state of the particle is indeterminate, we close the door forever to a more subtle knowledge of how particles function and interact.

In a deterministic approach such as the one conducted in this paper, we turn our back on the Copenhagen School by seeking to refine our representation of the interaction between two or more particles, even though these interactions involve phenomena of the order of 10 20 Hertz. Experimental possibilities are extremely limited or even non still existent at these frequencies. But we can try, through theory, to make further progress in the understanding of the world of the infinitely small. Then comes a fundamental question: how can a deterministic theory join a probabilistic theory?

In the same way as in classical physics, purely deterministic evolutions can lead to perfectly random results. This is the case for chaotic phenomena, but it is also the case for extremely simple systems such as the roll of a die.

It is curious that this deterministic evolution towards random results is accepted without discussion for classical physics, whereas it is rejected by quantum physics, and in particular by the Copenhagen School. It is difficult to understand why there would be two different models that would lead to random phenomena, and especially to understand how one could define and highlight a boundary between these two modes of operation. From this point of view, aesthetics, often put forward in the general description of the laws of physics, preaches rather for a unique and universal model, based on energy conservation and the principle of least action.

In an energy approach, the exact solutions to the DIRAC equation show that an isolated particle has an environment made up of complex energy exchanges. We deduce that when this particle is materialized in a detector during a measurement, this necessarily occurs through complex energy exchanges with the materialization medium.

The coherence between an energetic and a probabilistic approach imposes that there is a relation of proportionality between the probability of materialization of a particle in a spacetime element, and the volume density of energy present in this element. This is the basic postulate that has been introduced since the introduction of the energy approach of quantum mechanics through the DIRAC equation.
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 1 Figure 1 : graphical representation of the different forms of energy present in the two conservation relationships.

  Figure VI-1: scheme of the principle of diffusion COMPTON

  Figure VII-1 : scheme of the principle of diffusion COMPTON in the xy plan

  representation of an electromagnetic waveguide of cross section S = ab

  the modal relation (XIII-6) recalled for memory:
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  Figure XIII-2: Geometry of rays representing the propagation of a travelling wave in a waveguide.

  The time and space covariant variables x0, x1, x2, x3, are noted in a general way xν or xµ and we use the abbreviated notation lighten the writing.
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  value of this expression corresponds to the third coordinate of the momentum-energy 4-vector (XX-20):

  The first component of the DIRAC currents is calculated effortlessly because the exponentials disappear. A few lines of calculation give the following result:

  the particular role of purely sinusoidal solutions of the DIRAC equation in the physical representation of moving particles.

  between the two photons can be deduced from this:

  an electron, this frequency has a numerical value of:

Part three

The quantum momentum-energy tensor and 4-vector