The Minimum Dominating Set problem is polynomial for (claw, P8)-free graphs

Valentin Bouquet, Christophe Picouleau

To cite this version:

Valentin Bouquet, Christophe Picouleau. The Minimum Dominating Set problem is polynomial for (claw, P8)-free graphs. 2021. hal-02448239v2

HAL Id: hal-02448239
https://hal.science/hal-02448239v2

Preprint submitted on 27 Sep 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

The Minimum Dominating Set problem is polynomial for $\left(\right.$ claw, $\left.P_{8}\right)$-free graphs

Valentin Bouquet* ${ }^{* \dagger}$ Christophe Picouleau ${ }^{\dagger}$

September 27, 2021

Abstract

We prove that the Minimum Dominating Set problem is polynomial for the class of (claw, P_{8})-free graphs.

Keywords: Minimum Dominating Set, polynomial time, claw-free graph, P_{k}-free graph.

1 Introduction

M. Yannakakis and F. Gavril [9] showed in 1980 that the Minimum Dominating Set problem restricted to claw-free graphs is $N P$-complete. Then in 1984, A. Bertossi [2] showed that the Minimum Dominating Set problem is also $N P$-complete for split graphs, a subclass of P_{5}-free graphs. More recently, in 2016, D. Malyshev [8] proved that the Minimum Dominating Set problem is polynomial for $\left(K_{1,4}, P_{5}\right)$-free graphs, hence for (claw, P_{5})-free graphs. To our knowledge, the complexity of the Minimum Dominating Set problem is unknown for (claw, P_{k})-free graphs for every fixed $k \geq 6$. We show that the Minimum Dominating Set problem is polynomial for (claw, P_{8})-free graphs.

Definitions and notations

We are only concerned with simple undirected graphs $G=(V, E)$. The reader is referred to [3] for definitions and notations in graph theory. For $v \in V, N(v)$ denotes its neighborhood and $N[v]=N(v) \cup\{v\}$ its closed neighborhood. A vertex v is universal if $N[v]=V$. For $v \in V$ and $A \subseteq V$, we denote by $N_{A}(v)=N(v) \cap A$ $\left(N_{A}[v]=(N(v) \cap A) \cup\{v\}\right)$ its (closed) neighborhood in A. For $X \subseteq V, A \subseteq V$, we denote $N_{A}(X)=\bigcup_{x \in X} N_{A}(x)$ and $N_{A}[X]=N_{A}(X) \cup X$.
The contraction of an edge $u v \in E$ removes the vertices u and v from V, and replaces them by a new vertex that is adjacent to the previous neighbors of u and v (neither introducing self-loops nor multiple edges). The graph obtained from G after the contraction of $u v$ is denoted by $G / u v$.

[^0]For $S \subseteq V$, let $G[S]$ denote the subgraph of G induced by S, which has vertex set S and edge set $\{u v \in E \mid u, v \in S\}$. For $v \in V$, we write $G-v=G[V \backslash\{v\}]$ and for a subset $V^{\prime} \subseteq V$ we write $G-V^{\prime}=G\left[V \backslash V^{\prime}\right]$. For a fixed graph H we write $H \subseteq_{i} G$ whenever \bar{G} contains an induced subgraph isomorphic to H. For a set $\left\{H_{1}, \ldots, H_{p}\right\}$ of graphs, G is $\left(H_{1}, \ldots, H_{p}\right)$-free if G has no induced subgraph isomorphic to a graph in $\left\{H_{1}, \ldots, H_{p}\right\}$; if $p=1$ we may write H_{1}-free instead of $\left(H_{1}\right)$-free. For two disjoint induced subgraphs $G[A], G[B]$ of $G, G[A]$ is complete to $G[B]$ if $a b \in E$ for every $a \in A, b \in B, G[A]$ is anticomplete to $G[B]$ if $a b \notin E$ for every $a \in A, b \in B$.
For $k \geq 1, P_{k}=u_{1}-u_{2}-\cdots-u_{k}$ is the cordless path on k vertices, that is, $V\left(P_{k}\right)=\left\{u_{1}, \ldots, u_{k}\right\}$ and $E\left(P_{k}\right)=\left\{u_{i} u_{i+1} \mid 1 \leq i \leq k-1\right\}$. For $k \geq 3, C_{k}=$ $u_{1}-u_{2}-\cdots-u_{k}-u_{1}$ is the cordless cycle on k vertices, that is, $V\left(C_{k}\right)=\left\{u_{1}, \ldots, u_{k}\right\}$ and $E\left(C_{k}\right)=\left\{u_{i} u_{i+1} \mid 1 \leq i \leq k-1\right\} \cup\left\{u_{k} u_{1}\right\}$. For $k \geq 4, C_{k}$ is called a hole. A graph without a hole is chordal.
A set $S \subseteq V$ is called a stable set or an independent set if $G[S]$ does not contain any edge. The maximum cardinality of an independent set in G is denoted by $\alpha(G)$. A set $S \subseteq V$ is called a clique if $G[V]$ is a complete graph, i.e., every pairwise distinct vertices $u, v \in S$ are adjacent. The graph $C_{3}=K_{3}$ is a triangle. $K_{1, p}$ is the star on $p+1$ vertices, that is, the graph with vertices $u, v_{1}, v_{2} \ldots, v_{p}$ and edges $u v_{1}, u v_{2}, \cdots, u v_{p}$. The claw is $K_{1,3}$.
A set $S \subseteq V$ is a dominating set if every vertex $v \in V$ is either an element of S or is adjacent to an element of S. The minimum cardinality of a dominating set in G is denoted by $\gamma(G)$ and called the domination number of G. A dominating set S with $|S|=\gamma(G)$ is called a minimum dominating set. Following [7] a minimum dominating set is also called a γ-set. We denote $V^{+} \subseteq V$ the subset of vertices v of G such that $\gamma(G-v)>\gamma(G)$. If $S \subset V$ is both a dominating and an independent set then S is an independent dominating set. The minimum cardinality of an independent dominating set in G is denoted by $i(G)$. Clearly we have $\gamma(G) \leq i(G) \leq \alpha(G)$. Note that a minimum independent dominating set is a minimum maximal independent set.

Previous results

We give some results of the literature concerning the Minimum Dominating Set problem that will be useful in the following. D. Bauer et al. showed in [4] that for every non-isolated vertex v, if $v \in V^{+}$then v is in every γ-set of G. Allan et al. [1] proved that $\gamma(G)=i(G)$ holds for every claw-free graph. Yannakakis et al. 9] proved that the Minimum Dominating Set problem restricted to claw-free graphs is $N P$-complete. D. Malyshev [8] proved that the Minimum Dominating Set problem is polynomial for $\left(K_{1,4}, P_{5}\right)$-free graphs hence for $\left(\right.$ claw,$\left.P_{5}\right)$-free graphs. As Farber [6] proved, a minimum independent dominating set can be determined in linear-time over the class of chordal graphs, the Minimum Dominating Set problem restricted to claw-free chordal graphs is polynomial.

Organization

The next section give some algorithmic properties. Two properties will allow us to make some simplifications on the graphs G that we consider. Two others will help
us to conclude that computing $\gamma(G)$ is polynomial when G have a specific structure relatively to a fixed size subgraph. Then we consider the case where the graph G has a long cycle. From there, we show our main result, starting from (claw, P_{6})free graphs and finishing with (claw, P_{8})-free graphs. We conclude by some open questions regarding (claw, P_{k})-free graphs for $k \geq 9$.

2 Algorithmic Properties

We give two properties that authorize us to make some assumptions and simplifications for the graphs we consider.
Property 2.1 Let G be a graph. If u, v are two vertices such that $N[u]=N[v]$ then $\gamma(G)=\gamma(G / u v)$.

Proof: Let u^{\prime} be the vertex of $G / u v$ resulting from the contraction of $u v$. Let Γ be a γ-set of G. At most one of u and v is in Γ. If $u \in \Gamma$ then let $\Gamma^{\prime}=(\Gamma \backslash\{u\}) \cup\left\{u^{\prime}\right\}$. If $u, v \notin \Gamma$ then let $\Gamma^{\prime}=\Gamma$. In the two cases Γ^{\prime} is a dominating set of $G / u v$, so $\gamma(G)=\left|\Gamma^{\prime}\right| \geq \gamma(G / u v)$. Now suppose that $\gamma(G)>\gamma(G / u v)$. Let Γ^{\prime} be a γ-set of $G / u v$. If $u^{\prime} \in \Gamma^{\prime}$ then $\left(\Gamma^{\prime} \backslash\left\{u^{\prime}\right\}\right) \cup\{u\}$ is a dominating set of G such that $\left|\left(\Gamma^{\prime} \backslash\left\{u^{\prime}\right\}\right) \cup\{u\}\right|=\gamma(G / u v)<\gamma(G)$, a contradiction. If $u^{\prime} \notin \Gamma^{\prime}$ then Γ^{\prime} is a dominating set of G, a contradiction. Hence $\gamma(G)=\gamma(G / u v)$.

Property 2.2 Let $G=(V, E)$ be a connected claw-free graph with uv $\in E$ such that u is a leaf. There exists Γ a minimum dominating set of G that consists of $\Gamma=\{v\} \cup \Gamma^{\prime}$ where Γ^{\prime} is a minimum dominating set of $G^{\prime}=G-N[v]$.

Proof: Since u is a leaf there exists Γ a minimum dominating set of G with $v \in \Gamma$. Let $w \in N(v) \backslash\{u\}$. Since G is claw-free then $N(w) \backslash N[v]$ is a clique. We can assume that $w \notin \Gamma$, otherwise replacing w by $w^{\prime} \in N(w) \backslash N[v]$ we have another γ-set of G (note that if $N(w) \backslash N[v]$ is empty then Γ cannot be a minimum dominating set). We show that $\Gamma^{\prime}=\Gamma \backslash N[v]$ is a minimum dominating set of $G^{\prime}=G-N[v]$. Clearly Γ^{\prime} dominates G^{\prime}. If there exists S a γ-set of G^{\prime} such that $|S|<\left|\Gamma^{\prime}\right|$ then $S \cup\{v\}$ is a dominating set of G with $|S \cup\{v\}|<\Gamma$, a contradiction.

As a consequence if a minimum dominating set of $G^{\prime}=G-N[v]$ can be determined in polynomial time then a minimum dominating set of G can be determined in polynomial time.

We show two conditions on the structure of G that authorize us to directly conclude that computing a γ-set for G can be done in polynomial time.

Property 2.3 Let $k>0$ be a fixed positive integer and $G=(V, E)$ be a graph. If there exists $T \subset V$ of size $|T| \leq k$ such that $V=N[T]$ then computing a minimum dominating set for G is polynomial.

Proof: We have $\gamma(G) \leq k$. So a minimum dominating set can be computed in $O\left(n^{k}\right)$.

Property 2.4 Let $k, k^{\prime}>0$ two fixed positive integers and $G=(V, E)$ be a graph. If there exists $T \subset V$ of size $|T| \leq k$ such that $W=V \backslash N[T]$ has a size $|W| \leq k^{\prime}$ then computing a minimum dominating set for G is polynomial.

Proof: We have $\gamma(G) \leq k+k^{\prime}$. So a minimum dominating set can be computed in $O\left(n^{k+k^{\prime}}\right)$.

$3 G$ has a long cycle

We give two lemmas that will authorize us to conclude that the Minimum Dominating Set problem is polynomial when G, a $\left(\right.$ claw, $\left.P_{k}\right)$-free graph, contains a long induced cycle.

Lemma 3.1 For every fixed $k \geq 6$, if G is a $\left(\right.$ claw,$\left.P_{k}\right)$-free connected graph such that $C_{k} \subseteq_{i} G$, then a minimum dominating set of G can be given in polynomial time.

Proof: Let $C_{k}=v_{1}-\cdots-v_{k}-v_{1}, C_{k} \subseteq_{i} G$. Let $v \notin V\left(C_{k}\right)$ be such that $N(v) \cap V\left(C_{k}\right) \neq \emptyset$. Since G is claw-free and $k \geq 6$, we have $2 \leq\left|N(v) \cap V\left(C_{k}\right)\right| \leq 4$. If $\left|N(v) \cap V\left(C_{k}\right)\right|=2$, the two neighbors of v in C_{k} must be adjacent, thus there is an induced P_{k}-subgraph that is a contradiction. For $3 \leq\left|N(v) \cap V\left(C_{k}\right)\right| \leq 4$, let w be a neighbor of v. If $N(w) \cap V\left(C_{k}\right)=\emptyset$ then there is a claw centered onto v, a contradiction. Hence every neighbor of v has a neighbor in C_{k} and therefore $N\left[C_{k}\right]=V$. So, from Property [2.3 we can compute a γ-set of G in polynomial time.

Lemma 3.2 For every fixed $k \geq 6$, if G is a $\left(\right.$ claw, $\left.P_{k}, C_{k}\right)$-free connected graph such that $C_{k-1} \subseteq_{i} G$, then a minimum dominating set of G can be given in polynomial time.

Proof: Let $C_{k-1}=v_{1}-\cdots-v_{k-1}-v_{1}, C_{k-1} \subseteq_{i} G$ and $v \notin V\left(C_{k-1}\right)$ such that $N(v) \cap V\left(C_{k-1}\right) \neq \emptyset$. We have $2 \leq\left|N(v) \cap V\left(C_{k-1}\right)\right| \leq 4$ for $k \geq 7$ and $2 \leq \mid N(v) \cap$ $V\left(C_{k-1}\right) \mid \leq 5$ for $k=6$. Let w be a neighbor of v such that $N(w) \cap V\left(C_{k-1}\right)=\emptyset$. If $3 \leq\left|N(v) \cap V\left(C_{k-1}\right)\right| \leq 5$, then there is a claw centered onto v, a contradiction. When $\left|N(v) \cap V\left(C_{k-1}\right)\right|=2$ there is an induced P_{k}-subgraph that is a contradiction. So $N\left[C_{k-1}\right]=V$ and therefore from Property 2.3 we can compute a γ-set of G in polynomial time.

$4 G$ is $\left(c l a w, P_{k}, C_{k}, C_{k-1}\right)$-free, $C_{k-2} \subseteq_{i} G, k \leq 8$

In this section we prove that, for $k \leq 8$, if G is a $\left(\right.$ claw, $\left.P_{k}, C_{k}, C_{k-1}\right)$-free graph such that $C_{k-2} \subseteq_{i} G$ then the Minimum Dominating Set problem is polynomial. The first lemma gives a structural property for G. We use this property to prove two other lemmas, the first one for $k=6$, the second for $7 \leq k \leq 8$.

Lemma 4.1 For every fixed $k \geq 6$, if G is a (claw, P_{k}, C_{k}, C_{k-1})-free connected graph such that $C_{k-2} \subseteq_{i} G$, then $W=V \backslash N\left[V\left(C_{k-2}\right)\right]$ is an independent set.

Proof: Let $C=C_{k-2}=v_{1}-\cdots-v_{k-2}-v_{1}, C \subseteq_{i} G$ and $v \in N[V(C)] \backslash V(C)$. We have $2 \leq\left|N_{C}(v)\right| \leq 5$ (note that $\left|N_{C}(v)\right|=5$ only for $C=C_{5}$). Let $W=$ $V \backslash N[V(C)]$ and let $w \in W$ be a neighbor of v. If $3 \leq\left|N_{C}(v)\right| \leq 5$, there is a claw, a contradiction. Hence, v is such that $N_{C}(v)=\left\{v_{i}, v_{i+1}\right\}, 1 \leq i \leq k-2$ (for convenience, when $i=k-2$, we read $v_{i+1}=v_{1}$). By Property 2.1, we can assume that all contractibles vertices of G are contracted. Moreover, from Property 2.2 we can assume that G has no leaves.
Assume for contradiction that w has a neighbor $w^{\prime}, w^{\prime} \in W$. When w^{\prime} has no neighbor in $N(V(C))$, there is an induced P_{k}-subgraph that is a contradiction. Hence w^{\prime} has a neighbor in $N(V(C))$. Recall that $N[w] \neq N\left[w^{\prime}\right]$. If $v w^{\prime} \notin E$ then there is an induced P_{k}-subgraph, a contradiction. Hence, w and w^{\prime} have the same neighbors in $N(V(C))$ but not in W. So there exists $r \in W$ with $r w \in E, r w^{\prime} \notin E$. The arguments above implies $r v \in E$. But $G\left[\left\{r, v, v_{i}, w^{\prime}\right\}\right]$ is a claw, a contradiction. Hence, $W=V \backslash N\left[V\left(C_{k-2}\right)\right]$ is independent.

Lemma 4.2 If G is a (claw, P_{6}, C_{6}, C_{5})-free connected graph such that $C_{4} \subseteq_{i} G$, then a minimum dominating set of G can be given in polynomial time.

Proof: Let $C=C_{4}=v_{1}-\cdots-v_{4}-v_{1}, C \subseteq_{i} G$ and $v \notin V(C)$ such that $N(v) \cap V(C) \neq \emptyset$. We have $2 \leq\left|N_{C}(v)\right| \leq 4$. Let $W=V \backslash N[C]$ and $w \in W$ be a neighbor of v. If $3 \leq\left|N_{C}(v)\right| \leq 4$ then G contains a claw, a contradiction. Hence, $N_{C}(v)=\left\{v_{i}, v_{i+1}\right\}, 1 \leq i \leq 4$ (for convenience, when $i=4$, we read $v_{i+1}=v_{1}$). We assume that all contractibles vertices of G are contracted and G has no leaves.
By Property 2.4, if $|W| \leq 1$ then a minimum dominating set can be computed in polynomial time. So we assume that $|W| \geq 2$ and by Lemma4.1, we know that W is an independent set. We show that all vertices $v \in N[W] \backslash W$ have exactly the same neighbors in C.
Let $w, w^{\prime} \in W, w \neq w^{\prime}$, be such that w has a neighbor $v \in N[C] \backslash V(C)$ and w^{\prime} has a neighbor $v^{\prime} \in N[C] \backslash V(C)$. Since G is claw-free $v \neq v^{\prime}$. W.l.o.g. $N_{C}(v)=$ $\left\{v_{1}, v_{2}\right\}$. Assume that $N_{C}(v) \neq N_{C}\left(v^{\prime}\right)$. W.l.o.g. $N_{C}\left(v^{\prime}\right)=\left\{v_{2}, v_{3}\right\}$ (note that $N_{C}\left(v^{\prime}\right)=\left\{v_{1}, v_{4}\right\}$ is symmetric). If $v v^{\prime} \notin E$ then $w-v-v_{1}-v_{4}-v_{3}-v^{\prime}=P_{6}$, else $v_{1}-v-v^{\prime}-v_{3}-v_{4}=C_{5}$, a contradiction. Now it remains $N_{C}\left(v^{\prime}\right)=\left\{v_{3}, v_{4}\right\}$. We have $v v^{\prime} \notin E$ else there is a claw, but $w-v-v_{1}-v_{4}-v^{\prime}-w^{\prime}=P_{6}$, a contradiction. Thus, w.l.o.g. every vertex $w \in W$ has only neighbors $v \in N[C] \backslash V(C)$ such that $N(v)=\left\{v_{1}, v_{2}\right\}$.
Let $|W|=q, q \geq 2$. We show that $\gamma(G)=q+1$. Since W is independent and for every distinct $w, w^{\prime} \in W$, we have $N[w] \cap N\left[w^{\prime}\right]=\emptyset$, we must take q vertices of $N[W]$ to dominate the vertices of W. This vertices cannot dominate v_{3} nor v_{4}. Hence $\gamma(G) \geq q+1$.
We construct a γ-set of G as follows. We set R by taking exactly one neighbor of each $w, w \in W$. Clearly, $\Gamma=R \cup\left\{v_{3}\right\}$ dominates $V(C) \cup N[R]$. Suppose that there exists $s \in N[C] \backslash V(C)$ that is not dominated by Γ. If $N_{C}(s)=\left\{v_{1}, v_{2}\right\}$ then there exists $r \in R$ such that $G\left[\left\{r, s, v_{1}, v_{4}\right\}\right]$ is a claw, a contradiction. If $N_{C}(s)=\left\{v_{1}, v_{4}\right\}$ then $w-v-v_{2}-v_{3}-v_{4}-s=P_{6}$, a contradiction. If $N_{C}(s)=\left\{v_{1}, v_{2}, v_{4}\right\}$ then
there exists $r \in R$ such that $G\left[\left\{r, s, v_{2}, v_{3}\right\}\right]$ is a claw, a contradiction. Hence every $s \notin N[R] \cup V(C)$ is dominated by v_{3}. It follows that Γ is a γ-set of G. Clearly Γ can be constructed in polynomial time.

Lemma 4.3 For $k \in\{7,8\}$, if G is a (claw, $\left.P_{k}, C_{k}, C_{k-1}\right)$-free connected graph such that $C_{k-2} \subseteq_{i} G$, then a minimum dominating set of G can be given in polynomial time.

Proof: By Properties 2.1 and 2.2, we can assume that all contractibles vertices of G are contracted and that G has no leaves. Let $C=C_{k-2}=v_{1}-\cdots-v_{k-2}-v_{1}, C \subseteq_{i} G$ and $v \in N[C] \backslash V(C)$. We have $2 \leq\left|N_{C}(v)\right| \leq 5$ (note that $\left|N_{C}(v)\right|=5$ only for $C=C_{5}$). Let $S=N[C] \backslash V(C), W=V \backslash N[C]$ and $w \in W$ a neighbor of v. If $3 \leq\left|N_{C}(v)\right| \leq 4$ then G has a claw, a contradiction. Hence, v is such that $N_{C}(v)=\left\{v_{i}, v_{i+1}\right\}, 1 \leq i \leq k-2$ (for convenience, when $i=k-2$, we read $v_{i+1}=v_{1}$).

We show that for every $w \in W$, there exists $v, v^{\prime} \in N(w)$ such that $N_{C}(v) \cap N_{C}\left(v^{\prime}\right)=$ \emptyset. Let $w \in W$ and $v, v^{\prime} \in N_{S}(w), v \neq v^{\prime}$.
First, we show that $N_{C}(v) \neq N_{C}\left(v^{\prime}\right)$. Suppose that $N_{C}(v)=N_{C}\left(v^{\prime}\right)$, w.l.o.g. $N_{C}(v)=\left\{v_{1}, v_{2}\right\}$. We have $v v^{\prime} \in E$ else $G\left[\left\{v, v^{\prime}, v_{1}, v_{k-2}\right\}\right]$ is a claw. Since $N[v] \neq$ $N\left[v^{\prime}\right]$ there exists $u \in V$ such that $u v \in E$ and $u v^{\prime} \notin E$. If $u \in W$ then by Lemma $4.1 u w \notin E$ but $G\left[\left\{u, v, w, v_{1}\right\}\right]$ is a claw, a contradiction. So, we have $u \in S$. If $N_{C}(u)=\left\{v_{1}, v_{2}\right\}$ then $G\left[\left\{u, v^{\prime}, v_{2}, v_{3}\right\}\right.$ is a claw, a contradiction. So $N_{C}(u) \neq N_{C}(v)$ and we can assume that $w u \notin E$, otherwise we have u, v two neighbors of w with distinct neighborhoods in C. If $N_{C}(u) \cap N_{C}(v)=\emptyset$ then $G\left[\left\{u, v, v_{1}, w\right\}\right]$ is a claw, a contradiction. So, w.l.o.g., we assume that $N_{C}(u) \cap N_{C}(v)=\left\{v_{1}\right\}$ but $G\left[\left\{u, v, v_{2}, w\right\}\right]$ is a claw, a contradiction. Hence $N[v]=N\left[v^{\prime}\right]$ and v, v^{\prime} can be contracted implying that w is a leaf, a contradiction. Thus for every $w, w \in W$, there exists $v, v^{\prime} \in N_{S}(w)$, $v \neq v^{\prime}$ such that $N_{C}(v) \neq N_{C}\left(v^{\prime}\right)$.
Now we show that that $N_{C}(v) \cap N_{C}\left(v^{\prime}\right)=\emptyset$. W.l.o.g. assume that $N_{C}(v)=\left\{v_{1}, v_{2}\right\}$ and $N_{C}\left(v^{\prime}\right)=\left\{v_{2}, v_{3}\right\}$. If $v v^{\prime} \in E$ then $v_{1}-v-v^{\prime}-v_{3}-\cdots-v_{k-2}-v_{1}=C_{k-1}$, else $v_{1}-v-w-v^{\prime}-v_{3}-\cdots-v_{k-2}-v_{1}=C_{k}$, a contradiction. Thus every $w \in W$, has two neighbors $v, v^{\prime} \in S$ such that $N_{C}(v) \cap N_{C}\left(v^{\prime}\right)=\emptyset$.

It follows from Property 2.4 that we can assume that $|W| \geq 2$. So let $w, w^{\prime} \in W$ (recall $w w^{\prime} \notin E$). Since both w and w^{\prime} have two neighbors in S with non intersecting neighborhoods in C, let $v \in N(w), v^{\prime} \in N\left(w^{\prime}\right)$ such that $N_{C}(v) \cap$ $N_{C}\left(v^{\prime}\right)=\emptyset$. W.l.o.g. $N_{C}(v)=\left\{v_{1}, v_{2}\right\}$. Assume that $N_{C}\left(v^{\prime}\right)=\left\{v_{3}, v_{4}\right\}$ (note that $N\left(v^{\prime}\right)=\left\{v_{k-2}, v_{k-3}\right\}$ is symmetric). If $v v^{\prime} \in E$ then $G\left[\left\{v, v^{\prime}, v_{1}, w\right\}\right]$ is a claw, else $w-v-v_{1}-v_{k-2}-\cdots-v_{4}-v^{\prime}-w^{\prime}=P_{k}$, a contradiction. Hence the two neighborhoods of $N_{C}(v)$ and $N_{C}\left(v^{\prime}\right)$ are not adjacent. It follows that for $k=7$, since $C_{k-2}=C_{5}$, such a configuration is impossible. This yields to $|W| \leq 1$ and by Property 2.4 a minimum dominating set can be computed in polynomial time.

Now, we focus on the remaining case of $k=8$. Let $|W|=q, q \geq 2$. We show that $\gamma(G)=q+2$. Since W is independent and that for every distinct vertices $w, w^{\prime} \in W$, we have $N[w] \cap N\left[w^{\prime}\right]=\emptyset$, we must take q vertices of $N[W]$ to dominate the vertices
of W. Let $w, w^{\prime} \in W$. From above we can assume that w has a neighbor v such that $N_{C}(v)=\left\{v_{1}, v_{2}\right\}$ and w^{\prime} has a neighbor v^{\prime} such that $N_{C}\left(v^{\prime}\right)=\left\{v_{4}, v_{5}\right\}$ (each vertex of W has two neighbors whose are neighbors of respectively $\left\{v_{1}, v_{2}\right\}$ and $\left\{v_{4}, v_{5}\right\}$ since $\left.C=C_{6}\right)$. G being claw-free we have $v v^{\prime} \notin E$. The q vertices that dominates W cannot dominate v_{3} and v_{6}. Hence $\gamma(G) \geq q+1$.
Suppose that $\gamma(G)=q+1$. The minimum dominating set of G must contain a vertex $s \in S$ a neighbor of both v_{3} and v_{6}. If $v s \in E$, respectively $v^{\prime} s \in E$, then G has a claw (s cannot be complete to $\left.N_{C}(v) \cup N_{c}\left(v^{\prime}\right)\right)$, a contradiction. Also, s must have (v_{1} or v_{5}) and (v_{2} or v_{4}) as neighbors else there is a claw. We assume first that $N(s)=\left\{v_{1}, v_{2}, v_{3}, v_{6}\right\}$. Then $w-v-v_{1}-s-v_{3}-v_{4}-v^{\prime}-w^{\prime}=P_{8}$ (recall $v v^{\prime} \notin E$ since G is claw-free), a contradiction. The case where $N(s)=\left\{v_{3}, v_{4}, v_{5}, v_{6}\right\}$ is symmetric. Now we assume that $N(s)=\left\{v_{1}, v_{3}, v_{4}, v_{6}\right\}$ (note that $N(s)=\left\{v_{2}, v_{3}, v_{5}, v_{6}\right\}$ is symmetric). Then $w-v-v_{2}-v_{3}-s-v_{6}-v_{5}-v^{\prime}=P_{8}$, a contradiction. Hence $\gamma(G) \geq q+2$.

We show that $\Gamma=\left\{v_{1}, v_{4}\right\} \cup W$ is a γ-set of G. Clearly Γ dominates $N[W] \cup V(C)$. Let $s \notin N[W] \cup V(C)$. So $s \in S$. Suppose that $s v_{1}, s v_{4} \notin E$. From above $w s \notin E$ and $v s \notin E$ else $G\left[\left\{v, s, v_{1}, w\right\}\right]$ is a claw. If $N(s)=\left\{v_{2}, v_{3}\right\}$ then $w-v-v_{1}-$ $v_{6}-v_{5}-v_{4}-v_{3}-s=P_{8}$, a contradiction. By symmetry $N(s) \neq\left\{v_{5}, v_{6}\right\}$. As shown before $N(s)=\left\{v_{2}, v_{3}, v_{5}, v_{6}\right\}$ is not possible. Hence every $s \notin N[W] \cup V(C)$ is dominated by v_{1} or v_{4}. It follows that $\Gamma=\left\{v_{1}, v_{4}\right\} \cup W$ is a γ-set of G.

By Lemmas 3.1, 3.2, 4.2, 4.3 we immediately obtain the corollary below.
Corollary 4.4 Let G a (claw, $\left.P_{k}\right)$-free graph, $6 \leq k \leq 8$. If $C_{l} \subseteq_{i} G, k-2 \leq l \leq k$, then a minimum dominating set of G can be given in polynomial time.

$5 G$ is $\left(\right.$ claw,$\left.P_{8}\right)$-free

Here we conclude by the main result proving that the Minimum Dominating Set problem is polynomial in the class of (claw, P_{8})-free graphs. Starting from the result stating that the problem is polynomial when G is $\left(\right.$ claw, $\left.P_{5}\right)$-free, we successively prove that the problem is polynomial for $\left(\right.$ claw, $\left.P_{6}\right)$-free, $\left(c l a w, ~ P_{7}\right)$-free graphs. Then we conclude for the class of (claw, P_{8})-free graphs.
In [8] D. Malyshev proved that the Minimum Dominating Set problem is polynomial for the class of $\left(K_{1,4}, P_{5}\right)$-free graphs. Hence we obtain the following lemma.

Lemma 5.1 Let G be a connected (claw, P_{5})-free graph. Computing a minimum dominating set is polynomial-time solvable.

Lemma 5.2 Let G be a connected (claw, P_{6})-free graph. Computing a minimum dominating set is polynomial-time solvable.

Proof: It follows from Corollary 4.4, that if $C_{l} \subseteq_{i} G, 4 \leq l \leq 6$, then computing a minimum dominating set is polynomial. When G is (claw, $C_{4}, C_{5}, C_{6}, P_{6}$)-free then it is chordal. The Minimum Dominating Set problem is polynomial for claw-free chordal graphs.

Lemma 5.3 Let G be a connected (claw, $C_{5}, C_{6}, C_{7}, P_{7}$)-free graph. Computing a minimum dominating set is polynomial-time solvable.

Proof: By Properties 2.1 and 2.2, we can assume that all contractibles vertices of G are contracted and that G has no leaves. By Lemma 5.2 we can assume that $P_{6} \subseteq_{i} G$. Let $P=v_{1}-v_{2}-v_{3}-v_{4}-v_{5}-v_{6}$.
Let $W=V \backslash N[V(P)]$. It follows from Property 2.3 that if $W=\emptyset$ then computing a minimum dominating set is polynomial. From now on $W \neq \emptyset$. Let $S=\left\{v \in V \backslash V(P)\right.$ such that $\left.2 \leq\left|N_{P}(v)\right| \leq 4\right\}, S_{i} \subseteq S$ being the set of vertices v such that $\left|N_{P}(v)\right|=i$. Let $H_{i}=\left\{v \in S_{2}: N_{P}(v)=\left\{v_{i}, v_{i+1}\right\}, 1 \leq i \leq 5\right\}$. Since G is claw-free each H_{i} is complete. If there is an edge $r_{i} r_{i+1}$ with $r_{i} \in H_{i}, r_{i+1} \in H_{i+1}$ then $P=v_{1}-\cdots-v_{i}-r_{i}-r_{i+1}-v_{i+2}-\cdots-v_{6}=P_{7}$, a contradiction. If there is an edge $r_{i} r_{j}$ with $r_{i} \in H_{i}, r_{j} \in H_{j}$ and $j \geq i+3$ then $C_{p} \subseteq_{i} G, p \geq 5$. So H_{1} is anticomplete to H_{2}, H_{4}, H_{5}, the component H_{2} is anticomplete to H_{3}, H_{5}, and the component H_{3} is anticomplete to H_{4}.

We define R_{i} as the set of vertices of H_{i} having a neighbor in $W, R_{i}=\left\{v \in H_{i}\right.$: $\left.N_{W}(v) \neq \emptyset\right\}, 1 \leq i \leq 5$. Since G is P_{7}-free $R_{1}=R_{5}=\emptyset$.

Let $r \in R_{i}, r^{\prime} \in R_{i}, r \neq r^{\prime}, i \in\{2,4\}$ be such that r, respectively r^{\prime}, has a neighbor $w \in W$, respectively $w^{\prime} \in W$. We show that $N_{S}(r)=N_{S}\left(r^{\prime}\right)$.
By contradiction we assume that there exists $s \in S$ such that rs $\in E, r^{\prime} s \notin$ E. From above $s \notin R_{i} \cup H_{i-1} \cup H_{i+1}$. Let $i=2$ (the case $i=4$ is symmetric). Recall that H_{2} is anticomplete to H_{1}, H_{3}, H_{5}, thus $s \in H_{4} \cup S_{3} \cup S_{4}$. If $s \in H_{4}$ then $G\left[\left\{r, w, v_{3}, s\right\}\right]$ is a claw, a contradiction. Hence $s \in S_{3} \cup S_{4}$. When $N_{P}(s)=\left\{v_{1}, v_{2}, v_{3}\right\}$ then $G\left[\left\{r^{\prime}, v_{3}, v_{4}, s\right\}\right]$ is a claw, a contradiction. When $N_{P}(s)=\left\{v_{2}, v_{3}, v_{4}\right\}$ then $G\left[\left\{r^{\prime}, v_{1}, v_{2}, s\right\}\right]$ is a claw, a contradiction. When $N_{P}(s)=$ $\left\{v_{3}, v_{4}, v_{5}\right\}$ or $N_{P}(s)=\left\{v_{4}, v_{5}, v_{6}\right\}$ then $G\left[\left\{r, v_{2}, w, s\right\}\right]$ is a claw, a contradiction. So $s \in S_{4}$. When $N_{P}(s)=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ then $G\left[\left\{r, v_{1}, v_{4}, s\right\}\right]$ is a claw, a contradiction. When $N_{P}(s)=\left\{v_{2}, v_{3}, v_{4}, v_{5}\right\}$ then $G\left[\left\{r,{ }^{\prime} v_{1}, v_{2}, s\right\}\right]$ is a claw, a contradiction. When $N_{P}(s)=\left\{v_{3}, v_{4}, v_{5}, v_{6}\right\}$ then $G\left[\left\{r, v_{4}, v_{6}, s\right\}\right]$ is a claw, a contradiction. Now let $i=3$. Recall that H_{3} is anticomplete to H_{2}, H_{4}, thus $s \in H_{1} \cup H_{5} \cup S_{3} \cup S_{4}$. If $s \in H_{1}$ (the case $s \in H_{5}$ is symmetric) then $G\left[\left\{r, w, v_{3}, s\right\}\right]$ is a claw, a contradiction. Hence $s \in S_{3} \cup S_{4}$. If $N_{P}(s)=\left\{v_{1}, v_{2}, v_{3}\right\}$ (the case $N_{P}(s)=\left\{v_{4}, v_{5}, v_{6}\right\}$ is symmetric) then $G\left[\left\{r, w, v_{4}, s\right\}\right]$ is a claw, a contradiction. If $N_{P}(s)=\left\{v_{2}, v_{3}, v_{4}\right\}$ (the case $N_{P}(s)=\left\{v_{3}, v_{4}, v_{5}\right\}$ is symmetric) then $G\left[\left\{r^{\prime}, v_{4}, v_{5}, s\right\}\right]$ is a claw, a contradiction. So $s \in S_{4}$. When $N_{P}(s)=\left\{v_{1}, v_{2}, v_{4}, v_{5}\right\}$ or $N_{P}(s)=\left\{v_{1}, v_{2}, v_{5}, v_{6}\right\}$ then $G\left[\left\{r, v_{1}, v_{5}, s\right\}\right]$ is a claw, a contradiction. When $N_{P}(s)=\left\{v_{2}, v_{3}, v_{5}, v_{6}\right\}$ then $G\left[\left\{r^{\prime}, v_{3}, v_{4}, s\right\}\right]$ is a claw, a contradiction. When $N_{P}(s)=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ (the case $N_{P}(s)=\left\{v_{3}, v_{4}, v_{5}, v_{6}\right\}$ is symmetric) then $G\left[\left\{r^{\prime}, v_{4}, v_{5}, s\right\}\right]$ is a claw, a contradiction. Hence $N_{P}(s)=\left\{v_{2}, v_{3}, v_{4}, v_{5}\right\}$ but $G\left[\left\{r, v_{2}, v_{5}, s\right\}\right]$ is a claw, a contradiction. Thus $N_{S}(r)=N_{S}\left(r^{\prime}\right)$.

Let $r_{2} \in R_{2}, r_{2}^{\prime} \in R_{2}, r_{2} \neq r_{2}^{\prime}$ be such that r_{2}, respectively r_{2}^{\prime}, has a neighbor $w \in W$, respectively $w^{\prime} \in W$. Let $r_{4} \in R_{4}, r_{4}^{\prime} \in R_{4}, r_{4} \neq r_{4}^{\prime}$ be such that r_{4}, respectively r_{4}^{\prime}, has w, respectively w^{\prime}, as neighbor. We show that $N_{S \backslash H_{4}}\left(r_{2}\right)=N_{S \backslash H_{4}}\left(r_{2}^{\prime}\right)$, respectively $N_{S \backslash H_{2}}\left(r_{4}\right)=N_{S \backslash H_{2}}\left(r_{4}^{\prime}\right)$.

By contradiction we assume that there exists $s \in S$ such that $r_{2} s \in E, r_{2}^{\prime} s \notin E$. From above $s \notin H_{1} \cup H_{2} \cup H_{3}$. When $s \in H_{4}$ we know that s is not a neighbor of w. If $s \in H_{4} \cup H_{5}$ then $G\left[\left\{r_{2}, v_{2}, w, s\right\}\right]$ is a claw, a contradiction. Hence $s \in S_{3} \cup S_{4}$. When $N_{P}(s)=\left\{v_{1}, v_{2}, v_{3}\right\}$ then $G\left[\left\{r_{2}^{\prime}, v_{3}, v_{4}, s\right\}\right]$ is a claw, a contradiction. When $N_{P}(s)=\left\{v_{2}, v_{3}, v_{4}\right\}$ then $G\left[\left\{r_{2}^{\prime}, v_{1}, v_{2}, s\right\}\right]$ is a claw, a contradiction. When $N_{P}(s)=\left\{v_{3}, v_{4}, v_{5}\right\}$ then $G\left[\left\{r_{2}, v_{2}, w, s\right\}\right]$ is a claw, a contradiction. When $N_{P}(s)=\left\{v_{4}, v_{5}, v_{6}\right\}$ then $G\left[\left\{r_{2}, v_{4}, v_{6}, s\right\}\right]$ is a claw, a contradiction. So $s \in S_{4}$. When $N_{P}(s)=\left\{v_{1}, v_{2}, v_{4}, v_{5}\right\}$ or $N_{P}(s)=\left\{v_{1}, v_{2}, v_{5}, v_{6}\right\}$ then $G\left[\left\{r, v_{1}, v_{5}, s\right\}\right]$ is a claw, a contradiction. When $N_{P}(s)=\left\{v_{2}, v_{3}, v_{5}, v_{6}\right\}$ then $G\left[\left\{r^{\prime}, v_{3}, v_{4}, s\right\}\right]$ is a claw, a contradiction. When $N_{P}(s)=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ then $G\left[\left\{r_{2}, v_{1}, v_{4}, s\right\}\right]$ is a claw, a contradiction. When $N_{P}(s)=\left\{v_{2}, v_{3}, v_{4}, v_{5}\right\}$ then $G\left[\left\{r_{2}^{\prime}, v_{1}, v_{2}, s\right\}\right]$ is a claw, a contradiction. When $N_{P}(s)=\left\{v_{3}, v_{4}, v_{5}, v_{6}\right\}$ then $G\left[\left\{r_{2}, v_{4}, v_{6}, s\right\}\right]$ is a claw, a contradiction. Thus $N_{S \backslash H_{4}}\left(r_{2}\right)=N_{S \backslash H_{4}}\left(r_{2}^{\prime}\right)$ and by symmetry, for $r_{4}^{\prime} \in R_{4}, r_{4}^{\prime} \neq r_{4}$, we have $N_{S \backslash H_{2}}\left(r_{4}\right)=N_{S \backslash H_{2}}\left(r_{4}^{\prime}\right)$.

Let $w \in W$. We show that w cannot have two neighbors r_{i}, r_{i+1} with $r_{i} \in R_{i}$, $r_{i+1} \in R_{i+1}$. Suppose for contradiction that these two neighbors exist. Then $v_{1}-$ $\cdots-v_{i}-r_{i}-w-r_{i+1}-v_{i+2}-\cdots-v_{6}=P_{8}$, a contradiction. Now, since $R_{1}=R_{5}=\emptyset$, if w has two neighbors $r_{i} \in R_{i}, r_{j} \in R_{j}, i \neq j$, these two neighbors are $r_{2} \in R_{2}, r_{4} \in R_{4}$ and $r_{2} r_{4} \in E$, else $w-r_{4}-v_{4}-v_{3}-r_{2}-w=C_{5}$. Moreover, when w has two neighbors $r_{2} \in R_{2}, r_{4} \in R_{4}$, then for each neighbor $w^{\prime} \in N_{W}(w), w^{\prime}$ has r_{2} and r_{4} as neighbors. Assume for contradiction that w has a neighbor $w^{\prime} \in W$ such that $w^{\prime} r_{2} \notin E$ (by symmetry $w^{\prime} r_{4} \notin E$ is the same case). Then $w^{\prime}-w-r_{2}-v_{3}-\cdots-v_{6}=P_{7}$, a contradiction. It follows that $N[w]=N\left[w^{\prime}\right]$, a contradiction.
Hence setting $Z_{24}=\left\{w \in W: w\right.$ has two neighbors $\left.r_{2} \in R_{2}, r_{4} \in R_{4}\right\}, Z_{24}$ is an independent set.

Let $w, w^{\prime} \in Z_{24}, w \neq w^{\prime}$. Since G is claw-free we have $N(w) \cap N\left(w^{\prime}\right)=\emptyset$. We show that $N_{R_{2}}(w)$ is anticomplete to $N_{R_{4}}\left(w^{\prime}\right)$ and $N_{R_{4}}(w)$ is anticomplete to $N_{R_{2}}\left(w^{\prime}\right)$. By contradiction if w has a neighbor $r_{2} \in R_{2}$, w^{\prime} has a neighbor $r_{4} \in R_{4}$, and $r_{2} r_{4} \in E$ then $G\left[\left\{v_{2}, r_{2}, w, r_{4}\right\}\right]$ is a claw, a contradiction.

Let $Z_{i}=\left\{w \in W: w\right.$ has a neighbor in $\left.R_{i} \backslash\left(N_{R_{i}}\left(Z_{24}\right)\right\}, 2 \leq i \leq 4\right\}$.
We show that Z_{2}, Z_{3}, Z_{4} are pairwise anticomplete. If there is an edge $w_{2} w_{4}, w_{2} \in$ $Z_{2}, w_{4} \in Z_{4}$, with $r_{2}^{\prime} \in R_{2}, r_{4}^{\prime} \in R_{4}$ the neighbors of w_{2}, w_{4} respectively, then $w_{2}-r_{2}^{\prime}-v_{3}-v_{4}-r_{4}^{\prime}-w_{4}-w_{2}=C_{6}\left(r_{2}^{\prime} r_{4}^{\prime} \notin E\right.$ else $G\left[\left\{v_{2}, r_{2}^{\prime}, w_{2}, r_{4}^{\prime}\right\}\right]$ is a claw). If there is an edge $w_{2} w_{3}, w_{2} \in Z_{2}, w_{3} \in Z_{3}$, with $r_{2}^{\prime} \in R_{2}, r_{3}^{\prime} \in R_{3}$ the neighbors of w_{2}, w_{3} respectively, then $w_{2}-r_{2}^{\prime}-v_{3}-r_{3}^{\prime}-w_{3}-w_{2}=C_{5}$ (recall $r_{2}^{\prime} r_{3}^{\prime} \notin E$). By symmetry there is no edge between Z_{3} and Z_{4}.

Let $Y=W \backslash\left(Z_{2} \cup Z_{3} \cup Z_{4} \cup Z_{24}\right)$. One can observe that for every $w \in Y$ we have $N_{Z_{2}}(w)=N_{Z_{4}}(w)=N_{Z_{24}}(w)=\emptyset$ else $P_{7} \subseteq_{i} G$.
Let $Y_{3}=\left\{w \in Y: w\right.$ has a neighbor in $\left.Z_{3}\right\}$. If there exists $w^{\prime} \in Y \backslash Y_{3}$ such that w^{\prime} has a neighbor $w, w \in Y_{3}$, then $P_{7} \subseteq_{i} G$. Hence $Y=Y_{3}$.

We show that we can assume that Z_{2}, Z_{4}, Y_{3} are three independent sets. The arguments are the same for the three sets, so we show that Z_{2} is an independent set. For
contradiction, we assume that there are $w_{1}, w_{2} \in Z_{2}$ such that $w_{1} w_{2} \in E$. We prove that $N_{R_{2}}\left(w_{1}\right)=N_{R_{2}}\left(w_{2}\right)$. If $N_{R_{2}}\left(w_{1}\right) \neq N_{R_{2}}\left(w_{2}\right)$ then there exists $r_{2} \in R_{2}$ which is a neighbor of w_{1} but not a neighbor of w_{2}. Then $w_{2}-w_{1}-r_{2}-v_{3}-\cdots-v_{6}=P_{7}$, a contradiction. If $N_{Z_{2}}\left(w_{1}\right) \neq N_{Z_{2}}\left(w_{2}\right)$ then there exists $w_{3} \in Z_{2}$ such that $w_{2} w_{3} \in E$, $w_{1} w_{3} \notin E$, but $G\left[\left\{v_{2}, r_{2}, w_{1}, w_{3}\right\}\right]$ is a claw, a contradiction. Hence $N\left[w_{1}\right]=N\left[w_{2}\right]$, a contradiction. Hence Z_{2}, Z_{4}, Y_{3} are three independent sets.

Since G is claw-free then for every two distinct vertices $w_{1}, w_{2} \in Z_{2} \cup Z_{4} \cup Y_{3}$ we have $N\left(w_{1}\right) \cap N\left(w_{2}\right)=\emptyset$.
We prove that for every $w \in Y_{3}, N(w)$ is a clique. Let $w \in Z_{3}$. Suppose there are s, s^{\prime} two non adjacent vertices in $N(w)$. Since G is claw-free s, s^{\prime} cannot have a common neighbor in R_{3}. Let $r \in R_{3}$ be a neighbor of s. Then $s^{\prime}-w-s-r-v_{3}-v_{2}-v_{1}=P_{7}$, a contradiction.

Since G is claw-free, if there are a vertex $r \in R_{i}$ with a neighbor $z \in Z_{i}$ and a vertex $s \in S$ such as $s z \notin E$ and $v_{i} \notin N(s)$ then G contains a claw, a contradiction, (note that $v_{i+1} \notin N(s)$ is symmetric $)$. Hence $N\left(Z_{i}\right)$ is anticomplete to $H_{j}, j \neq i$.

We show that we can assume that $Z_{2}=Z_{4}=\emptyset$. The arguments are the same in the two cases, so we consider Z_{2}. Let $r, r^{\prime} \in R_{2}$ be two neighbors of $w \in Z_{2}$. We show that $N[r]=N\left[r^{\prime}\right]$. Since $N_{R}(w)=N_{R_{2}}(w)$ and $r r^{\prime} \in E$ then, as proved above, $N_{S}(r)=N_{S}\left(r^{\prime}\right)$. For two distinct $w_{1}, w_{2} \in Z_{2}, N\left(w_{1}\right) \cap N\left(w_{2}\right)=\emptyset$. Hence, $N[r]=N\left[r^{\prime}\right]$, a contradiction. Then w is a leaf, a contradiction.

Now we study the structure of Z_{3}. For every distinct two vertices $w_{1}, w_{2} \in Z_{3}$ such that $w_{1} w_{2} \in E$, there cannot exist two distinct vertices $w_{1}^{\prime}, w_{2}^{\prime} \in Z_{3}$ such that $w_{1} w_{1}^{\prime} \in E, w_{1}^{\prime} w_{2} \notin E$ and $w_{2} w_{2}^{\prime} \in E, w_{1} w_{2}^{\prime} \notin E$. For contradiction we suppose that such two vertices exist. We assume first that w_{2} has a neighbor $r_{2} \in R_{3}$ such that $r_{2} w_{1} \notin E$. If $w_{1}^{\prime} r_{2} \notin E$ then $v_{1}-v_{2}-v_{3}-r_{2}-w_{2}-w_{1}-w_{1}^{\prime}=P_{7}$ else $G\left[\left\{v_{4}, r_{2}, w_{2}, w_{1}^{\prime}\right\}\right]$ is a claw, a contradiction. So w_{1}, w_{2} have a common neighbor $r_{1} \in R_{3}$. If $w_{1}^{\prime} r_{1} \in E$ then $G\left[\left\{v_{3}, r_{1}, w_{2}, w_{1}^{\prime}\right\}\right]$ is a claw, a contradiction. Thus $w_{1}^{\prime} r_{1} \notin E$ and w_{1}^{\prime} has a neighbor $r_{1}^{\prime} \in R_{3}, r_{1}^{\prime} \neq r_{1}$. If $r_{1}^{\prime} w_{2} \in E$ then $G\left[\left\{v_{3}, r_{1}^{\prime}, w_{2}, w_{1}^{\prime}\right\}\right]$ is a claw, a contradiction. So $r_{1}^{\prime} w_{2} \notin E$. If $r_{1}^{\prime} w_{1} \notin E$ then $v_{1}-v_{2}-v_{3}-r_{1}^{\prime}-w_{1}^{\prime}-w_{1}-w_{2}=P_{7}$, a contradiction. Thus $r_{1}^{\prime} w_{1} \in E$. If $r_{1}^{\prime} w_{2}^{\prime} \notin E$ then $v_{1}-v_{2}-v_{3}-r_{1}^{\prime}-w_{1}-w_{2}-w_{2}^{\prime}=P_{7}$, a contradiction. So $r_{1}^{\prime} w_{2}^{\prime} \in E$ but $G\left[\left\{v_{4}, r_{1}^{\prime}, w_{1}, w_{2}^{\prime}\right\}\right]$ is a claw, a contradiction.
As a consequence each connected component A_{i} of Z_{3} has a universal vertex. Also, G being claw-free two distinct connected components cannot share a neighbor in R_{3}. Moreover, by Property 2.2 we have assumed that each $w_{3} \in Z_{3}$ is not a leaf.

We show that $w \in Y_{3}$ is connected to a universal vertex of a connected component A_{i} of Z_{3}. We assume that the neighbors of w are not universal in A_{i}. Let $s \in A_{i}$ be a neighbor of w, let $u, u \neq s$, be a universal vertex of A_{i}. Since s is not universal there exists $v, v \in A_{i}$ such that $s v \notin E$ and $u v \in E$. Since $N(w)$ is complete $w v \notin E$. Let $r \in R_{3}$ be a neighbor of s. Since G is claw-free then $r v \notin E$. Let $r^{\prime}, r^{\prime} \in R_{3}, r^{\prime} \neq r$, be a neighbor of v. As just above $r^{\prime} s \notin E$. If $r^{\prime} u \notin E$ then $v_{1}-v_{2}-v_{3}-r^{\prime}-v-u-s=P_{7}$ else $v_{1}-v_{2}-v_{3}-r^{\prime}-u-s-w=P_{7}$, a contradiction.

We are ready to show how to build a γ-set in polynomial time.
First, we treat the case where $Z_{24} \neq \emptyset$. Let $r_{2} \in R_{2}, r_{4} \in R_{4}$ be two neighbors of $w, w \in Z_{24}$.
We show that $R_{3}=\emptyset$. Assume that there exists $w^{\prime} \in W$ with a neighbor $r_{3} \in R_{3}$. Since w^{\prime} is not a neighbor of r_{2} or r_{4} we have $w^{\prime}-r_{3}-v_{3}-r_{2}-r_{4}-v_{5}-v_{6}=P_{7}$, a contradiction. So $R_{3}=\emptyset$ and since $Z_{2}=Z_{4}=\emptyset$ we have $W=Z_{24}$.
Recall that $W=Z_{24}$ is independent and that for every two distinct vertices $w^{\prime}, w^{\prime} \in$ Z_{24} we have $N(w) \cap N\left(w^{\prime}\right)=\emptyset$.

The γ-set is build as follows:
By Property 2.4, we can assume that $|W| \geq 2$. We take $r_{2} \in R_{2}$ a neighbor of w (recall that the neighbors of w in $R_{i}, i \in\{2,4\}$, have the same neighborhood and that all vertices of R_{i} have the same neighbors in $S \backslash H_{4}$), and for each other $w^{\prime} \in Z_{24}$ we take one adjacent vertex $r_{4}^{\prime} \in R_{4}$. These vertices dominate $Z_{24} \cup H_{2} \cup H_{4} \cup\left\{v_{2}, v_{3}, v_{4}, v_{5}\right\}$. At least one more vertex is necessary to dominate G since v_{1} and v_{6} are not dominated. Adding the three vertices v_{2}, v_{4}, v_{6} we have a dominating set (not necessarily minimum). We check first if there exists s a neighbor of both v_{1} and v_{6} that dominates the rest of the graph. If such vertex s does not exist, checking for all the pairs s_{1}, s_{6} where s_{i} is a neighbor of $v_{i}, i \in\{1,6\}$, one can verify if there is a γ-set with only two more vertices (note that there are at most $O\left(n^{2}\right)$ of such pairs).

Now we deal with the case $Z_{24}=\emptyset$.
The γ-set is build as follows:

- $Y_{3} \neq \emptyset$. For each $w \in Y_{3}$ we take one universal vertex in the connected component A_{i} of Z_{3} connected to w. For each connected component A_{i} of Z_{3} that is not connected to a vertex of Y_{3}, we do as follows: if there exists $r_{3} \in R_{3}$ which is complete to A_{i} (recall that such vertices have the same neighborhood) then we take r_{3}, else we take one universal vertex of A_{i}. These vertices dominate $Y_{3} \cup Z_{3}$. At least one more vertex is necessary to dominate G since v_{1} and v_{6} are not dominated. Adding the three vertices v_{2}, v_{4}, v_{6} we have a dominating set (not necessarily minimum). We check first if there exists s a neighbor of both v_{1} and v_{6} that dominates the rest of the graph. If such vertex s is not found, checking for all the pairs s_{1}, s_{6} where s_{i} is a neighbor of $v_{i}, i \in\{1,6\}$, one can verify if there is a γ-set with only two more vertices (note that there are at most $O\left(n^{2}\right)$ such pairs).
- $Y_{3}=\emptyset$. Thus $Z_{3}=W$. For every connected component A_{i} of Z_{3}, if there exists $r_{3} \in R_{3}$ which is complete to A_{i} (recall that such vertices have the same neighborhood) then we take r_{3}, else we take one universal vertex of A_{i}. These vertices dominate Z_{3}. At least one more vertex is necessary to dominate G since v_{1} and v_{6} are not dominated. Adding the three vertices v_{2}, v_{4}, v_{6} we have a dominating set (not necessarily minimum). We check first if there exists s a neighbor of both v_{1} and v_{6} that dominates the rest of the graph. If such vertex s is not found, checking for all the pairs s_{1}, s_{6} where s_{i} is a neighbor of $v_{i}, i \in\{1,6\}$, one can verify if there is a γ-set with only two more vertices (note that there are at most $O\left(n^{2}\right)$ such pairs).

Clearly the construction of the γ-set is polynomial.

Corollary 5.4 The Minimum Dominating Set problem is polynomial for (claw, P_{7})free graphs.

Lemma 5.5 Let G be a connected (claw, $C_{6}, C_{7}, C_{8}, P_{8}$)-free graph. If $C_{5} \subseteq_{i} G$ then computing a minimum dominating set is polynomial.

Proof: By Properties 2.1 and 2.2. we can assume that all contractibles vertices of G are contracted and that G has no leaves. Let $C=v_{1}-v_{2}-v_{3}-v_{4}-v_{5}-v_{1}=C_{5} \subseteq_{i} G$. Let $W=V \backslash N[V(C)]$. It follows from Property 2.3 that if $W=\emptyset$ then computing a minimum dominating set is polynomial. From now on $W \neq \emptyset$.
Let $S=\{v \in V \backslash V(C): 2 \leq|N(v) \cap V(C)| \leq 5\}$, and $S_{i} \subseteq S$ being the set of vertices v such that $|N(v) \cap V(C)|=i$. Let $H_{i}=\left\{v \in S_{2}: N(v) \cap V(C)=\left\{v_{i}, v_{i+1}\right\}\right\}$, $1 \leq i \leq 5$ (for convenience v_{5+1} stands for v_{1}). Since G is claw-free, each H_{i} is complete. Moreover, if there is an edge $r_{i} r_{i+1}$ with $r_{i} \in H_{i}, r_{i+1} \in H_{i+1}$ then $r_{i}-v_{i}-v_{i-1}-\cdots-v_{i+2}-r_{i+1}-r_{i}=C_{6}$, a contradiction. Hence H_{i} is anticomplete to H_{i+1}. We define R_{i} as the set of vertices of H_{i} having a neighbor in W, $R_{i}=\left\{v \in H_{i}: N_{W}(v) \neq \emptyset\right\}, 1 \leq i \leq 5, R=R_{1} \cup \cdots \cup R_{5}$.

Since $W \neq \emptyset$, we assume that there exists $w_{1} \in W$ such that w_{1} has a neighbor $r_{1} \in R_{1}$. Suppose that $R_{2} \neq \emptyset$. There exists $w_{2} \in W$ with a neighbor $r_{2} \in R_{2}$. If $w_{1}=w_{2}$ then $w_{1}-r_{2}-v_{3}-v_{4}-v_{5}-v_{1}-r_{1}-w_{1}=C_{7}$, a contradiction. So $w_{1} \neq w_{2}$. If $w_{1} w_{2} \in E$ then $w_{1}-w_{2}-r_{2}-v_{3}-v_{4}-v_{5}-v_{1}-r_{1}-w_{1}=C_{8}$ else $w_{1}-r_{1}-v_{1}-v_{5}-v_{4}-v_{3}-r_{2}-w_{2}-w_{1}=P_{8}$, a contradiction. So, if $R_{i} \neq \emptyset$ then $R_{i-1}=R_{i+1}=\emptyset$. Hence $R_{2}=R_{5}=\emptyset$.

Let $r \in R_{i}, r^{\prime} \in R_{i}, r \neq r^{\prime}, i \in\{1,3,4\}$ be such that r, respectively r^{\prime}, has a neighbor $w \in W$, respectively $w^{\prime} \in W$. We show that $N_{S}(r)=N_{S}\left(r^{\prime}\right)$.
By contradiction we assume that there exists $s \in S$ such that $r s \in E, r^{\prime} s \notin E$. From above $s \notin H_{i} \cup H_{i-1} \cup H_{i+1}$. Let $i=1$. If $s \in H_{3} \cup H_{4}$ then $G\left[\left\{r, v_{1}, w, s\right\}\right]$ is a claw, a contradiction. Thus $s \in S_{3} \cup S_{4} \cup S_{5}$. When $N_{C}(s)=\left\{v_{1}, v_{2}, v_{3}\right\}$ (the case $N_{C}(s)=\left\{v_{1}, v_{2}, v_{5}\right\}$ is symmetric) then $G\left[\left\{r^{\prime}, v_{5}, w, s\right\}\right]$ is a claw, a contradiction. When $N_{C}(s)=\left\{v_{2}, v_{3}, v_{4}\right\}$ (the case $N_{C}(s)=\left\{v_{1}, v_{4}, v_{5}\right\}$ is symmetric) then $G\left[\left\{r, v_{1}, w, s\right\}\right]$ is a claw, a contradiction. When $N_{C}(s)=\left\{v_{3}, v_{4}, v_{5}\right\}$ then $G\left[\left\{r, v_{3}, v_{5}, s\right\}\right]$ is a claw, a contradiction. So $s \in S_{4} \cup S_{5}$. When $N_{C}(s)=$ $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ (the case $N_{C}(s)=\left\{v_{1}, v_{2}, v_{4}, v_{5}\right\}$ is symmetric) then $G\left[\left\{r^{\prime}, v_{1}, v_{5}, s\right\}\right]$ is a claw, a contradiction. When $N_{C}(s)=\left\{v_{1}, v_{3}, v_{4}, v_{5}\right\}$ or $N_{C}(s)=\left\{v_{2}, v_{3}, v_{4}, v_{5}\right\}$ or $N_{C}(s)=\left\{v_{1}, v_{2}, v_{3}, v_{5}\right\}$ or $s \in S_{5}$ then $G\left[\left\{r, v_{3}, v_{5}, s\right\}\right]$ is a claw, a contradiction. For $i=3$ and $i=4$ the arguments are the same. Thus $N_{S}(r)=N_{S}\left(r^{\prime}\right)$.

Let $r_{1} \in R_{1}, r_{1}^{\prime} \in R_{1}, r_{1} \neq r_{1}^{\prime}$ be such that r_{1}, respectively r_{1}^{\prime}, has a neighbor $w \in W$, respectively $w^{\prime} \in W$. Let $r_{3} \in R_{3}, r_{3}^{\prime} \in R_{3}, r_{3} \neq r_{3}^{\prime}$ be such that r_{3}, respectively r_{3}^{\prime}, has w, respectively w^{\prime}, as neighbor. We show that $N_{S \backslash H_{3}}\left(r_{1}\right)=N_{S \backslash H_{3}}\left(r_{1}^{\prime}\right)$, respectively $N_{S \backslash H_{1}}\left(r_{3}\right)=N_{S \backslash H_{1}}\left(r_{3}^{\prime}\right)$.
Let $i=1$. By contradiction we assume that there exists $s \in S \backslash R_{3}$ such that $r_{1} s \in E, r_{1}^{\prime} s \notin E$. From above $s \notin H_{1} \cup H_{2} \cup H_{5}$. If $s \in H_{4}$ then $G\left[\left\{r_{1}, v_{1}, w, s\right\}\right]$
is a claw, a contradiction. So $s \in S_{3} \cup S_{4} \cup S_{5}$. When $N_{C}(s)=\left\{v_{1}, v_{2}, v_{3}\right\}$ (the case $N_{C}(s)=\left\{v_{1}, v_{2}, v_{5}\right\}$ is symmetric) then $G\left[\left\{r_{1}^{\prime}, v_{1}, v_{5}, s\right\}\right]$ is a claw, a contradiction. When $N_{C}(s)=\left\{v_{2}, v_{3}, v_{4}\right\}$ (the case $N_{C}(s)=\left\{v_{1}, v_{4}, v_{5}\right\}$ is symmetric) then $G\left[\left\{r_{1}, v_{1}, w, s\right\}\right]$ is a claw, a contradiction. When $N_{C}(s)=\left\{v_{3}, v_{4}, v_{5}\right\}$ then $G\left[\left\{r_{1}, v_{3}, v_{5}, s\right\}\right]$ is a claw, a contradiction. So $s \in S_{4} \cup S_{5}$. When $N_{C}(s)=$ $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ (the case $N_{C}(s)=\left\{v_{1}, v_{2}, v_{4}, v_{5}\right\}$ is symmetric) then $G\left[\left\{r_{1}^{\prime}, v_{1}, v_{5}, s\right\}\right]$ is a claw, a contradiction. When $N_{C}(s)=\left\{v_{1}, v_{3}, v_{4}, v_{5}\right\}$ or $N_{C}(s)=\left\{v_{2}, v_{3}, v_{4}, v_{5}\right\}$ or $N_{C}(s)=\left\{v_{1}, v_{2}, v_{3}, v_{5}\right\}$ or $s \in S_{5}$ then $G\left[\left\{r_{1}, v_{3}, v_{5}, s\right\}\right]$ is a claw, a contradiction. By symmetry the arguments are the same for $i=3$. Hence $N_{S \backslash H_{3}}\left(r_{1}\right)=N_{S \backslash H_{3}}\left(r_{1}^{\prime}\right)$ and $N_{S \backslash H_{1}}\left(r_{3}\right)=N_{S \backslash H_{1}}\left(r_{3}^{\prime}\right)$.

We study the case where w_{1} has a neighbor $r_{i}, r_{i} \in R_{i}, i \in\{3,4\}$. Since both cases are symmetric, let $r_{3}, r_{3} \in R_{3}$, be a neighbor of w_{1}. If $r_{1} r_{3} \notin E$ then $w_{1}-r_{1}-v_{1}-$ $v_{5}-v_{4}-r_{3}-w_{1}=C_{6}$, a contradiction. Hence $N_{R_{1}}\left(w_{1}\right)$ is complete to $N_{R_{3}}\left(w_{1}\right)$. Since $R_{3} \neq \emptyset$, we have $R_{4}=\emptyset$ and $N_{R}\left(w_{1}\right) \subseteq R_{1} \cup R_{3}$. Hence, we define the following subsets of W :

- $Z=\left\{w \in W: N_{R}(w) \neq \emptyset\right\}$;
- $Z_{i}=\left\{z \in Z: N_{R_{i}}(z) \neq \emptyset, N_{R_{j}}(z)=\emptyset, 1 \leq i \leq 5, i \neq j\right\} ;$
- $Z_{i j}=\left\{z \in Z: N_{R_{i}}(z) \neq \emptyset, N_{R_{j}}(z) \neq \emptyset, 1 \leq i<j \leq 5\right\} ;$
- $Y=W \backslash Z$.

First, we show that Z_{i} is anticomplete to $Z_{i j}$, then we show that Z_{i} consists of leaves (so is empty). We conclude that $Z_{i j} \neq \emptyset$ implies $Z=Z_{i j}$. We set $w_{1} \in Z_{13}$, and since all cases are symmetric, we focus on $Z_{1} \neq \emptyset$.

Let $w_{1}^{\prime} \in Z_{1}$ with a neighbor $r_{1}^{\prime}, r_{1}^{\prime} \in R_{1}, r_{1}^{\prime} \neq r_{1}$. Note that $r_{1}^{\prime} r_{3} \notin E$ else G contains a claw. If $w_{1} w_{1}^{\prime} \in E$, then $r_{1}^{\prime} w_{1} \in E$, else $w_{1}-w_{1}^{\prime}-r_{1}^{\prime}-v_{1}-v_{5}-v_{4}-r_{3}-w_{1}=C_{7}$, but $w_{1}-r_{1}^{\prime}-v_{1}-v_{5}-v_{4}-r_{3}-w_{1}=C_{6}$, a contradiction. Hence, $w_{1} w_{1}^{\prime} \notin E$ (by symmetry, for every $\left.w_{3} \in Z_{3}, w_{1} w_{3} \notin E\right)$. Thus Z_{1} and Z_{3} are anticomplete to Z_{13}.

Now, we show that the vertices of Z_{1} are leaves. Assume that there exists $v \in N\left(w_{1}^{\prime}\right)$, $v \neq r_{1}^{\prime}$ such that $N[v] \neq N\left[w_{1}^{\prime}\right]$. If $v \in Z_{3}$ then $v-w_{1}^{\prime}-r_{1}^{\prime}-v_{1}-v_{5}-v_{4}-r_{3}-w_{1}=P_{8}$, a contradiction. If $v \in Y$ then either $v-w_{1}^{\prime}-r_{1}^{\prime}-v_{1}-v_{5}-v_{4}-r_{3}-w_{1}=P_{8}$ or $v-w_{1}^{\prime}-r_{1}^{\prime}-v_{1}-v_{5}-v_{4}-r_{3}-w_{1}-v=C_{8}$, a contradiction. If $v \in Z_{1}$ and $r_{1}^{\prime} v \notin E$ then $v-w_{1}^{\prime}-r_{1}^{\prime}-v_{1}-v_{5}-v_{4}-r_{3}-w_{1}=P_{8}$, a contradiction. Hence $N_{R_{1}}\left(w_{1}^{\prime}\right)=N_{R_{1}}(v)$. Since $N[v] \neq N\left[w_{1}^{\prime}\right]$ we can assume that there exists $v^{\prime} \in W$ such that $v v^{\prime} \in E$ but $v^{\prime} w_{1}^{\prime} \notin E$. Yet with the same arguments as before we have $N_{R_{1}}(v)=N_{R_{1}}\left(v^{\prime}\right)$ and since $w_{1}^{\prime} v^{\prime} \notin E$ then $G\left[\left\{r_{1}^{\prime}, v^{\prime}, v_{1}, w_{1}^{\prime}\right\}\right]$ is a claw, a contradiction. Thus Z_{1} consists of leaves, a contradiction. Thus $Z_{1}=\emptyset$ and by symmetry $Z_{3}=\emptyset$. So $Z=Z_{13}$.

We show that every pair $v, v^{\prime} \in Z_{13}$ with $v v^{\prime} \in E$ satisfy $N_{R_{1} \cup R_{3}}(v)=N_{R_{1} \cup R_{3}}\left(v^{\prime}\right)$. Let $w_{1}^{\prime} \in Z_{13}$ be a neighbor of w_{1}. Suppose that there exists $r_{1}^{\prime} \in N_{R_{1}}\left(w_{1}^{\prime}\right)$ such that $r_{1}^{\prime} w_{1} \notin E$. If $r_{1}^{\prime} r_{3} \in E$ then $G\left[\left\{r_{1}^{\prime}, r_{3}, v_{3}, w_{1}\right\}\right]$ is a claw, a contradiction. If $r_{3} w_{1}^{\prime} \notin E$ then $w_{1}-r_{3}-v_{4}-v_{5}-v_{1}-r_{1}^{\prime}-w_{1}^{\prime}-w_{1}=C_{7}$, else $w_{1}^{\prime}-r_{1}^{\prime}-v_{1}-v_{5}-v_{4}-r_{3}-w_{1}^{\prime}=C_{6}$,
a contradiction. Hence, $N_{R_{1}}\left(w_{1}\right)=N_{R_{1}}\left(w_{1}^{\prime}\right)$ and by symmetry $N_{R_{3}}\left(w_{1}\right)=N_{R_{3}}\left(w_{1}^{\prime}\right)$.
Suppose that $Y \neq \emptyset$. Let $y \in Y$ be a neighbor of w_{1}. We show that Z_{13} is a clique. Let $w_{1}^{\prime} \in Z_{13}$ such that $w_{1} w_{1}^{\prime} \notin E$. We have $N_{R_{1} \cup R_{3}}\left(w_{1}\right) \cap N_{R_{1} \cup R_{3}}\left(w_{1}^{\prime}\right)=\emptyset$ else G contains a claw. Yet, there exists r_{1}^{\prime} a neighbor of w_{1}^{\prime} in R_{1} such that either $y-w_{1}-r_{3}-v_{4}-v_{5}-v_{1}-r_{1}^{\prime}-w_{1}^{\prime}=P_{8}$ or $y-w_{1}-r_{3}-v_{4}-v_{5}-v_{1}-r_{1}^{\prime}-w_{1}^{\prime}-y=C_{8}$, a contradiction, (note that $r_{1}^{\prime} r_{3} \notin E$ else G contains a claw). Hence Z_{13} is a clique.

We show that the vertices of Y are leaves. Suppose that y has a neighbor $y^{\prime} \in Y$. If $y^{\prime} w_{1} \notin E$ then $y^{\prime}-y-w_{1}-r_{1}-v_{1}-v_{5}-v_{4}-v_{3}=P_{8}$, a contradiction. Hence $N_{Z}(y)=N_{Z}\left(y^{\prime}\right)$. Since we assume that $N[y] \neq N\left[y^{\prime}\right]$, there exists $v, v \in Y$, such that $v y \in E, v y^{\prime} \notin E$. From above $w_{1} v \in E$ but $G\left[\left\{r_{1}, w_{1}, y^{\prime}, v\right\}\right]$ is a claw, a contradiction. Thus, Y is an independent set. Now, $N(y) \subseteq Z_{13}$ is a clique. Since for every two vertices $w_{1}, w_{1}^{\prime} \in Z_{13}$ we have $N_{R_{1} \cup R_{3}}\left(w_{1}\right)=N_{R_{1} \cup R_{3}}\left(w_{1}^{\prime}\right)$ we can assume that $N(y)$ can be contracted into an unique vertex. Thus, Y consists of leaves, a contradiction. Hence $Y=\emptyset$.

As shown before, every two neighbors of Z_{13} have the same neighbors in R, so they can be contracted and we can assume that Z_{13} is an independent set. Moreover, since G is claw-free, for every two distinct $z, z^{\prime} \in Z_{13}, N[z] \cap N\left[z^{\prime}\right]=\emptyset$. Also, recall that the neighbors of each $z, z \in Z_{13}$ induce a clique.

We show how to build a γ-set of G. Recall that $W=Z_{13}$. By Property [2.4 we can assume that $|W| \geq 2$. So there are $w_{1}, w_{1}^{\prime} \in Z_{13}$ with neighbors $r_{1}, r_{1}^{\prime} \in R_{1}$ and $r_{3}, r_{3}^{\prime} \in R_{3}$, respectively. Let $q=\left|Z_{13}\right|$. Clearly, to dominate Z_{13} we must take q vertices. We take r_{1} and r_{3}^{\prime}. Recall that the vertices of R_{1} and R_{3} have the same neighbors in $S \cup V(C)$. Then, we take the $q-2$ vertices of $w \in Z_{13}, w \neq w_{1}, w_{1}^{\prime}$. These q vertices dominate $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\} \cup H_{1} \cup H_{3} \cup Z_{13}$. It remains to dominate some vertices of $H_{2} \cup H_{4} \cup H_{5} \cup S_{3} \cup S_{4} \cup\left\{v_{5}\right\}$. If there exists a vertex $v, v \in S \cup\left\{v_{5}\right\}$, which is universal to these non dominated vertices we take v, else we take the vertices $\left\{v_{2}, v_{5}\right\}$.

Now, we assume that $Z_{i j}=\emptyset$. Hence let $w_{1} \in Z_{1}$. We study the case $R_{3} \neq \emptyset$. Recall that $R_{2}=R_{4}=R_{5}=\emptyset$. Let $w_{3} \in W$ such that w_{3} has a neighbor $r_{3} \in R_{3}$. If $w_{1} w_{3} \in E$ then $w_{1}-w_{3}-r_{3}-v_{4}-v_{5}-v_{1}-r_{1}-w_{1}=C_{7}\left(r_{1} r_{3} \notin E\right.$ else G contains a claw), a contradiction. So Z_{1} is anticomplete to Z_{3}. We assume that w_{1} has a neighbor $v \in Y$. If $v w_{3} \in E$ then $v-w_{3}-r_{3}-v_{4}-v_{5}-v_{1}-r_{1}-w_{1}-v=C_{8}$ else $v-w_{1}-r_{1}-v_{1}-v_{5}-v_{4}-r_{3}-w_{3}=P_{8}$, a contradiction. Hence every neighbor w_{1}^{\prime}, $w_{1}^{\prime} \in W$, of w_{1} is in Z_{1}. If $w_{1}^{\prime} r_{1} \notin E$ then $w_{1}^{\prime}-w_{1}-r_{1}-v_{1}-v_{5}-v_{4}-r_{3}-w_{3}=P_{8}$, a contradiction. Hence $N_{R}\left(w_{1}\right)=N_{R}\left(w_{1}^{\prime}\right)$. Since G is claw-free, for every $r \in R$, $N_{W}(r)$ is a clique, thus $N\left[w_{1}\right]=N\left[w_{1}^{\prime}\right]$, a contradiction. So Z_{1} is an independent set. Now, recall that for every pair of vertices $r, r^{\prime} \in R_{i}, 1 \leq i \leq 5, N_{S}(r)=N_{S}\left(r^{\prime}\right)$. Hence, when $r, r^{\prime} \in R_{1}$ have a common neighbor in Z_{1}, we have $N[r]=N\left[r^{\prime}\right]$, a contradiction. Hence Z_{1} consists of leaves, a contradiction. Also, by symmetry, $W=Z_{1} \cup Z_{3}=\emptyset$, a contradiction.

Now we focus on $R_{3}=R_{4}=\emptyset\left(\right.$ note that $\left.Z=Z_{1}\right)$.

We study the case where $H_{2} \neq \emptyset$ or $H_{5} \neq \emptyset$. Let $v \in H_{2}$ (the case $v \in H_{5}$ is symmetric). We have $Y=\emptyset$, else there are $y \in Y, z \in Z_{1}, r \in R_{1}$ such that $v-v_{3}-v_{4}-v_{5}-v_{1}-r-z-y=P_{8}$ (recall that $v r \notin E$). So $W=Z=Z_{1}$. Let $w_{1}, w_{2} \in W$. We assume that $w_{1} w_{2} \in E$. Recall that $N\left[w_{1}\right] \neq N\left[w_{2}\right]$. Let $w_{1} r_{1}$, $w_{2} r_{2} \in E, r_{1} \neq r_{2}$, such that $w_{1} r_{2} \notin E$. We have $v-v_{3}-v_{4}-v_{5}-v_{1}-r_{2}-w_{2}-w_{1}=P_{8}$, a contradiction. Recall that for every $r \in R, N_{W}(r)$ is a clique, thus $N\left[w_{1}\right]=N\left[w_{2}\right]$, a contradiction. Hence W is an independent set. Moreover, for every $w \in W$ and $r, r^{\prime} \in N(w)$ we know that r and r^{\prime} share the same neighbors in $V(C) \cup S$. Hence W is composed exclusively of leaves, so $W=\emptyset$, a contradiction.

Now we can assume that $H_{2}=H_{5}=\emptyset$. Let $Z_{A} \subset Z, Z_{A}=\left\{w \in W: N_{Y}(w)=\emptyset\right\}$. We show that each connected component A_{i} of $G\left[Z_{A}\right]$ contains a universal vertex relatively to A_{i}. For contradiction we suppose that there exists $A_{i}, A_{i} \subseteq Z_{A}$ with no universal vertex in it. Assume that $z_{1}-z_{2}-z_{3}-z_{4}=P_{4} \subseteq_{i} A_{i}$. Let $r, r \in R_{1}$, be a neighbor of z_{1} (note that there is a P_{5} from v_{3} to r).
Since G is claw-free $r z_{3}, r z_{4} \notin E$. If $r z_{2} \in E$ then there is a P_{8} from v_{3} to z_{4} else there is a P_{8} from v_{3} to z_{3}, a contradiction. Now, we assume that $z_{1}-z_{2}-z_{3}-z_{4}-z_{1}=$ $C_{4} \subseteq_{i} A_{i}$. Let $r, r \in R_{1}$, be a neighbor of z_{1}. Since G is claw-free we have $r z_{3} \notin E$. If $r z_{2} \in E$ then $r z_{4} \notin E$ else G contains a claw, but $v_{3}-v_{4}-v_{5}-v_{1}-r-z_{2}-z_{3}-z_{4}=P_{8}$, a contradiction. If $r z_{2} \notin E$ then $v_{3}-v_{4}-v_{5}-v_{1}-r-z_{1}-z_{2}-z_{3}=P_{8}$, a contradiction. So A_{i} is $\left(C_{4}, P_{4}\right)$-free. It follows that there are $z_{1}-z_{2}-z_{3}=P_{3} \subseteq_{i} A_{i}$ and $z_{4} \in A_{i}$ such that $z_{4} z_{1}, z_{4} z_{2}, z_{4} z_{3} \notin E$. Also there exists $z \in A_{i}$ such that $z_{2}-z-z_{4}$ and $z z_{1}, z z_{3} \in E$ but $A_{i}\left[\left\{z, z_{1}, z_{3}, z_{4}\right\}\right]$ is a claw, a contradiction. So each A_{i} has a universal vertex. Clearly, for two distinct components A_{i}, A_{j} we have $N_{R_{1}}\left(A_{i}\right) \cap N_{R_{1}}\left(A_{j}\right)=\emptyset$ else there is a claw.

Suppose that $Y \neq \emptyset$. We show that Y is an independent set. Suppose that there are $y, y^{\prime} \in Y$ with $y y^{\prime} \in E$. Recall that $N[y] \neq N\left[y^{\prime}\right]$. If $N_{Z_{1}}(y) \neq N_{Z_{1}}\left(y^{\prime}\right)$ then, w.l.o.g, $y w_{1} \in E, y^{\prime} w_{1} \notin E$, but $v_{3}-v_{4}-v_{5}-v_{1}-r_{1}-w_{1}-y-y^{\prime}=P_{8}$, a contradiction. So $N_{Z_{1}}(y)=N_{Z_{1}}\left(y^{\prime}\right)$. There is no vertex $y^{\prime \prime} \in Y$ such that $y y^{\prime \prime} \in E$, $y^{\prime} y^{\prime \prime} \notin E$, else G contains a claw. Hence Y is an independent set and for every pair of vertices $y, y^{\prime} \in Y$ we have $N(y) \cap N\left(y^{\prime}\right)=\emptyset$.
We show that for every $y \in Y$ its neighborhood $N(y)$ is a clique. For contradiction we assume that y has two neighbors $z_{1}, z_{2} \in Z, z_{1} z_{2} \notin E$. Since G is claw-free z_{1} and z_{2} cannot have a common neighbor in R_{1}. Let $r, r \in R_{1}$, be a neighbor of z_{1}. Then $v_{3}-v_{4}-v_{5}-v_{1}-r-z_{1}-y-z_{2}=P_{8}$, a contradiction. Hence, Y is an independent set, for each $y, y \in Y, N(y)$ is a clique. So we suppose $|N(y)| \geq 2$, else y is a leaf.

We show that we can assume that each connected component A_{i} of $G\left[Z_{A}\right]$ is anticomplete to $N(Y)$. Since Y has no leaves, let $y \in Y$ with two neighbors $z, z^{\prime} \in Z_{1}$ such that $N[z] \neq N\left[z^{\prime}\right]$. Suppose that there exists $u \in Z_{A}$ a neighbor of z. First, we assume that $N_{R}(z) \neq N_{R}\left(z^{\prime}\right)$. W.l.o.g. let $r, r^{\prime} \in R_{1}$ be respectively the neighbors of z, z^{\prime} such that $r^{\prime} z, r z^{\prime} \notin E$. If $u z^{\prime} \notin E$ then $u r^{\prime} \notin E$ else G contains a claw, but then $u-z-z^{\prime}-r^{\prime}-v_{1}-v_{5}-v_{4}-v_{3}=P_{8}$, a contradiction. Hence $u z^{\prime}, r^{\prime} u \in E$ but $y-z-u-r^{\prime}-v_{1}-v_{5}-v_{4}-v_{3}=P_{8}$, a contradiction. So $N_{R}(z)=N_{R}\left(z^{\prime}\right)$. Second, we assume that $N_{Z}[z] \neq N_{Z}\left[z^{\prime}\right]$. W.l.o.g. $u z^{\prime} \notin E$. Let $r \in R_{1}$ a neighbor
of both z, z^{\prime}. Clearly $r u \notin E$ else G contains a claw, but $G[\{r, u, y, z\}]$ is a claw, a contradiction. So we can assume that each A_{i} is anticomplete to $N(Y)$.

We construct a γ-set as follows:
Let $q=|Y|$ and k be the number of connected components of Z_{A}. Clearly, q vertices are necessary to dominate Y. So for each $y_{i} \in Y$ we will take one of its neighbor as follows. Let us denote $R_{1}\left(y_{i}\right)=N_{R_{1}}\left(N\left(y_{i}\right)\right)$. If y_{i} has a neighbor z_{i} which is complete to $R_{1}\left(y_{i}\right)$ then we take z_{i}, else we take every arbitrary neighbor of y_{i} (recall that in both cases these y_{i} have the same neighbors in Z). These q vertices dominate $Y \cup\left(Z \backslash Z_{A}\right)$ and some of the vertices in $R_{1}(Y)$.
Now k vertices are necessary to dominate Z_{A}. For each component $A_{i} \subset Z_{A}$ we do as follows. If there exists $r \in R_{1}$ which is complete to A_{i} we take r into the γ-set (case a), else we take one universal vertex of A_{i} (case b) (recall that in both cases these r have the same neighbors in S).
These k vertices dominate $Z_{A} \cup H_{1} \cup\left\{v_{1}, v_{2}\right\}$ if at least one vertex is chosen in the case a, else they dominate Z_{A}.

Case where at least one vertex is chosen with the case $a: v_{3}, v_{4}, v_{5}$ are not dominated with the $q+k$ already chosen vertices (H_{1} is complete thus $r \in R_{1}$ dominates $\left.H_{1} \cup\left\{v_{1}, v_{2}\right\}\right)$. So a dominating set of G has size at least $q+k+1$. Adding the two vertices v_{3} and v_{5}, we have a dominating set (not necessarily minimum). Checking if there exists a vertex $v \in V(C) \cup S$, that is universal to the remaining non-dominated vertices, can be done in polynomial-time.

Case where all the vertices are chosen with the case b : it remains to dominate C and some vertices of $S_{2} \cup S_{3} \cup S_{4}$. So a dominating set of G has a size at least $q+k+1$. Adding the three vertices v_{1}, v_{3}, v_{5}, we have a dominating set (not necessarily minimum). If there exists a vertex $v \in S_{5}$ that is universal to the remaining non-dominated vertices we take it. If no such vertex exists, checking for all the pairs $\left\{v, v^{\prime}\right\} \subset N[V(C)]$, one can verify if there exists a γ-set with $q+k+2$ vertices (note that there are at most $O\left(n^{2}\right)$ of such pairs).

Lemma 5.6 Let G be a connected (claw, $C_{5}, C_{6}, C_{7}, C_{8}, P_{8}$)-free graph. Computing a minimum dominating set is polynomial-time solvable.

Proof: By Lemma 5.4 we can assume that $P_{7} \subseteq_{i} G$. Let $P=v_{1}-v_{2}-v_{3}-v_{4}-$ $v_{5}-v_{6}-v_{7}$. By Properties 2.1] and 2.2, we can assume that all contractibles vertices of G are contracted and that G has no leaves.
Let $W=V \backslash N[V(P)]$. By Property 2.3 if $W=\emptyset$ then computing a minimum dominating set is polynomial. From now on $W \neq \emptyset$. Let $S=\{v \in V \backslash V(P): 2 \leq$ $|N(v) \cap P| \leq 4\}$, and $S_{i} \subseteq S$ being the set of vertices v such that $|N(v) \cap V(P)|=i$. Let $H_{i}=\left\{v \in S_{2}: N(v) \cap V(P)=\left\{v_{i}, v_{i+1}\right\}, 1 \leq i \leq 6\right\}$. Since G is claw-free each H_{i} is complete. If there is an edge $r_{i} r_{i+1}$ with $r_{i} \in H_{i}, r_{i+1} \in H_{i+1}$ then $P=v_{1}-\cdots-v_{i}-r_{i}-r_{i+1}-v_{i+2}-\cdots-v_{7}=P_{8}$, a contradiction. If there is an edge $r_{i} r_{j}$ with $r_{i} \in H_{i}, r_{j} \in H_{j}$ and $j \geq i+3$ then $C_{p} \subseteq_{i} G, p \geq 5$, a contradiction. So H_{1} is anticomplete to $H_{2}, H_{4}, H_{5}, H_{6}$, and H_{2} is anticomplete to H_{3}, H_{5}, H_{6}, and
H_{3} is anticomplete to H_{4}, H_{6}.
We define R_{i} as the set of vertices of H_{i} having a neighbor in W, that is, $R_{i}=\{v \in$ $\left.H_{i}: N(v) \cap W \neq \emptyset\right\}, 1 \leq i \leq 6$. Since G is P_{8}-free $R_{1}=R_{6}=\emptyset$.

Let $w \in W$. We show that there cannot exist three indices $1 \leq i<j<k \leq 6$ such that w has three neighbors $r_{i} \in R_{i}, r_{j} \in R_{j}, r_{k} \in R_{k}$. Suppose for contradiction that these three neighbors of w exist. Since $R_{1}=R_{6}=\emptyset$ then $2 \leq i<j<k \leq 5$. Since G is claw-free and H_{p} is anticomplete to H_{p+1}, these three indices cannot be successive. So w.l.o.g. we can assume that $i=2, j=4, k=5$. Now H_{2} is anticomplete to H_{5}, but $v_{3}-r_{2}-w-r_{5}-v_{5}-v_{4}-v_{3}=C_{6}$, a contradiction. Hence for every $w \in W$ there is at most two neighbors r_{i}, r_{j} such that $r_{i} \in R_{i}, r_{j} \in R_{j}$, $i \neq j$.
If w has two neighbors $r_{i} \in R_{i}, r_{j} \in R_{j}, i<j$, then either $r_{i} \in R_{2}, r_{j} \in R_{4}$ or $r_{i} \in R_{3}, r_{j} \in R_{5}$ (recall that H_{i} is anticomplete to $H_{i+1}, H_{p}, p \geq i+3$ and $R_{1}=R_{6}=\emptyset$).
If w has two neighbors $r_{i} \in R_{2}, r_{j} \in R_{4}$, respectively $r_{i} \in R_{3}, r_{j} \in R_{5}$, then $r_{i} r_{j} \in E$, else $w-r_{j}-v_{4}-v_{3}-r_{i}-w=C_{5} \subseteq_{i} G$, respectively $w-r_{j}-v_{5}-v_{4}-r_{i}-w=C_{5} \subseteq_{i} G$, a contradiction.

Let $Z_{24}=\left\{w \in W: N_{R_{2}}(w) \neq \emptyset, N_{R_{4}}(w) \neq \emptyset\right\}$ and $Z_{35}=\left\{w \in W: N_{R_{3}}(w) \neq\right.$ $\left.\emptyset, N_{R_{5}}(w) \neq \emptyset\right\}$. We show that Z_{24} is anticomplete to Z_{35}. For contradiction we suppose that there are $w_{1} \in Z_{24}, w_{2} \in Z_{35}$ with $w_{1} w_{2} \in E$. Let $r_{1} \in R_{2}$ be a neighbor of w_{1} and $r_{2} \in R_{5}$ be a neighbor of w_{2}. Since $r_{1} r_{2} \notin E$ we have $w_{1}-r_{1}-v_{3}-v_{4}-v_{5}-v_{6}-r_{2}-w_{2}-w_{1}=C_{8}$, a contradiction.
We show that we can assume that Z_{24} and Z_{35} are two independent sets. The two sets being symmetric we show that Z_{24} is an independent set. For contradiction we assume that there are $w_{1}, w_{2} \in Z_{24}$ such that $w_{1} w_{2} \in E$. We prove that $N_{R_{2}}\left(w_{1}\right)=$ $N_{R_{2}}\left(w_{2}\right)$. If $N_{R_{2}}\left(w_{1}\right) \neq N_{R_{2}}\left(w_{2}\right)$ then there exists $r_{2} \in R_{2}$ which is a neighbor of w_{1} but not a neighbor of w_{2}. Then $w_{2}-w_{1}-r_{2}-v_{3}-\cdots-v_{7}=P_{8}$, a contradiction. We prove that $N_{R_{4}}\left(w_{1}\right)=N_{R_{4}}\left(w_{2}\right)$. If $N_{R_{4}}\left(w_{1}\right) \neq N_{R_{4}}\left(w_{2}\right)$ then there exists $r_{4} \in R_{4}$ which is a neighbor of w_{1} but not a neighbor of w_{2}. There exists $r_{2} \in R_{2}$ a neighbor of w_{1} and w_{2}. We know that $r_{2} r_{4} \in E$. It follows that $G\left[\left\{v_{2}, r_{2}, r_{4}, w_{2}\right\}\right]$ is a claw, a contradiction. Hence $N_{R_{2}}\left(w_{1}\right)=N_{R_{2}}\left(w_{2}\right)$ and $N_{R_{4}}\left(w_{1}\right)=N_{R_{4}}\left(w_{2}\right)$. By Property 2.1 there exists $s \notin R_{2} \cup R_{4}$ such that s is a neighbor of w_{1} but not a neighbor of w_{2}. Let $r_{2} \in R_{2}$ a neighbor of w_{1} and w_{2}. If $s r_{2} \notin E$ then $s-w_{1}-r_{2}-v_{3}-\cdots-v_{7}=P_{8}$, a contradiction. When $s r_{2} \in E$ then $G\left[\left\{v_{2}, r_{2}, s, w_{2}\right\}\right]$ is a claw, a contradiction. Hence Z_{24} is an independent and by symmetry Z_{35} is also independent. Moreover, since G is claw-free for every two distinct $w, w^{\prime} \in Z_{24} \cup Z_{35}$ we have $N(w) \cap N\left(w^{\prime}\right)=\emptyset$.
For every two distinct $w, w^{\prime} \in Z_{24}$, respectively $w, w^{\prime} \in Z_{35}$ we have that $N_{R_{2}}(w)$ is anticomplete to $N_{R_{4}}\left(w^{\prime}\right)$ and $N_{R_{4}}(w)$ is anticomplete to $N_{R_{2}}\left(w^{\prime}\right)$, respectively $N_{R_{3}}(w)$ is anticomplete to $N_{R_{5}}\left(w^{\prime}\right)$ and $N_{R_{5}}(w)$ is anticomplete to $N_{R_{3}}\left(w^{\prime}\right)$. For contradiction we assume that w has a neighbor $r_{2} \in R_{2}$, w^{\prime} has a neighbor $r_{4} \in R_{4}$, and $r_{2} r_{4} \in E$. Then $G\left[\left\{v_{2}, r_{2}, w, r_{4}\right\}\right]$ is a claw, a contradiction.

Let $Z_{i}=\left\{w \in W: N(w) \cap R_{i} \backslash\left(N_{R_{i}}\left(Z_{24} \cup Z_{35}\right) \neq \emptyset\right\}, 2 \leq i \leq 5\right.$. We show that $Z_{2}, Z_{3}, Z_{4}, Z_{5}$ are pairwise anticomplete. If there is an edge $w_{2} w_{4}, w_{2} \in$
$Z_{2}, w_{4} \in Z_{4}$, with $r_{2}^{\prime} \in R_{2}, r_{4}^{\prime} \in R_{4}$ the neighbors of w_{2}, w_{4} respectively, then $w_{2}-r_{2}^{\prime}-v_{3}-v_{4}-r_{4}^{\prime}-w_{4}-w_{2}=C_{6}\left(r_{2}^{\prime} r_{4}^{\prime} \notin E\right.$ else $G\left[\left\{v_{2}, r_{2}^{\prime}, w_{2}, r_{4}^{\prime}\right\}\right]$ is a claw $)$, a contradiction. By symmetry there is no edges between Z_{3}, Z_{5}. If there is an edge $w_{2} w_{5}, w_{2} \in Z_{2}, w_{5} \in Z_{5}$, with $r_{2}^{\prime} \in R_{2}, r_{5}^{\prime} \in R_{5}$ the neighbors of w_{2}, w_{5} respectively, then $w_{2}-r_{2}^{\prime}-v_{3}-v_{4}-v_{5}-r_{5}^{\prime}-w_{5}-w_{2}=C_{7}$ (remember $r_{2}^{\prime} r_{5}^{\prime} \notin E$), a contradiction. If there is an edge $w_{4} w_{5}, w_{4} \in Z_{4}, w_{5} \in Z_{5}$, with $r_{4}^{\prime} \in R_{4}, r_{5}^{\prime} \in R_{5}$ the neighbors of w_{4}, w_{5} respectively, then $w_{4}-r_{4}^{\prime}-v_{5}-r_{5}^{\prime}-w_{5}-w_{4}=C_{5}$ (recall $r_{4}^{\prime} r_{5}^{\prime} \notin E$), a contradiction. By symmetry there is no edges between Z_{2}, Z_{3}.

Let $Y=W \backslash\left(Z_{2} \cup Z_{3} \cup Z_{4} \cup Z_{5} \cup Z_{24} \cup Z_{35}\right)$. One can observe that for every $w \in Y$ we have $N_{Z_{2}}(w)=N_{Z_{5}}(w)=N_{Z_{24}}(w)=N_{Z_{35}}(w)=\emptyset$ else $P_{8} \subseteq_{i} G$. Now, if $w \in Y$ has two neighbors $w_{3} \in Z_{3}, w_{4} \in Z_{4}$ then $C_{6} \subseteq_{i} G$, a contradiction. Hence $Y=Y_{3} \cup Y_{4}$ with $Y_{3} \cap Y_{4}=\emptyset, Y_{3}=\left\{w \in Y: N_{Z_{3}}(w) \neq \emptyset\right\}, Y_{4}=\left\{w \in Y: N_{Z_{4}}(w) \neq \emptyset\right\}$. Moreover Y_{3} is anticomplete to Y_{4} else $C_{7} \subseteq_{i} G$.

We show that we can assume that $Z_{2}, Z_{5}, Y_{3}, Y_{4}$ are four independent sets. The arguments are the same for the four sets, so we show that the statement is true for Z_{2}. For contradiction we assume that there are $w_{1}, w_{2} \in Z_{2}$ such that $w_{1} w_{2} \in E$. We prove that $N_{R_{2}}\left(w_{1}\right)=N_{R_{2}}\left(w_{2}\right)$. If $N_{R_{2}}\left(w_{1}\right) \neq N_{R_{2}}\left(w_{2}\right)$ then there exists $r_{2} \in R_{2}$ which is a neighbor of w_{1} but not a neighbor of w_{2}. Then $w_{2}-w_{1}-r_{2}-v_{3}-\cdots-v_{7}=$ P_{8}, a contradiction. Since $N\left(w_{1}\right), N\left(w_{2}\right) \subseteq Z_{2} \cup R_{2}$ the result is obtained by Property 2.1. Hence $Z_{2}, Z_{5}, Y_{3}, Y_{4}$ are four independent sets.

Since G is claw-free then for every two distinct vertices $w_{1}, w_{2} \in Z_{2} \cup Z_{5} \cup Y_{3} \cup Y_{4}$ we have $N\left(w_{1}\right) \cap N\left(w_{2}\right)=\emptyset$.
We prove that for every $w \in Y_{3} \cup Y_{4}, N(w)$ is a clique. The two cases being symmetric, let $w \in Y_{4}$. Suppose that there are s, s^{\prime} two non adjacent vertices in $N(w)$. Since G is claw-free, s, s^{\prime} cannot have a common neighbor in R_{4}. Let $r \in R_{4}$ be a neighbor of s. Then $s^{\prime}-w-s-r-v_{4}-v_{3}-v_{2}-v_{1}=P_{8}$, a contradiction.

Since G is claw-free, if there is a vertex $r \in R_{i}$ with a neighbor $z \in Z_{i}$ and a vertex $s \in S$ such as $s z \notin E$ and $v_{i} \notin N(s)$ then G contains a claw (note that $v_{i+1} \notin N(s)$ is symmetric). Hence $N\left(Z_{i}\right)$ is anticomplete to $H_{j}, j \neq i$.

We show that we can assume that $Z_{2}=Z_{5}=\emptyset$. The arguments are the same in the two cases, so we consider Z_{2}. Let $r, r^{\prime} \in R_{2}$ be two neighbors of $w \in Z_{2}$. By previous arguments, $N(w)$ is complete to H_{2} but anticomplete to $H_{1}, H_{3}, H_{4}, H_{5}, H_{6}$. Hence, it remains the case where $N_{S_{3} \cup S_{4}}(r) \neq N_{S_{3} \cup S_{4}}\left(r^{\prime}\right)$. Suppose that $N_{S_{3} \cup S_{4}}(r) \neq$ $N_{S_{3} \cup S_{4}}\left(r^{\prime}\right)$. Let $s \in S_{3} \cup S_{4}$ such as $r s \in E$ but $r^{\prime} s \notin E$. If $\left\{v_{2}, v_{3}\right\} \not \subset N_{P}(s)$ then $G\left[\left\{r, s, v_{2}, w\right\}\right]$ or $G\left[\left\{r, s, v_{3}, w\right\}\right]$ is a claw, a contradiction. So $\left\{v_{2}, v_{3}\right\} \subset$ $N_{P}(s)$. If $v_{1} \notin N_{P}(s)$, respectively $v_{4} \notin N_{P}(s)$, then $G\left[\left\{r^{\prime}, s, v_{1}, v_{2}\right\}\right]$, respectively $G\left[\left\{r^{\prime}, s, v_{3}, v_{4}\right\}\right]$, is a claw, a contradiction. Hence $N_{P}(s)=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ but $G\left[\left\{r, s, v_{1}, v_{4}\right\}\right]$ is a claw, a contradiction. Hence, $N[r]=N\left[r^{\prime}\right]$, a contradiction. Then w is a leaf, a contradiction.

Now we study the structures of Z_{3} and Z_{4}. The two cases being symmetric we deal with Z_{4}. For every distinct vertices $w_{1}, w_{2} \in Z_{4}$ such that $w_{1} w_{2} \in E$, then there cannot exist two distinct vertices $w_{1}^{\prime}, w_{2}^{\prime} \in Z_{4}$ such that $w_{1}^{\prime} w_{1} \in E, w_{1}^{\prime} w_{2} \notin E$ and
$w_{2}^{\prime} w_{2} \in E, w_{2}^{\prime} w_{1} \notin E$. For contradiction we suppose that such two vertices exist. First, we suppose that w_{1}, w_{2} have two distinct neighbors $r_{1}, r_{2} \in R_{4}$, respectively. If $w_{1}^{\prime} r_{2} \notin E$ then $v_{1}-v_{2}-v_{3}-v_{4}-r_{2}-w_{2}-w_{1}-w_{1}^{\prime}=P_{8}$, a contradiction. If $w_{1}^{\prime} r_{2} \in E$ then $G\left[\left\{v_{4}, r_{2}, w_{2}, w_{1}^{\prime}\right\}\right]$ is a claw, a contradiction. Second, w.l.o.g., $r_{1} \in R_{4}$ is a common neighbor of w_{1}, w_{2} and $r_{2} \in R_{4}$ is a neighbor of w_{2} but not w_{1}. If $w_{1}^{\prime} r_{2} \notin E$ then $v_{1}-v_{2}-v_{3}-v_{4}-r_{2}-w_{2}-w_{1}-w_{1}^{\prime}=P_{8}$ else $G\left[\left\{v_{4}, r_{2}, w_{2}, w_{1}^{\prime}\right\}\right]$ is a claw, a contradiction. Finally, $r_{1}, r_{2} \in R_{4}$ are two common neighbors of w_{1}, w_{2} (r_{1}, r_{2} are not necessarily distinct). If, w.l.o.g., $w_{1}^{\prime} r_{1} \in E$ then $G\left[\left\{v_{4}, r_{1}, w_{2}, w_{1}^{\prime}\right\}\right]$ is a claw, a contradiction. In the case where $w_{1}^{\prime} r_{1}, w_{1}^{\prime} r_{2} \notin E$ then w_{1}^{\prime} has a neighbor $r_{1}^{\prime} \in R_{4}, r_{1}^{\prime} \neq r_{1}, r_{2}$. If $r_{1}^{\prime} w_{2} \in E$ then $G\left[\left\{v_{4}, r_{1}^{\prime}, w_{2}, w_{1}^{\prime}\right\}\right]$ is a claw, a contradiction. So $r_{1}^{\prime} w_{2} \notin E$. If $r_{1}^{\prime} w_{1} \notin E$ then $v_{1}-v_{2}-v_{3}-v_{4}-r_{1}^{\prime}-w_{1}^{\prime}-w_{1}-w_{2}=P_{8}$, a contradiction. Thus $r_{1}^{\prime} w_{1} \in E$. If $r_{1}^{\prime} w_{2}^{\prime} \notin E$ then $v_{1}-v_{2}-v_{3}-v_{4}-r_{1}^{\prime}-w_{1}-w_{2}-w_{2}^{\prime}=P_{8}$, a contradiction. So $r_{1}^{\prime} w_{2}^{\prime} \in E$ but $G\left[\left\{v_{4}, r_{1}^{\prime}, w_{1}, w_{2}^{\prime}\right\}\right]$ is a claw, a contradiction.
As a consequence each connected component A_{i} of $Z_{3} \cup Z_{4}$ has a universal vertex. Also, G being claw-free two distinct components cannot share a neighbor in $R_{3} \cup R_{4}$. Moreover each $w_{4} \in Z_{3} \cup Z_{4}$ is not a leaf.

We show that $w \in Y_{3} \cup Y_{4}$ is connected to a universal vertex of a connected component A_{i} of $Z_{3} \cup Z_{4}$. The two cases being symmetric, we deal with Z_{4}. Let $w \in Z_{4}$. We assume that the neighbors of w are not universal in A_{i}. Let $s \in A_{i}$ be a neighbor of w, let $u, u \neq s$, be a universal vertex of A_{i}. Since s is not universal there exists v, $v \in A_{i}$ such that $s v \notin E$ and $u v \in E$. Since $N(w)$ is complete $w v \notin E$. Let $r \in R_{4}$ be a neighbor of s. Since G is claw-free then $r v \notin E$. Let $r^{\prime}, r^{\prime} \in R_{4}, r^{\prime} \neq r$, be a neighbor of v. As just above $r^{\prime} s \notin E$. If $r^{\prime} u \notin E$ then $v_{1}-v_{2}-v_{3}-v_{4}-r^{\prime}-v-u-s=P_{8}$ else $v_{1}-v_{2}-v_{3}-v_{4}-r^{\prime}-u-s-w=P_{8}$, a contradiction.

We are ready to show how to build a γ-set in polynomial time.
First, we treat the case where $Z_{24} \neq \emptyset$ (the case $Z_{35} \neq \emptyset$ is the same). Let $r_{2} \in$ $R_{2}, r_{4} \in R_{4}$ be the two neighbors of $w, w \in Z_{24}$. Recall that $N\left(Z_{24}\right) \subseteq R_{2} \cup R_{4}$.
We show that $R_{3}=\emptyset$. Assume that there exists $w^{\prime} \in W$ with a neighbor $r_{3} \in H_{3}$ (thus $R_{3} \neq \emptyset$). Note that w^{\prime} cannot be a neighbor of r_{2} or r_{4}. Then $w^{\prime}-r_{3}-v_{3}-$ $r_{2}-r_{4}-v_{5}-v_{6}-v_{7}=P_{8}$, a contradiction. An immediate consequence is that $Z_{35}=\emptyset$. There is no vertex $w^{\prime}, w^{\prime} \in W$, with r_{2} as a neighbor else $G\left[\left\{v_{2}, r_{2}, r_{4}, w^{\prime}\right\}\right]$ is a claw. By symmetry, there is no vertex $w^{\prime}, w^{\prime} \in W$, with r_{4} as a neighbor.

Let $r_{2} \in R_{2}, r_{2}^{\prime} \in R_{2}, r_{2} \neq r_{2}^{\prime}$ be such that r_{2}, respectively r_{2}^{\prime}, has a neighbor $w \in Z_{24}$, respectively $w^{\prime} \in Z_{24}$. Let $r_{4} \in R_{4}, r_{4}^{\prime} \in R_{4}, r_{4} \neq r_{4}^{\prime}$ be such that r_{4}, respectively r_{4}^{\prime}, has w, respectively w^{\prime}, as neighbor. We show that $N_{S \backslash H_{4}}\left(r_{2}\right)=N_{S \backslash H_{4}}\left(r_{2}^{\prime}\right)$, respectively $N_{S \backslash H_{2}}\left(r_{4}\right)=N_{S \backslash H_{2}}\left(r_{4}^{\prime}\right)$.
Let $i=2$ (the case $i=4$ is symmetric). By contradiction, we assume that there exists $s \in S \backslash H_{4}$ such that $r_{2} s \in E, r_{2}^{\prime} s \notin E$. From above $s \notin S_{2}$. So $s \in S_{3} \cup S_{4}$. If $N_{P}(s)=\left\{v_{1}, v_{2}, v_{3}\right\}$ then $G\left[\left\{r_{2}^{\prime}, v_{3}, v_{4}, s\right\}\right]$ is a claw, a contradiction. When $N_{P}(s)=\left\{v_{2}, v_{3}, v_{4}\right\}$ then $G\left[\left\{r_{2}^{\prime}, v_{1}, v_{2}, s\right\}\right]$ is a claw, a contradiction. When $N_{P}(s)=\left\{v_{j}, v_{j+1}, v_{j+2}\right\}, j \geq 3$, then $G\left[\left\{r_{2}, w, v_{2}, s\right\}\right]$ is a claw, a contradiction. Thus $s \in S_{4}$. When $N_{P}(s)=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ then $G\left[\left\{r_{2}, v_{1}, v_{4}, s\right\}\right]$ is a claw, a contradiction. When $N_{P}(s)=\left\{v_{1}, v_{2}, v_{j}, v_{j+1}\right\}, j \geq 4$, then $G\left[\left\{r_{2}, v_{1}, v_{j}, s\right\}\right]$ is a
claw, a contradiction. When $N_{P}(s)=\left\{v_{2}, v_{3}, v_{j}, v_{j+1}\right\}, j \geq 4$, then $G\left[\left\{r_{2}^{\prime}, v_{1}, v_{2}, s\right\}\right]$ is a claw, a contradiction. When $N_{P}(s)=\left\{v_{j}, v_{j+1}, v_{j^{\prime}}, v_{j^{\prime}+1}\right\}, j \geq 3, j^{\prime} \geq j+2$ then $G\left[\left\{r_{2}, w, v_{2}, s\right\}\right]$ is a claw, a contradiction. Hence $N_{S \backslash H_{4}}\left(r_{2}\right)=N_{S \backslash H_{4}}\left(r_{2}^{\prime}\right)$ and $N_{S \backslash H_{2}}\left(r_{4}\right)=N_{S \backslash H_{2}}\left(r_{4}^{\prime}\right)$.

Let $r_{4} \in R_{4}, r_{4}^{\prime} \in R_{4}, r_{4} \neq r_{4}^{\prime}$ be such that r_{4}, respectively r_{4}^{\prime}, has a neighbor $w \in Z_{4}$, respectively $w^{\prime} \in Z_{4}$. We show that $N_{S}\left(r_{4}\right)=N_{S}\left(r_{4}^{\prime}\right)$.
By contradiction, we assume that there exists $s \in S$ such that $r_{4} s \in E, r_{4}^{\prime} s \notin$ E. From above $s \notin H_{1} \cup H_{3} \cup H_{4} \cup H_{5}$. So $s \in H_{2} \cup H_{6} \cup S_{3} \cup S_{4}$. If $s \in$ H_{2} or $s \in H_{6}$ then $G\left[\left\{v_{4}, w, r_{4}, s\right\}\right]$ is a claw, a contradiction. So $s \in S_{3} \cup$ S_{4}. If $N_{P}(s)=\left\{v_{1}, v_{2}, v_{3}\right\}$ then $G\left[\left\{v_{1}, v_{3}, r_{4}, s\right\}\right]$ is a claw, a contradiction. If $N_{P}(s)=\left\{v_{2}, v_{3}, v_{4}\right\}$ then $G\left[\left\{v_{5}, w, r_{4}, s\right\}\right]$ is a claw, a contradiction. If $N_{P}(s)=$ $\left\{v_{3}, v_{4}, v_{5}\right\}$ then $G\left[\left\{v_{5}, v_{6}, r_{4}^{\prime}, s\right\}\right]$ is a claw, a contradiction. If $N_{P}(s)=\left\{v_{4}, v_{5}, v_{6}\right\}$ then $G\left[\left\{v_{3}, v_{4}, r_{4}^{\prime}, s\right\}\right]$ is a claw, a contradiction. When $N_{P}(s)=\left\{v_{5}, v_{6}, v_{7}\right\}$ then $G\left[\left\{v_{4}, w, r_{4}, s\right\}\right]$ is a claw, a contradiction. Thus $s \in S_{4}$. When $N_{P}(s)=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ then $G\left[\left\{r_{4}, v_{1}, v_{3}, s\right\}\right]$ is a claw, a contradiction. When $N_{P}(s)=\left\{v_{2}, v_{3}, v_{4}, v_{5}\right\}$ then $G\left[\left\{r_{4}^{\prime}, v_{5}, v_{6}, s\right\}\right]$ is a claw, a contradiction. When $N_{P}(s)=\left\{v_{3}, v_{4}, v_{5}, v_{6}\right\}$ then $G\left[\left\{r_{4}, v_{3}, v_{6}, s\right\}\right]$ is a claw, a contradiction. When $N_{P}(s)=\left\{v_{4}, v_{5}, v_{6}, v_{7}\right\}$ then $G\left[\left\{r_{4}^{\prime}, v_{3}, v_{4}, s\right\}\right]$ is a claw, a contradiction. When $N_{P}(s)=\left\{v_{1}, v_{2}, v_{6}, v_{7}\right\}$ or $N_{P}(s)=\left\{v_{2}, v_{3}, v_{6}, v_{7}\right\}$ then $G\left[\left\{r_{4}, v_{2}, v_{6}, s\right\}\right]$ is a claw, a contradiction. When $N_{P}(s)=\left\{v_{3}, v_{4}, v_{6}, v_{7}\right\}$ then $G\left[\left\{r_{4}, v_{3}, v_{6}, s\right\}\right]$ is a claw, a contradiction. When $N_{P}(s)=\left\{v_{1}, v_{2}, v_{5}, v_{6}\right\}$ or $N_{P}(s)=\left\{v_{2}, v_{3}, v_{5}, v_{6}\right\}$ then $G\left[\left\{r_{4}, v_{2}, v_{6}, s\right\}\right]$ is a claw, a contradiction. When $N_{P}(s)=\left\{v_{1}, v_{2}, v_{4}, v_{5}\right\}$ then $G\left[\left\{r_{4}^{\prime}, v_{5}, v_{6}, s\right\}\right]$ is a claw, a contradiction. Hence $N_{S}\left(r_{4}\right)=N_{S}\left(r_{4}^{\prime}\right)$. By symmetry, for $r_{2} \in R_{2}, r_{2}^{\prime} \in R_{2}, r_{2} \neq r_{2}^{\prime}$ such that r_{2}, respectively r_{2}^{\prime}, has a neighbor $w \in Z_{2}$, respectively $w^{\prime} \in Z_{2}$ we have $N_{S}\left(r_{2}\right)=N_{S}\left(r_{2}^{\prime}\right)$.

The γ-set is build as follows:

- $\left|Z_{24}\right| \geq 2$. We take $r_{2} \in R_{2}$ a neighbor of w, and for each other $w^{\prime} \in Z_{24}$ we take one adjacent vertex $r_{4}^{\prime} \in R_{4}$. For each $w^{\prime} \in Y_{4}$ we take one universal vertex in the connected component A_{i} of Z_{4} connected to w^{\prime}. For each connected component A_{i} of Z_{4} that is not connected with Y_{4}, we take one universal vertex of A_{i}. These vertices dominate $Z_{24} \cup Y_{4} \cup Z_{4} \cup H_{2} \cup H_{4} \cup\left\{v_{2}, v_{3}, v_{4}, v_{5}\right\}$. Since v_{1}, v_{7} have no common neighbor at least two more vertices are needed. Adding the three vertices v_{2}, v_{4}, v_{6} we have a dominating set (not necessarily minimum). Checking for all the pairs s_{1}, s_{7} where s_{i} is a neighbor of v_{i}, $i \in\{1,7\}$, one can verify if there is a γ-set with only two more vertices (note that there are at most $O\left(n^{2}\right)$ such pairs).
- $\left|Z_{24}\right|=1$. For each $w^{\prime} \in Y_{4}$ we take one universal vertex in the connected component A_{i} of Z_{4} connected to w^{\prime}. If there exists a vertex $r \in R_{4}$ complete to a component A_{i} of Z_{4} that is not connected to Y_{4} then we take r. For each remaining component A_{i} of Z_{4} that is not connected to Y_{4}, we take one universal vertex of A_{i}. These vertices dominate $Y_{4} \cup Z_{4}$ (note that H_{2}, H_{4} are not necessarily dominated). Since v_{1}, v_{7}, w have no common neighbor at least three more vertices are needed. Adding the four vertices v_{2}, v_{4}, v_{6}, w we have a dominating set (not necessarily minimum). Checking for all the pairs s_{1}, s_{7}
where s_{i} is a neighbor of $v_{i}, i \in\{1,7\}$, if there is a dominating set by adding s_{1}, s_{7}, r_{4} or s_{1}, s_{7}, r_{2}, one can verify if there is a γ-set with only three more vertices (note that there are at most $O\left(n^{2}\right)$ such pairs).

In the case of $Z_{24}=Z_{35}=\emptyset$, we build the γ-set as follows:

- $Y_{3}, Y_{4} \neq \emptyset$. For each $w \in Y_{3} \cup Y_{4}$ we take one universal vertex in the connected component A_{i} of $Z_{3} \cup Z_{4}$ connected to w. If there exists $r_{4} \in R_{4}$ which is complete to a component A_{i} of Z_{4} that is not connected to $Y_{3} \cup Y_{4}$ then, we take r_{4}. We do the same for the component of Z_{3} with no neighbors in Y_{3}. For each remaining connected component A_{i} of $Z_{3} \cup Z_{4}$ that is not connected to $Y_{3} \cup Y_{4}$, we take one universal vertex of A_{i}. These vertices dominate $Y_{3} \cup Z_{3} \cup Y_{4} \cup Z_{4}$ (note that H_{2}, H_{4} are not necessarily dominated). Since v_{1}, v_{7} have no common neighbor at least two more vertices are needed. Adding the three vertices v_{2}, v_{4}, v_{6} we have a dominating set (not necessarily minimum). Checking for all the pairs s_{1}, s_{7} where s_{i} is a neighbor of $v_{i}, i \in\{1,7\}$, one can verify if there is a γ-set with only two more vertices (note that there are at most $O\left(n^{2}\right)$ such pairs).
- $Y_{3} \neq \emptyset, Y_{4}=\emptyset$ or $Y_{4} \neq \emptyset, Y_{3}=\emptyset$. The two cases being symmetric, let $Y_{4}=\emptyset$.
$-Z_{4} \neq \emptyset$. For each $w \in Y_{3}$ we take one universal vertex in the connected component A_{i} of Z_{3} connected to w. If there exists $r_{4} \in R_{4}$ which is complete to A_{i}, a connected component of Z_{4}, then we take r_{4}. If there exists $r_{3} \in R_{3}$ which is complete to a connected component A_{j} of Z_{3} with no neighbors in Y_{3}, then we take r_{3}. Now, we take one universal vertex for each other component $A_{l}, A_{l} \neq A_{i}, A_{j}$, of $Z_{3} \cup Z_{4}$. These vertices dominate $Y_{3} \cup Z_{3} \cup Z_{4}$. Since v_{1}, v_{7} have no common neighbor at least two more vertices are needed. Adding the three vertices v_{2}, v_{4}, v_{6} we have a dominating set (not necessarily minimum). Checking for all the pairs s_{1}, s_{7} where s_{i} is a neighbor of $v_{i}, i \in\{1,7\}$, one can verify if there is a γ-set with only two more vertices (note that there are at most $O\left(n^{2}\right)$ such pairs).
$-Z_{4}=\emptyset$. For each $w \in Y_{3}$ we take one universal vertex in the connected component A_{i} of Z_{3} connected to w. If there exists $r_{3} \in R_{3}$ which is complete to a connected component A_{i} of Z_{3} with no neighbors in Y_{3}, then we take r_{3}. Now, we take one universal vertex for each other component A_{i} of Z_{3}. Adding the vertices v_{2}, v_{4}, v_{6} we have a dominating set (not necessarily minimum). Checking for all the pairs s_{1}, s_{7} where s_{i} is a neighbor of $v_{i}, i \in\{1,7\}$, one can verify if there is a γ-set with only two more vertices.
- $Y_{3}, Y_{4}=\emptyset$.
$-Z_{3}, Z_{4} \neq \emptyset$. If there exists $r_{4} \in R_{4}$, respectively $r_{3} \in R_{3}$, which is complete to A_{i}, a connected component of Z_{4}, respectively Z_{3}, then we take r_{4}, respectively r_{3}. For each remaining component of $Z_{3} \cup Z_{4}$ we take one universal vertex. Adding the vertices v_{2}, v_{4}, v_{6} we have a dominating
set (not necessarily minimum). Checking for all the pairs s_{1}, s_{7} where s_{i} is a neighbor of $v_{i}, i \in\{1,7\}$, one can verify if there is a γ-set with only two more vertices.
$-Z_{3} \neq \emptyset, Z_{4}=\emptyset$ or $Z_{4} \neq \emptyset, Z_{3}=\emptyset$. Let $Z_{3} \neq \emptyset$. If there exists $r_{3} \in R_{3}$ which is complete to a connected component of Z_{3}, then we take r_{3}. We add one universal vertex for each remaining component of Z_{3}. Now, adding the vertices v_{2}, v_{4}, v_{6} we have a dominating set (not necessarily minimum). Checking for all the pairs s_{1}, s_{7} where s_{i} is a neighbor of $v_{i}, i \in\{1,7\}$, one can verify if there is a γ-set with only two more vertices.
$-Z_{3}=Z_{4}=\emptyset$. Then $V=N[V(C)]$ and by Property 2.3 computing a minimum dominating set is polynomial.

From Lemmas 3.1, 3.2, 4.3, 5.5, 5.6, we obtain the main result of this paper.
Theorem 5.7 The Minimum Dominating Set problem is polynomial for (claw, P_{8})free graphs.

6 Conclusion

We have shown that the Minimum Dominating Set problem is polynomial for (claw, P_{8})free graphs. We left open the following problem: is there a positive integer $k, k \geq 9$, such that the Minimum Dominating Set problem is $N P$-complete for the class of (claw, P_{k})-free graphs? If the the answer is positive, a challenge should be to show a dichotomy: find the minimum integer k such that the Minimum Dominating Set problem is $N P$-complete for $\left(\right.$ claw, $\left.P_{k}\right)$-free graphs and polynomial for $\left(\right.$ claw, $\left.P_{k-1}\right)$ free graphs.

References

[1] B. Allan, R. Laskar (1978), On domination and independent domination numbers of a graph, Discrete Mathematics 23, 73-76.
[2] A. Bertossi (1984), Dominating sets for split and bipartite graphs, Information Processing Letters 19, 37-40.
[3] J.A. Bondy, U. S. R. Murty, Graph Theory, Springer, (2008).
[4] D. Bauer, F. Harary, J. Nieminen, and C. L. Suffel (1983), Domination alteration sets in graphs. Discrete Mathematics, 47:153-161.
[5] E. Cockayne, S. Goodman, S. Hedetniemi (1975), A linear algorithm for the domination number of a tree, Information Processing Letters 4 (2), 41-44.
[6] M. Farber (1982), Independent domination in chordal graphs, Operations Research Letters 1, 134-138.
[7] Teresa W. Haynes, Stephen T. Hedetniemi, Peter J. Slater Fundamentals of Domination in Graphs, Marcel Dekker Inc., (1998).
[8] D. Malyshev (2016), A complexity dichotomy and a new boundary class for the dominating set problem, J. Comb. Optim. 32, 226-243.
[9] M. Yannakakis, F. Gavril (1980) Edge dominating sets in graphs, SIAM J. Appl. Math. 38 (3), 364-372.

[^0]: *Corresponding author: valentin.bouquet@cnam.fr
 ${ }^{\dagger}$ Conservatoire National des Arts et Métiers, CEDRIC laboratory, Paris (France). Email: valentin.bouquet@cnam.fr, chp@cnam.fr

