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Multi-Armed Bandits for Quantifying Human Perception with Dichotomous Optimistic Search

In this paper we address a variant of the continuous multi-armed bandits problem, where the objective is to estimate the sensitivity threshold for an unknown psychometric function Ψ, which is assumed to be non decreasing and continuous. In this setting, at each time step the agent chooses the intensity value s of a stimulus, which is then presented to a human observer, and receives in return a feedback, i.e. a realization of a Bernoulli random variable of mean Ψ(s). Given a target perception value µ * , the objective for the agent is to estimate the sensitivity threshold s * such that Ψ(s * ) = µ * as accurately as possible with a limited number of pulls. This setting models the conduct of a psychometric experiment, a process which aims at quantifying human perception. This problematic is at the heart of Psychophysics, and its related adaptive estimation problem has received significant attention in the past. In this work, we show that this setting is akin to hierarchical multi-armed bandits and Black-box optimization of noisy functions, with both significant similarities and key differences. We introduce a new algorithm, DOS, for Dichotomous Optimistic Search, that efficiently solves this task. We prove a strong upper bound on DOS simple regret under minimal assumption on the psychometric function smoothness, and we show that this bound compares favorably to regret guarantees of recent methods from both Psychophysics and Global Optimization. Finally, we empirically evaluate DOS and show that our agent significantly outperforms these methods, both in experiments that mimics the conduct of a psychometric experiment, and in tests with large pulls budgets that illustrate the faster convergence rate.

Introduction

Psychophysics investigates the connection between physical stimuli and the subjective responses (such as sensations, or perceptions) they produce. This field of research has widespread applications, including the study of attention (see e.g. [START_REF] Cutzu | The selective tuning model of attention: psychophysical evidence for a suppressive annulus around an attended item[END_REF][START_REF] Scheuerman | Modeling Spatial Auditory Attention: Handling Equiprobable Attended Locations[END_REF]), the conception of compression of audio signals, for which humans perceive very little loss of signal quality (see e.g. [START_REF] Wouter A Dreschler | Psychophysical evaluation of fast compression systems[END_REF][START_REF] Zwicker | Psychoacoustics as the basis for modern audio signal data compression[END_REF]), and the evaluation of treatments for pain relief [START_REF] Nir | A psychophysical study of endogenous analgesia: the role of the conditioning pain in the induction and magnitude of conditioned pain modulation[END_REF]. One of the key aspect of Psychophysics is the evaluation of human perception, which is generally assessed by performing psychometric experiments. They unfold as follows : the experimenter presents to an individual, called the observer, a sequence of stimuli of varying intensities (for instance, the volume of a specific sound, see e.g. [START_REF] Wouter A Dreschler | Psychophysical evaluation of fast compression systems[END_REF][START_REF] Hirahara | Physical characteristics of headphones used in psychophysical experiments[END_REF]), and try to measure how often the different intensities are perceived by the observer. In particular, the majority of experiments are interested in measuring the sensitivity threshold, where the stimulus is just noticeable [START_REF] Kontsevich | Bayesian adaptive estimation of psychometric slope and threshold[END_REF].

Human perception is generally modeled as follows. For any stimulus intensity s, the stimulus is perceived by the observer with (unknown) probability µ s . The relation between stimulus intensity and perception for a given observer is called the psychometric function, noted Ψ, and is defined such that Ψ(s) = µ s for any stimulus intensity s. By definition, Ψ is assumed to be non-decreasing (the stronger the stimulus, the easier it is to perceive it) and continuous (see e.g. [START_REF] Leek | Adaptive procedures in psychophysical research[END_REF]). Given a target perception probability µ * , the objective of a psychometric experiment is to estimate the sensitivity threshold s * such that Ψ(s * ) ≈ µ * . To achieve this, the experimenter must both choose a sequence of stimuli to present to the observer, and select a method to estimate s * given the observer responses. In the remainder of this paper, we will refer to the task of choosing the sequence of stimuli -which must be as short as possible, to limit the fatigue of the observer Wichmann and Hill (2001a) -and accurately estimating the sensitivity threshold as the threshold estimation problem.

One of the most commonly used technique for solving the threshold estimation problem in psychometric experiments is the method of constant stimuli (Wichmann and Hill, 2001a), where the observer is presented with a fixed sequence of stimuli, spanning the range of sensation from imperceptible to consistently perceptible. After collecting the observer responses, the parameters of Ψ are estimated using the maximum likelihood method -where Ψ is assumed to be a Weibull, logistic or a Gaussian cumulative distribution function (c.d.f.). Finally, s * is estimated as Ψ -1 (µ * ). However, this approach suffers from many drawbacks. First, the parametric models have been shown to be frequently inconsistent with the observations, or to require many small empirical corrections to fit the data with an acceptable accuracy (Wichmann and Hill, 2001b). Second, the fixed sequence does not account for individual specificity, a key problem as it has been shown that the sensitivity threshold can vary by a factor of ten between individuals [START_REF] Benson | Thresholds for the perception of whole body angular movement about a vertical axis[END_REF].

Consequently, there has been an increased interest in using adaptive algorithms [START_REF] Leek | Adaptive procedures in psychophysical research[END_REF], where an agent A) aims at estimating directly the sensitivity threshold without estimating Ψ, therefore avoiding the parametric estimation problem and B) adapts the sequence of stimulus intensity based on the observer responses. The two most popular adaptive methods in Psychophysics are currently the staircase [START_REF] Tom | The Staircase-Method in Psychophysics[END_REF] and likelihood maximization [START_REF] Kontsevich | Bayesian adaptive estimation of psychometric slope and threshold[END_REF]. Both of these methods have significant limitations; for instance strong assumptions about the smoothness and shape of Ψ are required to guarantee the consistency of the estimator they provide. Therefore, proposing a novel and principled algorithm that addresses the threshold estimation problem may bring significant improvements to psychometric experiments.

Fortunately, in recent years there has been significant progress in the field of adaptive learning in continuous spaces (see e.g. [START_REF] Contal | Parallel Gaussian process optimization with upper confidence bound and pure exploration[END_REF]). Multiple techniques have been developed for the stochastic optimization of black-box functions of unknown smoothness (see e.g. [START_REF] Grill | Black-box optimization of noisy functions with unknown smoothness[END_REF][START_REF] Shang | General parallel optimization a without metric[END_REF]). In particular, in hierarchical bandits methods, the agent uses various concentration inequalities to explore a hierarchical partition of the arm space, progressively narrowing the candidate subspace that may contain the maximum. While the task of locating the extremum of a noisy function is different from threshold estimation, the two problems present similarities with respect to the difficulties they encounter. Therefore, methods and algorithms developed in the former may give valuable hindsights into addressing the latter.

Following this idea, in this paper, we show that the threshold estimation problem can be rewritten as a new type of the pure exploration continuous multi-armed bandit problem, with interesting twists (Section 2). Then, we introduce a new algorithm, Dichotomous Optimistic Search (DOS), that takes inspiration from hierarchical bandits and black box optimization to solve this problem (Section 4). The idea behind DOS is to perform a stochastic continuous binary search, while achieving the correct trade off between the depth of the binary tree, and the confidence in its noisy comparisons. DOS only assume a minimal set of hypotheses over the psychometric function -more precisely Ψ is only assumed to be continuous, non decreasing, and mildly smooth (in fact, we show that local Hölder continuity is a sufficient condition).

Our method has multiple advantage over existing algorithm. Indeed, in DOS the agent does not require the knowledge of the smoothness of Ψ, or the use of a suited hierarchical partition. Moreover, it has advantageous theoretical guarantees: we prove (see Theorem 1) that the simple regret R T of DOS is upper bounded as follows

E(R T ) ≤ O (log T ) 2 (log log T ) T .
This highlights the advantage of DOS over existing methods used in psychometric experiments, which to the author knowledge, do not have any similar guarantee except in very narrow settings. Moreover, this upper bound compares favorably to state of the art results, such as the simple regret bounds of POO [START_REF] Grill | Black-box optimization of noisy functions with unknown smoothness[END_REF], as it is independent of the local near-optimality dimension (a commonly used measure of the optimization problem difficulty, see e.g. [START_REF] Shang | General parallel optimization a without metric[END_REF]).

We also extensively evaluate DOS in a wide range of experiments (Section 5) and show that our agent significantly outperforms traditional adaptive psychometric methods and recent global optimization methods. This better performance is reflected in both experiments that mimic the conduct of a psychometric experiments , and in tests with large pulls budgets that illustrate the faster convergence rate of our agent.

Problem Setup

In this section we introduce the notation and give the formal definition of the threshold estimation problem. Then we discuss the assumption on the psychometric function Ψ that are required for DOS, and we highlight the relation between threshold estimation and global optimization. Note that in the following we borrow the vocabulary of the multi-armed bandit MAB problem (see e.g. [START_REF] Patil | Achieving Fairness in the Stochastic Multi-Armed Bandit Problem[END_REF]).

The Threshold Estimation Problem

Notation. Let T denote the time horizon (i.e. the maximum number of stimulus presented during the experiment), I ⊂ R the (closed) interval of possible stimuli, Ψ : I → [0, 1] the psychometric function, µ * ∈ [0, 1] the target probability, s * . = Ψ -1 (µ * ) the sensitivity threshold. Finally, let µ min = inf s∈I Ψ(s) and µ max = sup s∈I Ψ(s).

In the following we assume without any loss of generality that I = [0, 1] . We also assume that the target threshold is strictly reachable, i.e. µ min < µ * < µ max . Due to the nature of the task (detecting stimuli of various intensity), the psychometric function is assumed to have the following properties (see e.g. [START_REF] Leek | Adaptive procedures in psychophysical research[END_REF]), formalized as follows:

Definition 1 (Psychometric Function). Let Ψ : I → [0, 1]. Then Ψ is a psychometric function if and only if Ψ is continuous and strictly increasing.

The objective of the threshold estimation problem is to find an estimator ŝ of the sensitivity threshold s * with at most T stimuli. I, T and µ * are known to the agent (here the experimenter), but Ψ is unknown. The process unfolds as follows. For each round t ∈ [1, . . . , T ]:

1. The agent chooses an arm (here an intensity) s ∈ I.

2. The environment (here the observer) detects the stimulus and notify the agent with probability Ψ(s).

Each detection is represented by a Bernoulli random variable of mean Ψ(s), and each drawing is assumed to independent of all previous events. We say that the agent pulls the arm s when the agent chooses arm s and observes the environment response. At time t = T, the agent returns the arm ŝ that is her best guess for the target stimulus s * . The performance of the agent is then evaluated using the notion of simple regret R, defined as

R(ŝ) = |µ * -Ψ(ŝ)|. (1) 
This notion of simple regret is mildly different from the usual definition (see [START_REF] Valko | Stochastic Simultaneous Optimistic Optimization[END_REF]). The relation between the two is discussed later in this section.

Remark 1 (Psychophysical Experiments). The setting developed in this section can model most psychometric experiments, from the Yes-No setting (for which generally µ * = 0.5) Wichmann and Hill (2001a) to the N-AFC setting (generally µ * ≈ 0.7) [START_REF] Lengyel | The relationship between initial threshold, learning, and generalization in perceptual learning[END_REF].

Remark 2 (Lapses and Guessing). It is interesting to note that in general µ min > 0 and µ max < 1, even for completely undetectable (resp. unmissable) stimuli. This is consequence of the subjective nature of perception, and the fallible nature of human observer. In the psychophysics literature (see e.g. Wichmann and Hill (2001a)), µ min is identified as the guess rate, i.e. the chance that the observer correctly guesses the answer independently of the stimulus. Similarly 1 -µ max is called the lapse rate and represents the probability of the observer missing the stimulus due to factors external to the experiment (such as blinking for a visual stimulus). These values are generally unknown at the beginning of the experiment, and most methods in psychophysics require the use of heuristics to estimate µ min and µ max Wichmann and Hill (2001a), before using these estimate to normalize the data. Importantly, this is not the case for DOS, which does not require any prior information on µ min and µ max .

In the rest of this paper, we make the following assumption on the smoothness of Ψ.

Assumption 1 (Ψ is smooth around s * ). There exists ν > 0, and 0 < ρ < 1 such that ∀h > 0, ∀s ∈ I,

|s -s * | ≤ 2 -h =⇒ |Ψ(s) -Ψ(s * )| ≤ νρ h
This hypothesis implies that Ψ is smooth enough around s * , and prevents the well known "find the needle in a haystack" problem of global optimization [START_REF] Valko | Stochastic Simultaneous Optimistic Optimization[END_REF]. It should be noted that Assumption 1 is mildly weaker than the one used in recent black-box optimization methods of function of unknown smoothness such as [START_REF] Grill | Black-box optimization of noisy functions with unknown smoothness[END_REF]. Importantly, Assumption 1 does not restrict the choice of possible Ψ, as shown by the following lemma.

Lemma 1. Let Ψ : I → [0, 1], and V be a neighborhood of s * Then, ∀α > 0 Ψ is locally α-Hölder continuous on V =⇒ Ψ satisfies Assumption 1. Proof. By definition, ∃r > 0 such that V contains a ball B of radius r > 0 centered on s * . Ψ is α-Hölder on B, thus ∃C > 0 such that ∀s ∈ B, |Ψ(s) -Ψ(s )| ≤ C|s -s | α ,
hence it is easy to see that Assumption 1 is satisfied on B for ρ = 2 -α and ν = C. For I \ B, we just observe that

∀s ∈ I \ B, |s -s | > r = 2 log r log 2 .
and thus that Assumption 1 is satisfied on I \ B for ρ = 2 -α and ν = 2ρ log r log 2 . Hence, Ψ satisfies Assumption 1 everywhere on I for ρ = 2 -α and ν = max(C, 2ρ log r log 2 ).

In particular, all continuously differentiable Ψ (and consequently all the previously mentioned psychometric functions) satisfy Assumption 1. Finally, it is important to note that DOS does not require the knowledge of the smoothness parameters (ν, ρ).

Relation with Global Optimization For any psychometric function Ψ and target probability µ * , let f be defined as follows:

f : I → [-1, 0] s → -|µ * -Ψ(s)|.
(2)

It is easy to see that f admits s * as its unique maximum, and that f (s * ) = 0. Moreover, the regret defined by ( 1) is equivalent to the usual definition of simple regret for f (see e.g. [START_REF] Bubeck | Pure exploration in finitelyarmed and continuous-armed bandits[END_REF]). Similarly, Assumption 1 implies a similar smoothness condition for f around its maximum. Therefore, (2) draws a link between the black box optimization of f and the threshold estimation of Ψ. However, since Ψ is unknown and Ψ(s) is only observed through the realizations of Bernoulli random variables, it is impossible to directly use global optimization strategies to solve the threshold optimization problem. Nevertheless, this transformation is useful to draw parallels between the two problems, and compare their solutions and their relative merits.

Related Works

Threshold Estimation in Psychophysics. Multiple previous works in psychophysics have proposed adaptive algorithms to solve the threshold estimation problem in psychometric experiments. The staircase algorithm, arguably the most popular adaptive method, has been discussed and improved upon significantly in recent years Cornsweet (1962); [START_REF] Levitt | Transformed Up-Down Methods in Psychoacoustics[END_REF]. However, this method can only be used for a very limited list of target probability (such as µ * = 0.5 or µ * = 0.707) Brown ( 1996), and convergence is only guaranteed for specific shape of the psychometric function (such as Gaussian c.d.f.) [START_REF] Levitt | Transformed Up-Down Methods in Psychoacoustics[END_REF]. More recently, there has been increasing interest in parametric Bayesian adaptive algorithms. Notably, in [START_REF] Kontsevich | Bayesian adaptive estimation of psychometric slope and threshold[END_REF] the authors proposed a method which aims at each step to minimize the entropy of the distribution of possible parameters for Ψ . while in [START_REF] Shen | A maximum-likelihood procedure for estimating psychometric functions: Thresholds, slopes, and lapses of attention[END_REF], the authors introduced a sampling method that aims at minimizing the variance of each parameters. However, these methods also require the prior knowledge on the psychometric function shape, which significantly limits their applications. Moreover, García-Pérez and Alcalá-Quintana (2007); [START_REF] Hatzfeld | It's All About the Subject -Options to Improve Psychometric Procedure Performance[END_REF] have empirically shown that all the aforementioned methods produce significantly worse estimations for non usual target probability values (e.g. µ * = 0.5), and that Bayesian methods might even diverge when the assumption on the psychometric functions shape is false. These limitations emphasize the interest of DOS, the new principled approach discussed in this paper.

Global Optimization. Many solutions have been suggested to the black box optimization of an unknown function f in presence of noise. Those solutions can be roughly divided in two categories. In the first, f is assumed to have some strong global smoothness, such as a Lipschitz condition (see e.g. the Lipschitz multi armed bandit problem [START_REF] Kleinberg | Multi-armed bandits in metric spaces[END_REF][START_REF] Kleinberg | Bandits and experts in metric spaces[END_REF]). In the second category, f is only assumed to have some local smoothness around its maximum (see e.g. [START_REF] Valko | Stochastic Simultaneous Optimistic Optimization[END_REF]). This framework leads to arguably more difficult problems, in particular when the smoothness is unknown. However it has been shown that even in this setting it is possible to achieve near optimal regret bounds, for instance by using a hierarchical bandit approach such as POO -Parallel Optimistic Optimization, see e.g. [START_REF] Grill | Black-box optimization of noisy functions with unknown smoothness[END_REF]; [START_REF] Shang | General parallel optimization a without metric[END_REF]. This latest setting is the closest to our problem. Indeed, Assumption 1 can be seen as similar to their minimal assumption (see e.g. [START_REF] Grill | Black-box optimization of noisy functions with unknown smoothness[END_REF]) -but Assumption 1 is slightly weaker in the sense that in our case the agent does not have access to a hierarchical partition that is well suited for the function f . Importantly, in both cases the smoothness parameters (ν, ρ) are unknown. One other significant dif-ference between the two settings is the non decreasing property of Ψ (see Definition 1).

There is no equivalent hypothesis in the global optimization setting; and this property of Ψ is key to DOS, our solution to the threshold optimization problem, and its significantly better regret bound (see Theorem 1). Finally, the closest work to ours in arguably [START_REF] Fontaine | An adaptive stochastic optimization algorithm for resource allocation[END_REF], which has been developed simultaneously and independently. In this paper, the authors introduced a bandit algorithm which aim at finding the global maximum of a concave option by using gradient feedback. Their algorithm use some tools which are similar to the ones used by DOS, such as repeated pull of a candidate arm to obtain high probability comparison. However, their work significantly differs from ours as : A) their algorithm was designed to optimize the cumulative regret, which is a completely different objective (see e.g. [START_REF] Bubeck | Pure exploration in finitelyarmed and continuous-armed bandits[END_REF]), and the simple regret bound that can be derived from their work is significantly worse than ours, and B) their method cannot be applied to our problem (and conversely), as they rely on different, non equivalent hypotheses on the functions to optimize (concave with specific gradient properties) as well as different types of feedback (noisy gradient in their case).

Contributions

In this section, we introduce our main contribution, DOS, and discuss its key ideas before proving an upper bound for its simple regret which compares favorably to the existing regret bounds in global optimization. We provide sketches of proof for the different results -when necessary, the detailed proofs can be found in the supplementary materials.

DOS

We begin by introducing some additional notation used by DOS. In the following, we use log 2 (T ) . = log(log(T )). Recall that T > 0 is the time horizon, µ * is the targeted probability threshold, and I = [0, 1] is possible stimulus range. Let κ denote the number of different arms that are pulled by DOS during the attributed time budget T . Since there is a continuous set of possible arms, and κ ≤ T, most arms will never get pulled; and in the following we say that the agent activates an arm when she pulls it for the first time. For any 1 ≤ i ≤ κ, we use s i (resp. N i (t), μi (t) and µ i ) to denote the stimulus value (resp. the number of pulls, the empirical average and the true probability value) associated to the i-th activated arm at time t. Finally, let

∆ i = |µ i -µ * | -i.e.
the regret obtained by the agent if she chooses to return the arm i when t = T. DOS strategy. The general idea of DOS is inspired by the deterministic dichotomous search algorithm : the agent aims to produce a sequence of intervals I 1 , . . . , I κ ⊂ I such that the following properties are true:

∀1 ≤ i ≤ κ, ∃0 ≤ k i ≤ 2 i -1 s.t. I i = k i 2 i , k i + 1 2 i (3) s * ∈ i≥1 I i . (4) 
Note that if (3) and ( 4) are true, then |s κ -s * | ≤ 2 -κ and Assumption 1 implies that

∆ * ≤ νρ κ (5)
in other words, the sequence s κ (resp µ κ ) converges exponentially fast toward s * (resp µ * ).

To produce this sequence, DOS proceeds as follows. To obtain I i+1 given the interval I i , the agent activates s i+1 = 2ki+1 2 i+1 -the arm located at the center of I i -and repeatedly pulls this new arm, until the time budget is elapsed (t = T ) or one of the two possible new arm activation criteria is satisfied. Then she compares µ * , the target probability, and μi+1 (N i+1 ), i.e. the empirical proportion of stimuli of intensity s i+1 that were detected. Depending on the result, the agent defines the next interval I i+1 in the sequence as :

I i+1 =        2k i 2 i+1 , 2k i + 1 2 i+1 if µ * < μi+1 , 2k i + 1 2 i+1 , 2k i + 2 2 i+1 otherwise.
Here the agent leverages the fact that Ψ is monotonically increasing. Importantly, this strategy presents key differences with the deterministic dichotomous search. For instance when t = T , i.e. the time horizon is reached, the agent does not automatically returns the last activated arm s κ . These differences are discussed below. The pseudocode for DOS can be found in Algorithm 1. Note that DOS does not require the knowledge of (ν, ρ), the parameters of Ψ local smoothness.

DOS noisy comparisons.

Contrarily to the deterministic setting, here the agent has only access to noisy observations of Ψ(s i ). Therefore, for any arm s i the agent can only compare μi and µ * , and can never be sure if Ψ(s i ) ≥ µ * . To quantify the uncertainty related to μi , DOS uses the following Hoeffding-Chernoff concentration bound for Bernoulli random variables (see e.g. [START_REF] Auer | Improved Rates for the Stochastic Continuum-Armed Bandit Problem[END_REF]):

P |µ i -μi (t)| > ε ≤ 2 exp -2N i (t)ε 2 . (6)
Formally, let Q i be the event where DOS reaches the wrong conclusion about the position of the arm s i with respect to s * , i.e.

Q i = μi (T ) < µ * if µ i ≥ µ * , μi (T ) ≥ µ * if µ i < µ * , (7) 
and let q i . = P(Q i ). While q i can be reduced by pulling the arm s i multiple times -and thus reducing the confidence interval -the number of pulls required increases drastically as the distance ∆ i decreases. This is compounded by (5), i.e. the fact that the ∆ i can be expected to decrease exponentially as i increases.

Meanwhile, decreasing the uncertainty of the comparisons comes at a cost on the number of activated arms, as more time is spent on each arm -and (5) provides a direct Algorithm 1 DOS Parameters µ * (objective), T (time horizon) Initialization i ← 1 (currently explored arm), s 1 ← 1/2 (stimulus currently tested), N 1 ← 0 (number of time s 1 has been pulled), μ1 ← 0 (average value observed at s 1 ), t ← 0 (number of sampling performed), S = ∅ the set of promising arms, N * as in (11) and B T (•) as in (9).

Main Loop

While t ≤ T :

If |µ * -μi (t)| > 2B T (N i (t)) or N i (t) > N * : If N i (t) > N * : S ← S ∪ {i}

EndIf

Activate new arm:

s i+1 ← s i + (1/2 i+1 ) if µ * > μi s i -(1/2 i+1 ) if µ * ≤ μi i ← i + 1 EndIf Sample arm s i , update t, N i , μi EndWhile Output: s i * , where i * = max S if S = ∅, κ otherwise.
link between the number of activated arms κ and the quality of the arm s κ . Hence, for DOS strategy to succeed, the agent must achieve a proper trade-off between two opposite objective:

• Confidence: Pull each activated arm more to increase confidence in the comparison between μ and µ * ,

• Depth: Increase the number of activated arm to improve the bound for ∆ κ provided by (5).

Moreover, identifying the correct trade-off between the two objectives is complicated by the fact that while Ψ is assumed to satisfy Assumption 1, the parameters ν and ρ are unknown to the agent. This raise additional difficulties as these parameters are crucial to the quality of the upper regret bound (5) and to assess the behavior of Ψ around s * . To address this conundrum, DOS uses two arm activation rules, which are discussed below.

Activation criteria. DOS uses two different activation rules to achieve the proper trade-off between Confidence and Depth. These two rules both rely on ( 6), but with different perspectives.

The first rule forces the activation of a new arm if

|µ * -μi (t)| > B T (N i (t)), (8) 
where

B T (N i (t)) = 3 2 log (T ) N i (t) . ( 9 
)
Note that (8) defines is the usual confidence interval for techniques that use the optimism against uncertainty principle, see e.g. [START_REF] Auer | Improved Rates for the Stochastic Continuum-Armed Bandit Problem[END_REF]. If ( 8) is achieved, then the agent is considered confident enough to activate the next arm, regardless of the number of pulls N i , as stated by the following Lemma:

Lemma 2. If (8) is satisfied for the arm s i , then

q i < 2 T 3 Proof.
Without any loss of generality, assume that μi > µ * . Then using the second triangular inequality

µ i -µ * > μi -µ * -|μ i -µ i |,
hence the conclusion by using ( 6), ( 8) and ( 9).

However, the number of pull required to achieve (8) can be too large, in particular if ∆ i is small. Hence the second rule plays an important role in achieving the aforementioned exploration trade-off, by setting a maximum number of pulls for the arm i before the activation of the next arm. Indeed, this rules forces the activation of a new arm if

N i (t) > N * , (10) 
where

N * . = T (log T )(log 2 T ) . (11) 
Therefore, (10) provides a lower bound on the depth of the search: independently of observed results, DOS activates at least κ = (log T )(log 2 T ) arms. Moreover, it can be shown (see Lemma 3) that if (10) occurs, then s i is a promising arm, i.e. ∆ i is small enough for s i to be a good estimator of s * .

Lemma 3. If (8) is false, but (10) is satisfied, then with probability at least 1 -2 T 3 ,

∆ i < 3 (log T ) 2 (log 2 T ) T
Proof. Note that since (8) is not satisfied for N i = N * , we have |µ * -μi (t)| < B T (N * ). Hence, using the triangular inequality

∆ i = |µ * -µ i | ≤ |µ * -μi | + |µ i -μi |.
The result is then obtained by using the concentration inequality (6) and the definition of N * (11).

The set of promising arms, noted S, is a key component to DOS estimation of the sensitivity threshold, as discussed below. DOS final output. When the time horizon is reached (t = T ), there are two possible scenarios. In the first case, the activation rule (10) was used at least once, and the set of promising arm is not empty. Then the agent returns the last encountered promising arm, and the regret incurred is controlled by Lemma 3.

In the second case, no promising arm was found during the exploration process and all arms were activated using (8). In this scenario, the agent returns the last activated arm s κ . To show that ∆ κ is small enough, let

A * . = {∀t ≤ T, ∀i ≤ κ, |µ i -μi (t)| ≤ B T (N i )} .
In other words, A * is the event where the empirical average of all activated arms are concentrated around their true mean. First note that on A * , if an arm is activated using (8), then the algorithm necessarily the right conclusion when comparing μi and µ *and thus (3) and ( 4) are true. Thus, in this scenario, the event A * has a probability close to one, as stated by the following Lemma.

Lemma 4. P (A * ) ≥ 1 -2 T . Proof. First note that on A * , DOS always reach the right conclusion when comparing μi and µ * after the activation rule (8). Thus in this scenario the sequence of arms s i is fixed (but not their respective number of pulls) and the result is then obtained by taking the union bound on all arms (by noting that κ < T following the previous remark) and on all times t < T .

Note that since (3) and ( 4) are true, then ( 5) is also true and to ensure that the arm s κ is a good estimation of the sensitivity threshold, it is enough to show that enough arms will be activated (i.e. κ large enough). This is the purpose of the following proposition:

Proposition 1. Let i * defined as i * . = log T (log 2 T )(log T ) 2 1 2 log(1/ρ) . ( 12 
)
Then all the following properties are true

(A) if log 2 T > -1/ log ρ and T > 16, then i * ≤ κ (B) ∀i > i * , A * a.s. ∆ i ≤ ν (log 2 T )(log T ) 2 T ,
Proof. (A) is proved by using the fact that the definition of N * (see ( 11)) implies that κ ≥ log(T ) log 2 (T ). (B) is derived from (5) by using the definition of i * (21).

In other words, (B) upper bounds DOS regret provided that the agent has activated at least i * arms, and (A) states that for T large enough, more than i * arms are activated. By combining all the previous results, it is possible to prove the following upper bound on the regret incurred by DOS:

Theorem 1 (Upper Bound on simple regret). Assume that Hypothesis 1 is true. Then, ∀T > 0, the simple regret of DOS R T is upper bounded by

E(R T ) ≤ (3 + ν) (log T ) 2 log 2 (T ) T . ( 13 
)
Proof. This results from noting that by definition R T ≤ 1, and then using Lemma 3, Lemma 6 and Proposition 8. A detailed proof can be found in the supplementary materials.

Note that ( 13) does not depend on ρ, i.e. the bound uniform for any value of ρ < 1. This is a very important property, as ρ is directly linked with the difficulty of the problem. Indeed, for a value of ρ close to one, the set of arms that are both (A) close enough to require very large number of comparisons to be eliminated (B) not close enough to be a sufficiently good estimator of the sensitivity threshold may be very large. This problem is related to the notion of near optimality dimension, which is discussed below.

Comparison with POO regret bound. Using the transformation described in (2), it is interesting to compare (13) to the upper regret bound for POO, which achieves state of the art performance in black box optimization problems [START_REF] Shang | General parallel optimization a without metric[END_REF]. POO regret bound relies on the notion of near optimality dimension [START_REF] Grill | Black-box optimization of noisy functions with unknown smoothness[END_REF], for which we provide below an equivalent definition in the threshold estimation setting.

Definition 2 (Near optimality dimension). Let ν > 0 and 0 < ρ < 1. The near optimality dimension of Ψ, noted d(ν, ρ), is defined as

d(ν, ρ) . = inf d ∈ R + : ∃C, h > 0, Ψ -1 (µ * + 2νρ h ) -Ψ -1 (µ * -2νρ h ) ≤ C(2ρ d ) -h (14)
Intuitively, the d(ν, ρ) represents the measure of the size of the near optimal set; the larger, the more candidates for the optimal arm. The following regret bound has been shown for POO Grill et al. (2015); [START_REF] Shang | General parallel optimization a without metric[END_REF]:

Theorem 2 (Theorem 1 from [START_REF] Grill | Black-box optimization of noisy functions with unknown smoothness[END_REF]). Let

ρ max < 1 , ν max ∈ R. Then ∃K > 0 ∈ R, such that ∀ρ ≤ ρ max , ∀ν ≤ ν max , E(R T ) ≤ K   log 2 (T ) T 1 2+d(ν,ρ)   (15)
Note that while (13) has an additional log 2 T term, ( 15) is worse than (13) in the threshold estimation problem for two reasons. First, the constant K in (15) depends on ρ max , and is K → +∞ when ρ max → 1. Therefore, ( 15) is not uniform on ρ, and requires additional information on Ψ smoothness to be used. Second, the rate of convergence of ( 15) is strictly worse than (13) for any Ψ that have a strictly positive near optimality dimension. The following proposition shows the existence of such function in the threshold estimation problem.

Proposition 2 (Non zero optimality dimension). There exist psychometric functions Ψ satisfying Assumption 1 such that

min ν,ρ d Ψ (ν, ρ) > 0
In particular, for

Ψ(x) =    min (1, µ * + exp(-1/|x -s * |)) if x > s * max 0, µ * + |x -s * | 2/5 if x ≤ s * (16) 
we have d Ψ ≥ log 2 log 5-log 4

Proof. Let Ψ as defined in ( 16). It is easy to see that Ψ is strictly increasing. Moreover Ψ α Hölder continuous for α = 2/5, and therefore it satisfies Assumption 1. Additionally,

Ψ -1 (µ * + 2νρ h ) -Ψ -1 (µ * -2νρ h ) ≥ - 1 log(νρ h ) (17) 
Now let C, d as in ( 14). We have, using ( 17)

- 2 log(νρ h ) ≤ C(2ρ d ) -h Note that when h → ∞ the left part is O(1/h) while the right part is O( 1 2ρ d h ).
Consequently 2ρ d ≤ 1 is a necessary condition for the inequality to be true when h → ∞, which is turn implies the conclusion.

Experiments

In this section we evaluate the performance of DOS with multiple psychometric functions, for two different settings. First, we study the behavior of DOS when the time budget is small (T = 200) -this aims at reproducing the constraints of real psychometric experiments, where only a few hundred stimuli can be presented to the observer before the fatigue and learning effects significantly interfere with the experiment (Wichmann and Hill, 2001a). Second, we take interest in DOS performance for large values of T , to illustrate its faster convergence rate. All experiments were performed with custom script using Python 3.7, unless mentioned otherwise. Baselines. In all these experiments, we compare DOS to the two most commonly used adaptive methods in Psychophysics : Staircase, and PsiMethod. The staircase method [START_REF] Tom | The Staircase-Method in Psychophysics[END_REF] is an asymmetric random walk on the space of stimuli. [START_REF] Levitt | Transformed Up-Down Methods in Psychoacoustics[END_REF] shown that if Ψ is the c.d.f. of a Gaussian distribution, STAIR can converge to specific threshold such as µ * = 0.5 or µ * = 0.794, depending on choice of step sizes, their evolution as time elapses, as well as the UP/DOWN ratio. We used Staircase with the parameters recommended by [START_REF] Lengyel | The relationship between initial threshold, learning, and generalization in perceptual learning[END_REF]. The Psimethod Kontsevich and Tyler (1999) is a Bayesian algorithm that assumes that Ψ is a Gaussian c.d.f. and aims at estimating its parameters of Ψ, by choosing at each step the stimulus that maximize the expected reduction of uncertainty in the posterior distribution of the parameters. We used PsiMethod with the parameters recommended by [START_REF] Kontsevich | Bayesian adaptive estimation of psychometric slope and threshold[END_REF]. In both cases, we use the implementation provided by [START_REF] Peirce | PsychoPy2: Experiments in behavior made easy[END_REF].

Additionally, we compared DOS to the black box optimization algorithm POO. The Parallel Optimistic Optimization algorithm [START_REF] Grill | Black-box optimization of noisy functions with unknown smoothness[END_REF] simultaneously run multiple versions of a hierarchical bandit algorithm that requires the knowledge of the function smoothness, such as StoSOO Valko et al. (2013). We use (2) to transform the threshold estimation problem in an optimization problem. POO was run using the dichotomous partition of [0, 1] (the same partition as DOS), with the parameters used in [START_REF] Grill | Black-box optimization of noisy functions with unknown smoothness[END_REF].

Psychometric Functions We used six different psychometric functions to assess the behavior of DOS. They can be roughly divided into two families, "flat" and "steep", depending on their behavior around the objective s * -flatter functions vary less around 3. Two functions, Ψ m flat and Ψ m steep , that are non decreasing Hölder continuous functions defined as follows :

Ψ m (s * + x) = min 1, µ * + |x| k+ if x ≥ 0 max 0, µ * -|x| k- if x ≤ 0
where k + = 1.5 and k -= 0.5 for Ψ m flat (resp. k + = 1 and k -= 0.3 for Ψ m steep . The Ψ m are not usual c.d.f but it is easy to see that these functions satisfy Assumption 1.

For each function, the objective is to identify the stimulus s * such that µ * = 0.707 (for flat functions) or µ * = 0.5 (for steep functions). The values of mu * were chosen among the target probability that are reachable by Staircase. The target value of s * was set by translating the functions along the Y in order to have either s * = 0.66 (flat functions) or s * = 0.35 (steep functions). Finally, the psychometric functions were clipped to the probability interval [0.1, 0.95] to represent arbitrary guess and lapse rates.

During the experiments, only the value of µ * was provided to the different algorithms.

Results

Small Time Budget.

Figure 2 reports the evolution average simple regret over 100 runs for each method and psychometric function for time horizon T = 200. First, it is interesting to note that all methods tend to perform better on "flat" psychometric function than on their "steep" counterpart. This is due to the fact that for these functions vary less around s * , and thus it is easier to find a reasonably good stimulus value. In particular, all methods achieve good results for Ψ m flat , which can be explained by the fact that this psychometric function is significantly flat around s * .

Second, note that PsiMethod outperforms other algorithms for the psychometric function N steep . Indeed, in this case PsiMethod is able to maximize the information obtained throughout exploration by leveraging its additional assumption about the Gaussian c.d.f. -and this advantage is particularly important for small time budget. This behavior is less visible on N flat , as it is easier for other methods to obtain a good stimulus value since the function is flatter. However, PsiMethod performs poorly for the other psychometric functions, as they do not follow a Gaussian c.d.f. model. Third, while POO seems to converge toward the solution for every function, it achieves the worst regret in all the studied settings, as the rate of convergence is slow. Indeed, POO A) is not designed to take advantage of the monotonic property of Ψ, and B) does not have strong performance with small time horizon. Finally, it is important to note that DOS provides one of the best estimation -if not the best -in all these settings, even for the small time horizon T = 200. This robustness to variations of the shape of Ψ is a significant advantage of our method.

Interestingly, it can be seen that the regret trajectory of DOS sometimes increases for limited amount of times -particularly for steep functions. This is due to the fact that when the agent activates a new arm, she might moves from a s i > s * to a s i+1 < s * , (resp. from a s i < s * to a s i+1 > s * ). In this case, the regret may increase temporarily due to asymmetric shape of the psychometric function, or the fact that s i+1 is more distant from s * than s i . However, as additional arms are pulled, the sequence s i converges toward s * and the final regret does not suffer from these variations.

Large Time Budget.

Table 1 reports the average simple regret over 100 runs for different algorithm and psychometric function for three different time horizons : T = 500, 2000 and 10000.

It can be seen that except for N steep and T < 10000, DOS significantly outperforms its competitor in every case, and its advantage increases with T. Interestingly, Staircase and PsiMethod do not appear to converge, as their performance for T = 500 and T = 10000 are very close. This is due to the fact that these methods rely on manually constructed grids of hyperparameter (discretization of loc and scale for PsiMethod; scale of step size for Staircase) -this grid need to be perfectly tuned to the psychometric function to ensure convergence for large values of T, and thus requires prior knowledge of the function shape. Conversely, POO does converge toward s * , and outperforms Staircase and Psimethod for large values of T . This behavior is in line with the theoretical guarantees proven by [START_REF] Grill | Black-box optimization of noisy functions with unknown smoothness[END_REF] and the relation between threshold estimation and global optimization discussed in Section 2. However, DOS appears to consistently outperforms POO, which illustrates the difference between their respective regret bounds, ( 13) and ( 15).

Conclusion

In this works, we discussed the threshold optimization problem and its relation to the quantification of human perception in Psychophysics. We introduced a new method for solving the threshold estimation problem, inspired by both pure exploration continuous armed bandits and dichotomous search, called Dichotomous Optimistic Search, or DOS. We proved that DOS has strong theoretical guarantees that compares favorably to existing methods. We empirically studied DOS, and that showed that its performance compare advantageously to commonly used psychometric algorithms and recent black box optimization methods, both for small time budgets (that mimic psychometric experiments) and large time budgets (that illustrate convergence rate). Following these observations, we think that DOS might be a valuable tool to future investigation in psychophysics, by helping the interaction between experimenter and observer in psychometric experiments. Future work might include the use of more recent concentration bounds for Bernoulli random variable (see e.g. [START_REF] Kaufmann | Information Complexity in Bandit Subset Selection[END_REF]), that might entail a tighter regret bound. Proof. Without any loss of generality suppose that µ i > µ * . Note that {μ i (T ) + B T (N i (t)) < µ * } ⊂ {µ i -μi (T ) > B T (N i (t))} Hence, using the Chernoff Hoeffding concentration inequality (6),

q i < 2 exp -2N i (t)B T (N i (t)) 2 ≤ 2 exp -3N i (t) log T N i (t) ≤ 2 T 3
Proof of Lemma 3

Proof. We have

∆ i = |µ i -µ * | ≤ |μ i -µ i | A + |μ i -µ * | B
Since the first rule was not activated, this implies that (8) is not true, hence B ≤ B T (N * ).

Moreover, using the Chernoff Hoeffding concentration inequality (6), we have that with probability at least 1 -2 T 3 , A ≤ B T (N * ).

Hence,

∆ i ≤ 2B T (N * ) ≤ 3 log T N * ≤ 3 (log T ) 2 (log 2 T ) T
Proof. We prove Lemma 7 by iteration. For i = 1, we have s 1 = 1/2. Since s * ∈ [0, 1], |s * -1/2| ≤ 1/2. Hence the result is true for rank i = 1. Now suppose that the result holds for rank i. Then, A * a.s., where we used Lemma 5 in the first line, Ψ non decreasing for the second line, and for the last line the fact that the result holds at rank i and sign(s * -s i ) = -sign(s i -s * ).

Hence the result is true at rank i + 1.

Corollary 1. If Assumption 1 is true, then

P A * ∀i > 0, ∆ i ≤ νρ i = 1 (20)
Proof. This corollary is an immediate consequence of Lemma 7 and Assumption 1.

Lemma 8. Let i * defined as

i * . = log T (log 2 T )(log T ) 2 1 2 log(1/ρ) . (21) 
Then all the following properties are true (A) if log 2 T > -1/ log ρ and T > 16, then i * ≤ κ (B) ∀i > i * , A * a.s.

∆ i ≤ ν (log 2 T )(log T ) 2 T ,
Proof. Proof of (A).

i * ≤ log T (log 2 T )(log T ) 2 1 2 log(1/ρ) ≤ log(T ) 2 log(1/ρ) ≤ (log T )(log 2 T ) 2(log 2 T ) log(1/ρ) ≤ (log T )(log 2 T ) 2 < κ 2 .
where in the second line we used log (log 2 T )(log T ) 2 > 0 and in third line we used the fact that log 2 T > -1/ log ρ.

Proof of (B).

First note that 
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 1 Figure 1: Three psychometric functions N steep , β steep and Ψ m steep used for the threshold detection experiment. The star indicates the position of the objective s * = 0.35 and µ * = 0.5 for the steep psychometric functions. The lower and upper clipping of the functions (resp. µ min = 0.1 and µ max = 0.95) represent arbitrary guess rate and the lapse rate.
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 2 Figure 2: Comparison of the evolution of the average regret over 100 runs as a function of the number of stimuli presented to the observer, for a time horizon of T = 200, for each psychometric function. The standard deviation is reported using the shaded area.

  |s i+1 -s * | = |s i + 2 -i+1 sign(µ * -µ i ) -s * | = |s i -s * + 2 -i+1 sign(s * -s i )| ≤ 2 i+1

ρ

  i * = exp(i * log ρ) ≤ exp -log T (log 2 T )(log T ) ∆ i ≤ νρ i * ≤ ν (log 2 T )(log T ) 2 T To conclude proof of Theorem 1, let T ) ≤ (3 + ν) (log T ) 2 (log 2 T ) T P(E) + (1 -P(E)) ≤ (3 + ν) (log T ) 2 (log 2 T ) T + (1 -P(E))where in the first line we used the fact that R T ≤ 1. Moreover,P(E) = P(E ∩ A * ) + P(E ∩ (A \ A * )) + P(E ∩ (Ω \ A)) ≥ P(E ∩ A * ) A1 + P(E ∩ (Ω \ A)) ∩ A * ) = P(E|A * )P(A * ) = P(A * )and using (18), P(E ∩ (Ω \ A)) = P(E|Ω \ A)P(Ω

Table 1 :

 1 Average (± standard deviation) over 100 runs of the simple regret, for each method and Psychometric functions with time horizon T = 500, 2000 or 10000. The reported regret has been multiplied by 10 for readability purpose. The best result for each combination of psychometric function and time horizon is written in bold. ±0.48 1.01 ±0.97 1.43 ±0.23 1.20 ±0.27 N flat 0.47 ±0.33 0.52 ±0.39 0.87 ±0.16 0.65 ±0.22 β flat 0.43 ±0.36 0.64 ±0.55 1.09 ±0.22 1.20 ±0.27 Ψ m flat 0.29 ±0.25 0.70 ±0.89 0.85 ±0.20 0.35 ±0.18 T=2000 N steep 0.31 ±0.24 0.84 ±0.57 0.68 ±0.14 0.26 ±0.17 β steep 0.31 ±0.25 1.13 ±0.91 0.70 ±0.15 1.31 ±0.77 Ψ m steep 0.22 ±0.20 1.03 ±1.06 0.82 ±0.14 1.00 ±0.22 N flat 0.25 ±0.20 0.61 ±0.51 0.56 ±0.10 0.59 ±0.15 β flat 0.31 ±0.19 0.69 ±0.52 0.73 ±0.12 1.19 ±0.15 Ψ m flat 0.15 ±0.17 0.62 ±0.59 0.55 ±0.13 0.50 ±0.15 T=10000 N steep 0.14 ±0.10 1.10 ±0.81 0.32 ±0.07 0.23 ±0.17 β steep 0.14 ±0.11 0.86 ±0.70 0.36 ±0.06 1.17 ±0.66 Ψ m steep 0.10 ±0.10 1.16 ±0.95 0.43 ±0.12 0.83 ±0.34 N flat 0.15 ±0.10 0.64 ±0.43 0.32 ±0.07 0.52 ±0.17 β flat 0.17 ±0.13 0.58 ±0.42 0.33 ±0.05 1.19 ±0.23 Ψ m flat 0.08 ±0.09 0.63 ±0.70 0.23 ±0.05 0.61 ±0.19

	R T (×10) DOS	Staircase	POO	PsiMethod
	T=500			
	N steep	0.54 ±0.46 1.00 ±0.71 1.22 ±0.19 0.22 ±0.09
	β steep	0.47 ±0.29 0.94 ±0.64 1.21 ±0.21 1.51 ±0.77
	Ψ m steep	0.33		

Proof of Theorem 1

Let A = {∀1 ≤ i ≤ κ, N i (T ) < N * } . In other words, A is the event where (10) is never satisfied, thus all arms are activated using rule (8).

On Ω \ A, at least one arm satisfy (10), hence a promising arm is returned. Hence by using Lemma 3 we have

In the following, we examine the behavior of the regret on A. Let

We say that an event E is A * almost sure (A * a.s.) if P A * (E) = 1. One difficulty of our setting is that the sequence of activated arms (s i ) i≥1 is a priori random, as DOS has two choice for each new arm. However this problem is easily solved on A * , as stated by Lemma 5.

Lemma 5. P

Suppose without any loss of generality that µ * > µ i (the other case is proved similarly). A * a.s., we have

But arm i + 1 was activated using (8) hence

Thus,

µ * -μi (T ) > 0.

Hence the conclusion.

An consequence of Lemma 5 is that on A * the sequence of arms s i is fixed. Note that the number of pull per arm is still random. Now we can prove that the event A * has high probability on A. Lemma 6. P (A * ) = P (A * ∩ A) ≥ P(A) -2 T . Proof. This directly results from Lemma 2 and the previous lemma by taking the union bound on all arms and all times.

The following Lemma shows that the sequence of activated arms s i converge exponentially fast toward the threshold s * , independently of the smoothness of Ψ. Lemma 7. ∀i, P A * |s i -s * | ≤ 2 -i = 1