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The Minimum Dominating Set problem is
polynomial for (claw, P8)-free graphs

Valentin Bouquet∗ Christophe Picouleau ∗

January 22, 2020

Abstract

We prove that the Minimum Dominating Set problem is polynomial for
the class of (claw, P8)-free graphs.

Keywords: Minimum Dominating Set, polynomial time, claw-free graph,
Pk-free graph.

1 Introduction

M. Yannakakis and F. Gavril [9] showed in 1980 that the Minimum Dominating Set
problem restricted to claw-free graphs is NP -complete. Then in 1984, A. Bertossi
[2] showed that the Minimum Dominating Set problem is also NP -complete for
split graphs, a subclass of P5-free graph. More recently, in 2016, D. Malyshev [8]
proved that the Minimum Dominating Set problem is polynomial for (K1,4, P5)-free
graphs, hence for (claw, P5)-free graphs. To our knowledge, the complexity of the
Minimum Dominating Set problem is unknown for (claw, Pk)-free graphs for any
fixed k ≥ 6. We show that the Minimum Dominating Set problem is polynomial for
(claw, P8)-free graphs.

Definitions and notations

We are only concerned with simple undirected graphs G = (V,E). The reader is
referred to [3] for definitions and notations in graph theory. For v ∈ V , we denote
N(v) its neighborhood and N [v] = N(v) ∪ {v} its closed neighborhood. A vertex v
is universal if N [v] = V . For v ∈ V and A ⊆ V, we denote by NA(v) = N(v) ∩ A
(NA[v] = (N(v) ∩ A) ∪ {v}) its (closed) neighborhood in A. For X ⊆ V,A ⊆ V, we
denote NA(X) =

⋃
x∈X NA(x) and NA[X ] = NA(X) ∪X .

The contraction of an edge uv ∈ E removes the vertices u and v from V , and replaces
them by a new vertex that is adjacent to the previous neighbors of u and v (neither
introducing self-loops nor multiple edges). The following G/uv denotes the graph
obtained from G after the contraction of uv.
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For S ⊆ V , let G[S] denote the subgraph of G induced by S, which has vertex-set S
and edge-set {uv ∈ E | u, v ∈ S}. For v ∈ V , we write G− v = G[V \ {v}] and for a
subset V ′ ⊆ V we write G− V ′ = G[V \ V ′]. For a fixed graph H we write H ⊆i G
whenever G contains an induced subgraph isomorphic to H . For a set {H1, . . . , Hp}
of graphs, G is (H1, . . . , Hp)-free if G has no induced subgraph isomorphic to a graph
in {H1, . . . , Hp}; if p = 1 we may write H1-free instead of (H1)-free. For two disjoint
induced subgraphs G[A], G[B] of G, G[A] is complete to G[B] if ab ∈ E for any
a ∈ A, b ∈ B, G[A] is anticomplete to G[B] if ab 6∈ E for any a ∈ A, b ∈ B.
For k ≥ 1, the graph Pk = u1−u2−· · ·−uk denotes the cordless path on k vertices,
that is, V (Pk) = {u1, . . . , uk} and E(Pk) = {uiui+1 | 1 ≤ i ≤ k − 1}. For k ≥ 3,
the graph Ck = u1 − u2 − · · · − uk − u1 denotes the cordless cycle on k vertices,
that is, V (Ck) = {u1, . . . , uk} and E(Ck) = {uiui+1 | 1 ≤ i ≤ k − 1} ∪ {uku1}. For
k ≥ 4, Ck is called a hole. A graph without hole is chordal. The complete graph
with p vertices is Kp, also called a clique. The graph C3 = K3 is a triangle. K1,p

is the (p+ 1)-vertices star, that is, the graph with vertices u, v1, v2 . . . , vp and edges
uv1, uv2, · · · , uvp. The claw is K1,3.
A set S ⊆ V is called a stable set or an independent set if any pairwise distinct
vertices u, v ∈ S are non adjacent. The maximum cardinality of an independent set
in G is denoted by α(G). A set S ⊆ V is called a clique if any pairwise distinct
vertices u, v ∈ S are adjacent. When G[V ] is a clique then G is a complete graph.
The graph Kp, p ≥ 1, is called a clique or a complete graph on p vertices.
A set S ⊆ V is a dominating set if every vertex v ∈ V is either an element of S or is
adjacent to an element of S. The minimum cardinality of a dominating set in G is
denoted by γ(G) and called the dominating number of G. A dominating set S with
|S| = γ(G) is called a Minimum Dominating Set. Following [7] a Minimum Domi-
nating Set is also called a γ-set. We denote V + ⊆ V the subset of vertices v of G such
that γ(G− v) > γ(G). If S ⊂ V is both a dominating and an independent set then
S is an independent dominating set. The minimum cardinality of an independent
dominating set in G is denoted by i(G). Clearly we have γ(G) ≤ i(G) ≤ α(G). Note
that a minimum independent dominating set is a minimum maximal independent

set.

Previous results

We give some results of the literature concerning the Minimum Dominating Set
problem that will be useful in the following.
D. Bauer et al. showed in [4] that, for any non isolated vertex v, if v ∈ V + then v is
in any γ-set of G. For G a claw-free graph Allan et al. [1] proved that γ(G) = i(G).
From Yannakakis et al. [9] the Minimum Dominating Set problem restricted to
claw-free graphs is NP -complete. From D. Malyshev [8] the Minimum Dominating
Set problem is polynomial for (claw, P5)-free graphs. From Farber [6] computing a
minimum independent dominating set can be done in linear-time on chordal graphs.
So the Minimum Dominating Set problem restricted to claw-free chordal graphs is
polynomial. Cockayne et al. [5] showed that the Minimum Dominating Set problem
restricted to trees is polynomial.
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Organization

The next section give some algorithmic properties. Two properties will allow us to
make some simplifications on the graphs G that we consider. Two others will help
us to conclude that computing γ(G) is polynomial when G have a specific structure
relatively to a fixed size subgraph. Then we consider the case where the graph G
has a long cycle. From there, we show our main result, starting from (claw, P6)-
free graphs and finishing with (claw, P8)-free graphs. We conclude by some open
questions regarding (claw, Pk)-free graphs for k ≥ 9.

2 Algorithmic Properties

We give two properties that authorize us to make some assumptions and simplifica-
tions for the graphs we consider.

Property 2.1 Let G be a claw-free graph. If v, u are two vertices such that N [u] =
N [v] then γ(G) = γ(G/uv).

Proof: Let Γ be a γ-set of G. Let u′ be the vertex of G/uv resulting from the
contraction of uv. At most one of u and v is in Γ. If u ∈ Γ then Γ′ = (Γ− u)∪ {u′}
is a γ-set of G/uv. If u, v 6∈ Γ then Γ′ = Γ is a γ-set of G/uv. �

Property 2.2 Let G = (V,E) be a connected claw-free graph with uv ∈ E such

that u is a leaf. The Minimum Dominating Set problem is polynomial for G′ =
G−N [v] if and only if it is polynomial for G.

Proof: Since G is claw-free K = N(v) − u is a clique. Let k ∈ K, we show that
k 6∈ V +. For contradiction we assume that k ∈ V +. As shown in [4] k is in every
γ-set of G. Let Γ be a γ-set with v ∈ Γ. Let W = N(k)\N(v). If W = ∅ then Γ−k
is a dominating set, a contradiction. It follows W 6= ∅ and since G is claw-free, W
is a clique. Let w ∈ W . Γ′ = (Γ − {k}) ∪ {w} is another γ-set, a contradiction.
Hence γ(G − K) ≤ γ(G). Since G − K consists of G′ and the component uv, we
have that γ(G−K) = γ(G′) + 1. Then from Γ′ a γ-set of G′ we obtain Γ′ ∪ {v} a
γ-set of G in polynomial time. Reciprocally, let Γ be a γ-set of G. Since u is a leaf
we assume that v ∈ Γ. Then Γ − {v} is a γ-set for G′. Trivially it can be done in
polynomial time from Γ. �

We show two conditions on the structure of G that authorize us to directly conclude
that computing a γ-set for G can be done in polynomial time.

Property 2.3 Let k > 0 be a fixed positive integer and G = (V,E) a graph. If

there exists T ⊆i G of size |T | ≤ k such that V = N [T ] then computing a minimum

dominating set for G is polynomial.

Proof: Since |T | ≤ k and V = N [T ], we have that γ(G) ≤ k. So a minimum
dominating set can be computed in O(nk) which is polynomial. �
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Property 2.4 Let k, k′ > 0 two fixed positive integers and G = (V,E) a graph. If

there exists T ⊆i G of size |T | ≤ k such that W = V \ N [T ] has a size |W | ≤ k′

then computing a minimum dominating set for G is polynomial.

Proof: It is clear that k vertices of T is enough to dominate N [T ] and k′ vertices
of W is enough to dominate W . Hence we have γ(G) ≤ k + k′. So a minimum
dominating set can be computed in O(nk+k′) which is polynomial. �

3 G has a long cycle

We give two lemmas that will authorize us to conclude that the Minimum Domi-
nating Set problem is polynomial when G, a (claw, Pk)-free graph, contains a long
induced cycle.

Lemma 3.1 For any fixed k ≥ 3, if G is a (claw, Pk)-free connected graph such that

Ck ⊆i G, then a minimum dominating set of G can be given in polynomial time.

Proof: Let Ck = v1−· · ·−vk−v1, Ck ⊆i G. Let v 6∈ Ck be such that N(v)∩Ck 6= ∅.
Since G is claw-free, we have 2 ≤ |N(v) ∩ Ck| ≤ 4. If |N(v) ∩ Ck| = 2, the two
neighbors of v in Ck must be adjacent, thus there is a Pk starting from v. In the
second case, 3 ≤ |N(v) ∩ Ck| ≤ 4, there is no edge vw ∈ E,N(w) ∩ Ck = ∅, else
there is a claw centered onto v. Taking Γ = {v1, v3, . . . , c⌊k

2
⌋}, Γ is a dominating set

of G. It follows that ⌊k
2
⌋ = |Γ| ≥ γ(G). Hence by brute force γ(G) and a γ-set can

be computed with time O(n⌊k
2
⌋) which is polynomial since k is fixed. �

Lemma 3.2 For any fixed k ≥ 3, if G is a (claw, Pk, Ck)-free connected graph such

that Ck−1 ⊆i G, then a minimum dominating set of G can be given in polynomial

time.

Proof: Let Ck = v1 − · · · − vk−1 − v1, Ck−1 ⊆i G and v 6∈ Ck−1 such that N(v) ∩
Ck−1 6= ∅. We have 2 ≤ |N(v) ∩ Ck−1| ≤ 4. Let w be a neighbor of v such that
N(w)∩Ck−1 = ∅. If 3 ≤ |N(v)∩Ck−1| ≤ 4, there is a claw. When |N(v)∩Ck−1| = 2
there is a Pk starting from w. Taking Γ = {v1, v3, . . . , c⌊k−1

2
⌋}, Γ is a dominating set

of G. It follows that ⌊k−1

2
⌋ = |Γ| ≥ γ(G). Hence, by brute force γ(G) and a γ-set

can be computed with time O(n⌊k−1

2
⌋) which is polynomial since k is fixed. �

4 G is (claw, Pk, Ck, Ck−1)-free, Ck−2 ⊆i G, k ≤ 8

In this section we prove that, for k ≤ 8, if G is a (claw, Pk, Ck, Ck−1)-free graph such
that Ck−2 ⊆i G then the Minimum Dominating Set problem is polynomial. The
first lemma gives a structural property for G. We use this property to prove two
other lemmas, the first one for k = 6, the second for 7 ≤ k ≤ 8.
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Lemma 4.1 For any fixed k ≥ 6, if G is a (claw, Pk, Ck, Ck−1)-free connected graph

such that Ck−2 ⊆i G, then W = V \ Ck−2 is an independent set.

Proof: Let C = Ck−2 = v1 − · · · − vk−2 − v1, C ⊆i G and v ∈ N(C). We have
2 ≤ |NC(v)| ≤ 5 (note that |NC(v)| = 5 only for C = C5). Let us denote S = N(C),
W = V \ (C ∪ S). Let w ∈ W be a neighbor of v. If 3 ≤ |NC(v)| ≤ 5, there is
a claw. Hence, v is such that NC(v) = {vi, vi+1}, 1 ≤ i ≤ k − 2 (for convenience,
when i = k − 2, we read vi+1 = v1). From Property 2.1, we can assume that all
contractibles vertices of G are contracted. Moreover, from Property 2.2 we can
assume that G has no leaves.
Assume for contradiction that w has a neighbor w′, w′ ∈ W . When NS(w

′) = ∅
there is a Pk from w′ to vk−3. Hence w′ has a neighbor in S. Since w and w′ are
not contracted, we have N [w] 6= N [w′]. If vw′ 6∈ E again there is a Pk from w′ to
vk−3. Hence, w and w′ have the same neighbors in S but not in W . So there exists
r ∈ W with rw ∈ E, rw′ 6∈ E. As above rv ∈ E but there exists vi ∈ C suc that
G[{r, v, vi, w

′}] is a claw. Hence, W is independent. �

Lemma 4.2 If G is a (claw, P6, C6, C5)-free connected graph such that C4 ⊆i G,

then a minimum dominating set of G can be given in polynomial time.

Proof: Let C = C4 = v1 − · · · − v4 − v1, C ⊆i G and v ∈ N(C). We have
2 ≤ |NC(v)| ≤ 4. Let S = N(C), W = V \ (C ∪ S) and w ∈ W a neighbor of v. If
3 ≤ |NC(v)| ≤ 4 then G contains a claw. Hence, v is such that NC(v) = {vi, vi+1},
1 ≤ i ≤ 4 (for convenience, when i = 4, we read vi+1 = v1).
From Property 2.4, we can assume that |W | ≥ 2 and from Lemma 4.1, we know
that W is an independent set. We show that all vertices v ∈ N(W ) have exactly
the same neighbors in C.
Let w,w′ ∈ W , w 6= w′, v ∈ NS(w), v

′ ∈ NS(w
′). Since G is claw-free v 6= v′.

W.l.o.g. NC(v) = {v1, v2}. Assume that NC(v) 6= NC(v
′). W.l.o.g. NC(v

′) =
{v2, v3} (note that NC(v

′) = {v1, v4} is symmetric). If vv′ 6∈ E then w − v − v1 −
v4 − v′ −w′ = P6, else v1 − v− v′ − v3 − v4 = C5. Now it remains NC(v

′) = {v3, v4}.
We have vv′ 6∈ E else there is a claw, but w − v − v1 − v4 − v′ − w′ = P6 a con-
tradiction. Thus, w.l.o.g. any vertex w ∈ W has only neighbors v ∈ S such that
N(v) = {v1, v2}.

Let |W | = q, q ≥ 2. We show that γ(G) = q + 1. Since W is independent and for
any distinct w,w′ ∈ W , we have N [w]∩N [w′] = ∅, we must take q vertices of N [W ]
to dominate the vertices of W . This vertices cannot dominate v3 nor v4. Hence
γ(G) ≥ q + 1.
We construct a γ-set of G as follows. We set R by taking exactly one neighbor
of each w,w ∈ W . Clearly, Γ = R ∪ {v3} dominates C ∪ N [R]. Suppose that
there exists s ∈ S such that s is not a neighbor of Γ. If NC(s) = {v1, v2} then
there exists r ∈ R such that G[{r, s, v1, v4}] is a claw. If NC(s) = {v1, v4} then
w − v − v2 − v3 − v4 − s = P6. If NC(s) = {v1, v2, v4} then there exists r ∈ R
such that G[{r, v, v2, v3}] is a claw. Hence any s 6∈ N [R] ∪C is dominated by v3. It
follows that Γ is a γ-set of G. �
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Lemma 4.3 For k ∈ {7, 8}, if G is a (claw, Pk, Ck, Ck−1)-free connected graph such

that Ck−2 ⊆i G, then a minimum dominating set of G can be given in polynomial

time.

Proof: Let C = Ck−2 = v1 − · · · − vk−2 − v1, C ⊆i G and v ∈ N(C). We have
2 ≤ |NC(v)| ≤ 5 (note that |NC(v)| = 5 only for C = C5). Let S = N(C),
W = V \ (C ∪ S) and w ∈ W a neighbor of v. If 3 ≤ |NC(v)| ≤ 4 then G contains
a claw. Hence, v is such that NC(v) = {vi, vi+1}, 1 ≤ i ≤ k − 2 (for convenience,
when i = k − 2, we read vi+1 = v1).

We show that for any w,w ∈ W, there exists v, v′ ∈ N(w) such thatNC(v)∩NC(v
′) =

∅. Let w ∈ W and v, v′ ∈ NS(w), v 6= v′.
First, we show that NC(v) 6= NC(v

′). Suppose that NC(v) = NC(v
′), w.l.o.g.

NC(v) = {v1, v2}. vv′ ∈ E else G[{v, v′, v1, vk−2}] is a claw. From Property 2.1, we
have that N [v] 6= N [v′], else v, v′ are contracted. Hence, there exists u ∈ V such that
uv ∈ E and uv′ 6∈ E. If u ∈ W then from Lemma 4.1 uw 6∈ E but G[{u, v, w, v1}] is
a claw. So, we have u ∈ S. If NC(u) = {v1, v2} then G[{u, v′, v2, v3} is a claw. So
NC(u) 6= NC(v) and we can assume that wu 6∈ E or else we have u, v two neighbors
of w with distinct neighborhoods in C. If NC(u) ∩ NC(v) = ∅ then G[{u, v, v1, w}]
is a claw. So W.l.o.g. we assume that NC(u) ∩NC(v) = {v1} but G[{u, v, v2, w}] is
a claw. Hence N [v] = N [v′] and v, v′ can be contracted. Yet, w is a leaf and from
Property 2.2 we can assume that G contains no leaves. So, for any w,w ∈ W, there
exists v, v′ ∈ NS(w), v 6= v′ such that NC(v) 6= NC(v

′).
Now we show that that NC(v)∩NC(v

′) = ∅. W.l.o.g. assume that NC(v) = {v1, v2}
and NC(v

′) = {v2, v3}. If vv′ ∈ E then v1 − v − v′ − v3 − · · · − vk−2 − v1 = Ck−1,
else v1 − v −w − v′ − v3 − · · · − vk−2 − v1 = Ck. Thus any w,w ∈ W, has neighbors
v, v′ ∈ S such that NC(v) ∩NC(v

′) = ∅.

From Property 2.4, we can assume that |W | ≥ 2. So let w,w′ ∈ W (recall ww′ /∈ E).
Since both w and w′ have two neighbors in S with non intersecting neighborhoods
in C, let v ∈ N(w), v′ ∈ N(w′) such that NC(v) ∩ NC(v

′) = ∅. W.l.o.g. NC(v) =
{v1, v2}. Assume that NC(v

′) = {v3, v4} (note that N(v′) = {vk−2, vk−3} is symmet-
ric). If vv′ ∈ E then G[{v, v′, v1, w}] is a claw, else w−v−v1−vk−2−· · ·−v4−v′−w′ =
Pk. Hence the two neighborhoods of NC(v) and NC(v

′) are not adjacent. It follows
that for k = 7, since Ck−2 = C5, such a configuration is impossible. This yields
to |W | ≤ 1 and from Property 2.4 a minimum dominating set can be computed in
polynomial time.

Now, we focus on the remaining case of k = 8. Let |W | = q, q ≥ 2. We show that
γ(G) = q+2. Since W is independent and that for any distinct vertices w,w′ ∈ W ,
we have N [w]∩N [w′] = ∅, we must take q vertices of N [W ] to dominate the vertices
of W . Let w,w′ ∈ W . From above we can assume that w has a neighbor v such that
NC(v) = {v1, v2} and w′ has a neighbor v′ such that NC(v

′) = {v4, v5} (each vertex
of W has two neighbors whose are neighbors of respectively {v1, v2} and {v4, v5}
since C = C6). G being claw-free we have vv′ 6∈ E. The q vertices that dominates
W cannot dominate v3 and v6. Hence γ(G) ≥ q + 1.
Suppose that γ(G) = q + 1. The mds of G must contain a vertex s ∈ S a neigh-
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bor of both v3 and v6. If vs ∈ E, respectively v′s ∈ E, then G has a claw (s
cannot be complete to NC(v) ∪ Nc(v

′)). Also, s must have (v1 or v5) and (v2 or
v4) as neighbors else there is a claw. We assume first that N(s) = {v1, v2, v3, v6}.
Then w − v − v1 − s − v3 − v4 − v′ − w′ = P8 (recall vv′ 6∈ E or G contains
a claw). The case where N(s) = {v3, v4, v5, v6} is symmetric. Now we assume
that N(s) = {v1, v3, v4, v6} (note that N(s) = {v2, v3, v5, v6} is symmetric). Then
w − v − v2 − v3 − s− v6 − v5 − v′ = P8. Hence γ(G) ≥ q + 2.

We show that Γ = {v1, v4}∪W is a γ-set of G. Clearly Γ dominates N [W ]∪C. Let
s 6∈ N [W ]∪C. So s ∈ S. Suppose that sv1, sv4 6∈ E. From above ws 6∈ E and vs 6∈ E
else G[{v, s, v1, w}] is a claw. If N(s) = {v2, v3} then w−v−v1−v6−v5−v4−v3−s =
P8. By symmetry N(s) 6= {v5, v6}. As shown before N(s) = {v2, v3, v5, v6} is not
possible. Hence any s 6∈ N [W ] ∪ C is dominated by v1 or v4. It follows that
Γ = {v1, v4} ∪W is a γ-set of G. �

From Lemmas 3.1, 3.2, 4.2, 4.3 we immediately obtain the corollary below.

Corollary 4.4 Let G a (claw, Pk)-free graph, 6 ≤ k ≤ 8. If Cl ⊆i G, k−2 ≤ l ≤ k,
then a minimum dominating set of G can be given in polynomial time.

5 G is (claw, P8)-free

Here we conclude by the main result proving that the Minimum Dominating Set
problem is polynomial in the class of (claw, P8)-free graphs. Starting from the
result stating that the problem is polynomial when G is (claw, P5)-free, we suc-
cessively prove that the problem is polynomial for (claw, P6)-free, (claw, P7)-free
graphs. Then we conclude for the class of (claw, P8)-free graphs.

Lemma 5.1 Let G be a connected (claw, P5)-free graph. Computing a minimum

dominating set is polynomial-time solvable.

Proof: From [8] we know that computing a minimum dominating set is polyno-
mial when G is (K1,4, P5)-free. The result follows from the fact that ((claw, P5) −
free graphs) ⊂ ((K1,4, P5)− free graphs). �

Lemma 5.2 Let G be a connected (claw, P6)-free graph. Computing a minimum

dominating set is polynomial-time solvable.

Proof: From Corollary 4.4, if Cl ⊆i G, 4 ≤ l ≤ 6, then computing a minimum
dominating set is polynomial. WhenG is (claw, C4, C5, C6, P6)-free then it is chordal.
The Minimum Dominating Set problem is polynomial for claw-free chordal graphs.
�

Lemma 5.3 Let G be a connected (claw, C5, C6, C7, P7)-free graph. Computing a

minimum dominating set is polynomial-time solvable.
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Proof: From Lemma 5.2 we can assume that P6 ⊆i G. Let P = v1− v2 − v3 − v4−
v5 − v6.
Let W = V \N [P ]. From Property 2.3 if W = ∅ computing a minimum dominating
set is polynomial. From now on W 6= ∅.
Let S = {v ∈ V \ P such that 2 ≤ |NP (v)| ≤ 4}, Si ⊆ S being the set of vertices v
such that |NP (v)| = i.
Let Hi = {v ∈ S2 : NP (v) = {vi, vi+1}, 1 ≤ i ≤ 5}. Since G is claw-free
each Hi is complete. If there is an edge riri+1 with ri ∈ Hi, ri+1 ∈ Hi+1 then
P = v1 − · · · − vi − ri − ri+1 − vi+2 − · · · − v6 = P7. If there is an edge rirj with
ri ∈ Hi, rj ∈ Hj and j ≥ i + 3 then Cp ⊆i G, p ≥ 5. So H1 is anticomplete to
H2, H4, H5, the component H2 is anticomplete to H3, H5, and the component H3 is
anticomplete to H4.

We define Ri as the set of vertices of Hi having a neighbor in W , Ri = {v ∈ Hi :
NW (v) 6= ∅}, 1 ≤ i ≤ 5. Since G is P7-free R1 = R5 = ∅.

Let r ∈ Ri, r
′ ∈ Ri, r 6= r′, i ∈ {2, 4} be such that r, respectively r′, has a neighbor

w ∈ W , respectively w′ ∈ W . We show that NS(r) = NS(r
′).

By contradiction we assume that there exists s ∈ S such that rs ∈ E, r′s 6∈ E.
From above s 6∈ Ri ∪ Hi−1 ∪ Hi+1. Let i = 2 (the case i = 4 is symmetric).
Recall that H2 is anticomplete to H1, H3, H5, thus s ∈ H4 ∪ S3 ∪ S4. If s ∈ H4

then G[{r, w, v3, s}] is a claw. Hence s ∈ S3 ∪ S4. When NP (s) = {v1, v2, v3}
then G[{r′, v3, v4, s}] is a claw. When NP (s) = {v2, v3, v4} then G[{r′, v1, v2, s}] is
a claw. When NP (s) = {v3, v4, v5} or NP (s) = {v4, v5, v6} then G[{r, v2, w, s}] is a
claw. So s ∈ S4. When NP (s) = {v1, v2, v3, v4} then G[{r, v1, v4, s}] is a claw. When
NP (s) = {v2, v3, v4, v5} then G[{r,′ v1, v2, s}] is a claw. When NP (s) = {v3, v4, v5, v6}
then G[{r, v4, v6, s}] is a claw. Now let i = 3. Recall that H3 is anticomplete to
H2, H4, thus s ∈ H1 ∪ H5 ∪ S3 ∪ S4. If s ∈ H1 (the case s ∈ H5 is symmetric)
then G[{r, w, v3, s}] is a claw. Hence s ∈ S3 ∪ S4. If NP (s) = {v1, v2, v3} (the
case NP (s) = {v4, v5, v6} is symmetric) then G[{r, w, v4, s}] is a claw. If NP (s) =
{v2, v3, v4} (the case NP (s) = {v3, v4, v5} is symmetric) then G[{r′, v4, v5, s}] is a
claw. So s ∈ S4. When NP (s) = {v1, v2, v4, v5} or NP (s) = {v1, v2, v5, v6} then
G[{r, v1, v5, s}] is a claw. When NP (s) = {v2, v3, v5, v6} then G[{r′, v3, v4, s}] is a
claw. When NP (s) = {v1, v2, v3, v4} (the case NP (s) = {v3, v4, v5, v6} is symmetric)
then G[{r′, v4, v5, s}] is a claw. Hence NP (s) = {v2, v3, v4, v5} but G[{r, v2, v5, s}] is
a claw. Thus NS(r) = NS(r

′).

Let r2 ∈ R2, r
′
2 ∈ R2, r2 6= r′2 be such that r2, respectively r′2, has a neighbor w ∈ W ,

respectively w′ ∈ W . Let r4 ∈ R4, r
′
4 ∈ R4, r4 6= r′4 be such that r4, respectively

r′4, has w, respectively w′, as neighbor. We show that NS\H4
(r2) = NS\H4

(r′2),
respectively NS\H2

(r4) = NS\H2
(r′4).

By contradiction we assume that there exists s ∈ S such that r2s ∈ E, r′2s 6∈ E.
From above s 6∈ H1 ∪ H2 ∪ H3. When s ∈ H4 we know that s is not a neighbor
of w. If s ∈ H4 ∪ H5 then G[{r2, v2, w, s}] is a claw. Hence s ∈ S3 ∪ S4. When
NP (s) = {v1, v2, v3} then G[{r′2, v3, v4, s}] is a claw. When NP (s) = {v2, v3, v4}
then G[{r′2, v1, v2, s}] is a claw. When NP (s) = {v3, v4, v5} then G[{r2, v2, w, s}]
is a claw. When NP (s) = {v4, v5, v6} then G[{r2, v4, v6, s}] is a claw. So s ∈ S4.
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When NP (s) = {v1, v2, v4, v5} or NP (s) = {v1, v2, v5, v6} then G[{r, v1, v5, s}] is
a claw. When NP (s) = {v2, v3, v5, v6} then G[{r′, v3, v4, s}] is a claw. When
NP (s) = {v1, v2, v3, v4} thenG[{r2, v1, v4, s}] is a claw. WhenNP (s) = {v2, v3, v4, v5}
then G[{r′2, v1, v2, s}] is a claw. When NP (s) = {v3, v4, v5, v6} then G[{r2, v4, v6, s}]
is a claw. Thus NS\H4

(r2) = NS\H4
(r′2) and by symmetry, for r′4 ∈ R4, r

′
4 6= r4, we

have NS\H2
(r4) = NS\H2

(r′4).

Let w ∈ W . We show that w cannot have two neighbors ri, ri+1 with ri ∈ Ri, ri+1 ∈
Ri+1. Suppose for contradiction that these two neighbors exist. Then v1−· · ·−vi−
ri−w− ri+1− vi+2−· · ·− v6 = P8. Now, since R1 = R5 = ∅, if w has two neighbors
ri ∈ Ri, rj ∈ Rj , i 6= j, these two neighbors are r2 ∈ R2, r4 ∈ R4 and r2r4 ∈ E, else
w − r4 − v4 − v3 − r2 − w = C5.
Moreover, when w has two neighbors r2 ∈ R2, r4 ∈ R4, then for each neighbor
w′ ∈ NW (w), w′ has r2 and r4 as neighbors. Assume for contradiction that w has
a neighbor w′ ∈ W such that w′r2 6∈ E (by symmetry w′r4 6∈ E is the same case).
Then w′ − w − r2 − v3 − · · · − v6 = P7. It follows that N [w] = N [w′] and from
Property 2.1 ww′ can be contracted.
Hence setting Z24 = {w ∈ W : w has two neighbors r2 ∈ R2, r4 ∈ R4}, Z24 is an
independent set.

Let w,w′ ∈ Z24, w 6= w′. Since G is claw-free we have N(w) ∩N(w′) = ∅. We show
that NR2

(w) is anticomplete to NR4
(w′) and NR4

(w) is anticomplete to NR2
(w′). By

contradiction if w has a neighbor r2 ∈ R2, w
′ has a neighbor r4 ∈ R4, and r2r4 ∈ E

then G[{v2, r2, w, r4}] is a claw.

Let Zi = {w ∈ W : w has a neighbor in Ri \ (NRi
(Z24)}, 2 ≤ i ≤ 4}.

We show that Z2, Z3, Z4 are pairwise anticomplete. If there is an edge w2w4, w2 ∈
Z2, w4 ∈ Z4, with r′2 ∈ R2, r

′
4 ∈ R4 the neighbors of w2, w4 respectively, then

w2 − r′2 − v3 − v4 − r′4 − w4 − w2 = C6 (r′2r
′
4 6∈ E else G[{v2, r

′
2, w2, r

′
4}] is a claw).

If there is an edge w2w3, w2 ∈ Z2, w3 ∈ Z3, with r′2 ∈ R2, r
′
3 ∈ R3 the neighbors of

w2, w3 respectively, then w2 − r′2 − v3 − r′3 − w3 − w2 = C5 (recall r′2r
′
3 6∈ E). By

symmetry there is no edge between Z3 and Z4.

Let Y = W \ (Z2 ∪ Z3 ∪ Z4 ∪ Z24). One can observe that for any w ∈ Y we have
NZ2

(w) = NZ4
(w) = NZ24

(w) = ∅ else P7 ⊆i G.
Let Y3 = {w ∈ Y : w has a neighbor in Z3}. If there exists w

′ ∈ Y \ Y3 such that w′

has a neighbor w,w ∈ Y3, then P7 ⊆i G. Hence Y = Y3.

We show that we can assume that Z2, Z4, Y3 are three independent sets. The argu-
ments are the same for the three sets, so we show that Z2 is an independent set. For
contradiction, we assume that there are w1, w2 ∈ Z2 such that w1w2 ∈ E. We prove
that NR2

(w1) = NR2
(w2). If NR2

(w1) 6= NR2
(w2) then there exists r2 ∈ R2 which is

a neighbor of w1 but not a neighbor of w2. Then w2−w1−r2−v3−· · ·−v6 = P7. If
NZ2

(w1) 6= NZ2
(w2) then there exists w3 ∈ Z2 such that w2w3 ∈ E,w1w3 6∈ E, but

G[{v2, r2, w1, w3}] is a claw. Hence N [w1] = N [w2] and we can apply the Property
2.1 to contract w1w2. Hence Z2, Z4, Y3 are independent.
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Since G is claw-free then for any two distinct vertices w1, w2 ∈ Z2 ∪Z4 ∪ Y3 we have
N(w1) ∩N(w2) = ∅.
We prove that for any w ∈ Y3, N(w) is a clique. Let w ∈ Z3. Suppose there are s, s

′

two non adjacent vertices in N(w). Since G is claw-free s, s′ cannot have a common
neighbor in R3. Let r ∈ R3 be a neighbor of s. Then s′−w−s−r−v3−v2−v1 = P7.

Since G is claw-free, if there are a vertex r ∈ Ri with a neighbor z ∈ Zi and a vertex
s ∈ S such as sz 6∈ E and vi 6∈ N(s) then G contains a claw (note that vi+1 6∈ N(s)
is symmetric). Hence N(Zi) is anticomplete to Hj, j 6= i.

We show that we can assume that Z2 = Z4 = ∅. The arguments are the same
in the two cases, so we consider Z2. Let r, r′ ∈ R2 be two neighbors of w ∈ Z2.
We show that N [r] = N [r′]. Since NR(w) = NR2

(w) and rr′ ∈ E then, as proved
above, NS(r) = NS(r

′). For two distinct w1, w2 ∈ Z2, N(w1) ∩ N(w2) = ∅. Hence,
N [r] = N [r′]. From Property 2.1 we can contract rr′. Then w is a leaf and by
Property 2.2, w can be deleted from G.

Now we study the structure of Z3. For any distinct two vertices w1, w2 ∈ Z3 such
that w1w2 ∈ E, there cannot exist two distinct vertices w′

1, w
′
2 ∈ Z3 such that

w1w
′
1 ∈ E,w′

1w2 6∈ E and w2w
′
2 ∈ E,w1w

′
2 6∈ E. For contradiction we suppose

that such two vertices exist. We assume first that w2 has a neighbor r2 ∈ R3

such that r2w1 6∈ E. If w′
1r2 6∈ E then v1 − v2 − v3 − r2 − w2 − w1 − w′

1 = P7

else G[{v4, r2, w2, w
′
1}] is a claw. So w1, w2 have a common neighbor r1 ∈ R3. If

w′
1r1 ∈ E then G[{v3, r1, w2, w

′
1}] is a claw. Thus w′

1r1 6∈ E and w′
1 has a neighbor

r′1 ∈ R3, r
′
1 6= r1. If r′1w2 ∈ E then G[{v3, r

′
1, w2, w

′
1}] is a claw. So r′1w2 6∈ E. If

r′1w1 6∈ E then v1 − v2 − v3 − r′1 − w′
1 − w1 − w2 = P7. Thus r

′
1w1 ∈ E. If r′1w

′
2 6∈ E

then v1 − v2 − v3 − r′1 −w1 −w2 −w′
2 = P7. So r′1w

′
2 ∈ E but G[{v4, r

′
1, w1, w

′
2}] is a

claw.
As a consequence each connected component Ai of Z3 has a universal vertex. Also,
G being claw-free two distinct connected components cannot share a neighbor in
R3. Moreover, from Property 2.2 we have assumed that each w3 ∈ Z3 is not a leaf.

We show that w ∈ Y3 is connected to a universal vertex of a connected component
Ai of Z3. We assume that the neighbors of w are not universal in Ai. Let s ∈ Ai

be a neighbor of w, let u, u 6= s, be a universal vertex of Ai. Since s is not univer-
sal there exists v, v ∈ Ai such that sv 6∈ E and uv ∈ E. Since N(w) is complete
wv 6∈ E. Let r ∈ R3 be a neighbor of s. Since G is claw-free then rv 6∈ E. Let
r′, r′ ∈ R3, r

′ 6= r, be a neighbor of v. As just above r′s 6∈ E. If r′u 6∈ E then
v1 − v2 − v3 − r′ − v − u− s = P7 else v1 − v2 − v3 − r′ − u− s− w = P7.

We are ready to show how to build a γ-set in polynomial time.
First, we treat the case where Z24 6= ∅. Let r2 ∈ R2, r4 ∈ R4 be two neighbors of
w,w ∈ Z24.
We show that R3 = ∅. Assume that there exists w′ ∈ W with a neighbor r3 ∈ R3.
Since w′ is not a neighbor of r2 or r4 we have w′ − r3 − v3 − r2 − r4 − v5 − v6 = P7.
So R3 = ∅ and since Z2 = Z4 = ∅ we have W = Z24.
Recall that W = Z24 is independent and that for any two distinct vertices w′, w′ ∈
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Z24 we have N(w) ∩N(w′) = ∅.

The γ-set is build as follows:
From Property 2.4, we can assume that |W | ≥ 2. We take r2 ∈ R2 a neigh-
bor of w (recall that the neighbors of w in Ri, i ∈ {2, 4}, have the same neigh-
borood and that all vertices of Ri have the same neighbors in S \ H4), and for
each other w′ ∈ Z24 we take one adjacent vertex r′4 ∈ R4. These vertices dominate
Z24 ∪H2 ∪ H4 ∪ {v2, v3, v4, v5}. At least one more vertex is necessary to dominate
G since v1 and v6 are not dominated. Adding the three vertices v2, v4, v6 we have a
dominating set (not necessarily minimum). We check first if there exists s a neighbor
of both v1 and v6 that dominates the rest of the graph. If such vertex s is nowhere
to be found, checking for all the pairs s1, s6 where si is a neighbor of vi, i ∈ {1, 6},
one can verify if there is a γ-set with only two more vertices (note that there are at
most O(n2) such pairs).

Now we deal with the case Z24 = ∅.
The γ-set is build as follows:

• Y3 6= ∅. For each w ∈ Y3 we take one universal vertex in the connected
component Ai of Z3 connected to w. For each connected component Ai of
Z3 that is not connected to a vertex of Y3, we do as follows: If there exists
r3 ∈ R3 which is complete to Ai (recall that such vertices have the same
neighborood) then we take r3, else we take one universal vertex of Ai. These
vertices dominate Y3∪Z3. At least one more vertex is necessary to dominate G
since v1 and v6 are not dominated. Adding the three vertices v2, v4, v6 we have
a dominating set (not necessarily minimum). We check first if there exists s
a neighbor of both v1 and v6 that dominates the rest of the graph. If such
vertex is s nowhere to be found, checking for all the pairs s1, s6 where si is a
neighbor of vi, i ∈ {1, 6}, one can verify if there is a γ-set with only two more
vertices (note that there are at most O(n2) such pairs).

• Y3 = ∅. Thus Z3 = W . For any connected component Ai of Z3, if there
exists r3 ∈ R3 which is complete to Ai (recall that such vertices have the
same neighborood) then we take r3, else else we take one universal vertex of
Ai. These vertices dominate Z3. At least one more vertex is necessary to
dominate G since v1 and v6 are not dominated. Adding the three vertices
v2, v4, v6 we have a dominating set (not necessarily minimum). We check first
if there exists s a neighbor of both v1 and v6 that dominates the rest of the
graph. If such vertex s is nowhere to be found, checking for all the pairs s1, s6
where si is a neighbor of vi, i ∈ {1, 6}, one can verify if there is a γ-set with
only two more vertices (note that there are at most O(n2) such pairs).

Clearly the construction of the γ-set is polynomial. �

Corollary 5.4 The Minimum Dominating Set problem is polynomial for (claw, P7)-
free graphs.
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Lemma 5.5 Let G be a connected (claw, C6, C7, C8, P8)-free graph. If C5 ⊆i G then

computing a minimum dominating set is polynomial.

Proof: Let C = v1 − v2 − v3 − v4 − v5 − v1 = C5 ⊆i G. Let W = V \N [C]. From
Property 2.3 if W = ∅ computing a minimum dominating set is polynomial. From
now on W 6= ∅.
Let S = {v ∈ V \ C such that 2 ≤ |N(v) ∩ C5| ≤ 5}, Si ⊆ S being the set of
vertices v such that |N(v) ∩ C5| = i. Let Hi = {v ∈ S2 : N(v) ∩ C5 = {vi, vi+1}},
1 ≤ i ≤ 5 (for convenience v5+1 stands for v1). Since G is claw-free, each Hi

is complete. Moreover, if there is an edge riri+1 with ri ∈ Hi, ri+1 ∈ Hi+1 then
ri − vi − vi−1 − · · · − vi+2 − ri+1 − ri = C6. Hence Hi is anticomplete to Hi+1.
We define Ri as the set of vertices of Hi having a neighbor in W , Ri = {v ∈ Hi :
NW (v) 6= ∅}, 1 ≤ i ≤ 5, R = R1 ∪ · · · ∪ R5.

Since W 6= ∅, we assume that there exists w1 ∈ W such that w1 has a neigh-
bor r1 ∈ R1. Suppose that R2 6= ∅. There exists w2 ∈ W with a neighbor
r2 ∈ R2. If w1 = w2 then w1 − r2 − v3 − v4 − v5 − v1 − r1 − w1 = C7. So
w1 6= w2. If w1w2 ∈ E then w1 − w2 − r2 − v3 − v4 − v5 − v1 − r1 − w1 = C8 else
w1− r1− v1− v5 − v4 − v3 − r2 −w2 −w1 = P8. So, if Ri 6= ∅ then Ri−1 = Ri+1 = ∅.
Hence R2 = R5 = ∅.

Let r ∈ Ri, r
′ ∈ Ri, r 6= r′, i ∈ {1, 3, 4} be such that r, respectively r′, has a neighbor

w ∈ W , respectively w′ ∈ W . We show that NS(r) = NS(r
′).

By contradiction we assume that there exists s ∈ S such that rs ∈ E, r′s 6∈ E.
From above s 6∈ Hi ∪ Hi−1 ∪ Hi+1. Let i = 1. If s ∈ H3 ∪ H4 then G[{r, v1, w, s}]
is a claw. Thus s ∈ S3 ∪ S4 ∪ S5. When NC(s) = {v1, v2, v3} (the case NC(s) =
{v1, v2, v5} is symmetric) then G[{r′, v5, w, s}] is a claw. When NC(s) = {v2, v3, v4}
(the case NC(s) = {v1, v4, v5} is symmetric) then G[{r, v1, w, s}] is a claw. When
NC(s) = {v3, v4, v5} then G[{r, v3, v5, s}] is a claw. So s ∈ S4 ∪ S5. When NC(s) =
{v1, v2, v3, v4} (the case NC(s) = {v1, v2, v4, v5} is symmetric) then G[{r′, v1, v5, s}]
is a claw. When NC(s) = {v1, v3, v4, v5} or NC(s) = {v2, v3, v4, v5} or NC(s) =
{v1, v2, v3, v5} or s ∈ S5 then G[{r, v3, v5, s}] is a claw. For i = 3 and i = 4 the
arguments are the same. Thus NS(r) = NS(r

′).

Let r1 ∈ R1, r
′
1 ∈ R1, r1 6= r′1 be such that r1, respectively r′1, has a neighbor w ∈ W ,

respectively w′ ∈ W . Let r3 ∈ R3, r
′
3 ∈ R3, r3 6= r′3 be such that r3, respectively

r′3, has w, respectively w′, as neighbor. We show that NS\H3
(r1) = NS\H3

(r′1),
respectively NS\H1

(r3) = NS\H1
(r′3).

Let i = 1. By contradiction we assume that there exists s ∈ S \R3 such that r1s ∈
E, r′1s 6∈ E. From above s 6∈ H1∪H2 ∪H5. If s ∈ H4 then G[{r1, v1, w, s}] is a claw.
So s ∈ S3∪S4∪S5. When NC(s) = {v1, v2, v3} (the case NC(s) = {v1, v2, v5} is sym-
metric) then G[{r′1, v1, v5, s}] is a claw. When NC(s) = {v2, v3, v4} (the case NC(s) =
{v1, v4, v5} is symmetric) then G[{r1, v1, w, s}] is a claw. When NC(s) = {v3, v4, v5}
then G[{r1, v3, v5, s}] is a claw. So s ∈ S4 ∪ S5. When NC(s) = {v1, v2, v3, v4} (the
case NC(s) = {v1, v2, v4, v5} is symmetric) then G[{r′1, v1, v5, s}] is a claw. When
NC(s) = {v1, v3, v4, v5} or NC(s) = {v2, v3, v4, v5} or NC(s) = {v1, v2, v3, v5} or
s ∈ S5 then G[{r1, v3, v5, s}] is a claw. By symmetry the arguments are the same
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for i = 3. Hence NS\H3
(r1) = NS\H3

(r′1) and NS\H1
(r3) = NS\H1

(r′3).

We study the case where w1 has a neighbor ri, ri ∈ Ri, i ∈ {3, 4}. Since both cases
are symmetric, let r3, r3 ∈ R3, be a neighbor of w1. If r1r3 6∈ E then w1 − r1 − v1 −
v5 − v4 − r3 − w1 = C6. Hence NR1

(w1) is complete to NR3
(w1). Since R3 6= ∅, we

have R4 = ∅ and NR(w1) ⊆ R1 ∪ R3. Hence, we define the following subsets of W :

• Z = {w ∈ W : NR(w) 6= ∅};

• Zi = {z ∈ Z : NRi
(z) 6= ∅, NRj

(z) = ∅, 1 ≤ i ≤ 5, i 6= j};

• Zij = {z ∈ Z : NRi
(z) 6= ∅, NRj

(z) 6= ∅, 1 ≤ i < j ≤ 5};

• Y = W \ Z.

First, we show that Zi and Zij are anticomplete, then we show that Zi consists of
leaves. We conclude that Zij 6= ∅ implies Z = Zij. We set w1 ∈ Z13, and since all
cases are symmetric, we focus on Z1 6= ∅.

Let w′
1 ∈ Z1 with a neighbor r′1, r

′
1 ∈ R1, r

′
1 6= r1. Note that r

′
1r3 6∈ E else G contains

a claw. If w1w
′
1 ∈ E, then r′1w1 ∈ E, else w1−w′

1− r′1− v1− v5− v4− r3−w1 = C7,
but w1 − r′1 − v1 − v5 − v4 − r3 −w1 = C6. Hence, w1w

′
1 6∈ E (by symmetry, for any

w3 ∈ Z3, w1w3 6∈ E). Thus Z1 and Z3 are anticomplete to Z13.

Now, we show that the vertices of Z1 are leaves. Assume that there exists v ∈
N(w′

1), v 6= r′1 such that N [v] 6= N [w′
1]. If v ∈ Z3 then v − w′

1 − r′1 − v1 − v5 −
v4 − r3 − w1 = P8. If v ∈ Y then either v − w′

1 − r′1 − v1 − v5 − v4 − r3 − w1 = P8

or v − w′
1 − r′1 − v1 − v5 − v4 − r3 − w1 − v = C8. If v ∈ Z1 and r′1v 6∈ E then

v − w′
1 − r′1 − v1 − v5 − v4 − r3 − w1 = P8. Hence NR1

(w′
1) = NR1

(v). Since
N [v] 6= N [w′

1] we can assume that there exists v′ ∈ W such that vv′ ∈ E but
v′w′

1 6∈ E. Yet with the same arguments as before we have NR1
(v) = NR1

(v′) and
since w′

1v
′ 6∈ E then G[{r′1, v

′, v1, w
′
1}] is a claw. Thus Z1 consists of leaves. Now,

from Property 2.2 we can suppose that Z1 = ∅. By symmetry Z3 = ∅. So Z = Z13.

We show that any two vertices v, v′ ∈ Z13 with vv′ ∈ E satisfy NR1∪R3
(v) =

NR1∪R3
(v′). Let w′

1 ∈ Z13 be a neighbor of w1. Suppose that there exists r′1 ∈
NR1

(w′
1) such that r′1w1 6∈ E. If r′1r3 ∈ E then G[{r′1, r3, v3, w1}] is a claw. If r3w

′
1 6∈

E then w1−r3−v4−v5−v1−r′1−w′
1−w1 = C7, else w

′
1−r′1−v1−v5−v4−r3−w′

1 = C6.
Hence, NR1

(w1) = NR1
(w′

1) and by symmetry NR3
(w1) = NR3

(w′
1).

Suppose that Y 6= ∅. Let y ∈ Y be a neighbor of w1. We show that Z13 is a
clique. Let w′

1 ∈ Z13 such that w1w
′
1 6∈ E. We have NR1∪R3

(w1) ∩ NR1∪R3
(w′

1) = ∅
else G contains a claw. Yet, there exists r′1 a neighbor of w′

1 in R1 such that either
y−w1−r3−v4−v5−v1−r′1−w′

1 = P8 or y−w1−r3−v4−v5−v1−r′1−w′
1−y = C8

(note that r′1r3 6∈ E else G contains a claw). Hence Z13 is a clique.

We show that the vertices of Y are leaves. Suppose that y has a neighbor y′ ∈ Y .
If y′w1 6∈ E then y′ − y − w1 − r1 − v1 − v5 − v4 − v3 = P8. Hence NZ(y) = NZ(y

′).
Since we assume that N [y] 6= N [y′], there exists v, v ∈ Y, such that vy ∈ E, vy′ 6∈ E.
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From above w1v ∈ E but G[{r1, w1, y
′, v}] is a claw. Thus, Y is an independent

set. Now, N(y) ⊆ Z13 is a clique. Since for any two vertices w1, w
′
1 ∈ Z13 we

have NR1∪R3
(w1) = NR1∪R3

(w′
1) we can assume that N(y) can be contracted into an

unique vertex. Thus, Y consists of leaves. Hence from property 2.2, we can assume
that Y = ∅.

From now on Y = ∅. As shown before any two neighbors of Z13 have the same neigh-
bors in R, so they can be contracted and we can assume that Z13 is an independent
set. Moreover, since G is claw-free, for any two distinct z, z′ ∈ Z13, N [z]∩N [z′ ] = ∅.
Also, recall that the neighbors of each z, z ∈ Z13 induce a clique.

We show how to build a γ-set of G. Recall that W = Z13. From Property 2.4 we
can assume that |W | ≥ 2. So there are w1, w

′
1 ∈ Z13 with neighbors r1, r

′
1 ∈ R1 and

r3, r
′
3 ∈ R3, respectively. Let q = |Z13|. Clearly, to dominate Z13 we must take q

vertices. We take r1 and r′3. Recall that the vertices of R1 and R3 have the same
neighbors in S ∪C. Then, we take the q − 2 vertices of w ∈ Z13, w 6= w1, w

′
1. These

q vertices dominate {v1, v2, v3, v4}∪H1∪H3∪Z13. It remains to dominate some ver-
tices of H2∪H4∪H5∪S3∪S4∪{v5}. If there exists a vertex v, v ∈ S∪{v5}, which is
universal to these non dominated vertices we take v, else we take the vertices {v2, v5}.

Now, we assume that Zij = ∅. Hence let w1 ∈ Z1. We study the case R3 6= ∅.
Recall then R2 = R4 = R5 = ∅. Let w3 ∈ W such that w3 has a neighbor r3 ∈ R3.
If w1w3 ∈ E then w1 − w3 − r3 − v4 − v5 − v1 − r1 − w1 = C7 (r1r3 6∈ E else G
contains a claw). So Z1 is anticomplete to Z3. We assume that w1 has a neigh-
bor v ∈ Y . If vw3 ∈ E then v − w3 − r3 − v4 − v5 − v1 − r1 − w1 − v = C8 else
v − w1 − r1 − v1 − v5 − v4 − r3 − w3 = P8. Hence any neighbor w′

1, w
′
1 ∈ W, of

w1 is in Z1. From Property 2.1 we can suppose N [w1] 6= N [w′
1]. If w′

1r1 6∈ E then
w′

1 − w1 − r1 − v1 − v5 − v4 − r3 − w3 = P8. Hence NR(w1) = NR(w
′
1). Since G

is claw-free, for any r ∈ R, NW (r) is a clique, thus N [w1] = N [w′
1]. So Z1 is an

independent set. Now, recall that for any pair of vertices r, r′ ∈ Ri, 1 ≤ i ≤ 5,
NS(r) = NS(r

′). Hence, when r, r′ ∈ R1 have a common neighbor in Z1, we have
N [r] = N [r′], and so r, r′ can be contracted. Hence Z1 consists of leaves. Also,
by symmetry, W = Z1 ∪ Z3 consists of leaves and then from Property 2.2 we have
W = ∅, a contradiction.

Now we focus on R3 = R4 = ∅ (note that Z = Z1).
We study the case where H2 6= ∅ or H5 6= ∅. Let v ∈ H2 (the case v ∈ H5 is
symmetric). We have Y = ∅, else there are y ∈ Y , z ∈ Z1, r ∈ R1 such that
v − v3 − v4 − v5 − v1 − r − z − y = P8 (recall vr 6∈ E). So W = Z = Z1. Let
w1, w2 ∈ W . We assume that w1w2 ∈ E. From Property 2.1 we can suppose
that N [w1] 6= N [w2]. Let w1r1, w2r2 ∈ E, r1 6= r2, such that w1r2 6∈ E. We have
v − v3 − v4 − v5 − v1 − r2 − w2 − w1 = P8. Recall that for any r ∈ R, NW (r) is
a clique, thus N [w1] = N [w2]. Hence W is an independent set. Moreover, for any
w ∈ W and r, r′ ∈ N(w) we know that r and r′ share the same neighbors in C ∪ S.
Hence W is composed exclusively of leaves. So W = ∅, a contradiction.

Now we can assume that H2 = H5 = ∅. Let ZA ⊂ Z, ZA = {w ∈ W : NY (w) = ∅}.
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We show that each connected component Ai of G[ZA] contains a universal vertex
relatively to Ai. For contradiction we suppose that there exists Ai, Ai ⊆ ZA with no
universal vertex in it. Assume that z1 − z2 − z3 − z4 = P4 ⊆i Ai. Let r, r ∈ R1, be
a neighbor of z1 (note that there is a P5 from v3 to r).
Since G is claw-free rz3, rz4 6∈ E. If rz2 ∈ E then there is a P8 from v3 to z4 else
there is a P8 from v3 to z3. Now, we assume that z1 − z2 − z3 − z4 − z1 = C4 ⊆i Ai.
Let r, r ∈ R1, be a neighbor of z1. Since G is claw-free we have rz3 6∈ E. If rz2 ∈ E
then rz4 6∈ E else G contains a claw, but v3 − v4− v5− v1 − r− z2 − z3 − z4 = P8. If
rz2 6∈ E then v3−v4−v5−v1−r−z1−z2−z3 = P8. So Ai is (C4, P4)-free. It follows
that there are z1 − z2 − z3 = P3 ⊆i Ai and z4 ∈ Ai such that z4z1, z4z2, z4z3 6∈ E.
Also there exists z ∈ Ai such that z2−z−z4 and zz1, zz3 ∈ E but Ai[{z, z1, z3, z4}] is
a claw, a contradiction. So each Ai has a universal vertex. Clearly, for two distinct
components Ai, Aj we have NR1

(Ai) ∩NR1
(Aj) = ∅ else there is a claw.

Suppose that Y 6= ∅. We show that Y is an independent set. Suppose that there are
y, y′ ∈ Y with yy′ ∈ E. From Property 2.1 we assume thatN [y] 6= N [y′]. IfNZ1

(y) 6=
NZ1

(y′) then, w.l.o.g, yw1 ∈ E, y′w1 6∈ E, but v3−v4−v5−v1−r1−w1−y−y′ = P8.
So NZ1

(y) = NZ1
(y′). There is no vertex y′′ ∈ Y such that yy′′ ∈ E, y′y′′ 6∈ E, else G

contains a claw. Hence Y is an independent set and for any pair of vertices y, y′ ∈ Y
we have N(y) ∩N(y′) = ∅.
We show that for any y ∈ Y its neighborhood N(y) is a clique. For contradiction
we assume that y has two neighbors z1, z2 ∈ Z, z1z2 6∈ E. Since G is claw-free z1
and z2 cannot have a common neighbor in R1. Let r, r ∈ R1, be a neighbor of z1.
Then v3 − v4 − v5 − v1 − r − z1 − y − z2 = P8. Hence, Y is an independent set, for
each y, y ∈ Y , N(y) is a clique. So we suppose |N(y)| ≥ 2, else y is a leaf.

We show that we can assume that each connected component Ai of G[ZA] is anti-
complete to N(Y ). Since Y has no leaves, let y ∈ Y with two neighbors z, z′ ∈ Z1

such that N [z] 6= N [z′]. Suppose that there exists u ∈ ZA a neighbor of z. First,
we assume that NR(z) 6= NR(z

′). W.l.o.g. let r, r′ ∈ R1 be respectively the neigh-
bors of z, z′ such that r′z, rz′ 6∈ E. If uz′ 6∈ E then ur′ 6∈ E else G contains a
claw, but then u − z − z′ − r′ − v1 − v5 − v4 − v3 = P8. Hence uz′, r′u ∈ E but
y − z − u − r′ − v1 − v5 − v4 − v3 = P8. So NR(z) = NR(z

′). Second, we assume
that NZ [z] 6= NZ [z

′]. W.l.o.g. uz′ 6∈ E. Let r ∈ R1 a neighbor of both z, z′. Clearly
ru 6∈ E else G contains a claw, but G[{r, u, y, z}] is a claw. So we can assume that
each Ai is anticomplete to N(Y ).

We construct a γ-set as follows:
Let q = |Y | and k be the number of connected components of ZA. Clearly, q vertices
are necessary to dominate Y . So for each yi ∈ Y we will take one of its neighbor
as follows. Let us denote R1(yi) = NR1

(N(yi)). If yi has a neighbor zi which is
complete to R1(yi) then we take zi, else we take any arbitrary neighbor of yi (recall
that in both cases these yi have the same neighbors in Z). These q vertices dominate
Y ∪ (Z \ ZA) and some of the vertices in R1(Y ).
Now k vertices are necessary to dominate ZA. For each component Ai ⊂ ZA we do
as follows. If there exists r ∈ R1 which is complete to Ai we take r into the γ-set
(case a), else we take one universal vertex of Ai (case b) (recall that in both cases
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these r have the same neighbors in S).
These k vertices dominate ZA ∪H1 ∪ {v1, v2} if at least one vertex is chosen in the
case a, else they dominate ZA.

Case where at least one vertex is chosen with the case a: v3, v4, v5 are not domi-
nated with the q+ k already chosen vertices (H1 is complete thus r ∈ R1 dominates
H1 ∪ {v1, v2}). So a dominating set of G has size at least q+ k+1. Adding the two
vertices v3 and v5, we have a dominating set (not necessarily minimum). Checking
if there exists a vertex v ∈ C ∪ S, that is universal to the remaining non-dominated
vertices, can be done in polynomial-time.

Case where all the vertices are chosen with the case b: it remains to dominate
C5 and some vertices of S2 ∪ S3 ∪ S4. So a dominating set of G has a size at
least q + k + 1. Adding the three vertices v1, v3, v5, we have a dominating set (not
necessarily minimum). If there exists a vertex v ∈ S5 that is universal to the
remaining non-dominated vertices we take it. If no such vertex exists, checking for
all the pairs {v, v′} ⊂ N [C5], one can verify if there exists a γ-set with q + k + 2
vertices (note that there are at most O(n2) of such pairs). �

Lemma 5.6 Let G be a connected (claw, C5, C6, C7, C8, P8)-free graph. Computing

a minimum dominating set is polynomial-time solvable.

Proof: From Lemma 5.4 we can assume that P7 ⊆i G. Let P = v1− v2 − v3 − v4−
v5 − v6 − v7.
Let W = V \N [P ]. From Property 2.3 if W = ∅ computing a minimum dominating
set is polynomial. From now on W 6= ∅.
Let S = {v ∈ V \ P such that 2 ≤ |N(v)∩P | ≤ 4}, Si ⊆ S being the set of vertices
v such that |N(v) ∩ P | = i.
Let Hi = {v ∈ S2 : N(v) ∩ P = {vi, vi+1}, 1 ≤ i ≤ 6}. Since G is claw-free
each Hi is complete. If there is an edge riri+1 with ri ∈ Hi, ri+1 ∈ Hi+1 then
P = v1 − · · · − vi − ri − ri+1 − vi+2 − · · · − v7 = P8. If there is an edge rirj with
ri ∈ Hi, rj ∈ Hj and j ≥ i + 3 then Cp ⊆i G, p ≥ 5. So H1 is anticomplete to
H2, H4, H5, H6, and H2 is anticomplete to H3, H5, H6, and H3 is anticomplete to
H4, H6.

We define Ri as the set of vertices of Hi having a neighbor in W , Ri = {v ∈ Hi :
N(v) ∩W 6= ∅}, 1 ≤ i ≤ 6. Since G is P8-free R1 = R6 = ∅.

Let w ∈ W . We show that there cannot exist three indices 1 ≤ i < j < k ≤ 6 such
that w has three neighbors ri ∈ Ri, rj ∈ Rj, rk ∈ Rk. Suppose for contradiction
that these three neighbors of w exist. Since R1 = R6 = ∅ then 2 ≤ i < j < k ≤ 5.
Since G is claw-free and Hp is anticomplete to Hp+1, these three indices cannot
be successive. So w.l.o.g. we can assume that i = 2, j = 4, k = 5. Now H2 is
anticomplete to H5, but v3 − r2 −w− r5 − v5 − v4 − v3 = C6. Hence for any w ∈ W
there is at most two neighbors ri, rj such that ri ∈ Ri, rj ∈ Rj, i 6= j.
If w has two neighbors ri ∈ Ri, rj ∈ Rj , i < j, then either ri ∈ R2, rj ∈ R4 or ri ∈
R3, rj ∈ R5 (recall that Hi is anticomplete to Hi+1, Hp, p ≥ i+3 and R1 = R6 = ∅).
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If w has two neighbors ri ∈ R2, rj ∈ R4, respectively ri ∈ R3, rj ∈ R5, then rirj ∈ E,
else w−rj−v4−v3−ri−w = C5 ⊆i G, respectively w−rj−v5−v4−ri−w = C5 ⊆i G.
Let Z24 = {w ∈ W : w has two neighbors r2 ∈ R2, r4 ∈ R4} and Z35 = {w ∈ W :
w has two neighbors r3 ∈ R3, r5 ∈ R5}.
We show that Z24 is anticomplete to Z35. For contradiction we suppose that there are
w1 ∈ Z24, w2 ∈ Z35 with w1w2 ∈ E. Let r1 ∈ R2 be a neighbor of w1 and r2 ∈ R5 be
a neighbor of w2. Since r1r2 6∈ E we have w1−r1−v3−v4−v5−v6−r2−w2−w1 = C8.
We show that we can assume that Z24 and Z35 are two independent sets. The two
sets being symmetric we show that Z24 is an independent set. For contradiction we
assume that there are w1, w2 ∈ Z24 such that w1w2 ∈ E. We prove that NR2

(w1) =
NR2

(w2). If NR2
(w1) 6= NR2

(w2) then there exist r2 ∈ R2 which is a neighbor of
w1 but not a neighbor of w2. Then w2 − w1 − r2 − v3 − · · · − v7 = P8. We prove
that NR4

(w1) = NR4
(w2). If NR4

(w1) 6= NR4
(w2) then there exists r4 ∈ R4 which is

a neighbor of w1 but not a neighbor of w2. There exists r2 ∈ R2 a neighbor of w1

and w2. We know that r2r4 ∈ E. It follows that G[{v2, r2, r4, w2}] is a claw. Hence
NR2

(w1) = NR2
(w2) and NR4

(w1) = NR4
(w2). From Property 2.1 we can assume

that there exists s 6∈ R2∪R4 such that s is a neighbor of w1 but not a neighbor of w2.
Let r2 ∈ R2 a neighbor of w1 and w2. If sr2 6∈ E then s−w1−r2−v3−· · ·−v7 = P8.
When sr2 ∈ E then G[{v2, r2, s, w2}] is a claw. Hence Z24 is an independent and by
symmetry Z35 is also independent.
Moreover, since G is claw-free for any two distinct w,w′ ∈ Z24∪Z35 we have N(w)∩
N(w′) = ∅.
For any two distinct w,w′ ∈ Z24, respectively w,w′ ∈ Z35 we have that NR2

(w)
is anticomplete to NR4

(w′) and NR4
(w) is anticomplete to NR2

(w′), respectively
NR3

(w) is anticomplete to NR5
(w′) and NR5

(w) is anticomplete to NR3
(w′). For

contradiction we assume that w has a neighbor r2 ∈ R2, w
′ has a neighbor r4 ∈ R4,

and r2r4 ∈ E. Then G[{v2, r2, w, r4}] is a claw.

Let Zi = {w ∈ W : w has a neighbor in Ri \ (NRi
(Z24 ∪ Z35)}, 2 ≤ i ≤ 5.

We show that Z2, Z3, Z4, Z5 are pairwise anticomplete. If there is an edge w2w4, w2 ∈
Z2, w4 ∈ Z4, with r′2 ∈ R2, r

′
4 ∈ R4 the neighbors of w2, w4 respectively, then

w2 − r′2 − v3 − v4 − r′4 − w4 − w2 = C6 (r′2r
′
4 6∈ E else G[{v2, r

′
2, w2, r

′
4}] is a claw).

By symmetry there is no edges between Z3, Z5. If there is an edge w2w5, w2 ∈
Z2, w5 ∈ Z5, with r′2 ∈ R2, r

′
5 ∈ R5 the neighbors of w2, w5 respectively, then

w2 − r′2 − v3 − v4 − v5 − r′5 − w5 − w2 = C7 (remember r′2r
′
5 6∈ E). If there is

an edge w4w5, w4 ∈ Z4, w5 ∈ Z5, with r′4 ∈ R4, r
′
5 ∈ R5 the neighbors of w4, w5

respectively, then w4 − r′4 − v5 − r′5 −w5 −w4 = C5 (recall r
′
4r

′
5 6∈ E). By symmetry

there is no edges between Z2, Z3.

Let Y = W \ (Z2 ∪ Z3 ∪ Z4 ∪ Z5 ∪ Z24 ∪ Z35). One can observe that for any w ∈ Y
we have NZ2

(w) = NZ5
(w) = NZ24

(w) = NZ35
(w) = ∅ else P8 ⊆i G. Now, if w ∈ Y

has two neighbors w3 ∈ Z3, w4 ∈ Z4 then C6 ⊆i G.
Hence Y = Y3 ∪ Y4 with Y3 ∩ Y4 = ∅, Y3 = {w ∈ Y : w has a neighbor in Z3}, Y4 =
{w ∈ Y : w has a neighbor in Z4}. Moreover Y3 is anticomplete to Y4 else C7 ⊆i G.

We show that we can assume that Z2, Z5, Y3, Y4 are four independent sets. The
arguments are the same for the four sets, so we show that Z2 is an independent set.
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For contradiction we assume that there are w1, w2 ∈ Z2 such that w1w2 ∈ E. We
prove that NR2

(w1) = NR2
(w2). If NR2

(w1) 6= NR2
(w2) then there exists r2 ∈ R2

which is a neighbor of w1 but not a neighbor of w2. Then w2−w1−r2−v3−· · ·−v7 =
P8. Since N(w1), N(w2) ⊆ Z2 ∪R2 the result is obtained from Property 2.1. Hence
Z2, Z5, Y3, Y4 are independent.
Since G is claw-free then for any two distinct vertices w1, w2 ∈ Z2 ∪Z5 ∪ Y3 ∪ Y4 we
have N(w1) ∩N(w2) = ∅.
We prove that for any w ∈ Y3∪Y4, N(w) is a clique. The two cases being symmetric,
let w ∈ Y4. Suppose there are s, s′ two non adjacent vertices in N(w). Since G is
claw-free s, s′ cannot have a common neighbor in R4. Let r ∈ R4 be a neighbor of
s. Then s′ − w − s− r − v4 − v3 − v2 − v1 = P8.

Since G is claw-free, if there are a vertex r ∈ Ri with a neighbor z ∈ Zi and a vertex
s ∈ S such as sz 6∈ E and vi 6∈ N(s) then G contains a claw (note that vi+1 6∈ N(s)
is symmetric). Hence N(Zi) is anticomplete to Hj, j 6= i.

We show that we can assume that Z2 = Z5 = ∅. The arguments are the same in
the two cases, so we consider Z2. Let r, r′ ∈ R2 be two neighbors of w ∈ Z2. From
previous arguments, N(w) is complete to H2 but anticomplete to H1, H3, H4, H5, H6.
Hence, it remains the case where NS3∪S4

(r) 6= NS3∪S4
(r′). Suppose that NS3∪S4

(r) 6=
NS3∪S4

(r′). Let s ∈ S3 ∪ S4 such as rs ∈ E but r′s 6∈ E. If {v2, v3} 6⊂ NP (s) then
G[{r, s, v2, w}] or G[{r, s, v3, w}] is a claw. So {v2, v3} ⊂ NP (s). If v1 6∈ NP (s), re-
spectively v4 6∈ NP (s), then G[{r′, s, v1, v2}], respectively G[{r′, s, v3, v4}], is a claw.
Hence NP (s) = {v1, v2, v3, v4} but G[{r, s, v1, v4}] is a claw. Hence, N [r] = N [r′].
From Property 2.1 we can contract rr′. Then w is a leaf and by Property 2.2, w can
be deleted from G.

Now we study the structures of Z3 and Z4. The two cases being symmetric we
deal with Z4. For any distinct vertices w1, w2 ∈ Z4 such that w1w2 ∈ E, then
there cannot exist two distinct vertices w′

1, w
′
2 ∈ Z4 such that w′

1w1 ∈ E,w′
1w2 6∈ E

and w′
2w2 ∈ E,w′

2w1 6∈ E. For contradiction we suppose that such two vertices
exist. Firstly, we suppose that w1, w2 have two distinct neighbors r1, r2 ∈ R4,
respectively. If w′

1r2 6∈ E then v1 − v2 − v3 − v4 − r2 − w2 − w1 − w′
1 = P8. If

w′
1r2 ∈ E then G[{v4, r2, w2, w

′
1}] is a claw. Secondly, w.l.o.g., r1 ∈ R4 is a common

neighbor of w1, w2 and r2 ∈ R4 is a neighbor of w2 but not w1. If w′
1r2 6∈ E then

v1 − v2 − v3 − v4 − r2 −w2 −w1 −w′
1 = P8 else G[{v4, r2, w2, w

′
1}] is a claw. Finally,

r1, r2 ∈ R4 are two common neighbors of w1, w2 (r1, r2 are not necessarily distinct).
If, w.l.o.g., w′

1r1 ∈ E thenG[{v4, r1, w2, w
′
1}] is a claw. In the case where w′

1r1, w
′
1r2 6∈

E then w′
1 has a neighbor r′1 ∈ R4, r

′
1 6= r1, r2. If r′1w2 ∈ E then G[{v4, r

′
1, w2, w

′
1}]

is a claw. So r′1w2 6∈ E. If r′1w1 6∈ E then v1− v2− v3− v4− r′1−w′
1−w1−w2 = P8.

Thus r′1w1 ∈ E. If r′1w
′
2 6∈ E then v1 − v2 − v3 − v4 − r′1 − w1 − w2 − w′

2 = P8. So
r′1w

′
2 ∈ E but G[{v4, r

′
1, w1, w

′
2}] is a claw.

As a consequence each connected component Ai of Z3 ∪ Z4 has a universal vertex.
Also, G being claw-free two distinct components cannot share a neighbor in R3∪R4.
Moreover, from Property 2.2 we have assumed that each w4 ∈ Z3 ∪ Z4 is not a leaf.

We show that w ∈ Y3 ∪ Y4 is connected to a universal vertex of a connected compo-
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nent Ai of Z3∪Z4. The two cases being symmetric, we deal with Z4. Let w ∈ Z4. We
assume that the neighbors of w are not universal in Ai. Let s ∈ Ai be a neighbor of w,
let u, u 6= s, be a universal vertex of Ai. Since s is not universal there exists v, v ∈ Ai

such that sv 6∈ E and uv ∈ E. Since N(w) is complete wv 6∈ E. Let r ∈ R4 be a
neighbor of s. Since G is claw-free then rv 6∈ E. Let r′, r′ ∈ R4, r

′ 6= r, be a neighbor
of v. As just above r′s 6∈ E. If r′u 6∈ E then v1 − v2 − v3 − v4 − r′ − v − u− s = P8

else v1 − v2 − v3 − v4 − r′ − u− s− w = P8.

We are ready to show how to build a γ-set in polynomial time.
First, we treat the case where Z24 6= ∅ (the case Z35 6= ∅ is the same). Let r2 ∈
R2, r4 ∈ R4 be the two neighbors of w,w ∈ Z24. Recall that N(Z24) ⊆ R2 ∪ R4.
We show that R3 = ∅. Assume that there exists w′ ∈ W with a neighbor r3 ∈ H3

(that is R3 6= ∅). w′ cannot be a neighbor of r2 or r4. Then w′ − r3 − v3 − r2 − r4 −
v5 − v6 − v7 = P8.
An immediate consequence is that Z35 = ∅.
There is no vertex w′, w′ ∈ W, with r2 as a neighbor: else G[{v2, r2, r4, w

′}] is a claw.
By symmetry, there is no vertex w′, w′ ∈ W, with r4 as a neighbor.

Let r2 ∈ R2, r
′
2 ∈ R2, r2 6= r′2 be such that r2, respectively r′2, has a neighbor w ∈ Z24,

respectively w′ ∈ Z24. Let r4 ∈ R4, r
′
4 ∈ R4, r4 6= r′4 be such that r4, respectively

r′4, has w, respectively w′, as neighbor. We show that NS\H4
(r2) = NS\H4

(r′2),
respectively NS\H2

(r4) = NS\H2
(r′4).

Let i = 2 (the case i = 4 is symmetric). By contradiction, we assume that
there exists s ∈ S \ H4 such that r2s ∈ E, r′2s 6∈ E. From above s 6∈ S2. So
s ∈ S3 ∪ S4. If NP (s) = {v1, v2, v3} then G[{r′2, v3, v4, s}] is a claw. When NP (s) =
{v2, v3, v4} then G[{r′2, v1, v2, s}] is a claw. When NP (s) = {vj , vj+1, vj+2}, j ≥ 3,
then G[{r2, w, v2, s}] is a claw. Thus s ∈ S4. When NP (s) = {v1, v2, v3, v4} then
G[{r2, v1, v4, s}] is a claw. WhenNP (s) = {v1, v2, vj , vj+1}, j ≥ 4, thenG[{r2, v1, vj , s}]
is a claw. When NP (s) = {v2, v3, vj , vj+1},j ≥ 4, then G[{r′2, v1, v2, s}] is a claw.
When NP (s) = {vj, vj+1, vj′, vj′+1}, j ≥ 3, j′ ≥ j + 2 then G[{r2, w, v2, s}] is a claw.
Hence NS\H4

(r2) = NS\H4
(r′2) and NS\H2

(r4) = NS\H2
(r′4).

Let r4 ∈ R4, r
′
4 ∈ R4, r4 6= r′4 be such that r4, respectively r′4, has a neighbor w ∈ Z4,

respectively w′ ∈ Z4. We show that NS(r4) = NS(r
′
4).

By contradiction, we assume that there exists s ∈ S such that r4s ∈ E, r′4s 6∈ E.
From above s 6∈ H1 ∪ H3 ∪ H4 ∪ H5. So s ∈ H2 ∪ H6 ∪ S3 ∪ S4. If s ∈ H2 or
s ∈ H6 then G[{v4, w, r4, s}] is a claw. So s ∈ S3 ∪ S4. If NP (s) = {v1, v2, v3}
then G[{v1, v3, r4, s}] is a claw. If NP (s) = {v2, v3, v4} then G[{v5, w, r4, s}] is a
claw. If NP (s) = {v3, v4, v5} then G[{v5, v6, r

′
4, s}] is a claw. If NP (s) = {v4, v5, v6}

then G[{v3, v4, r
′
4, s}] is a claw. When NP (s) = {v5, v6, v7} then G[{v4, w, r4, s}]

is a claw. Thus s ∈ S4. When NP (s) = {v1, v2, v3, v4} then G[{r4, v1, v3, s}] is a
claw. When NP (s) = {v2, v3, v4, v5} then G[{r′4, v5, v6, s}] is a claw. When NP (s) =
{v3, v4, v5, v6} then G[{r4, v3, v6, s}] is a claw. When NP (s) = {v4, v5, v6, v7} then
G[{r′4, v3, v4, s}] is a claw. When NP (s) = {v1, v2, v6, v7} or NP (s) = {v2, v3, v6, v7}
thenG[{r4, v2, v6, s}] is a claw. When NP (s) = {v3, v4, v6, v7} thenG[{r4, v3, v6, s}] is
a claw. WhenNP (s) = {v1, v2, v5, v6} orNP (s) = {v2, v3, v5, v6} thenG[{r4, v2, v6, s}]
is a claw. When NP (s) = {v1, v2, v4, v5} then G[{r′4, v5, v6, s}] is a claw. Hence
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NS(r4) = NS(r
′
4). By symmetry, for r2 ∈ R2, r

′
2 ∈ R2, r2 6= r′2 such that r2, respec-

tively r′2, has a neighbor w ∈ Z2, respectively w′ ∈ Z2 we have NS(r2) = NS(r
′
2).

The γ-set is build as follows:

• |Z24| ≥ 2. We take r2 ∈ R2 a neighbor of w, and for each other w′ ∈ Z24 we take
one adjacent vertex r′4 ∈ R4. For each w′ ∈ Y4 we take one universal vertex
in the connected component Ai of Z4 connected to w′. For each connected
component Ai of Z4 that is not connected with Y4, we take one universal
vertex of Ai. These vertices dominate Z24∪Y4∪Z4 ∪H2∪H4 ∪{v2, v3, v4, v5}.
Since v1, v7 have no common neighbor at least two more vertices are needed.
Adding the three vertices v2, v4, v6 we have a dominating set (not necessarily
minimum). Checking for all the pairs s1, s7 where si is a neighbor of vi, i ∈
{1, 7}, one can verify if there is a γ-set with only two more vertices (note that
there are at most O(n2) such pairs).

• |Z24| = 1. For each w′ ∈ Y4 we take one universal vertex in the connected
component Ai of Z4 connected to w′. If there exists a vertex r ∈ R4 complete
to a component Ai of Z4 that is not connected to Y4 then we take r. For
each remaining component Ai of Z4 that is not connected to Y4, we take one
universal vertex of Ai. These vertices dominate Y4 ∪ Z4 (note that H2, H4 are
not necessarily dominated). Since v1, v7, w have no common neighbor at least
three more vertices are needed. Adding the four vertices v2, v4, v6, w we have
a dominating set (not necessarily minimum). Checking for all the pairs s1, s7
where si is a neighbor of vi, i ∈ {1, 7}, if there is a dominating set by adding
s1, s7, r4 or s1, s7, r2, one can verify if there is a γ-set with only three more
vertices (note that there are at most O(n2) such pairs).

In the case of Z24 = Z35 = ∅, we build the γ-set as follows:

• Y3, Y4 6= ∅. For each w ∈ Y3∪Y4 we take one universal vertex in the connected
component Ai of Z3 ∪ Z4 connected to w. If there exists r4 ∈ R4 which is
complete to a component Ai of Z4 that is not connected to Y3∪Y4 then, we take
r4. We do the same for the component of Z3 with no neighbors in Y3. For each
remaining connected component Ai of Z3∪Z4 that is not connected to Y3∪Y4,
we take one universal vertex of Ai. These vertices dominate Y3 ∪ Z3 ∪ Y4 ∪Z4

(note thatH2, H4 are not necessarily dominated). Since v1, v7 have no common
neighbor at least two more vertices are needed. Adding the three vertices
v2, v4, v6 we have a dominating set (not necessarily minimum). Checking for
all the pairs s1, s7 where si is a neighbor of vi, i ∈ {1, 7}, one can verify if there
is a γ-set with only two more vertices (note that there are at most O(n2) such
pairs).

• Y3 6= ∅, Y4 = ∅ or Y4 6= ∅, Y3 = ∅. The two cases being symmetric, let Y4 = ∅.

– Z4 6= ∅. For each w ∈ Y3 we take one universal vertex in the connected
component Ai of Z3 connected to w. If there exists r4 ∈ R4 which is
complete to Ai, a connected component of Z4, then we take r4. If there
exists r3 ∈ R3 which is complete to a connected component Aj of Z3 with

20



no neighbors in Y3, then we take r3. Now, we take one universal vertex
for each other component Al, Al 6= Ai, Aj, of Z3 ∪ Z4. These vertices
dominate Y3 ∪ Z3 ∪ Z4. Since v1, v7 have no common neighbor at least
two more vertices are needed. Adding the three vertices v2, v4, v6 we have
a dominating set (not necessarily minimum). Checking for all the pairs
s1, s7 where si is a neighbor of vi, i ∈ {1, 7}, one can verify if there is
a γ-set with only two more vertices (note that there are at most O(n2)
such pairs).

– Z4 = ∅. For each w ∈ Y3 we take one universal vertex in the connected
component Ai of Z3 connected to w. If there exists r3 ∈ R3 which is
complete to a connected component Ai of Z3 with no neighbors in Y3, then
we take r3. Now, we take one universal vertex for each other component
Ai of Z3. Adding the vertices v2, v4, v6 we have a dominating set (not
necessarily minimum). Checking for all the pairs s1, s7 where si is a
neighbor of vi, i ∈ {1, 7}, one can verify if there is a γ-set with only two
more vertices.

• Y3, Y4 = ∅.

– Z3, Z4 6= ∅. If there exists r4 ∈ R4, respectively r3 ∈ R3, which is
complete to Ai, a connected component of Z4, respectively Z3, then we
take r4, respectively r3. For each remaining component of Z3∪Z4 we take
one universal vertex. Adding the vertices v2, v4, v6 we have a dominating
set (not necessarily minimum). Checking for all the pairs s1, s7 where si
is a neighbor of vi, i ∈ {1, 7}, one can verify if there is a γ-set with only
two more vertices.

– Z3 6= ∅, Z4 = ∅ or Z4 6= ∅, Z3 = ∅. Let Z3 6= ∅. If there exists r3 ∈ R3

which is complete to a connected component of Z3, then we take r3.
We add one universal vertex for each remaining component of Z3. Now,
adding the vertices v2, v4, v6 we have a dominating set (not necessarily
minimum). Checking for all the pairs s1, s7 where si is a neighbor of
vi, i ∈ {1, 7}, one can verify if there is a γ-set with only two more vertices.

– Z3 = Z4 = ∅. Then V = N [C] and from Property 2.3 computing a
minimum dominating set is polynomial.

�

From Lemmas 3.1, 3.2, 4.3, 5.5, 5.6 we have the following.

Theorem 5.7 The Minimum Dominating Set problem is polynomial for (claw, P8)-
free graphs.

6 Conclusion

We have shown that the Minimum Dominating Set problem is polynomial for (claw, P8)-
free graphs. We left open the following problem: is there a positive integer k, k ≥ 9,
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such that the Minimum Dominating Set problem is NP -complete for the class of
(claw, Pk)-free graphs? If the the answer is positive, a challenge should be to show
a dichotomy: find the minimum integer k such that the Minimum Dominating Set
problem is NP -complete for (claw, Pk)-free graphs and polynomial for (claw, Pk−1)-
free graphs.
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