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The Minimum Dominating Set problem is
polynomial for (claw, P8)-free graphs
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Abstract

We prove that the Minimum Dominating Set problem is polynomial for
the class of (claw, P8)-free graphs.

Keywords: Minimum Dominating Set, polynomial time, claw-free graph,
Pk-free graph.

1 Introduction

M. Yannakakis and F. Gavril [9] showed in 1980 that the Minimum Dominating Set
problem restricted to claw-free graphs is NP -complete. Then in 1984, A. Bertossi
[2] showed that the Minimum Dominating Set problem is also NP -complete for
split graphs, a subclass of P5-free graphs. More recently, in 2016, D. Malyshev [8]
proved that the Minimum Dominating Set problem is polynomial for (K1,4, P5)-free
graphs, hence for (claw, P5)-free graphs. To our knowledge, the complexity of the
Minimum Dominating Set problem is unknown for (claw, Pk)-free graphs for every
fixed k ≥ 6. We show that the Minimum Dominating Set problem is polynomial for
(claw, P8)-free graphs.

Definitions and notations

We are only concerned with simple undirected graphs G = (V,E). The reader
is referred to [3] for definitions and notations in graph theory. For v ∈ V , N(v)
denotes its neighborhood and N [v] = N(v)∪ {v} its closed neighborhood. A vertex
v is universal if N [v] = V . For v ∈ V and A ⊆ V, we denote by NA(v) = N(v) ∩ A
(NA[v] = (N(v) ∩A) ∪ {v}) its (closed) neighborhood in A. For X ⊆ V , A ⊆ V, we
denote NA(X) =

⋃
x∈X NA(x) and NA[X ] = NA(X) ∪X .

The contraction of an edge uv ∈ E removes the vertices u and v from V , and replaces
them by a new vertex that is adjacent to the previous neighbors of u and v (neither
introducing self-loops nor multiple edges). The graph obtained from G after the
contraction of uv is denoted by G/uv.
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For S ⊆ V , let G[S] denote the subgraph of G induced by S, which has vertex set S
and edge set {uv ∈ E | u, v ∈ S}. For v ∈ V , we write G− v = G[V \ {v}] and for a
subset V ′ ⊆ V we write G− V ′ = G[V \ V ′]. For a fixed graph H we write H ⊆i G
whenever G contains an induced subgraph isomorphic to H . For a set {H1, . . . , Hp}
of graphs, G is (H1, . . . , Hp)-free if G has no induced subgraph isomorphic to a graph
in {H1, . . . , Hp}; if p = 1 we may write H1-free instead of (H1)-free. For two disjoint
induced subgraphs G[A], G[B] of G, G[A] is complete to G[B] if ab ∈ E for every
a ∈ A, b ∈ B, G[A] is anticomplete to G[B] if ab 6∈ E for every a ∈ A, b ∈ B.
For k ≥ 1, Pk = u1 − u2 − · · · − uk is the cordless path on k vertices, that is,
V (Pk) = {u1, . . . , uk} and E(Pk) = {uiui+1 | 1 ≤ i ≤ k − 1}. For k ≥ 3, Ck =
u1−u2−· · ·−uk−u1 is the cordless cycle on k vertices, that is, V (Ck) = {u1, . . . , uk}
and E(Ck) = {uiui+1 | 1 ≤ i ≤ k − 1} ∪ {uku1}. For k ≥ 4, Ck is called a hole. A
graph without a hole is chordal.
A set S ⊆ V is called a stable set or an independent set if G[S] does not contain
any edge. The maximum cardinality of an independent set in G is denoted by α(G).
A set S ⊆ V is called a clique if G[V ] is a complete graph, i.e., every pairwise
distinct vertices u, v ∈ S are adjacent. The graph C3 = K3 is a triangle. K1,p is
the star on p + 1 vertices, that is, the graph with vertices u, v1, v2 . . . , vp and edges
uv1, uv2, · · · , uvp. The claw is K1,3.
A set S ⊆ V is a dominating set if every vertex v ∈ V is either an element of S or is
adjacent to an element of S. The minimum cardinality of a dominating set in G is
denoted by γ(G) and called the domination number of G. A dominating set S with
|S| = γ(G) is called a minimum dominating set. Following [7] a minimum dominat-
ing set is also called a γ-set. We denote V + ⊆ V the subset of vertices v of G such
that γ(G− v) > γ(G). If S ⊂ V is both a dominating and an independent set then
S is an independent dominating set. The minimum cardinality of an independent
dominating set in G is denoted by i(G). Clearly we have γ(G) ≤ i(G) ≤ α(G). Note
that a minimum independent dominating set is a minimum maximal independent

set.

Previous results

We give some results of the literature concerning the Minimum Dominating Set
problem that will be useful in the following. D. Bauer et al. showed in [4] that for
every non-isolated vertex v, if v ∈ V + then v is in every γ-set of G. Allan et al.
[1] proved that γ(G) = i(G) holds for every claw-free graph. Yannakakis et al. [9]
proved that the Minimum Dominating Set problem restricted to claw-free graphs is
NP -complete. D. Malyshev [8] proved that the Minimum Dominating Set problem
is polynomial for (K1,4, P5)-free graphs hence for (claw, P5)-free graphs. As Farber
[6] proved, a minimum independent dominating set can be determined in linear-time
over the class of chordal graphs, the Minimum Dominating Set problem restricted
to claw-free chordal graphs is polynomial.

Organization

The next section give some algorithmic properties. Two properties will allow us to
make some simplifications on the graphs G that we consider. Two others will help
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us to conclude that computing γ(G) is polynomial when G have a specific structure
relatively to a fixed size subgraph. Then we consider the case where the graph G
has a long cycle. From there, we show our main result, starting from (claw, P6)-
free graphs and finishing with (claw, P8)-free graphs. We conclude by some open
questions regarding (claw, Pk)-free graphs for k ≥ 9.

2 Algorithmic Properties

We give two properties that authorize us to make some assumptions and simplifica-
tions for the graphs we consider.

Property 2.1 Let G be a graph. If u, v are two vertices such that N [u] = N [v] then
γ(G) = γ(G/uv).

Proof: Let u′ be the vertex of G/uv resulting from the contraction of uv. Let Γ be
a γ-set of G. At most one of u and v is in Γ. If u ∈ Γ then let Γ′ = (Γ \ {u})∪{u′}.
If u, v 6∈ Γ then let Γ′ = Γ. In the two cases Γ′ is a dominating set of G/uv, so
γ(G) = |Γ′| ≥ γ(G/uv). Now suppose that γ(G) > γ(G/uv). Let Γ′ be a γ-set
of G/uv. If u′ ∈ Γ′ then (Γ′ \ {u′}) ∪ {u} is a dominating set of G such that
|(Γ′ \ {u′}) ∪ {u}| = γ(G/uv) < γ(G), a contradiction. If u′ 6∈ Γ′ then Γ′ is a
dominating set of G, a contradiction. Hence γ(G) = γ(G/uv). �

Property 2.2 Let G = (V,E) be a connected claw-free graph with uv ∈ E such

that u is a leaf. There exists Γ a minimum dominating set of G that consists of

Γ = {v} ∪ Γ′ where Γ′ is a minimum dominating set of G′ = G−N [v].

Proof: Since u is a leaf there exists Γ a minimum dominating set of G with v ∈ Γ.
Let w ∈ N(v)\{u}. Since G is claw-free then N(w)\N [v] is a clique. We can assume
that w 6∈ Γ, otherwise replacing w by w′ ∈ N(w) \N [v] we have another γ-set of G
(note that if N(w) \ N [v] is empty then Γ cannot be a minimum dominating set).
We show that Γ′ = Γ \N [v] is a minimum dominating set of G′ = G−N [v]. Clearly
Γ′ dominates G′. If there exists S a γ-set of G′ such that |S| < |Γ′| then S ∪ {v} is
a dominating set of G with |S ∪ {v}| < Γ, a contradiction. �

As a consequence if a minimum dominating set of G′ = G−N [v] can be determined
in polynomial time then a minimum dominating set of G can be determined in poly-
nomial time.

We show two conditions on the structure of G that authorize us to directly conclude
that computing a γ-set for G can be done in polynomial time.

Property 2.3 Let k > 0 be a fixed positive integer and G = (V,E) be a graph. If

there exists T ⊂ V of size |T | ≤ k such that V = N [T ] then computing a minimum

dominating set for G is polynomial.

Proof: We have γ(G) ≤ k. So a minimum dominating set can be computed in
O(nk). �
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Property 2.4 Let k, k′ > 0 two fixed positive integers and G = (V,E) be a graph.

If there exists T ⊂ V of size |T | ≤ k such that W = V \N [T ] has a size |W | ≤ k′

then computing a minimum dominating set for G is polynomial.

Proof: We have γ(G) ≤ k + k′. So a minimum dominating set can be computed
in O(nk+k′). �

3 G has a long cycle

We give two lemmas that will authorize us to conclude that the Minimum Domi-
nating Set problem is polynomial when G, a (claw, Pk)-free graph, contains a long
induced cycle.

Lemma 3.1 For every fixed k ≥ 6, if G is a (claw, Pk)-free connected graph such

that Ck ⊆i G, then a minimum dominating set of G can be given in polynomial time.

Proof: Let Ck = v1 − · · · − vk − v1, Ck ⊆i G. Let v 6∈ V (Ck) be such that
N(v)∩V (Ck) 6= ∅. Since G is claw-free and k ≥ 6, we have 2 ≤ |N(v)∩V (Ck)| ≤ 4.
If |N(v) ∩ V (Ck)| = 2, the two neighbors of v in Ck must be adjacent, thus there
is an induced Pk-subgraph that is a contradiction. For 3 ≤ |N(v) ∩ V (Ck)| ≤ 4,
let w be a neighbor of v. If N(w) ∩ V (Ck) = ∅ then there is a claw centered onto
v, a contradiction. Hence every neighbor of v has a neighbor in Ck and therefore
N [Ck] = V . So, from Property 2.3 we can compute a γ-set of G in polynomial time.
�

Lemma 3.2 For every fixed k ≥ 6, if G is a (claw, Pk, Ck)-free connected graph such

that Ck−1 ⊆i G, then a minimum dominating set of G can be given in polynomial

time.

Proof: Let Ck−1 = v1 − · · · − vk−1 − v1, Ck−1 ⊆i G and v 6∈ V (Ck−1) such that
N(v)∩ V (Ck−1) 6= ∅. We have 2 ≤ |N(v)∩ V (Ck−1)| ≤ 4 for k ≥ 7 and 2 ≤ |N(v)∩
V (Ck−1)| ≤ 5 for k = 6. Let w be a neighbor of v such that N(w) ∩ V (Ck−1) = ∅.
If 3 ≤ |N(v) ∩ V (Ck−1)| ≤ 5, then there is a claw centered onto v, a contradiction.
When |N(v)∩V (Ck−1)| = 2 there is an induced Pk-subgraph that is a contradiction.
So N [Ck−1] = V and therefore from Property 2.3 we can compute a γ-set of G in
polynomial time. �

4 G is (claw, Pk, Ck, Ck−1)-free, Ck−2 ⊆i G, k ≤ 8

In this section we prove that, for k ≤ 8, if G is a (claw, Pk, Ck, Ck−1)-free graph such
that Ck−2 ⊆i G then the Minimum Dominating Set problem is polynomial. The
first lemma gives a structural property for G. We use this property to prove two
other lemmas, the first one for k = 6, the second for 7 ≤ k ≤ 8.
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Lemma 4.1 For every fixed k ≥ 6, if G is a (claw, Pk, Ck, Ck−1)-free connected

graph such that Ck−2 ⊆i G, then W = V \N [V (Ck−2)] is an independent set.

Proof: Let C = Ck−2 = v1 − · · · − vk−2 − v1, C ⊆i G and v ∈ N [V (C)] \ V (C).
We have 2 ≤ |NC(v)| ≤ 5 (note that |NC(v)| = 5 only for C = C5). Let W =
V \ N [V (C)] and let w ∈ W be a neighbor of v. If 3 ≤ |NC(v)| ≤ 5, there is a
claw, a contradiction. Hence, v is such that NC(v) = {vi, vi+1}, 1 ≤ i ≤ k − 2 (for
convenience, when i = k − 2, we read vi+1 = v1). By Property 2.1, we can assume
that all contractibles vertices of G are contracted. Moreover, from Property 2.2 we
can assume that G has no leaves.
Assume for contradiction that w has a neighbor w′, w′ ∈ W . When w′ has no
neighbor inN(V (C)), there is an induced Pk-subgraph that is a contradiction. Hence
w′ has a neighbor in N(V (C)). Recall that N [w] 6= N [w′]. If vw′ 6∈ E then there is
an induced Pk-subgraph, a contradiction. Hence, w and w′ have the same neighbors
in N(V (C)) but not in W . So there exists r ∈ W with rw ∈ E, rw′ 6∈ E. The
arguments above implies rv ∈ E. But G[{r, v, vi, w

′}] is a claw, a contradiction.
Hence, W = V \N [V (Ck−2)] is independent. �

Lemma 4.2 If G is a (claw, P6, C6, C5)-free connected graph such that C4 ⊆i G,

then a minimum dominating set of G can be given in polynomial time.

Proof: Let C = C4 = v1 − · · · − v4 − v1, C ⊆i G and v 6∈ V (C) such that
N(v) ∩ V (C) 6= ∅. We have 2 ≤ |NC(v)| ≤ 4. Let W = V \N [C] and w ∈ W be a
neighbor of v. If 3 ≤ |NC(v)| ≤ 4 then G contains a claw, a contradiction. Hence,
NC(v) = {vi, vi+1}, 1 ≤ i ≤ 4 (for convenience, when i = 4, we read vi+1 = v1). We
assume that all contractibles vertices of G are contracted and G has no leaves.
By Property 2.4, if |W | ≤ 1 then a minimum dominating set can be computed in
polynomial time. So we assume that |W | ≥ 2 and by Lemma 4.1, we know that W
is an independent set. We show that all vertices v ∈ N [W ] \ W have exactly the
same neighbors in C.
Let w,w′ ∈ W , w 6= w′, be such that w has a neighbor v ∈ N [C] \ V (C) and w′

has a neighbor v′ ∈ N [C] \ V (C). Since G is claw-free v 6= v′. W.l.o.g. NC(v) =
{v1, v2}. Assume that NC(v) 6= NC(v

′). W.l.o.g. NC(v
′) = {v2, v3} (note that

NC(v
′) = {v1, v4} is symmetric). If vv′ 6∈ E then w− v− v1 − v4 − v3 − v′ = P6, else

v1 − v − v′ − v3 − v4 = C5, a contradiction. Now it remains NC(v
′) = {v3, v4}. We

have vv′ 6∈ E else there is a claw, but w−v−v1−v4−v′−w′ = P6, a contradiction.
Thus, w.l.o.g. every vertex w ∈ W has only neighbors v ∈ N [C] \ V (C) such that
N(v) = {v1, v2}.
Let |W | = q, q ≥ 2. We show that γ(G) = q + 1. Since W is independent and
for every distinct w,w′ ∈ W , we have N [w] ∩ N [w′] = ∅, we must take q vertices
of N [W ] to dominate the vertices of W . This vertices cannot dominate v3 nor v4.
Hence γ(G) ≥ q + 1.
We construct a γ-set of G as follows. We set R by taking exactly one neighbor of
each w,w ∈ W . Clearly, Γ = R∪ {v3} dominates V (C)∪N [R]. Suppose that there
exists s ∈ N [C] \ V (C) that is not dominated by Γ. If NC(s) = {v1, v2} then there
exists r ∈ R such that G[{r, s, v1, v4}] is a claw, a contradiction. If NC(s) = {v1, v4}
then w − v − v2 − v3 − v4 − s = P6, a contradiction. If NC(s) = {v1, v2, v4} then
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there exists r ∈ R such that G[{r, s, v2, v3}] is a claw, a contradiction. Hence every
s 6∈ N [R] ∪ V (C) is dominated by v3. It follows that Γ is a γ-set of G. Clearly Γ
can be constructed in polynomial time. �

Lemma 4.3 For k ∈ {7, 8}, if G is a (claw, Pk, Ck, Ck−1)-free connected graph such

that Ck−2 ⊆i G, then a minimum dominating set of G can be given in polynomial

time.

Proof: By Properties 2.1 and 2.2, we can assume that all contractibles vertices of G
are contracted and that G has no leaves. Let C = Ck−2 = v1−· · ·−vk−2−v1, C ⊆i G
and v ∈ N [C] \ V (C). We have 2 ≤ |NC(v)| ≤ 5 (note that |NC(v)| = 5 only for
C = C5). Let S = N [C] \ V (C), W = V \ N [C] and w ∈ W a neighbor of
v. If 3 ≤ |NC(v)| ≤ 4 then G has a claw, a contradiction. Hence, v is such that
NC(v) = {vi, vi+1}, 1 ≤ i ≤ k−2 (for convenience, when i = k−2, we read vi+1 = v1).

We show that for every w ∈ W, there exists v, v′ ∈ N(w) such that NC(v)∩NC(v
′) =

∅. Let w ∈ W and v, v′ ∈ NS(w), v 6= v′.
First, we show that NC(v) 6= NC(v

′). Suppose that NC(v) = NC(v
′), w.l.o.g.

NC(v) = {v1, v2}. We have vv′ ∈ E else G[{v, v′, v1, vk−2}] is a claw. Since N [v] 6=
N [v′] there exists u ∈ V such that uv ∈ E and uv′ 6∈ E. If u ∈ W then by Lemma
4.1 uw 6∈ E but G[{u, v, w, v1}] is a claw, a contradiction. So, we have u ∈ S. If
NC(u) = {v1, v2} then G[{u, v′, v2, v3} is a claw, a contradiction. So NC(u) 6= NC(v)
and we can assume that wu 6∈ E, otherwise we have u, v two neighbors of w with
distinct neighborhoods in C. If NC(u)∩NC(v) = ∅ then G[{u, v, v1, w}] is a claw, a
contradiction. So, w.l.o.g., we assume thatNC(u)∩NC(v) = {v1} but G[{u, v, v2, w}]
is a claw, a contradiction. Hence N [v] = N [v′] and v, v′ can be contracted implying
that w is a leaf, a contradiction. Thus for every w,w ∈ W, there exists v, v′ ∈ NS(w),
v 6= v′ such that NC(v) 6= NC(v

′).
Now we show that that NC(v)∩NC(v

′) = ∅. W.l.o.g. assume that NC(v) = {v1, v2}
and NC(v

′) = {v2, v3}. If vv′ ∈ E then v1 − v − v′ − v3 − · · · − vk−2 − v1 = Ck−1,
else v1 − v−w− v′ − v3 − · · ·− vk−2− v1 = Ck, a contradiction. Thus every w ∈ W,
has two neighbors v, v′ ∈ S such that NC(v) ∩NC(v

′) = ∅.

It follows from Property 2.4 that we can assume that |W | ≥ 2. So let w,w′ ∈ W
(recall ww′ /∈ E). Since both w and w′ have two neighbors in S with non in-
tersecting neighborhoods in C, let v ∈ N(w), v′ ∈ N(w′) such that NC(v) ∩
NC(v

′) = ∅. W.l.o.g. NC(v) = {v1, v2}. Assume that NC(v
′) = {v3, v4} (note

that N(v′) = {vk−2, vk−3} is symmetric). If vv′ ∈ E then G[{v, v′, v1, w}] is a claw,
else w − v − v1 − vk−2 − · · · − v4 − v′ − w′ = Pk, a contradiction. Hence the two
neighborhoods of NC(v) and NC(v

′) are not adjacent. It follows that for k = 7,
since Ck−2 = C5, such a configuration is impossible. This yields to |W | ≤ 1 and by
Property 2.4 a minimum dominating set can be computed in polynomial time.

Now, we focus on the remaining case of k = 8. Let |W | = q, q ≥ 2. We show that
γ(G) = q+2. Since W is independent and that for every distinct vertices w,w′ ∈ W ,
we have N [w]∩N [w′] = ∅, we must take q vertices of N [W ] to dominate the vertices
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of W . Let w,w′ ∈ W . From above we can assume that w has a neighbor v such that
NC(v) = {v1, v2} and w′ has a neighbor v′ such that NC(v

′) = {v4, v5} (each vertex
of W has two neighbors whose are neighbors of respectively {v1, v2} and {v4, v5}
since C = C6). G being claw-free we have vv′ 6∈ E. The q vertices that dominates
W cannot dominate v3 and v6. Hence γ(G) ≥ q + 1.
Suppose that γ(G) = q + 1. The minimum dominating set of G must contain a
vertex s ∈ S a neighbor of both v3 and v6. If vs ∈ E, respectively v′s ∈ E, then G
has a claw (s cannot be complete to NC(v) ∪Nc(v

′)), a contradiction. Also, s must
have (v1 or v5) and (v2 or v4) as neighbors else there is a claw. We assume first that
N(s) = {v1, v2, v3, v6}. Then w− v− v1 − s− v3 − v4 − v′ −w′ = P8 (recall vv′ 6∈ E
since G is claw-free), a contradiction. The case where N(s) = {v3, v4, v5, v6} is sym-
metric. Now we assume that N(s) = {v1, v3, v4, v6} (note that N(s) = {v2, v3, v5, v6}
is symmetric). Then w− v− v2 − v3 − s− v6 − v5 − v′ = P8, a contradiction. Hence
γ(G) ≥ q + 2.

We show that Γ = {v1, v4} ∪W is a γ-set of G. Clearly Γ dominates N [W ]∪ V (C).
Let s 6∈ N [W ] ∪ V (C). So s ∈ S. Suppose that sv1, sv4 6∈ E. From above ws 6∈ E
and vs 6∈ E else G[{v, s, v1, w}] is a claw. If N(s) = {v2, v3} then w − v − v1 −
v6 − v5 − v4 − v3 − s = P8, a contradiction. By symmetry N(s) 6= {v5, v6}. As
shown before N(s) = {v2, v3, v5, v6} is not possible. Hence every s 6∈ N [W ] ∪ V (C)
is dominated by v1 or v4. It follows that Γ = {v1, v4} ∪W is a γ-set of G. �

By Lemmas 3.1, 3.2, 4.2, 4.3 we immediately obtain the corollary below.

Corollary 4.4 Let G a (claw, Pk)-free graph, 6 ≤ k ≤ 8. If Cl ⊆i G, k−2 ≤ l ≤ k,
then a minimum dominating set of G can be given in polynomial time.

5 G is (claw, P8)-free

Here we conclude by the main result proving that the Minimum Dominating Set
problem is polynomial in the class of (claw, P8)-free graphs. Starting from the
result stating that the problem is polynomial when G is (claw, P5)-free, we suc-
cessively prove that the problem is polynomial for (claw, P6)-free, (claw, P7)-free
graphs. Then we conclude for the class of (claw, P8)-free graphs.
In [8] D. Malyshev proved that the Minimum Dominating Set problem is polynomial
for the class of (K1,4, P5)-free graphs. Hence we obtain the following lemma.

Lemma 5.1 Let G be a connected (claw, P5)-free graph. Computing a minimum

dominating set is polynomial-time solvable.

Lemma 5.2 Let G be a connected (claw, P6)-free graph. Computing a minimum

dominating set is polynomial-time solvable.

Proof: It follows from Corollary 4.4, that if Cl ⊆i G, 4 ≤ l ≤ 6, then computing a
minimum dominating set is polynomial. When G is (claw, C4, C5, C6, P6)-free then
it is chordal. The Minimum Dominating Set problem is polynomial for claw-free
chordal graphs. �
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Lemma 5.3 Let G be a connected (claw, C5, C6, C7, P7)-free graph. Computing a

minimum dominating set is polynomial-time solvable.

Proof: By Properties 2.1 and 2.2, we can assume that all contractibles vertices
of G are contracted and that G has no leaves. By Lemma 5.2 we can assume that
P6 ⊆i G. Let P = v1 − v2 − v3 − v4 − v5 − v6.
Let W = V \ N [V (P )]. It follows from Property 2.3 that if W = ∅ then com-
puting a minimum dominating set is polynomial. From now on W 6= ∅. Let
S = {v ∈ V \ V (P ) such that 2 ≤ |NP (v)| ≤ 4}, Si ⊆ S being the set of vertices v
such that |NP (v)| = i. Let Hi = {v ∈ S2 : NP (v) = {vi, vi+1}, 1 ≤ i ≤ 5}. Since G
is claw-free each Hi is complete. If there is an edge riri+1 with ri ∈ Hi, ri+1 ∈ Hi+1

then P = v1 − · · · − vi − ri − ri+1 − vi+2 − · · · − v6 = P7, a contradiction. If there
is an edge rirj with ri ∈ Hi, rj ∈ Hj and j ≥ i + 3 then Cp ⊆i G, p ≥ 5. So H1 is
anticomplete to H2, H4, H5, the component H2 is anticomplete to H3, H5, and the
component H3 is anticomplete to H4.

We define Ri as the set of vertices of Hi having a neighbor in W , Ri = {v ∈ Hi :
NW (v) 6= ∅}, 1 ≤ i ≤ 5. Since G is P7-free R1 = R5 = ∅.

Let r ∈ Ri, r
′ ∈ Ri, r 6= r′, i ∈ {2, 4} be such that r, respectively r′, has a neighbor

w ∈ W , respectively w′ ∈ W . We show that NS(r) = NS(r
′).

By contradiction we assume that there exists s ∈ S such that rs ∈ E, r′s 6∈
E. From above s 6∈ Ri ∪ Hi−1 ∪ Hi+1. Let i = 2 (the case i = 4 is sym-
metric). Recall that H2 is anticomplete to H1, H3, H5, thus s ∈ H4 ∪ S3 ∪ S4.
If s ∈ H4 then G[{r, w, v3, s}] is a claw, a contradiction. Hence s ∈ S3 ∪ S4.
When NP (s) = {v1, v2, v3} then G[{r′, v3, v4, s}] is a claw, a contradiction. When
NP (s) = {v2, v3, v4} then G[{r′, v1, v2, s}] is a claw, a contradiction. When NP (s) =
{v3, v4, v5} or NP (s) = {v4, v5, v6} then G[{r, v2, w, s}] is a claw, a contradiction. So
s ∈ S4. When NP (s) = {v1, v2, v3, v4} then G[{r, v1, v4, s}] is a claw, a contradic-
tion. When NP (s) = {v2, v3, v4, v5} then G[{r,′ v1, v2, s}] is a claw, a contradiction.
When NP (s) = {v3, v4, v5, v6} then G[{r, v4, v6, s}] is a claw, a contradiction. Now
let i = 3. Recall that H3 is anticomplete to H2, H4, thus s ∈ H1 ∪ H5 ∪ S3 ∪ S4.
If s ∈ H1 (the case s ∈ H5 is symmetric) then G[{r, w, v3, s}] is a claw, a contra-
diction. Hence s ∈ S3 ∪ S4. If NP (s) = {v1, v2, v3} (the case NP (s) = {v4, v5, v6}
is symmetric) then G[{r, w, v4, s}] is a claw, a contradiction. If NP (s) = {v2, v3, v4}
(the case NP (s) = {v3, v4, v5} is symmetric) then G[{r′, v4, v5, s}] is a claw, a con-
tradiction. So s ∈ S4. When NP (s) = {v1, v2, v4, v5} or NP (s) = {v1, v2, v5, v6}
then G[{r, v1, v5, s}] is a claw, a contradiction. When NP (s) = {v2, v3, v5, v6} then
G[{r′, v3, v4, s}] is a claw, a contradiction. When NP (s) = {v1, v2, v3, v4} (the case
NP (s) = {v3, v4, v5, v6} is symmetric) then G[{r′, v4, v5, s}] is a claw, a contradiction.
Hence NP (s) = {v2, v3, v4, v5} but G[{r, v2, v5, s}] is a claw, a contradiction. Thus
NS(r) = NS(r

′).

Let r2 ∈ R2, r
′
2 ∈ R2, r2 6= r′2 be such that r2, respectively r′2, has a neighbor w ∈ W ,

respectively w′ ∈ W . Let r4 ∈ R4, r
′
4 ∈ R4, r4 6= r′4 be such that r4, respectively

r′4, has w, respectively w′, as neighbor. We show that NS\H4
(r2) = NS\H4

(r′2),
respectively NS\H2

(r4) = NS\H2
(r′4).
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By contradiction we assume that there exists s ∈ S such that r2s ∈ E, r′2s 6∈ E.
From above s 6∈ H1 ∪ H2 ∪ H3. When s ∈ H4 we know that s is not a neigh-
bor of w. If s ∈ H4 ∪ H5 then G[{r2, v2, w, s}] is a claw, a contradiction. Hence
s ∈ S3 ∪ S4. When NP (s) = {v1, v2, v3} then G[{r′2, v3, v4, s}] is a claw, a contra-
diction. When NP (s) = {v2, v3, v4} then G[{r′2, v1, v2, s}] is a claw, a contradiction.
When NP (s) = {v3, v4, v5} then G[{r2, v2, w, s}] is a claw, a contradiction. When
NP (s) = {v4, v5, v6} then G[{r2, v4, v6, s}] is a claw, a contradiction. So s ∈ S4.
When NP (s) = {v1, v2, v4, v5} or NP (s) = {v1, v2, v5, v6} then G[{r, v1, v5, s}] is
a claw, a contradiction. When NP (s) = {v2, v3, v5, v6} then G[{r′, v3, v4, s}] is a
claw, a contradiction. When NP (s) = {v1, v2, v3, v4} then G[{r2, v1, v4, s}] is a claw,
a contradiction. When NP (s) = {v2, v3, v4, v5} then G[{r′2, v1, v2, s}] is a claw, a
contradiction. When NP (s) = {v3, v4, v5, v6} then G[{r2, v4, v6, s}] is a claw, a con-
tradiction. Thus NS\H4

(r2) = NS\H4
(r′2) and by symmetry, for r′4 ∈ R4, r

′
4 6= r4, we

have NS\H2
(r4) = NS\H2

(r′4).

Let w ∈ W . We show that w cannot have two neighbors ri, ri+1 with ri ∈ Ri,
ri+1 ∈ Ri+1. Suppose for contradiction that these two neighbors exist. Then v1 −
· · ·−vi−ri−w−ri+1−vi+2−· · ·−v6 = P8, a contradiction. Now, since R1 = R5 = ∅, if
w has two neighbors ri ∈ Ri, rj ∈ Rj , i 6= j, these two neighbors are r2 ∈ R2, r4 ∈ R4

and r2r4 ∈ E, else w−r4−v4−v3−r2−w = C5. Moreover, when w has two neighbors
r2 ∈ R2, r4 ∈ R4, then for each neighbor w′ ∈ NW (w), w′ has r2 and r4 as neighbors.
Assume for contradiction that w has a neighbor w′ ∈ W such that w′r2 6∈ E (by
symmetry w′r4 6∈ E is the same case). Then w′ − w − r2 − v3 − · · · − v6 = P7, a
contradiction. It follows that N [w] = N [w′], a contradiction.
Hence setting Z24 = {w ∈ W : w has two neighbors r2 ∈ R2, r4 ∈ R4}, Z24 is an
independent set.

Let w,w′ ∈ Z24, w 6= w′. Since G is claw-free we have N(w) ∩N(w′) = ∅. We show
that NR2

(w) is anticomplete to NR4
(w′) and NR4

(w) is anticomplete to NR2
(w′). By

contradiction if w has a neighbor r2 ∈ R2, w
′ has a neighbor r4 ∈ R4, and r2r4 ∈ E

then G[{v2, r2, w, r4}] is a claw, a contradiction.

Let Zi = {w ∈ W : w has a neighbor in Ri \ (NRi
(Z24)}, 2 ≤ i ≤ 4}.

We show that Z2, Z3, Z4 are pairwise anticomplete. If there is an edge w2w4, w2 ∈
Z2, w4 ∈ Z4, with r′2 ∈ R2, r′4 ∈ R4 the neighbors of w2, w4 respectively, then
w2 − r′2 − v3 − v4 − r′4 − w4 − w2 = C6 (r′2r

′
4 6∈ E else G[{v2, r

′
2, w2, r

′
4}] is a claw).

If there is an edge w2w3, w2 ∈ Z2, w3 ∈ Z3, with r′2 ∈ R2, r
′
3 ∈ R3 the neighbors of

w2, w3 respectively, then w2 − r′2 − v3 − r′3 − w3 − w2 = C5 (recall r′2r
′
3 6∈ E). By

symmetry there is no edge between Z3 and Z4.

Let Y = W \ (Z2 ∪ Z3 ∪ Z4 ∪ Z24). One can observe that for every w ∈ Y we have
NZ2

(w) = NZ4
(w) = NZ24

(w) = ∅ else P7 ⊆i G.
Let Y3 = {w ∈ Y : w has a neighbor in Z3}. If there exists w

′ ∈ Y \ Y3 such that w′

has a neighbor w,w ∈ Y3, then P7 ⊆i G. Hence Y = Y3.

We show that we can assume that Z2, Z4, Y3 are three independent sets. The argu-
ments are the same for the three sets, so we show that Z2 is an independent set. For
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contradiction, we assume that there are w1, w2 ∈ Z2 such that w1w2 ∈ E. We prove
that NR2

(w1) = NR2
(w2). If NR2

(w1) 6= NR2
(w2) then there exists r2 ∈ R2 which is

a neighbor of w1 but not a neighbor of w2. Then w2−w1− r2− v3−· · ·− v6 = P7, a
contradiction. If NZ2

(w1) 6= NZ2
(w2) then there exists w3 ∈ Z2 such that w2w3 ∈ E,

w1w3 6∈ E, but G[{v2, r2, w1, w3}] is a claw, a contradiction. Hence N [w1] = N [w2],
a contradiction. Hence Z2, Z4, Y3 are three independent sets.

Since G is claw-free then for every two distinct vertices w1, w2 ∈ Z2 ∪ Z4 ∪ Y3 we
have N(w1) ∩N(w2) = ∅.
We prove that for every w ∈ Y3, N(w) is a clique. Let w ∈ Z3. Suppose there are s, s

′

two non adjacent vertices in N(w). Since G is claw-free s, s′ cannot have a common
neighbor in R3. Let r ∈ R3 be a neighbor of s. Then s′−w−s−r−v3−v2−v1 = P7,
a contradiction.

Since G is claw-free, if there are a vertex r ∈ Ri with a neighbor z ∈ Zi and a vertex
s ∈ S such as sz 6∈ E and vi 6∈ N(s) then G contains a claw, a contradiction, (note
that vi+1 6∈ N(s) is symmetric). Hence N(Zi) is anticomplete to Hj, j 6= i.

We show that we can assume that Z2 = Z4 = ∅. The arguments are the same
in the two cases, so we consider Z2. Let r, r′ ∈ R2 be two neighbors of w ∈ Z2.
We show that N [r] = N [r′]. Since NR(w) = NR2

(w) and rr′ ∈ E then, as proved
above, NS(r) = NS(r

′). For two distinct w1, w2 ∈ Z2, N(w1) ∩ N(w2) = ∅. Hence,
N [r] = N [r′], a contradiction. Then w is a leaf, a contradiction.

Now we study the structure of Z3. For every distinct two vertices w1, w2 ∈ Z3

such that w1w2 ∈ E, there cannot exist two distinct vertices w′
1, w

′
2 ∈ Z3 such that

w1w
′
1 ∈ E, w′

1w2 6∈ E and w2w
′
2 ∈ E, w1w

′
2 6∈ E. For contradiction we suppose that

such two vertices exist. We assume first that w2 has a neighbor r2 ∈ R3 such that
r2w1 6∈ E. If w′

1r2 6∈ E then v1−v2−v3−r2−w2−w1−w′
1 = P7 else G[{v4, r2, w2, w

′
1}]

is a claw, a contradiction. So w1, w2 have a common neighbor r1 ∈ R3. If w
′
1r1 ∈ E

then G[{v3, r1, w2, w
′
1}] is a claw, a contradiction. Thus w′

1r1 6∈ E and w′
1 has

a neighbor r′1 ∈ R3, r
′
1 6= r1. If r′1w2 ∈ E then G[{v3, r

′
1, w2, w

′
1}] is a claw, a

contradiction. So r′1w2 6∈ E. If r′1w1 6∈ E then v1− v2− v3− r′1−w′
1−w1−w2 = P7,

a contradiction. Thus r′1w1 ∈ E. If r′1w
′
2 6∈ E then v1−v2−v3−r′1−w1−w2−w′

2 = P7,
a contradiction. So r′1w

′
2 ∈ E but G[{v4, r

′
1, w1, w

′
2}] is a claw, a contradiction.

As a consequence each connected component Ai of Z3 has a universal vertex. Also,
G being claw-free two distinct connected components cannot share a neighbor in
R3. Moreover, by Property 2.2 we have assumed that each w3 ∈ Z3 is not a leaf.

We show that w ∈ Y3 is connected to a universal vertex of a connected compo-
nent Ai of Z3. We assume that the neighbors of w are not universal in Ai. Let
s ∈ Ai be a neighbor of w, let u, u 6= s, be a universal vertex of Ai. Since s is
not universal there exists v, v ∈ Ai such that sv 6∈ E and uv ∈ E. Since N(w) is
complete wv 6∈ E. Let r ∈ R3 be a neighbor of s. Since G is claw-free then rv 6∈ E.
Let r′, r′ ∈ R3, r

′ 6= r, be a neighbor of v. As just above r′s 6∈ E. If r′u 6∈ E then
v1−v2−v3−r′−v−u−s = P7 else v1−v2−v3−r′−u−s−w = P7, a contradiction.
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We are ready to show how to build a γ-set in polynomial time.
First, we treat the case where Z24 6= ∅. Let r2 ∈ R2, r4 ∈ R4 be two neighbors of
w, w ∈ Z24.
We show that R3 = ∅. Assume that there exists w′ ∈ W with a neighbor r3 ∈ R3.
Since w′ is not a neighbor of r2 or r4 we have w′ − r3 − v3 − r2 − r4 − v5 − v6 = P7,
a contradiction. So R3 = ∅ and since Z2 = Z4 = ∅ we have W = Z24.
Recall that W = Z24 is independent and that for every two distinct vertices w′, w′ ∈
Z24 we have N(w) ∩N(w′) = ∅.

The γ-set is build as follows:
By Property 2.4, we can assume that |W | ≥ 2. We take r2 ∈ R2 a neighbor of w (re-
call that the neighbors of w inRi, i ∈ {2, 4}, have the same neighborhood and that all
vertices of Ri have the same neighbors in S\H4), and for each other w′ ∈ Z24 we take
one adjacent vertex r′4 ∈ R4. These vertices dominate Z24∪H2∪H4∪{v2, v3, v4, v5}.
At least one more vertex is necessary to dominate G since v1 and v6 are not domi-
nated. Adding the three vertices v2, v4, v6 we have a dominating set (not necessarily
minimum). We check first if there exists s a neighbor of both v1 and v6 that domi-
nates the rest of the graph. If such vertex s does not exist, checking for all the pairs
s1, s6 where si is a neighbor of vi, i ∈ {1, 6}, one can verify if there is a γ-set with
only two more vertices (note that there are at most O(n2) of such pairs).

Now we deal with the case Z24 = ∅.
The γ-set is build as follows:

• Y3 6= ∅. For each w ∈ Y3 we take one universal vertex in the connected
component Ai of Z3 connected to w. For each connected component Ai of
Z3 that is not connected to a vertex of Y3, we do as follows: if there exists
r3 ∈ R3 which is complete to Ai (recall that such vertices have the same
neighborhood) then we take r3, else we take one universal vertex of Ai. These
vertices dominate Y3∪Z3. At least one more vertex is necessary to dominate G
since v1 and v6 are not dominated. Adding the three vertices v2, v4, v6 we have
a dominating set (not necessarily minimum). We check first if there exists s
a neighbor of both v1 and v6 that dominates the rest of the graph. If such
vertex s is not found, checking for all the pairs s1, s6 where si is a neighbor
of vi, i ∈ {1, 6}, one can verify if there is a γ-set with only two more vertices
(note that there are at most O(n2) such pairs).

• Y3 = ∅. Thus Z3 = W . For every connected component Ai of Z3, if there
exists r3 ∈ R3 which is complete to Ai (recall that such vertices have the same
neighborhood) then we take r3, else we take one universal vertex of Ai. These
vertices dominate Z3. At least one more vertex is necessary to dominate G
since v1 and v6 are not dominated. Adding the three vertices v2, v4, v6 we have
a dominating set (not necessarily minimum). We check first if there exists s
a neighbor of both v1 and v6 that dominates the rest of the graph. If such
vertex s is not found, checking for all the pairs s1, s6 where si is a neighbor
of vi, i ∈ {1, 6}, one can verify if there is a γ-set with only two more vertices
(note that there are at most O(n2) such pairs).
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Clearly the construction of the γ-set is polynomial. �

Corollary 5.4 The Minimum Dominating Set problem is polynomial for (claw, P7)-
free graphs.

Lemma 5.5 Let G be a connected (claw, C6, C7, C8, P8)-free graph. If C5 ⊆i G then

computing a minimum dominating set is polynomial.

Proof: By Properties 2.1 and 2.2, we can assume that all contractibles vertices of G
are contracted and that G has no leaves. Let C = v1−v2−v3−v4−v5−v1 = C5 ⊆i G.
Let W = V \N [V (C)]. It follows from Property 2.3 that if W = ∅ then computing
a minimum dominating set is polynomial. From now on W 6= ∅.
Let S = {v ∈ V \ V (C) : 2 ≤ |N(v) ∩ V (C)| ≤ 5}, and Si ⊆ S being the set of ver-
tices v such that |N(v) ∩ V (C)| = i. Let Hi = {v ∈ S2 : N(v) ∩ V (C) = {vi, vi+1}},
1 ≤ i ≤ 5 (for convenience v5+1 stands for v1). Since G is claw-free, each Hi is
complete. Moreover, if there is an edge riri+1 with ri ∈ Hi, ri+1 ∈ Hi+1 then
ri − vi − vi−1 − · · · − vi+2 − ri+1 − ri = C6, a contradiction. Hence Hi is anticom-
plete to Hi+1. We define Ri as the set of vertices of Hi having a neighbor in W ,
Ri = {v ∈ Hi : NW (v) 6= ∅}, 1 ≤ i ≤ 5, R = R1 ∪ · · · ∪R5.

Since W 6= ∅, we assume that there exists w1 ∈ W such that w1 has a neighbor
r1 ∈ R1. Suppose that R2 6= ∅. There exists w2 ∈ W with a neighbor r2 ∈ R2.
If w1 = w2 then w1 − r2 − v3 − v4 − v5 − v1 − r1 − w1 = C7, a contradiction. So
w1 6= w2. If w1w2 ∈ E then w1 − w2 − r2 − v3 − v4 − v5 − v1 − r1 − w1 = C8 else
w1 − r1 − v1 − v5 − v4 − v3 − r2 −w2 −w1 = P8, a contradiction. So, if Ri 6= ∅ then
Ri−1 = Ri+1 = ∅. Hence R2 = R5 = ∅.

Let r ∈ Ri, r
′ ∈ Ri, r 6= r′, i ∈ {1, 3, 4} be such that r, respectively r′, has a

neighbor w ∈ W , respectively w′ ∈ W . We show that NS(r) = NS(r
′).

By contradiction we assume that there exists s ∈ S such that rs ∈ E, r′s 6∈ E.
From above s 6∈ Hi ∪ Hi−1 ∪ Hi+1. Let i = 1. If s ∈ H3 ∪ H4 then G[{r, v1, w, s}]
is a claw, a contradiction. Thus s ∈ S3 ∪ S4 ∪ S5. When NC(s) = {v1, v2, v3}
(the case NC(s) = {v1, v2, v5} is symmetric) then G[{r′, v5, w, s}] is a claw, a con-
tradiction. When NC(s) = {v2, v3, v4} (the case NC(s) = {v1, v4, v5} is symmet-
ric) then G[{r, v1, w, s}] is a claw, a contradiction. When NC(s) = {v3, v4, v5}
then G[{r, v3, v5, s}] is a claw, a contradiction. So s ∈ S4 ∪ S5. When NC(s) =
{v1, v2, v3, v4} (the case NC(s) = {v1, v2, v4, v5} is symmetric) then G[{r′, v1, v5, s}]
is a claw, a contradiction. When NC(s) = {v1, v3, v4, v5} or NC(s) = {v2, v3, v4, v5}
or NC(s) = {v1, v2, v3, v5} or s ∈ S5 then G[{r, v3, v5, s}] is a claw, a contradiction.
For i = 3 and i = 4 the arguments are the same. Thus NS(r) = NS(r

′).

Let r1 ∈ R1, r
′
1 ∈ R1, r1 6= r′1 be such that r1, respectively r′1, has a neighbor w ∈ W ,

respectively w′ ∈ W . Let r3 ∈ R3, r
′
3 ∈ R3, r3 6= r′3 be such that r3, respectively

r′3, has w, respectively w′, as neighbor. We show that NS\H3
(r1) = NS\H3

(r′1),
respectively NS\H1

(r3) = NS\H1
(r′3).

Let i = 1. By contradiction we assume that there exists s ∈ S \ R3 such that
r1s ∈ E, r′1s 6∈ E. From above s 6∈ H1 ∪ H2 ∪ H5. If s ∈ H4 then G[{r1, v1, w, s}]
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is a claw, a contradiction. So s ∈ S3 ∪ S4 ∪ S5. When NC(s) = {v1, v2, v3} (the
case NC(s) = {v1, v2, v5} is symmetric) then G[{r′1, v1, v5, s}] is a claw, a contra-
diction. When NC(s) = {v2, v3, v4} (the case NC(s) = {v1, v4, v5} is symmet-
ric) then G[{r1, v1, w, s}] is a claw, a contradiction. When NC(s) = {v3, v4, v5}
then G[{r1, v3, v5, s}] is a claw, a contradiction. So s ∈ S4 ∪ S5. When NC(s) =
{v1, v2, v3, v4} (the case NC(s) = {v1, v2, v4, v5} is symmetric) then G[{r′1, v1, v5, s}]
is a claw, a contradiction. When NC(s) = {v1, v3, v4, v5} or NC(s) = {v2, v3, v4, v5}
or NC(s) = {v1, v2, v3, v5} or s ∈ S5 then G[{r1, v3, v5, s}] is a claw, a contradiction.
By symmetry the arguments are the same for i = 3. Hence NS\H3

(r1) = NS\H3
(r′1)

and NS\H1
(r3) = NS\H1

(r′3).

We study the case where w1 has a neighbor ri, ri ∈ Ri, i ∈ {3, 4}. Since both cases
are symmetric, let r3, r3 ∈ R3, be a neighbor of w1. If r1r3 6∈ E then w1 − r1 − v1 −
v5 − v4 − r3 − w1 = C6, a contradiction. Hence NR1

(w1) is complete to NR3
(w1).

Since R3 6= ∅, we have R4 = ∅ and NR(w1) ⊆ R1∪R3. Hence, we define the following
subsets of W :

• Z = {w ∈ W : NR(w) 6= ∅};

• Zi = {z ∈ Z : NRi
(z) 6= ∅, NRj

(z) = ∅, 1 ≤ i ≤ 5, i 6= j};

• Zij = {z ∈ Z : NRi
(z) 6= ∅, NRj

(z) 6= ∅, 1 ≤ i < j ≤ 5};

• Y = W \ Z.

First, we show that Zi is anticomplete to Zij, then we show that Zi consists of leaves
(so is empty). We conclude that Zij 6= ∅ implies Z = Zij . We set w1 ∈ Z13, and
since all cases are symmetric, we focus on Z1 6= ∅.

Let w′
1 ∈ Z1 with a neighbor r′1, r

′
1 ∈ R1, r

′
1 6= r1. Note that r

′
1r3 6∈ E else G contains

a claw. If w1w
′
1 ∈ E, then r′1w1 ∈ E, else w1−w′

1− r′1− v1− v5− v4− r3−w1 = C7,
but w1 − r′1 − v1 − v5 − v4 − r3 − w1 = C6, a contradiction. Hence, w1w

′
1 6∈ E (by

symmetry, for every w3 ∈ Z3, w1w3 6∈ E). Thus Z1 and Z3 are anticomplete to Z13.

Now, we show that the vertices of Z1 are leaves. Assume that there exists v ∈ N(w′
1),

v 6= r′1 such that N [v] 6= N [w′
1]. If v ∈ Z3 then v−w′

1−r′1−v1−v5−v4−r3−w1 = P8,
a contradiction. If v ∈ Y then either v − w′

1 − r′1 − v1 − v5 − v4 − r3 − w1 = P8

or v − w′
1 − r′1 − v1 − v5 − v4 − r3 − w1 − v = C8, a contradiction. If v ∈ Z1 and

r′1v 6∈ E then v − w′
1 − r′1 − v1 − v5 − v4 − r3 − w1 = P8, a contradiction. Hence

NR1
(w′

1) = NR1
(v). Since N [v] 6= N [w′

1] we can assume that there exists v′ ∈ W
such that vv′ ∈ E but v′w′

1 6∈ E. Yet with the same arguments as before we have
NR1

(v) = NR1
(v′) and since w′

1v
′ 6∈ E then G[{r′1, v

′, v1, w
′
1}] is a claw, a contradic-

tion. Thus Z1 consists of leaves, a contradiction. Thus Z1 = ∅ and by symmetry
Z3 = ∅. So Z = Z13.

We show that every pair v, v′ ∈ Z13 with vv′ ∈ E satisfy NR1∪R3
(v) = NR1∪R3

(v′).
Let w′

1 ∈ Z13 be a neighbor of w1. Suppose that there exists r
′
1 ∈ NR1

(w′
1) such that

r′1w1 6∈ E. If r′1r3 ∈ E then G[{r′1, r3, v3, w1}] is a claw, a contradiction. If r3w
′
1 6∈ E

then w1−r3−v4−v5−v1−r′1−w′
1−w1 = C7, else w

′
1−r′1−v1−v5−v4−r3−w′

1 = C6,
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a contradiction. Hence, NR1
(w1) = NR1

(w′
1) and by symmetry NR3

(w1) = NR3
(w′

1).

Suppose that Y 6= ∅. Let y ∈ Y be a neighbor of w1. We show that Z13 is a
clique. Let w′

1 ∈ Z13 such that w1w
′
1 6∈ E. We have NR1∪R3

(w1) ∩ NR1∪R3
(w′

1) = ∅
else G contains a claw. Yet, there exists r′1 a neighbor of w′

1 in R1 such that either
y−w1−r3−v4−v5−v1−r′1−w′

1 = P8 or y−w1−r3−v4−v5−v1−r′1−w′
1−y = C8,

a contradiction, (note that r′1r3 6∈ E else G contains a claw). Hence Z13 is a clique.

We show that the vertices of Y are leaves. Suppose that y has a neighbor y′ ∈ Y .
If y′w1 6∈ E then y′ − y − w1 − r1 − v1 − v5 − v4 − v3 = P8, a contradiction. Hence
NZ(y) = NZ(y

′). Since we assume that N [y] 6= N [y′], there exists v, v ∈ Y, such
that vy ∈ E, vy′ 6∈ E. From above w1v ∈ E but G[{r1, w1, y

′, v}] is a claw, a con-
tradiction. Thus, Y is an independent set. Now, N(y) ⊆ Z13 is a clique. Since for
every two vertices w1, w

′
1 ∈ Z13 we have NR1∪R3

(w1) = NR1∪R3
(w′

1) we can assume
that N(y) can be contracted into an unique vertex. Thus, Y consists of leaves, a
contradiction. Hence Y = ∅.

As shown before, every two neighbors of Z13 have the same neighbors in R, so they
can be contracted and we can assume that Z13 is an independent set. Moreover,
since G is claw-free, for every two distinct z, z′ ∈ Z13, N [z] ∩N [z′] = ∅. Also, recall
that the neighbors of each z, z ∈ Z13 induce a clique.

We show how to build a γ-set of G. Recall that W = Z13. By Property 2.4 we can
assume that |W | ≥ 2. So there are w1, w

′
1 ∈ Z13 with neighbors r1, r

′
1 ∈ R1 and

r3, r
′
3 ∈ R3, respectively. Let q = |Z13|. Clearly, to dominate Z13 we must take q

vertices. We take r1 and r′3. Recall that the vertices of R1 and R3 have the same
neighbors in S ∪ V (C). Then, we take the q − 2 vertices of w ∈ Z13, w 6= w1, w

′
1.

These q vertices dominate {v1, v2, v3, v4} ∪ H1 ∪ H3 ∪ Z13. It remains to dominate
some vertices of H2∪H4∪H5∪S3∪S4∪{v5}. If there exists a vertex v, v ∈ S∪{v5},
which is universal to these non dominated vertices we take v, else we take the ver-
tices {v2, v5}.

Now, we assume that Zij = ∅. Hence let w1 ∈ Z1. We study the case R3 6= ∅. Recall
that R2 = R4 = R5 = ∅. Let w3 ∈ W such that w3 has a neighbor r3 ∈ R3. If
w1w3 ∈ E then w1−w3− r3− v4 − v5− v1− r1 −w1 = C7 (r1r3 6∈ E else G contains
a claw), a contradiction. So Z1 is anticomplete to Z3. We assume that w1 has a
neighbor v ∈ Y . If vw3 ∈ E then v −w3 − r3 − v4 − v5 − v1 − r1 −w1 − v = C8 else
v−w1− r1 − v1 − v5 − v4− r3 −w3 = P8, a contradiction. Hence every neighbor w′

1,
w′

1 ∈ W, of w1 is in Z1. If w
′
1r1 6∈ E then w′

1 −w1 − r1 − v1− v5 − v4 − r3 −w3 = P8,
a contradiction. Hence NR(w1) = NR(w

′
1). Since G is claw-free, for every r ∈ R,

NW (r) is a clique, thus N [w1] = N [w′
1], a contradiction. So Z1 is an independent

set. Now, recall that for every pair of vertices r, r′ ∈ Ri, 1 ≤ i ≤ 5, NS(r) = NS(r
′).

Hence, when r, r′ ∈ R1 have a common neighbor in Z1, we have N [r] = N [r′], a
contradiction. Hence Z1 consists of leaves, a contradiction. Also, by symmetry,
W = Z1 ∪ Z3 = ∅, a contradiction.

Now we focus on R3 = R4 = ∅ (note that Z = Z1).
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We study the case where H2 6= ∅ or H5 6= ∅. Let v ∈ H2 (the case v ∈ H5 is
symmetric). We have Y = ∅, else there are y ∈ Y , z ∈ Z1, r ∈ R1 such that
v − v3 − v4 − v5 − v1 − r − z − y = P8 (recall that vr 6∈ E). So W = Z = Z1. Let
w1, w2 ∈ W . We assume that w1w2 ∈ E. Recall that N [w1] 6= N [w2]. Let w1r1,
w2r2 ∈ E, r1 6= r2, such that w1r2 6∈ E. We have v−v3−v4−v5−v1−r2−w2−w1 = P8,
a contradiction. Recall that for every r ∈ R, NW (r) is a clique, thus N [w1] = N [w2],
a contradiction. Hence W is an independent set. Moreover, for every w ∈ W and
r, r′ ∈ N(w) we know that r and r′ share the same neighbors in V (C) ∪ S. Hence
W is composed exclusively of leaves, so W = ∅, a contradiction.

Now we can assume that H2 = H5 = ∅. Let ZA ⊂ Z, ZA = {w ∈ W : NY (w) = ∅}.
We show that each connected component Ai of G[ZA] contains a universal vertex
relatively to Ai. For contradiction we suppose that there exists Ai, Ai ⊆ ZA with
no universal vertex in it. Assume that z1 − z2 − z3 − z4 = P4 ⊆i Ai. Let r, r ∈ R1,
be a neighbor of z1 (note that there is a P5 from v3 to r).
Since G is claw-free rz3, rz4 6∈ E. If rz2 ∈ E then there is a P8 from v3 to z4 else there
is a P8 from v3 to z3, a contradiction. Now, we assume that z1 − z2 − z3 − z4 − z1 =
C4 ⊆i Ai. Let r, r ∈ R1, be a neighbor of z1. Since G is claw-free we have rz3 6∈ E. If
rz2 ∈ E then rz4 6∈ E else G contains a claw, but v3−v4−v5−v1−r−z2−z3−z4 = P8,
a contradiction. If rz2 6∈ E then v3 − v4 − v5 − v1 − r − z1 − z2 − z3 = P8, a con-
tradiction. So Ai is (C4, P4)-free. It follows that there are z1 − z2 − z3 = P3 ⊆i Ai

and z4 ∈ Ai such that z4z1, z4z2, z4z3 6∈ E. Also there exists z ∈ Ai such that
z2 − z − z4 and zz1, zz3 ∈ E but Ai[{z, z1, z3, z4}] is a claw, a contradiction. So
each Ai has a universal vertex. Clearly, for two distinct components Ai, Aj we have
NR1

(Ai) ∩NR1
(Aj) = ∅ else there is a claw.

Suppose that Y 6= ∅. We show that Y is an independent set. Suppose that there are
y, y′ ∈ Y with yy′ ∈ E. Recall that N [y] 6= N [y′]. If NZ1

(y) 6= NZ1
(y′) then, w.l.o.g,

yw1 ∈ E, y′w1 6∈ E, but v3 − v4 − v5 − v1 − r1 − w1 − y − y′ = P8, a contradiction.
So NZ1

(y) = NZ1
(y′). There is no vertex y′′ ∈ Y such that yy′′ ∈ E, y′y′′ 6∈ E, else

G contains a claw. Hence Y is an independent set and for every pair of vertices
y, y′ ∈ Y we have N(y) ∩N(y′) = ∅.
We show that for every y ∈ Y its neighborhood N(y) is a clique. For contradiction
we assume that y has two neighbors z1, z2 ∈ Z, z1z2 6∈ E. Since G is claw-free z1
and z2 cannot have a common neighbor in R1. Let r, r ∈ R1, be a neighbor of z1.
Then v3 − v4 − v5 − v1 − r − z1 − y − z2 = P8, a contradiction. Hence, Y is an
independent set, for each y, y ∈ Y , N(y) is a clique. So we suppose |N(y)| ≥ 2, else
y is a leaf.

We show that we can assume that each connected component Ai of G[ZA] is anti-
complete to N(Y ). Since Y has no leaves, let y ∈ Y with two neighbors z, z′ ∈ Z1

such that N [z] 6= N [z′]. Suppose that there exists u ∈ ZA a neighbor of z. First, we
assume that NR(z) 6= NR(z

′). W.l.o.g. let r, r′ ∈ R1 be respectively the neighbors
of z, z′ such that r′z, rz′ 6∈ E. If uz′ 6∈ E then ur′ 6∈ E else G contains a claw, but
then u − z − z′ − r′ − v1 − v5 − v4 − v3 = P8, a contradiction. Hence uz′, r′u ∈ E
but y − z − u − r′ − v1 − v5 − v4 − v3 = P8, a contradiction. So NR(z) = NR(z

′).
Second, we assume that NZ [z] 6= NZ [z

′]. W.l.o.g. uz′ 6∈ E. Let r ∈ R1 a neighbor
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of both z, z′. Clearly ru 6∈ E else G contains a claw, but G[{r, u, y, z}] is a claw, a
contradiction. So we can assume that each Ai is anticomplete to N(Y ).

We construct a γ-set as follows:
Let q = |Y | and k be the number of connected components of ZA. Clearly, q vertices
are necessary to dominate Y . So for each yi ∈ Y we will take one of its neighbor as
follows. Let us denote R1(yi) = NR1

(N(yi)). If yi has a neighbor zi which is complete
to R1(yi) then we take zi, else we take every arbitrary neighbor of yi (recall that
in both cases these yi have the same neighbors in Z). These q vertices dominate
Y ∪ (Z \ ZA) and some of the vertices in R1(Y ).
Now k vertices are necessary to dominate ZA. For each component Ai ⊂ ZA we do
as follows. If there exists r ∈ R1 which is complete to Ai we take r into the γ-set
(case a), else we take one universal vertex of Ai (case b) (recall that in both cases
these r have the same neighbors in S).
These k vertices dominate ZA ∪H1 ∪ {v1, v2} if at least one vertex is chosen in the
case a, else they dominate ZA.

Case where at least one vertex is chosen with the case a: v3, v4, v5 are not domi-
nated with the q+ k already chosen vertices (H1 is complete thus r ∈ R1 dominates
H1 ∪ {v1, v2}). So a dominating set of G has size at least q+ k+1. Adding the two
vertices v3 and v5, we have a dominating set (not necessarily minimum). Checking if
there exists a vertex v ∈ V (C)∪S, that is universal to the remaining non-dominated
vertices, can be done in polynomial-time.

Case where all the vertices are chosen with the case b: it remains to dominate
C and some vertices of S2 ∪ S3 ∪ S4. So a dominating set of G has a size at
least q + k + 1. Adding the three vertices v1, v3, v5, we have a dominating set (not
necessarily minimum). If there exists a vertex v ∈ S5 that is universal to the
remaining non-dominated vertices we take it. If no such vertex exists, checking for
all the pairs {v, v′} ⊂ N [V (C)], one can verify if there exists a γ-set with q + k + 2
vertices (note that there are at most O(n2) of such pairs). �

Lemma 5.6 Let G be a connected (claw, C5, C6, C7, C8, P8)-free graph. Computing

a minimum dominating set is polynomial-time solvable.

Proof: By Lemma 5.4 we can assume that P7 ⊆i G. Let P = v1 − v2 − v3 − v4 −
v5−v6−v7. By Properties 2.1 and 2.2, we can assume that all contractibles vertices
of G are contracted and that G has no leaves.
Let W = V \ N [V (P )]. By Property 2.3 if W = ∅ then computing a minimum
dominating set is polynomial. From now on W 6= ∅. Let S = {v ∈ V \ V (P ) : 2 ≤
|N(v)∩P | ≤ 4}, and Si ⊆ S being the set of vertices v such that |N(v)∩V (P )| = i.
Let Hi = {v ∈ S2 : N(v) ∩ V (P ) = {vi, vi+1}, 1 ≤ i ≤ 6}. Since G is claw-free
each Hi is complete. If there is an edge riri+1 with ri ∈ Hi, ri+1 ∈ Hi+1 then
P = v1 − · · · − vi − ri − ri+1 − vi+2 − · · · − v7 = P8, a contradiction. If there is an
edge rirj with ri ∈ Hi, rj ∈ Hj and j ≥ i+ 3 then Cp ⊆i G, p ≥ 5, a contradiction.
So H1 is anticomplete to H2, H4, H5, H6, and H2 is anticomplete to H3, H5, H6, and

16



H3 is anticomplete to H4, H6.

We define Ri as the set of vertices of Hi having a neighbor in W , that is, Ri = {v ∈
Hi : N(v) ∩W 6= ∅}, 1 ≤ i ≤ 6. Since G is P8-free R1 = R6 = ∅.

Let w ∈ W . We show that there cannot exist three indices 1 ≤ i < j < k ≤ 6 such
that w has three neighbors ri ∈ Ri, rj ∈ Rj, rk ∈ Rk. Suppose for contradiction
that these three neighbors of w exist. Since R1 = R6 = ∅ then 2 ≤ i < j < k ≤ 5.
Since G is claw-free and Hp is anticomplete to Hp+1, these three indices cannot
be successive. So w.l.o.g. we can assume that i = 2, j = 4, k = 5. Now H2 is
anticomplete to H5, but v3− r2−w− r5− v5− v4− v3 = C6, a contradiction. Hence
for every w ∈ W there is at most two neighbors ri, rj such that ri ∈ Ri, rj ∈ Rj ,
i 6= j.
If w has two neighbors ri ∈ Ri, rj ∈ Rj , i < j, then either ri ∈ R2, rj ∈ R4

or ri ∈ R3, rj ∈ R5 (recall that Hi is anticomplete to Hi+1, Hp, p ≥ i + 3 and
R1 = R6 = ∅).
If w has two neighbors ri ∈ R2, rj ∈ R4, respectively ri ∈ R3, rj ∈ R5, then rirj ∈ E,
else w−rj−v4−v3−ri−w = C5 ⊆i G, respectively w−rj−v5−v4−ri−w = C5 ⊆i G,
a contradiction.

Let Z24 = {w ∈ W : NR2
(w) 6= ∅, NR4

(w) 6= ∅} and Z35 = {w ∈ W : NR3
(w) 6=

∅, NR5
(w) 6= ∅}. We show that Z24 is anticomplete to Z35. For contradiction

we suppose that there are w1 ∈ Z24, w2 ∈ Z35 with w1w2 ∈ E. Let r1 ∈ R2

be a neighbor of w1 and r2 ∈ R5 be a neighbor of w2. Since r1r2 6∈ E we have
w1 − r1 − v3 − v4 − v5 − v6 − r2 − w2 − w1 = C8, a contradiction.
We show that we can assume that Z24 and Z35 are two independent sets. The two
sets being symmetric we show that Z24 is an independent set. For contradiction we
assume that there are w1, w2 ∈ Z24 such that w1w2 ∈ E. We prove that NR2

(w1) =
NR2

(w2). If NR2
(w1) 6= NR2

(w2) then there exists r2 ∈ R2 which is a neighbor of w1

but not a neighbor of w2. Then w2 − w1 − r2 − v3 − · · · − v7 = P8, a contradiction.
We prove that NR4

(w1) = NR4
(w2). If NR4

(w1) 6= NR4
(w2) then there exists r4 ∈ R4

which is a neighbor of w1 but not a neighbor of w2. There exists r2 ∈ R2 a neighbor
of w1 and w2. We know that r2r4 ∈ E. It follows that G[{v2, r2, r4, w2}] is a claw, a
contradiction. Hence NR2

(w1) = NR2
(w2) and NR4

(w1) = NR4
(w2). By Property 2.1

there exists s 6∈ R2∪R4 such that s is a neighbor of w1 but not a neighbor of w2. Let
r2 ∈ R2 a neighbor of w1 and w2. If sr2 6∈ E then s−w1− r2 − v3 − · · ·− v7 = P8, a
contradiction. When sr2 ∈ E then G[{v2, r2, s, w2}] is a claw, a contradiction. Hence
Z24 is an independent and by symmetry Z35 is also independent. Moreover, since G
is claw-free for every two distinct w,w′ ∈ Z24 ∪ Z35 we have N(w) ∩N(w′) = ∅.
For every two distinct w,w′ ∈ Z24, respectively w,w′ ∈ Z35 we have that NR2

(w)
is anticomplete to NR4

(w′) and NR4
(w) is anticomplete to NR2

(w′), respectively
NR3

(w) is anticomplete to NR5
(w′) and NR5

(w) is anticomplete to NR3
(w′). For

contradiction we assume that w has a neighbor r2 ∈ R2, w
′ has a neighbor r4 ∈ R4,

and r2r4 ∈ E. Then G[{v2, r2, w, r4}] is a claw, a contradiction.

Let Zi = {w ∈ W : N(w) ∩ Ri \ (NRi
(Z24 ∪ Z35) 6= ∅}, 2 ≤ i ≤ 5. We show

that Z2, Z3, Z4, Z5 are pairwise anticomplete. If there is an edge w2w4, w2 ∈
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Z2, w4 ∈ Z4, with r′2 ∈ R2, r′4 ∈ R4 the neighbors of w2, w4 respectively, then
w2 − r′2 − v3 − v4 − r′4 − w4 − w2 = C6 (r′2r

′
4 6∈ E else G[{v2, r

′
2, w2, r

′
4}] is a claw),

a contradiction. By symmetry there is no edges between Z3, Z5. If there is an edge
w2w5, w2 ∈ Z2, w5 ∈ Z5, with r′2 ∈ R2, r

′
5 ∈ R5 the neighbors of w2, w5 respectively,

then w2−r′2−v3−v4−v5−r′5−w5−w2 = C7 (remember r′2r
′
5 6∈ E), a contradiction.

If there is an edge w4w5, w4 ∈ Z4, w5 ∈ Z5, with r′4 ∈ R4, r
′
5 ∈ R5 the neighbors

of w4, w5 respectively, then w4 − r′4 − v5 − r′5 − w5 − w4 = C5 (recall r′4r
′
5 6∈ E), a

contradiction. By symmetry there is no edges between Z2, Z3.

Let Y = W \(Z2∪Z3∪Z4∪Z5∪Z24∪Z35). One can observe that for every w ∈ Y we
have NZ2

(w) = NZ5
(w) = NZ24

(w) = NZ35
(w) = ∅ else P8 ⊆i G. Now, if w ∈ Y has

two neighbors w3 ∈ Z3, w4 ∈ Z4 then C6 ⊆i G, a contradiction. Hence Y = Y3 ∪ Y4

with Y3 ∩ Y4 = ∅, Y3 = {w ∈ Y : NZ3
(w) 6= ∅}, Y4 = {w ∈ Y : NZ4

(w) 6= ∅}.
Moreover Y3 is anticomplete to Y4 else C7 ⊆i G.

We show that we can assume that Z2, Z5, Y3, Y4 are four independent sets. The
arguments are the same for the four sets, so we show that the statement is true for
Z2. For contradiction we assume that there are w1, w2 ∈ Z2 such that w1w2 ∈ E.
We prove that NR2

(w1) = NR2
(w2). If NR2

(w1) 6= NR2
(w2) then there exists r2 ∈ R2

which is a neighbor of w1 but not a neighbor of w2. Then w2−w1−r2−v3−· · ·−v7 =
P8, a contradiction. Since N(w1), N(w2) ⊆ Z2∪R2 the result is obtained by Property
2.1. Hence Z2, Z5, Y3, Y4 are four independent sets.
Since G is claw-free then for every two distinct vertices w1, w2 ∈ Z2 ∪ Z5 ∪ Y3 ∪ Y4

we have N(w1) ∩N(w2) = ∅.
We prove that for every w ∈ Y3 ∪ Y4, N(w) is a clique. The two cases being sym-
metric, let w ∈ Y4. Suppose that there are s, s′ two non adjacent vertices in N(w).
Since G is claw-free, s, s′ cannot have a common neighbor in R4. Let r ∈ R4 be a
neighbor of s. Then s′ − w − s− r − v4 − v3 − v2 − v1 = P8, a contradiction.

Since G is claw-free, if there is a vertex r ∈ Ri with a neighbor z ∈ Zi and a vertex
s ∈ S such as sz 6∈ E and vi 6∈ N(s) then G contains a claw (note that vi+1 6∈ N(s)
is symmetric). Hence N(Zi) is anticomplete to Hj, j 6= i.

We show that we can assume that Z2 = Z5 = ∅. The arguments are the same in
the two cases, so we consider Z2. Let r, r′ ∈ R2 be two neighbors of w ∈ Z2. By
previous arguments, N(w) is complete to H2 but anticomplete to H1, H3, H4, H5, H6.
Hence, it remains the case where NS3∪S4

(r) 6= NS3∪S4
(r′). Suppose that NS3∪S4

(r) 6=
NS3∪S4

(r′). Let s ∈ S3 ∪ S4 such as rs ∈ E but r′s 6∈ E. If {v2, v3} 6⊂ NP (s)
then G[{r, s, v2, w}] or G[{r, s, v3, w}] is a claw, a contradiction. So {v2, v3} ⊂
NP (s). If v1 6∈ NP (s), respectively v4 6∈ NP (s), then G[{r′, s, v1, v2}], respec-
tively G[{r′, s, v3, v4}], is a claw, a contradiction. Hence NP (s) = {v1, v2, v3, v4}
but G[{r, s, v1, v4}] is a claw, a contradiction. Hence, N [r] = N [r′], a contradiction.
Then w is a leaf , a contradiction.

Now we study the structures of Z3 and Z4. The two cases being symmetric we deal
with Z4. For every distinct vertices w1, w2 ∈ Z4 such that w1w2 ∈ E, then there
cannot exist two distinct vertices w′

1, w
′
2 ∈ Z4 such that w′

1w1 ∈ E,w′
1w2 6∈ E and
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w′
2w2 ∈ E, w′

2w1 6∈ E. For contradiction we suppose that such two vertices exist.
First, we suppose that w1, w2 have two distinct neighbors r1, r2 ∈ R4, respectively.
If w′

1r2 6∈ E then v1 − v2 − v3 − v4 − r2 − w2 − w1 − w′
1 = P8, a contradiction.

If w′
1r2 ∈ E then G[{v4, r2, w2, w

′
1}] is a claw, a contradiction. Second, w.l.o.g.,

r1 ∈ R4 is a common neighbor of w1, w2 and r2 ∈ R4 is a neighbor of w2 but not w1.
If w′

1r2 6∈ E then v1 − v2 − v3 − v4 − r2 − w2 − w1 −w′
1 = P8 else G[{v4, r2, w2, w

′
1}]

is a claw, a contradiction. Finally, r1, r2 ∈ R4 are two common neighbors of w1, w2

(r1, r2 are not necessarily distinct). If, w.l.o.g., w′
1r1 ∈ E then G[{v4, r1, w2, w

′
1}] is

a claw, a contradiction. In the case where w′
1r1, w

′
1r2 6∈ E then w′

1 has a neighbor
r′1 ∈ R4, r

′
1 6= r1, r2. If r′1w2 ∈ E then G[{v4, r

′
1, w2, w

′
1}] is a claw, a contradiction.

So r′1w2 6∈ E. If r′1w1 6∈ E then v1−v2−v3−v4−r′1−w′
1−w1−w2 = P8, a contradiction.

Thus r′1w1 ∈ E. If r′1w
′
2 6∈ E then v1 − v2 − v3 − v4 − r′1 − w1 − w2 − w′

2 = P8, a
contradiction. So r′1w

′
2 ∈ E but G[{v4, r

′
1, w1, w

′
2}] is a claw, a contradiction.

As a consequence each connected component Ai of Z3 ∪ Z4 has a universal vertex.
Also, G being claw-free two distinct components cannot share a neighbor in R3∪R4.
Moreover each w4 ∈ Z3 ∪ Z4 is not a leaf.

We show that w ∈ Y3 ∪ Y4 is connected to a universal vertex of a connected compo-
nent Ai of Z3 ∪ Z4. The two cases being symmetric, we deal with Z4. Let w ∈ Z4.
We assume that the neighbors of w are not universal in Ai. Let s ∈ Ai be a neighbor
of w, let u, u 6= s, be a universal vertex of Ai. Since s is not universal there exists v,
v ∈ Ai such that sv 6∈ E and uv ∈ E. Since N(w) is complete wv 6∈ E. Let r ∈ R4 be
a neighbor of s. Since G is claw-free then rv 6∈ E. Let r′, r′ ∈ R4, r

′ 6= r, be a neigh-
bor of v. As just above r′s 6∈ E. If r′u 6∈ E then v1−v2−v3−v4−r′−v−u−s = P8

else v1 − v2 − v3 − v4 − r′ − u− s− w = P8, a contradiction.

We are ready to show how to build a γ-set in polynomial time.

First, we treat the case where Z24 6= ∅ (the case Z35 6= ∅ is the same). Let r2 ∈
R2,r4 ∈ R4 be the two neighbors of w, w ∈ Z24. Recall that N(Z24) ⊆ R2 ∪ R4.
We show that R3 = ∅. Assume that there exists w′ ∈ W with a neighbor r3 ∈ H3

(thus R3 6= ∅). Note that w′ cannot be a neighbor of r2 or r4. Then w′ − r3 − v3 −
r2 − r4 − v5 − v6 − v7 = P8, a contradiction. An immediate consequence is that
Z35 = ∅. There is no vertex w′, w′ ∈ W, with r2 as a neighbor else G[{v2, r2, r4, w

′}]
is a claw. By symmetry, there is no vertex w′, w′ ∈ W, with r4 as a neighbor.

Let r2 ∈ R2, r
′
2 ∈ R2, r2 6= r′2 be such that r2, respectively r′2, has a neighbor w ∈ Z24,

respectively w′ ∈ Z24. Let r4 ∈ R4, r
′
4 ∈ R4, r4 6= r′4 be such that r4, respectively

r′4, has w, respectively w′, as neighbor. We show that NS\H4
(r2) = NS\H4

(r′2),
respectively NS\H2

(r4) = NS\H2
(r′4).

Let i = 2 (the case i = 4 is symmetric). By contradiction, we assume that
there exists s ∈ S \ H4 such that r2s ∈ E, r′2s 6∈ E. From above s 6∈ S2. So
s ∈ S3 ∪ S4. If NP (s) = {v1, v2, v3} then G[{r′2, v3, v4, s}] is a claw, a contradic-
tion. When NP (s) = {v2, v3, v4} then G[{r′2, v1, v2, s}] is a claw, a contradiction.
When NP (s) = {vj, vj+1, vj+2}, j ≥ 3, then G[{r2, w, v2, s}] is a claw, a contradic-
tion. Thus s ∈ S4. When NP (s) = {v1, v2, v3, v4} then G[{r2, v1, v4, s}] is a claw,
a contradiction. When NP (s) = {v1, v2, vj, vj+1}, j ≥ 4, then G[{r2, v1, vj, s}] is a
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claw, a contradiction. When NP (s) = {v2, v3, vj , vj+1},j ≥ 4, then G[{r′2, v1, v2, s}]
is a claw, a contradiction. When NP (s) = {vj, vj+1, vj′, vj′+1}, j ≥ 3, j′ ≥ j + 2
then G[{r2, w, v2, s}] is a claw, a contradiction. Hence NS\H4

(r2) = NS\H4
(r′2) and

NS\H2
(r4) = NS\H2

(r′4).

Let r4 ∈ R4, r
′
4 ∈ R4, r4 6= r′4 be such that r4, respectively r′4, has a neighbor w ∈ Z4,

respectively w′ ∈ Z4. We show that NS(r4) = NS(r
′
4).

By contradiction, we assume that there exists s ∈ S such that r4s ∈ E, r′4s 6∈
E. From above s 6∈ H1 ∪ H3 ∪ H4 ∪ H5. So s ∈ H2 ∪ H6 ∪ S3 ∪ S4. If s ∈
H2 or s ∈ H6 then G[{v4, w, r4, s}] is a claw, a contradiction. So s ∈ S3 ∪
S4. If NP (s) = {v1, v2, v3} then G[{v1, v3, r4, s}] is a claw, a contradiction. If
NP (s) = {v2, v3, v4} then G[{v5, w, r4, s}] is a claw, a contradiction. If NP (s) =
{v3, v4, v5} then G[{v5, v6, r

′
4, s}] is a claw, a contradiction. If NP (s) = {v4, v5, v6}

then G[{v3, v4, r
′
4, s}] is a claw, a contradiction. When NP (s) = {v5, v6, v7} then

G[{v4, w, r4, s}] is a claw, a contradiction. Thus s ∈ S4. WhenNP (s) = {v1, v2, v3, v4}
then G[{r4, v1, v3, s}] is a claw, a contradiction. When NP (s) = {v2, v3, v4, v5}
then G[{r′4, v5, v6, s}] is a claw, a contradiction. When NP (s) = {v3, v4, v5, v6}
then G[{r4, v3, v6, s}] is a claw, a contradiction. When NP (s) = {v4, v5, v6, v7}
then G[{r′4, v3, v4, s}] is a claw, a contradiction. When NP (s) = {v1, v2, v6, v7}
or NP (s) = {v2, v3, v6, v7} then G[{r4, v2, v6, s}] is a claw, a contradiction. When
NP (s) = {v3, v4, v6, v7} then G[{r4, v3, v6, s}] is a claw, a contradiction. When
NP (s) = {v1, v2, v5, v6} or NP (s) = {v2, v3, v5, v6} then G[{r4, v2, v6, s}] is a claw,
a contradiction. When NP (s) = {v1, v2, v4, v5} then G[{r′4, v5, v6, s}] is a claw, a
contradiction. Hence NS(r4) = NS(r

′
4). By symmetry, for r2 ∈ R2, r

′
2 ∈ R2, r2 6= r′2

such that r2, respectively r′2, has a neighbor w ∈ Z2, respectively w′ ∈ Z2 we have
NS(r2) = NS(r

′
2).

The γ-set is build as follows:

• |Z24| ≥ 2. We take r2 ∈ R2 a neighbor of w, and for each other w′ ∈ Z24 we take
one adjacent vertex r′4 ∈ R4. For each w′ ∈ Y4 we take one universal vertex
in the connected component Ai of Z4 connected to w′. For each connected
component Ai of Z4 that is not connected with Y4, we take one universal
vertex of Ai. These vertices dominate Z24∪Y4∪Z4 ∪H2∪H4 ∪{v2, v3, v4, v5}.
Since v1, v7 have no common neighbor at least two more vertices are needed.
Adding the three vertices v2, v4, v6 we have a dominating set (not necessarily
minimum). Checking for all the pairs s1, s7 where si is a neighbor of vi,
i ∈ {1, 7}, one can verify if there is a γ-set with only two more vertices (note
that there are at most O(n2) such pairs).

• |Z24| = 1. For each w′ ∈ Y4 we take one universal vertex in the connected
component Ai of Z4 connected to w′. If there exists a vertex r ∈ R4 complete
to a component Ai of Z4 that is not connected to Y4 then we take r. For
each remaining component Ai of Z4 that is not connected to Y4, we take one
universal vertex of Ai. These vertices dominate Y4 ∪ Z4 (note that H2, H4 are
not necessarily dominated). Since v1, v7, w have no common neighbor at least
three more vertices are needed. Adding the four vertices v2, v4, v6, w we have
a dominating set (not necessarily minimum). Checking for all the pairs s1, s7
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where si is a neighbor of vi, i ∈ {1, 7}, if there is a dominating set by adding
s1, s7, r4 or s1, s7, r2, one can verify if there is a γ-set with only three more
vertices (note that there are at most O(n2) such pairs).

In the case of Z24 = Z35 = ∅, we build the γ-set as follows:

• Y3, Y4 6= ∅. For each w ∈ Y3∪Y4 we take one universal vertex in the connected
component Ai of Z3 ∪ Z4 connected to w. If there exists r4 ∈ R4 which is
complete to a component Ai of Z4 that is not connected to Y3∪Y4 then, we take
r4. We do the same for the component of Z3 with no neighbors in Y3. For each
remaining connected component Ai of Z3∪Z4 that is not connected to Y3∪Y4,
we take one universal vertex of Ai. These vertices dominate Y3 ∪ Z3 ∪ Y4 ∪Z4

(note thatH2, H4 are not necessarily dominated). Since v1, v7 have no common
neighbor at least two more vertices are needed. Adding the three vertices
v2, v4, v6 we have a dominating set (not necessarily minimum). Checking for
all the pairs s1, s7 where si is a neighbor of vi, i ∈ {1, 7}, one can verify if there
is a γ-set with only two more vertices (note that there are at most O(n2) such
pairs).

• Y3 6= ∅, Y4 = ∅ or Y4 6= ∅, Y3 = ∅. The two cases being symmetric, let Y4 = ∅.

– Z4 6= ∅. For each w ∈ Y3 we take one universal vertex in the connected
component Ai of Z3 connected to w. If there exists r4 ∈ R4 which is
complete to Ai, a connected component of Z4, then we take r4. If there
exists r3 ∈ R3 which is complete to a connected component Aj of Z3 with
no neighbors in Y3, then we take r3. Now, we take one universal vertex
for each other component Al, Al 6= Ai, Aj, of Z3 ∪ Z4. These vertices
dominate Y3 ∪ Z3 ∪ Z4. Since v1, v7 have no common neighbor at least
two more vertices are needed. Adding the three vertices v2, v4, v6 we have
a dominating set (not necessarily minimum). Checking for all the pairs
s1, s7 where si is a neighbor of vi, i ∈ {1, 7}, one can verify if there is
a γ-set with only two more vertices (note that there are at most O(n2)
such pairs).

– Z4 = ∅. For each w ∈ Y3 we take one universal vertex in the connected
component Ai of Z3 connected to w. If there exists r3 ∈ R3 which is
complete to a connected component Ai of Z3 with no neighbors in Y3, then
we take r3. Now, we take one universal vertex for each other component
Ai of Z3. Adding the vertices v2, v4, v6 we have a dominating set (not
necessarily minimum). Checking for all the pairs s1, s7 where si is a
neighbor of vi, i ∈ {1, 7}, one can verify if there is a γ-set with only two
more vertices.

• Y3, Y4 = ∅.

– Z3, Z4 6= ∅. If there exists r4 ∈ R4, respectively r3 ∈ R3, which is
complete to Ai, a connected component of Z4, respectively Z3, then we
take r4, respectively r3. For each remaining component of Z3∪Z4 we take
one universal vertex. Adding the vertices v2, v4, v6 we have a dominating
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set (not necessarily minimum). Checking for all the pairs s1, s7 where si
is a neighbor of vi, i ∈ {1, 7}, one can verify if there is a γ-set with only
two more vertices.

– Z3 6= ∅, Z4 = ∅ or Z4 6= ∅, Z3 = ∅. Let Z3 6= ∅. If there exists r3 ∈ R3

which is complete to a connected component of Z3, then we take r3.
We add one universal vertex for each remaining component of Z3. Now,
adding the vertices v2, v4, v6 we have a dominating set (not necessarily
minimum). Checking for all the pairs s1, s7 where si is a neighbor of
vi, i ∈ {1, 7}, one can verify if there is a γ-set with only two more vertices.

– Z3 = Z4 = ∅. Then V = N [V (C)] and by Property 2.3 computing a
minimum dominating set is polynomial.

�

From Lemmas 3.1, 3.2, 4.3, 5.5, 5.6, we obtain the main result of this paper.

Theorem 5.7 The Minimum Dominating Set problem is polynomial for (claw, P8)-
free graphs.

6 Conclusion

We have shown that the Minimum Dominating Set problem is polynomial for (claw, P8)-
free graphs. We left open the following problem: is there a positive integer k, k ≥ 9,
such that the Minimum Dominating Set problem is NP -complete for the class of
(claw, Pk)-free graphs? If the the answer is positive, a challenge should be to show
a dichotomy: find the minimum integer k such that the Minimum Dominating Set
problem is NP -complete for (claw, Pk)-free graphs and polynomial for (claw, Pk−1)-
free graphs.
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