The Minimum Dominating Set problem is polynomial for (claw, P8)-free graphs

Valentin Bouquet, Christophe Picouleau

To cite this version:

Valentin Bouquet, Christophe Picouleau. The Minimum Dominating Set problem is polynomial for (claw, P8)-free graphs. 2020. hal-02448239v1

HAL Id: hal-02448239
 https://hal.science/hal-02448239v1

Preprint submitted on 11 Feb 2020 (v1), last revised 27 Sep 2021 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

The Minimum Dominating Set problem is polynomial for $\left(\right.$ claw, $\left.P_{8}\right)$-free graphs

Valentin Bouquet* Christophe Picouleau *

January 22, 2020

Abstract

We prove that the Minimum Dominating Set problem is polynomial for the class of (claw, P_{8})-free graphs.

Keywords: Minimum Dominating Set, polynomial time, claw-free graph, P_{k}-free graph.

1 Introduction

M. Yannakakis and F. Gavril 9] showed in 1980 that the Minimum Dominating Set problem restricted to claw-free graphs is $N P$-complete. Then in 1984, A. Bertossi [2] showed that the Minimum Dominating Set problem is also $N P$-complete for split graphs, a subclass of P_{5}-free graph. More recently, in 2016, D. Malyshev [8] proved that the Minimum Dominating Set problem is polynomial for $\left(K_{1,4}, P_{5}\right)$-free graphs, hence for (claw, P_{5})-free graphs. To our knowledge, the complexity of the Minimum Dominating Set problem is unknown for (claw, P_{k})-free graphs for any fixed $k \geq 6$. We show that the Minimum Dominating Set problem is polynomial for (claw, P_{8})-free graphs.

Definitions and notations

We are only concerned with simple undirected graphs $G=(V, E)$. The reader is referred to [3] for definitions and notations in graph theory. For $v \in V$, we denote $N(v)$ its neighborhood and $N[v]=N(v) \cup\{v\}$ its closed neighborhood. A vertex v is universal if $N[v]=V$. For $v \in V$ and $A \subseteq V$, we denote by $N_{A}(v)=N(v) \cap A$ $\left(N_{A}[v]=(N(v) \cap A) \cup\{v\}\right)$ its (closed) neighborhood in A. For $X \subseteq V, A \subseteq V$, we denote $N_{A}(X)=\bigcup_{x \in X} N_{A}(x)$ and $N_{A}[X]=N_{A}(X) \cup X$.
The contraction of an edge $u v \in E$ removes the vertices u and v from V, and replaces them by a new vertex that is adjacent to the previous neighbors of u and v (neither introducing self-loops nor multiple edges). The following $G / u v$ denotes the graph obtained from G after the contraction of $u v$.

[^0]For $S \subseteq V$, let $G[S]$ denote the subgraph of G induced by S, which has vertex-set S and edge-set $\{u v \in E \mid u, v \in S\}$. For $v \in V$, we write $G-v=G[V \backslash\{v\}]$ and for a subset $V^{\prime} \subseteq V$ we write $G-V^{\prime}=G\left[V \backslash V^{\prime}\right]$. For a fixed graph H we write $H \subseteq_{i} G$ whenever \bar{G} contains an induced subgraph isomorphic to H. For a set $\left\{H_{1}, \ldots, H_{p}\right\}$ of graphs, G is $\left(H_{1}, \ldots, H_{p}\right)$-free if G has no induced subgraph isomorphic to a graph in $\left\{H_{1}, \ldots, H_{p}\right\}$; if $p=1$ we may write H_{1}-free instead of $\left(H_{1}\right)$-free. For two disjoint induced subgraphs $G[A], G[B]$ of $G, G[A]$ is complete to $G[B]$ if $a b \in E$ for any $a \in A, b \in B, G[A]$ is anticomplete to $G[B]$ if $a b \notin E$ for any $a \in A, b \in B$.
For $k \geq 1$, the graph $P_{k}=u_{1}-u_{2}-\cdots-u_{k}$ denotes the cordless path on k vertices, that is, $V\left(P_{k}\right)=\left\{u_{1}, \ldots, u_{k}\right\}$ and $E\left(P_{k}\right)=\left\{u_{i} u_{i+1} \mid 1 \leq i \leq k-1\right\}$. For $k \geq 3$, the graph $C_{k}=u_{1}-u_{2}-\cdots-u_{k}-u_{1}$ denotes the cordless cycle on k vertices, that is, $V\left(C_{k}\right)=\left\{u_{1}, \ldots, u_{k}\right\}$ and $E\left(C_{k}\right)=\left\{u_{i} u_{i+1} \mid 1 \leq i \leq k-1\right\} \cup\left\{u_{k} u_{1}\right\}$. For $k \geq 4, C_{k}$ is called a hole. A graph without hole is chordal. The complete graph with p vertices is K_{p}, also called a clique. The graph $C_{3}=K_{3}$ is a triangle. $K_{1, p}$ is the $(p+1)$-vertices star, that is, the graph with vertices $u, v_{1}, v_{2} \ldots, v_{p}$ and edges $u v_{1}, u v_{2}, \cdots, u v_{p}$. The claw is $K_{1,3}$.
A set $S \subseteq V$ is called a stable set or an independent set if any pairwise distinct vertices $u, v \in S$ are non adjacent. The maximum cardinality of an independent set in G is denoted by $\alpha(G)$. A set $S \subseteq V$ is called a clique if any pairwise distinct vertices $u, v \in S$ are adjacent. When $G[V]$ is a clique then G is a complete graph. The graph $K_{p}, p \geq 1$, is called a clique or a complete graph on p vertices.
A set $S \subseteq V$ is a dominating set if every vertex $v \in V$ is either an element of S or is adjacent to an element of S. The minimum cardinality of a dominating set in G is denoted by $\gamma(G)$ and called the dominating number of G. A dominating set S with $|S|=\gamma(G)$ is called a Minimum Dominating Set. Following [7] a Minimum Dominating Set is also called a γ-set. We denote $V^{+} \subseteq V$ the subset of vertices v of G such that $\gamma(G-v)>\gamma(G)$. If $S \subset V$ is both a dominating and an independent set then S is an independent dominating set. The minimum cardinality of an independent dominating set in G is denoted by $i(G)$. Clearly we have $\gamma(G) \leq i(G) \leq \alpha(G)$. Note that a minimum independent dominating set is a minimum maximal independent set.

Previous results

We give some results of the literature concerning the Minimum Dominating Set problem that will be useful in the following.
D. Bauer et al. showed in [4] that, for any non isolated vertex v, if $v \in V^{+}$then v is in any γ-set of G. For G a claw-free graph Allan et al. [1] proved that $\gamma(G)=i(G)$. From Yannakakis et al. [9] the Minimum Dominating Set problem restricted to claw-free graphs is $N P$-complete. From D. Malyshev 8 the Minimum Dominating Set problem is polynomial for (claw, P_{5})-free graphs. From Farber 6] computing a minimum independent dominating set can be done in linear-time on chordal graphs. So the Minimum Dominating Set problem restricted to claw-free chordal graphs is polynomial. Cockayne et al. [5] showed that the Minimum Dominating Set problem restricted to trees is polynomial.

Organization

The next section give some algorithmic properties. Two properties will allow us to make some simplifications on the graphs G that we consider. Two others will help us to conclude that computing $\gamma(G)$ is polynomial when G have a specific structure relatively to a fixed size subgraph. Then we consider the case where the graph G has a long cycle. From there, we show our main result, starting from (claw, P_{6})free graphs and finishing with (claw, P_{8})-free graphs. We conclude by some open questions regarding (claw, P_{k})-free graphs for $k \geq 9$.

2 Algorithmic Properties

We give two properties that authorize us to make some assumptions and simplifications for the graphs we consider.

Property 2.1 Let G be a claw-free graph. If v, u are two vertices such that $N[u]=$ $N[v]$ then $\gamma(G)=\gamma(G / u v)$.

Proof: Let Γ be a γ-set of G. Let u^{\prime} be the vertex of $G / u v$ resulting from the contraction of $u v$. At most one of u and v is in Γ. If $u \in \Gamma$ then $\Gamma^{\prime}=(\Gamma-u) \cup\left\{u^{\prime}\right\}$ is a γ-set of $G / u v$. If $u, v \notin \Gamma$ then $\Gamma^{\prime}=\Gamma$ is a γ-set of $G / u v$.

Property 2.2 Let $G=(V, E)$ be a connected claw-free graph with $u v \in E$ such that u is a leaf. The Minimum Dominating Set problem is polynomial for $G^{\prime}=$ $G-N[v]$ if and only if it is polynomial for G.

Proof: Since G is claw-free $K=N(v)-u$ is a clique. Let $k \in K$, we show that $k \notin V^{+}$. For contradiction we assume that $k \in V^{+}$. As shown in [4] k is in every γ-set of G. Let Γ be a γ-set with $v \in \Gamma$. Let $W=N(k) \backslash N(v)$. If $W=\emptyset$ then $\Gamma-k$ is a dominating set, a contradiction. It follows $W \neq \emptyset$ and since G is claw-free, W is a clique. Let $w \in W$. $\Gamma^{\prime}=(\Gamma-\{k\}) \cup\{w\}$ is another γ-set, a contradiction. Hence $\gamma(G-K) \leq \gamma(G)$. Since $G-K$ consists of G^{\prime} and the component uv, we have that $\gamma(G-K)=\gamma\left(G^{\prime}\right)+1$. Then from Γ^{\prime} a γ-set of G^{\prime} we obtain $\Gamma^{\prime} \cup\{v\}$ a γ-set of G in polynomial time. Reciprocally, let Γ be a γ-set of G. Since u is a leaf we assume that $v \in \Gamma$. Then $\Gamma-\{v\}$ is a γ-set for G^{\prime}. Trivially it can be done in polynomial time from Γ.

We show two conditions on the structure of G that authorize us to directly conclude that computing a γ-set for G can be done in polynomial time.

Property 2.3 Let $k>0$ be a fixed positive integer and $G=(V, E)$ a graph. If there exists $T \subseteq_{i} G$ of size $|T| \leq k$ such that $V=N[T]$ then computing a minimum dominating set for G is polynomial.

Proof: Since $|T| \leq k$ and $V=N[T]$, we have that $\gamma(G) \leq k$. So a minimum dominating set can be computed in $O\left(n^{k}\right)$ which is polynomial.

Property 2.4 Let $k, k^{\prime}>0$ two fixed positive integers and $G=(V, E)$ a graph. If there exists $T \subseteq_{i} G$ of size $|T| \leq k$ such that $W=V \backslash N[T]$ has a size $|W| \leq k^{\prime}$ then computing a minimum dominating set for G is polynomial.

Proof: It is clear that k vertices of T is enough to dominate $N[T]$ and k^{\prime} vertices of W is enough to dominate W. Hence we have $\gamma(G) \leq k+k^{\prime}$. So a minimum dominating set can be computed in $O\left(n^{k+k^{\prime}}\right)$ which is polynomial.

$3 G$ has a long cycle

We give two lemmas that will authorize us to conclude that the Minimum Dominating Set problem is polynomial when G, a $\left(\right.$ claw, $\left.P_{k}\right)$-free graph, contains a long induced cycle.

Lemma 3.1 For any fixed $k \geq 3$, if G is a $\left(\right.$ claw,$\left.P_{k}\right)$-free connected graph such that $C_{k} \subseteq_{i} G$, then a minimum dominating set of G can be given in polynomial time.

Proof: Let $C_{k}=v_{1}-\cdots-v_{k}-v_{1}, C_{k} \subseteq_{i} G$. Let $v \notin C_{k}$ be such that $N(v) \cap C_{k} \neq \emptyset$. Since G is claw-free, we have $2 \leq\left|N(v) \cap C_{k}\right| \leq 4$. If $\left|N(v) \cap C_{k}\right|=2$, the two neighbors of v in C_{k} must be adjacent, thus there is a P_{k} starting from v. In the second case, $3 \leq\left|N(v) \cap C_{k}\right| \leq 4$, there is no edge $v w \in E, N(w) \cap C_{k}=\emptyset$, else there is a claw centered onto v. Taking $\Gamma=\left\{v_{1}, v_{3}, \ldots, c_{\left\lfloor\frac{k}{2}\right\rfloor}\right\}, \Gamma$ is a dominating set of G. It follows that $\left\lfloor\frac{k}{2}\right\rfloor=|\Gamma| \geq \gamma(G)$. Hence by brute force $\gamma(G)$ and a γ-set can be computed with time $O\left(n^{\left\lfloor\frac{k}{2}\right\rfloor}\right)$ which is polynomial since k is fixed.

Lemma 3.2 For any fixed $k \geq 3$, if G is a $\left(\right.$ claw $\left., P_{k}, C_{k}\right)$-free connected graph such that $C_{k-1} \subseteq_{i} G$, then a minimum dominating set of G can be given in polynomial time.

Proof: Let $C_{k}=v_{1}-\cdots-v_{k-1}-v_{1}, C_{k-1} \subseteq_{i} G$ and $v \notin C_{k-1}$ such that $N(v) \cap$ $C_{k-1} \neq \emptyset$. We have $2 \leq\left|N(v) \cap C_{k-1}\right| \leq 4$. Let w be a neighbor of v such that $N(w) \cap C_{k-1}=\emptyset$. If $3 \leq\left|N(v) \cap C_{k-1}\right| \leq 4$, there is a claw. When $\left|N(v) \cap C_{k-1}\right|=2$ there is a P_{k} starting from w. Taking $\Gamma=\left\{v_{1}, v_{3}, \ldots, c_{\left\lfloor\frac{k-1}{2}\right\rfloor}\right\}, \Gamma$ is a dominating set of G. It follows that $\left\lfloor\frac{k-1}{2}\right\rfloor=|\Gamma| \geq \gamma(G)$. Hence, by brute force $\gamma(G)$ and a γ-set can be computed with time $O\left(n^{\left\lfloor\frac{k-1}{2}\right\rfloor}\right)$ which is polynomial since k is fixed.

$4 G$ is $\left(\right.$ claw, $\left.P_{k}, C_{k}, C_{k-1}\right)$-free, $C_{k-2} \subseteq_{i} G, k \leq 8$

In this section we prove that, for $k \leq 8$, if G is a (claw, P_{k}, C_{k}, C_{k-1})-free graph such that $C_{k-2} \subseteq_{i} G$ then the Minimum Dominating Set problem is polynomial. The first lemma gives a structural property for G. We use this property to prove two other lemmas, the first one for $k=6$, the second for $7 \leq k \leq 8$.

Lemma 4.1 For any fixed $k \geq 6$, if G is a (claw, $\left.P_{k}, C_{k}, C_{k-1}\right)$-free connected graph such that $C_{k-2} \subseteq_{i} G$, then $W=V \backslash C_{k-2}$ is an independent set.
Proof: Let $C=C_{k-2}=v_{1}-\cdots-v_{k-2}-v_{1}, C \subseteq_{i} G$ and $v \in N(C)$. We have $2 \leq\left|N_{C}(v)\right| \leq 5$ (note that $\left|N_{C}(v)\right|=5$ only for $C=C_{5}$). Let us denote $S=N(C)$, $W=V \backslash(C \cup S)$. Let $w \in W$ be a neighbor of v. If $3 \leq\left|N_{C}(v)\right| \leq 5$, there is a claw. Hence, v is such that $N_{C}(v)=\left\{v_{i}, v_{i+1}\right\}, 1 \leq i \leq k-2$ (for convenience, when $i=k-2$, we read $v_{i+1}=v_{1}$). From Property 2.1, we can assume that all contractibles vertices of G are contracted. Moreover, from Property [2.2 we can assume that G has no leaves.
Assume for contradiction that w has a neighbor $w^{\prime}, w^{\prime} \in W$. When $N_{S}\left(w^{\prime}\right)=\emptyset$ there is a P_{k} from w^{\prime} to v_{k-3}. Hence w^{\prime} has a neighbor in S. Since w and w^{\prime} are not contracted, we have $N[w] \neq N\left[w^{\prime}\right]$. If $v w^{\prime} \notin E$ again there is a P_{k} from w^{\prime} to v_{k-3}. Hence, w and w^{\prime} have the same neighbors in S but not in W. So there exists $r \in W$ with $r w \in E, r w^{\prime} \notin E$. As above $r v \in E$ but there exists $v_{i} \in C$ suc that $G\left[\left\{r, v, v_{i}, w^{\prime}\right\}\right]$ is a claw. Hence, W is independent.

Lemma 4.2 If G is a (claw, $\left.P_{6}, C_{6}, C_{5}\right)$-free connected graph such that $C_{4} \subseteq_{i} G$, then a minimum dominating set of G can be given in polynomial time.

Proof: Let $C=C_{4}=v_{1}-\cdots-v_{4}-v_{1}, C \subseteq_{i} G$ and $v \in N(C)$. We have $2 \leq\left|N_{C}(v)\right| \leq 4$. Let $S=N(C), W=V \backslash(C \cup S)$ and $w \in W$ a neighbor of v. If $3 \leq\left|N_{C}(v)\right| \leq 4$ then G contains a claw. Hence, v is such that $N_{C}(v)=\left\{v_{i}, v_{i+1}\right\}$, $1 \leq i \leq 4$ (for convenience, when $i=4$, we read $v_{i+1}=v_{1}$).
From Property 2.4, we can assume that $|W| \geq 2$ and from Lemma 4.1, we know that W is an independent set. We show that all vertices $v \in N(W)$ have exactly the same neighbors in C.
Let $w, w^{\prime} \in W, w \neq w^{\prime}, v \in N_{S}(w), v^{\prime} \in N_{S}\left(w^{\prime}\right)$. Since G is claw-free $v \neq v^{\prime}$. W.l.o.g. $N_{C}(v)=\left\{v_{1}, v_{2}\right\}$. Assume that $N_{C}(v) \neq N_{C}\left(v^{\prime}\right)$. W.l.o.g. $N_{C}\left(v^{\prime}\right)=$ $\left\{v_{2}, v_{3}\right\}$ (note that $N_{C}\left(v^{\prime}\right)=\left\{v_{1}, v_{4}\right\}$ is symmetric). If $v v^{\prime} \notin E$ then $w-v-v_{1}-$ $v_{4}-v^{\prime}-w^{\prime}=P_{6}$, else $v_{1}-v-v^{\prime}-v_{3}-v_{4}=C_{5}$. Now it remains $N_{C}\left(v^{\prime}\right)=\left\{v_{3}, v_{4}\right\}$. We have $v v^{\prime} \notin E$ else there is a claw, but $w-v-v_{1}-v_{4}-v^{\prime}-w^{\prime}=P_{6}$ a contradiction. Thus, w.l.o.g. any vertex $w \in W$ has only neighbors $v \in S$ such that $N(v)=\left\{v_{1}, v_{2}\right\}$.

Let $|W|=q, q \geq 2$. We show that $\gamma(G)=q+1$. Since W is independent and for any distinct $w, w^{\prime} \in W$, we have $N[w] \cap N\left[w^{\prime}\right]=\emptyset$, we must take q vertices of $N[W]$ to dominate the vertices of W. This vertices cannot dominate v_{3} nor v_{4}. Hence $\gamma(G) \geq q+1$.
We construct a γ-set of G as follows. We set R by taking exactly one neighbor of each $w, w \in W$. Clearly, $\Gamma=R \cup\left\{v_{3}\right\}$ dominates $C \cup N[R]$. Suppose that there exists $s \in S$ such that s is not a neighbor of Γ. If $N_{C}(s)=\left\{v_{1}, v_{2}\right\}$ then there exists $r \in R$ such that $G\left[\left\{r, s, v_{1}, v_{4}\right\}\right]$ is a claw. If $N_{C}(s)=\left\{v_{1}, v_{4}\right\}$ then $w-v-v_{2}-v_{3}-v_{4}-s=P_{6}$. If $N_{C}(s)=\left\{v_{1}, v_{2}, v_{4}\right\}$ then there exists $r \in R$ such that $G\left[\left\{r, v, v_{2}, v_{3}\right\}\right]$ is a claw. Hence any $s \notin N[R] \cup C$ is dominated by v_{3}. It follows that Γ is a γ-set of G.

Lemma 4.3 For $k \in\{7,8\}$, if G is a (claw, P_{k}, C_{k}, C_{k-1})-free connected graph such that $C_{k-2} \subseteq_{i} G$, then a minimum dominating set of G can be given in polynomial time.

Proof: Let $C=C_{k-2}=v_{1}-\cdots-v_{k-2}-v_{1}, C \subseteq_{i} G$ and $v \in N(C)$. We have $2 \leq\left|N_{C}(v)\right| \leq 5$ (note that $\left|N_{C}(v)\right|=5$ only for $C=C_{5}$). Let $S=N(C)$, $W=V \backslash(C \cup S)$ and $w \in W$ a neighbor of v. If $3 \leq\left|N_{C}(v)\right| \leq 4$ then G contains a claw. Hence, v is such that $N_{C}(v)=\left\{v_{i}, v_{i+1}\right\}, 1 \leq i \leq k-2$ (for convenience, when $i=k-2$, we read $v_{i+1}=v_{1}$).

We show that for any $w, w \in W$, there exists $v, v^{\prime} \in N(w)$ such that $N_{C}(v) \cap N_{C}\left(v^{\prime}\right)=$ \emptyset. Let $w \in W$ and $v, v^{\prime} \in N_{S}(w), v \neq v^{\prime}$.
First, we show that $N_{C}(v) \neq N_{C}\left(v^{\prime}\right)$. Suppose that $N_{C}(v)=N_{C}\left(v^{\prime}\right)$, w.l.o.g. $N_{C}(v)=\left\{v_{1}, v_{2}\right\} . v v^{\prime} \in E$ else $G\left[\left\{v, v^{\prime}, v_{1}, v_{k-2}\right\}\right]$ is a claw. From Property [2.1, we have that $N[v] \neq N\left[v^{\prime}\right]$, else v, v^{\prime} are contracted. Hence, there exists $u \in V$ such that $u v \in E$ and $u v^{\prime} \notin E$. If $u \in W$ then from Lemma $4.1 u w \notin E$ but $G\left[\left\{u, v, w, v_{1}\right\}\right]$ is a claw. So, we have $u \in S$. If $N_{C}(u)=\left\{v_{1}, v_{2}\right\}$ then $G\left[\left\{u, v^{\prime}, v_{2}, v_{3}\right\}\right.$ is a claw. So $N_{C}(u) \neq N_{C}(v)$ and we can assume that $w u \notin E$ or else we have u, v two neighbors of w with distinct neighborhoods in C. If $N_{C}(u) \cap N_{C}(v)=\emptyset$ then $G\left[\left\{u, v, v_{1}, w\right\}\right]$ is a claw. So W.l.o.g. we assume that $N_{C}(u) \cap N_{C}(v)=\left\{v_{1}\right\}$ but $G\left[\left\{u, v, v_{2}, w\right\}\right]$ is a claw. Hence $N[v]=N\left[v^{\prime}\right]$ and v, v^{\prime} can be contracted. Yet, w is a leaf and from Property [2.2 we can assume that G contains no leaves. So, for any $w, w \in W$, there exists $v, v^{\prime} \in N_{S}(w), v \neq v^{\prime}$ such that $N_{C}(v) \neq N_{C}\left(v^{\prime}\right)$.
Now we show that that $N_{C}(v) \cap N_{C}\left(v^{\prime}\right)=\emptyset$. W.l.o.g. assume that $N_{C}(v)=\left\{v_{1}, v_{2}\right\}$ and $N_{C}\left(v^{\prime}\right)=\left\{v_{2}, v_{3}\right\}$. If $v v^{\prime} \in E$ then $v_{1}-v-v^{\prime}-v_{3}-\cdots-v_{k-2}-v_{1}=C_{k-1}$, else $v_{1}-v-w-v^{\prime}-v_{3}-\cdots-v_{k-2}-v_{1}=C_{k}$. Thus any $w, w \in W$, has neighbors $v, v^{\prime} \in S$ such that $N_{C}(v) \cap N_{C}\left(v^{\prime}\right)=\emptyset$.

From Property 2.4, we can assume that $|W| \geq 2$. So let $w, w^{\prime} \in W$ (recall $w w^{\prime} \notin E$). Since both w and w^{\prime} have two neighbors in S with non intersecting neighborhoods in C, let $v \in N(w), v^{\prime} \in N\left(w^{\prime}\right)$ such that $N_{C}(v) \cap N_{C}\left(v^{\prime}\right)=\emptyset$. W.l.o.g. $N_{C}(v)=$ $\left\{v_{1}, v_{2}\right\}$. Assume that $N_{C}\left(v^{\prime}\right)=\left\{v_{3}, v_{4}\right\}$ (note that $N\left(v^{\prime}\right)=\left\{v_{k-2}, v_{k-3}\right\}$ is symmetric). If $v v^{\prime} \in E$ then $G\left[\left\{v, v^{\prime}, v_{1}, w\right\}\right]$ is a claw, else $w-v-v_{1}-v_{k-2}-\cdots-v_{4}-v^{\prime}-w^{\prime}=$ P_{k}. Hence the two neighborhoods of $N_{C}(v)$ and $N_{C}\left(v^{\prime}\right)$ are not adjacent. It follows that for $k=7$, since $C_{k-2}=C_{5}$, such a configuration is impossible. This yields to $|W| \leq 1$ and from Property 2.4 a minimum dominating set can be computed in polynomial time.

Now, we focus on the remaining case of $k=8$. Let $|W|=q, q \geq 2$. We show that $\gamma(G)=q+2$. Since W is independent and that for any distinct vertices $w, w^{\prime} \in W$, we have $N[w] \cap N\left[w^{\prime}\right]=\emptyset$, we must take q vertices of $N[W]$ to dominate the vertices of W. Let $w, w^{\prime} \in W$. From above we can assume that w has a neighbor v such that $N_{C}(v)=\left\{v_{1}, v_{2}\right\}$ and w^{\prime} has a neighbor v^{\prime} such that $N_{C}\left(v^{\prime}\right)=\left\{v_{4}, v_{5}\right\}$ (each vertex of W has two neighbors whose are neighbors of respectively $\left\{v_{1}, v_{2}\right\}$ and $\left\{v_{4}, v_{5}\right\}$ since $\left.C=C_{6}\right) . G$ being claw-free we have $v v^{\prime} \notin E$. The q vertices that dominates W cannot dominate v_{3} and v_{6}. Hence $\gamma(G) \geq q+1$.
Suppose that $\gamma(G)=q+1$. The mds of G must contain a vertex $s \in S$ a neigh-
bor of both v_{3} and v_{6}. If $v s \in E$, respectively $v^{\prime} s \in E$, then G has a claw (s cannot be complete to $N_{C}(v) \cup N_{c}\left(v^{\prime}\right)$). Also, s must have $\left(v_{1}\right.$ or v_{5}) and (v_{2} or $\left.v_{4}\right)$ as neighbors else there is a claw. We assume first that $N(s)=\left\{v_{1}, v_{2}, v_{3}, v_{6}\right\}$. Then $w-v-v_{1}-s-v_{3}-v_{4}-v^{\prime}-w^{\prime}=P_{8}$ (recall $v v^{\prime} \notin E$ or G contains a claw). The case where $N(s)=\left\{v_{3}, v_{4}, v_{5}, v_{6}\right\}$ is symmetric. Now we assume that $N(s)=\left\{v_{1}, v_{3}, v_{4}, v_{6}\right\}$ (note that $N(s)=\left\{v_{2}, v_{3}, v_{5}, v_{6}\right\}$ is symmetric). Then $w-v-v_{2}-v_{3}-s-v_{6}-v_{5}-v^{\prime}=P_{8}$. Hence $\gamma(G) \geq q+2$.

We show that $\Gamma=\left\{v_{1}, v_{4}\right\} \cup W$ is a γ-set of G. Clearly Γ dominates $N[W] \cup C$. Let $s \notin N[W] \cup C$. So $s \in S$. Suppose that $s v_{1}, s v_{4} \notin E$. From above $w s \notin E$ and $v s \notin E$ else $G\left[\left\{v, s, v_{1}, w\right\}\right]$ is a claw. If $N(s)=\left\{v_{2}, v_{3}\right\}$ then $w-v-v_{1}-v_{6}-v_{5}-v_{4}-v_{3}-s=$ P_{8}. By symmetry $N(s) \neq\left\{v_{5}, v_{6}\right\}$. As shown before $N(s)=\left\{v_{2}, v_{3}, v_{5}, v_{6}\right\}$ is not possible. Hence any $s \notin N[W] \cup C$ is dominated by v_{1} or v_{4}. It follows that $\Gamma=\left\{v_{1}, v_{4}\right\} \cup W$ is a γ-set of G.

From Lemmas 3.1, 3.2, 4.2, 4.3 we immediately obtain the corollary below.
Corollary 4.4 Let G a (claw, $\left.P_{k}\right)$-free graph, $6 \leq k \leq 8$. If $C_{l} \subseteq_{i} G, k-2 \leq l \leq k$, then a minimum dominating set of G can be given in polynomial time.

$5 G$ is $\left(c l a w, P_{8}\right)$-free

Here we conclude by the main result proving that the Minimum Dominating Set problem is polynomial in the class of (claw, P_{8})-free graphs. Starting from the result stating that the problem is polynomial when G is $\left(\right.$ claw, $\left.P_{5}\right)$-free, we successively prove that the problem is polynomial for $\left(\right.$ claw, $\left.P_{6}\right)$-free, $\left(\right.$ claw, $\left.P_{7}\right)$-free graphs. Then we conclude for the class of (claw, P_{8})-free graphs.

Lemma 5.1 Let G be a connected (claw, P_{5})-free graph. Computing a minimum dominating set is polynomial-time solvable.

Proof: From [8] we know that computing a minimum dominating set is polynomial when G is $\left(K_{1,4}, P_{5}\right)$-free. The result follows from the fact that $\left(\left(\right.\right.$ claw, $\left.P_{5}\right)-$ free graphs $) \subset\left(\left(K_{1,4}, P_{5}\right)-\right.$ free graphs $)$.

Lemma 5.2 Let G be a connected (claw, P_{6})-free graph. Computing a minimum dominating set is polynomial-time solvable.

Proof: From Corollary 4.4, if $C_{l} \subseteq_{i} G, 4 \leq l \leq 6$, then computing a minimum dominating set is polynomial. When G is (claw, $\left.C_{4}, C_{5}, C_{6}, P_{6}\right)$-free then it is chordal. The Minimum Dominating Set problem is polynomial for claw-free chordal graphs.

Lemma 5.3 Let G be a connected (claw, $C_{5}, C_{6}, C_{7}, P_{7}$)-free graph. Computing a minimum dominating set is polynomial-time solvable.

Proof: From Lemma 5.2 we can assume that $P_{6} \subseteq_{i} G$. Let $P=v_{1}-v_{2}-v_{3}-v_{4}-$ $v_{5}-v_{6}$.
Let $W=V \backslash N[P]$. From Property 2.3 if $W=\emptyset$ computing a minimum dominating set is polynomial. From now on $W \neq \emptyset$.
Let $S=\left\{v \in V \backslash P\right.$ such that $\left.2 \leq\left|N_{P}(v)\right| \leq 4\right\}, S_{i} \subseteq S$ being the set of vertices v such that $\left|N_{P}(v)\right|=i$.
Let $H_{i}=\left\{v \in S_{2}: N_{P}(v)=\left\{v_{i}, v_{i+1}\right\}, 1 \leq i \leq 5\right\}$. Since G is claw-free each H_{i} is complete. If there is an edge $r_{i} r_{i+1}$ with $r_{i} \in H_{i}, r_{i+1} \in H_{i+1}$ then $P=v_{1}-\cdots-v_{i}-r_{i}-r_{i+1}-v_{i+2}-\cdots-v_{6}=P_{7}$. If there is an edge $r_{i} r_{j}$ with $r_{i} \in H_{i}, r_{j} \in H_{j}$ and $j \geq i+3$ then $C_{p} \subseteq_{i} G, p \geq 5$. So H_{1} is anticomplete to H_{2}, H_{4}, H_{5}, the component H_{2} is anticomplete to H_{3}, H_{5}, and the component H_{3} is anticomplete to H_{4}.

We define R_{i} as the set of vertices of H_{i} having a neighbor in $W, R_{i}=\left\{v \in H_{i}\right.$: $\left.N_{W}(v) \neq \emptyset\right\}, 1 \leq i \leq 5$. Since G is P_{7}-free $R_{1}=R_{5}=\emptyset$.

Let $r \in R_{i}, r^{\prime} \in R_{i}, r \neq r^{\prime}, i \in\{2,4\}$ be such that r, respectively r^{\prime}, has a neighbor $w \in W$, respectively $w^{\prime} \in W$. We show that $N_{S}(r)=N_{S}\left(r^{\prime}\right)$.
By contradiction we assume that there exists $s \in S$ such that $r s \in E, r^{\prime} s \notin E$. From above $s \notin R_{i} \cup H_{i-1} \cup H_{i+1}$. Let $i=2$ (the case $i=4$ is symmetric). Recall that H_{2} is anticomplete to H_{1}, H_{3}, H_{5}, thus $s \in H_{4} \cup S_{3} \cup S_{4}$. If $s \in H_{4}$ then $G\left[\left\{r, w, v_{3}, s\right\}\right]$ is a claw. Hence $s \in S_{3} \cup S_{4}$. When $N_{P}(s)=\left\{v_{1}, v_{2}, v_{3}\right\}$ then $G\left[\left\{r^{\prime}, v_{3}, v_{4}, s\right\}\right]$ is a claw. When $N_{P}(s)=\left\{v_{2}, v_{3}, v_{4}\right\}$ then $G\left[\left\{r^{\prime}, v_{1}, v_{2}, s\right\}\right]$ is a claw. When $N_{P}(s)=\left\{v_{3}, v_{4}, v_{5}\right\}$ or $N_{P}(s)=\left\{v_{4}, v_{5}, v_{6}\right\}$ then $G\left[\left\{r, v_{2}, w, s\right\}\right]$ is a claw. So $s \in S_{4}$. When $N_{P}(s)=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ then $G\left[\left\{r, v_{1}, v_{4}, s\right\}\right]$ is a claw. When $N_{P}(s)=\left\{v_{2}, v_{3}, v_{4}, v_{5}\right\}$ then $G\left[\left\{r, v_{1}, v_{2}, s\right\}\right]$ is a claw. When $N_{P}(s)=\left\{v_{3}, v_{4}, v_{5}, v_{6}\right\}$ then $G\left[\left\{r, v_{4}, v_{6}, s\right\}\right]$ is a claw. Now let $i=3$. Recall that H_{3} is anticomplete to H_{2}, H_{4}, thus $s \in H_{1} \cup H_{5} \cup S_{3} \cup S_{4}$. If $s \in H_{1}$ (the case $s \in H_{5}$ is symmetric) then $G\left[\left\{r, w, v_{3}, s\right\}\right]$ is a claw. Hence $s \in S_{3} \cup S_{4}$. If $N_{P}(s)=\left\{v_{1}, v_{2}, v_{3}\right\}$ (the case $N_{P}(s)=\left\{v_{4}, v_{5}, v_{6}\right\}$ is symmetric) then $G\left[\left\{r, w, v_{4}, s\right\}\right]$ is a claw. If $N_{P}(s)=$ $\left\{v_{2}, v_{3}, v_{4}\right\}$ (the case $N_{P}(s)=\left\{v_{3}, v_{4}, v_{5}\right\}$ is symmetric) then $G\left[\left\{r^{\prime}, v_{4}, v_{5}, s\right\}\right]$ is a claw. So $s \in S_{4}$. When $N_{P}(s)=\left\{v_{1}, v_{2}, v_{4}, v_{5}\right\}$ or $N_{P}(s)=\left\{v_{1}, v_{2}, v_{5}, v_{6}\right\}$ then $G\left[\left\{r, v_{1}, v_{5}, s\right\}\right]$ is a claw. When $N_{P}(s)=\left\{v_{2}, v_{3}, v_{5}, v_{6}\right\}$ then $G\left[\left\{r^{\prime}, v_{3}, v_{4}, s\right\}\right]$ is a claw. When $N_{P}(s)=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ (the case $N_{P}(s)=\left\{v_{3}, v_{4}, v_{5}, v_{6}\right\}$ is symmetric) then $G\left[\left\{r^{\prime}, v_{4}, v_{5}, s\right\}\right]$ is a claw. Hence $N_{P}(s)=\left\{v_{2}, v_{3}, v_{4}, v_{5}\right\}$ but $G\left[\left\{r, v_{2}, v_{5}, s\right\}\right]$ is a claw. Thus $N_{S}(r)=N_{S}\left(r^{\prime}\right)$.

Let $r_{2} \in R_{2}, r_{2}^{\prime} \in R_{2}, r_{2} \neq r_{2}^{\prime}$ be such that r_{2}, respectively r_{2}^{\prime}, has a neighbor $w \in W$, respectively $w^{\prime} \in W$. Let $r_{4} \in R_{4}, r_{4}^{\prime} \in R_{4}, r_{4} \neq r_{4}^{\prime}$ be such that r_{4}, respectively r_{4}^{\prime}, has w, respectively w^{\prime}, as neighbor. We show that $N_{S \backslash H_{4}}\left(r_{2}\right)=N_{S \backslash H_{4}}\left(r_{2}^{\prime}\right)$, respectively $N_{S \backslash H_{2}}\left(r_{4}\right)=N_{S \backslash H_{2}}\left(r_{4}^{\prime}\right)$.
By contradiction we assume that there exists $s \in S$ such that $r_{2} s \in E, r_{2}^{\prime} s \notin E$. From above $s \notin H_{1} \cup H_{2} \cup H_{3}$. When $s \in H_{4}$ we know that s is not a neighbor of w. If $s \in H_{4} \cup H_{5}$ then $G\left[\left\{r_{2}, v_{2}, w, s\right\}\right]$ is a claw. Hence $s \in S_{3} \cup S_{4}$. When $N_{P}(s)=\left\{v_{1}, v_{2}, v_{3}\right\}$ then $G\left[\left\{r_{2}^{\prime}, v_{3}, v_{4}, s\right\}\right]$ is a claw. When $N_{P}(s)=\left\{v_{2}, v_{3}, v_{4}\right\}$ then $G\left[\left\{r_{2}^{\prime}, v_{1}, v_{2}, s\right\}\right]$ is a claw. When $N_{P}(s)=\left\{v_{3}, v_{4}, v_{5}\right\}$ then $G\left[\left\{r_{2}, v_{2}, w, s\right\}\right]$ is a claw. When $N_{P}(s)=\left\{v_{4}, v_{5}, v_{6}\right\}$ then $G\left[\left\{r_{2}, v_{4}, v_{6}, s\right\}\right]$ is a claw. So $s \in S_{4}$.

When $N_{P}(s)=\left\{v_{1}, v_{2}, v_{4}, v_{5}\right\}$ or $N_{P}(s)=\left\{v_{1}, v_{2}, v_{5}, v_{6}\right\}$ then $G\left[\left\{r, v_{1}, v_{5}, s\right\}\right]$ is a claw. When $N_{P}(s)=\left\{v_{2}, v_{3}, v_{5}, v_{6}\right\}$ then $G\left[\left\{r^{\prime}, v_{3}, v_{4}, s\right\}\right]$ is a claw. When $N_{P}(s)=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ then $G\left[\left\{r_{2}, v_{1}, v_{4}, s\right\}\right]$ is a claw. When $N_{P}(s)=\left\{v_{2}, v_{3}, v_{4}, v_{5}\right\}$ then $G\left[\left\{r_{2}^{\prime}, v_{1}, v_{2}, s\right\}\right]$ is a claw. When $N_{P}(s)=\left\{v_{3}, v_{4}, v_{5}, v_{6}\right\}$ then $G\left[\left\{r_{2}, v_{4}, v_{6}, s\right\}\right]$ is a claw. Thus $N_{S \backslash H_{4}}\left(r_{2}\right)=N_{S \backslash H_{4}}\left(r_{2}^{\prime}\right)$ and by symmetry, for $r_{4}^{\prime} \in R_{4}, r_{4}^{\prime} \neq r_{4}$, we have $N_{S \backslash H_{2}}\left(r_{4}\right)=N_{S \backslash H_{2}}\left(r_{4}^{\prime}\right)$.

Let $w \in W$. We show that w cannot have two neighbors r_{i}, r_{i+1} with $r_{i} \in R_{i}, r_{i+1} \in$ R_{i+1}. Suppose for contradiction that these two neighbors exist. Then $v_{1}-\cdots-v_{i}-$ $r_{i}-w-r_{i+1}-v_{i+2}-\cdots-v_{6}=P_{8}$. Now, since $R_{1}=R_{5}=\emptyset$, if w has two neighbors $r_{i} \in R_{i}, r_{j} \in R_{j}, i \neq j$, these two neighbors are $r_{2} \in R_{2}, r_{4} \in R_{4}$ and $r_{2} r_{4} \in E$, else $w-r_{4}-v_{4}-v_{3}-r_{2}-w=C_{5}$.
Moreover, when w has two neighbors $r_{2} \in R_{2}, r_{4} \in R_{4}$, then for each neighbor $w^{\prime} \in N_{W}(w), w^{\prime}$ has r_{2} and r_{4} as neighbors. Assume for contradiction that w has a neighbor $w^{\prime} \in W$ such that $w^{\prime} r_{2} \notin E$ (by symmetry $w^{\prime} r_{4} \notin E$ is the same case). Then $w^{\prime}-w-r_{2}-v_{3}-\cdots-v_{6}=P_{7}$. It follows that $N[w]=N\left[w^{\prime}\right]$ and from Property 2.1 $w w^{\prime}$ can be contracted.
Hence setting $Z_{24}=\left\{w \in W: w\right.$ has two neighbors $\left.r_{2} \in R_{2}, r_{4} \in R_{4}\right\}, Z_{24}$ is an independent set.

Let $w, w^{\prime} \in Z_{24}, w \neq w^{\prime}$. Since G is claw-free we have $N(w) \cap N\left(w^{\prime}\right)=\emptyset$. We show that $N_{R_{2}}(w)$ is anticomplete to $N_{R_{4}}\left(w^{\prime}\right)$ and $N_{R_{4}}(w)$ is anticomplete to $N_{R_{2}}\left(w^{\prime}\right)$. By contradiction if w has a neighbor $r_{2} \in R_{2}, w^{\prime}$ has a neighbor $r_{4} \in R_{4}$, and $r_{2} r_{4} \in E$ then $G\left[\left\{v_{2}, r_{2}, w, r_{4}\right\}\right]$ is a claw.

Let $Z_{i}=\left\{w \in W: w\right.$ has a neighbor in $\left.R_{i} \backslash\left(N_{R_{i}}\left(Z_{24}\right)\right\}, 2 \leq i \leq 4\right\}$.
We show that Z_{2}, Z_{3}, Z_{4} are pairwise anticomplete. If there is an edge $w_{2} w_{4}, w_{2} \in$ $Z_{2}, w_{4} \in Z_{4}$, with $r_{2}^{\prime} \in R_{2}, r_{4}^{\prime} \in R_{4}$ the neighbors of w_{2}, w_{4} respectively, then $w_{2}-r_{2}^{\prime}-v_{3}-v_{4}-r_{4}^{\prime}-w_{4}-w_{2}=C_{6}\left(r_{2}^{\prime} r_{4}^{\prime} \notin E\right.$ else $G\left[\left\{v_{2}, r_{2}^{\prime}, w_{2}, r_{4}^{\prime}\right\}\right]$ is a claw). If there is an edge $w_{2} w_{3}, w_{2} \in Z_{2}, w_{3} \in Z_{3}$, with $r_{2}^{\prime} \in R_{2}, r_{3}^{\prime} \in R_{3}$ the neighbors of w_{2}, w_{3} respectively, then $w_{2}-r_{2}^{\prime}-v_{3}-r_{3}^{\prime}-w_{3}-w_{2}=C_{5}$ (recall $r_{2}^{\prime} r_{3}^{\prime} \notin E$). By symmetry there is no edge between Z_{3} and Z_{4}.

Let $Y=W \backslash\left(Z_{2} \cup Z_{3} \cup Z_{4} \cup Z_{24}\right)$. One can observe that for any $w \in Y$ we have $N_{Z_{2}}(w)=N_{Z_{4}}(w)=N_{Z_{24}}(w)=\emptyset$ else $P_{7} \subseteq_{i} G$.
Let $Y_{3}=\left\{w \in Y: w\right.$ has a neighbor in $\left.Z_{3}\right\}$. If there exists $w^{\prime} \in Y \backslash Y_{3}$ such that w^{\prime} has a neighbor $w, w \in Y_{3}$, then $P_{7} \subseteq_{i} G$. Hence $Y=Y_{3}$.

We show that we can assume that Z_{2}, Z_{4}, Y_{3} are three independent sets. The arguments are the same for the three sets, so we show that Z_{2} is an independent set. For contradiction, we assume that there are $w_{1}, w_{2} \in Z_{2}$ such that $w_{1} w_{2} \in E$. We prove that $N_{R_{2}}\left(w_{1}\right)=N_{R_{2}}\left(w_{2}\right)$. If $N_{R_{2}}\left(w_{1}\right) \neq N_{R_{2}}\left(w_{2}\right)$ then there exists $r_{2} \in R_{2}$ which is a neighbor of w_{1} but not a neighbor of w_{2}. Then $w_{2}-w_{1}-r_{2}-v_{3}-\cdots-v_{6}=P_{7}$. If $N_{Z_{2}}\left(w_{1}\right) \neq N_{Z_{2}}\left(w_{2}\right)$ then there exists $w_{3} \in Z_{2}$ such that $w_{2} w_{3} \in E, w_{1} w_{3} \notin E$, but $G\left[\left\{v_{2}, r_{2}, w_{1}, w_{3}\right\}\right]$ is a claw. Hence $N\left[w_{1}\right]=N\left[w_{2}\right]$ and we can apply the Property 2.1 to contract $w_{1} w_{2}$. Hence Z_{2}, Z_{4}, Y_{3} are independent.

Since G is claw-free then for any two distinct vertices $w_{1}, w_{2} \in Z_{2} \cup Z_{4} \cup Y_{3}$ we have $N\left(w_{1}\right) \cap N\left(w_{2}\right)=\emptyset$.
We prove that for any $w \in Y_{3}, N(w)$ is a clique. Let $w \in Z_{3}$. Suppose there are s, s^{\prime} two non adjacent vertices in $N(w)$. Since G is claw-free s, s^{\prime} cannot have a common neighbor in R_{3}. Let $r \in R_{3}$ be a neighbor of s. Then $s^{\prime}-w-s-r-v_{3}-v_{2}-v_{1}=P_{7}$.

Since G is claw-free, if there are a vertex $r \in R_{i}$ with a neighbor $z \in Z_{i}$ and a vertex $s \in S$ such as $s z \notin E$ and $v_{i} \notin N(s)$ then G contains a claw (note that $v_{i+1} \notin N(s)$ is symmetric). Hence $N\left(Z_{i}\right)$ is anticomplete to $H_{j}, j \neq i$.

We show that we can assume that $Z_{2}=Z_{4}=\emptyset$. The arguments are the same in the two cases, so we consider Z_{2}. Let $r, r^{\prime} \in R_{2}$ be two neighbors of $w \in Z_{2}$. We show that $N[r]=N\left[r^{\prime}\right]$. Since $N_{R}(w)=N_{R_{2}}(w)$ and $r r^{\prime} \in E$ then, as proved above, $N_{S}(r)=N_{S}\left(r^{\prime}\right)$. For two distinct $w_{1}, w_{2} \in Z_{2}, N\left(w_{1}\right) \cap N\left(w_{2}\right)=\emptyset$. Hence, $N[r]=N\left[r^{\prime}\right]$. From Property 2.1 we can contract $r r^{\prime}$. Then w is a leaf and by Property [2.2, w can be deleted from G.

Now we study the structure of Z_{3}. For any distinct two vertices $w_{1}, w_{2} \in Z_{3}$ such that $w_{1} w_{2} \in E$, there cannot exist two distinct vertices $w_{1}^{\prime}, w_{2}^{\prime} \in Z_{3}$ such that $w_{1} w_{1}^{\prime} \in E, w_{1}^{\prime} w_{2} \notin E$ and $w_{2} w_{2}^{\prime} \in E, w_{1} w_{2}^{\prime} \notin E$. For contradiction we suppose that such two vertices exist. We assume first that w_{2} has a neighbor $r_{2} \in R_{3}$ such that $r_{2} w_{1} \notin E$. If $w_{1}^{\prime} r_{2} \notin E$ then $v_{1}-v_{2}-v_{3}-r_{2}-w_{2}-w_{1}-w_{1}^{\prime}=P_{7}$ else $G\left[\left\{v_{4}, r_{2}, w_{2}, w_{1}^{\prime}\right\}\right]$ is a claw. So w_{1}, w_{2} have a common neighbor $r_{1} \in R_{3}$. If $w_{1}^{\prime} r_{1} \in E$ then $G\left[\left\{v_{3}, r_{1}, w_{2}, w_{1}^{\prime}\right\}\right]$ is a claw. Thus $w_{1}^{\prime} r_{1} \notin E$ and w_{1}^{\prime} has a neighbor $r_{1}^{\prime} \in R_{3}, r_{1}^{\prime} \neq r_{1}$. If $r_{1}^{\prime} w_{2} \in E$ then $G\left[\left\{v_{3}, r_{1}^{\prime}, w_{2}, w_{1}^{\prime}\right\}\right]$ is a claw. So $r_{1}^{\prime} w_{2} \notin E$. If $r_{1}^{\prime} w_{1} \notin E$ then $v_{1}-v_{2}-v_{3}-r_{1}^{\prime}-w_{1}^{\prime}-w_{1}-w_{2}=P_{7}$. Thus $r_{1}^{\prime} w_{1} \in E$. If $r_{1}^{\prime} w_{2}^{\prime} \notin E$ then $v_{1}-v_{2}-v_{3}-r_{1}^{\prime}-w_{1}-w_{2}-w_{2}^{\prime}=P_{7}$. So $r_{1}^{\prime} w_{2}^{\prime} \in E$ but $G\left[\left\{v_{4}, r_{1}^{\prime}, w_{1}, w_{2}^{\prime}\right\}\right]$ is a claw.
As a consequence each connected component A_{i} of Z_{3} has a universal vertex. Also, G being claw-free two distinct connected components cannot share a neighbor in R_{3}. Moreover, from Property 2.2 we have assumed that each $w_{3} \in Z_{3}$ is not a leaf.

We show that $w \in Y_{3}$ is connected to a universal vertex of a connected component A_{i} of Z_{3}. We assume that the neighbors of w are not universal in A_{i}. Let $s \in A_{i}$ be a neighbor of w, let $u, u \neq s$, be a universal vertex of A_{i}. Since s is not universal there exists $v, v \in A_{i}$ such that $s v \notin E$ and $u v \in E$. Since $N(w)$ is complete $w v \notin E$. Let $r \in R_{3}$ be a neighbor of s. Since G is claw-free then $r v \notin E$. Let $r^{\prime}, r^{\prime} \in R_{3}, r^{\prime} \neq r$, be a neighbor of v. As just above $r^{\prime} s \notin E$. If $r^{\prime} u \notin E$ then $v_{1}-v_{2}-v_{3}-r^{\prime}-v-u-s=P_{7}$ else $v_{1}-v_{2}-v_{3}-r^{\prime}-u-s-w=P_{7}$.

We are ready to show how to build a γ-set in polynomial time.
First, we treat the case where $Z_{24} \neq \emptyset$. Let $r_{2} \in R_{2}, r_{4} \in R_{4}$ be two neighbors of $w, w \in Z_{24}$.
We show that $R_{3}=\emptyset$. Assume that there exists $w^{\prime} \in W$ with a neighbor $r_{3} \in R_{3}$. Since w^{\prime} is not a neighbor of r_{2} or r_{4} we have $w^{\prime}-r_{3}-v_{3}-r_{2}-r_{4}-v_{5}-v_{6}=P_{7}$. So $R_{3}=\emptyset$ and since $Z_{2}=Z_{4}=\emptyset$ we have $W=Z_{24}$.
Recall that $W=Z_{24}$ is independent and that for any two distinct vertices $w^{\prime}, w^{\prime} \in$
Z_{24} we have $N(w) \cap N\left(w^{\prime}\right)=\emptyset$.
The γ-set is build as follows:
From Property [2.4, we can assume that $|W| \geq 2$. We take $r_{2} \in R_{2}$ a neighbor of w (recall that the neighbors of w in $R_{i}, i \in\{2,4\}$, have the same neighborood and that all vertices of R_{i} have the same neighbors in $S \backslash H_{4}$), and for each other $w^{\prime} \in Z_{24}$ we take one adjacent vertex $r_{4}^{\prime} \in R_{4}$. These vertices dominate $Z_{24} \cup H_{2} \cup H_{4} \cup\left\{v_{2}, v_{3}, v_{4}, v_{5}\right\}$. At least one more vertex is necessary to dominate G since v_{1} and v_{6} are not dominated. Adding the three vertices v_{2}, v_{4}, v_{6} we have a dominating set (not necessarily minimum). We check first if there exists s a neighbor of both v_{1} and v_{6} that dominates the rest of the graph. If such vertex s is nowhere to be found, checking for all the pairs s_{1}, s_{6} where s_{i} is a neighbor of $v_{i}, i \in\{1,6\}$, one can verify if there is a γ-set with only two more vertices (note that there are at most $O\left(n^{2}\right)$ such pairs).

Now we deal with the case $Z_{24}=\emptyset$.
The γ-set is build as follows:

- $Y_{3} \neq \emptyset$. For each $w \in Y_{3}$ we take one universal vertex in the connected component A_{i} of Z_{3} connected to w. For each connected component A_{i} of Z_{3} that is not connected to a vertex of Y_{3}, we do as follows: If there exists $r_{3} \in R_{3}$ which is complete to A_{i} (recall that such vertices have the same neighborood) then we take r_{3}, else we take one universal vertex of A_{i}. These vertices dominate $Y_{3} \cup Z_{3}$. At least one more vertex is necessary to dominate G since v_{1} and v_{6} are not dominated. Adding the three vertices v_{2}, v_{4}, v_{6} we have a dominating set (not necessarily minimum). We check first if there exists s a neighbor of both v_{1} and v_{6} that dominates the rest of the graph. If such vertex is s nowhere to be found, checking for all the pairs s_{1}, s_{6} where s_{i} is a neighbor of $v_{i}, i \in\{1,6\}$, one can verify if there is a γ-set with only two more vertices (note that there are at most $O\left(n^{2}\right)$ such pairs).
- $Y_{3}=\emptyset$. Thus $Z_{3}=W$. For any connected component A_{i} of Z_{3}, if there exists $r_{3} \in R_{3}$ which is complete to A_{i} (recall that such vertices have the same neighborood) then we take r_{3}, else else we take one universal vertex of A_{i}. These vertices dominate Z_{3}. At least one more vertex is necessary to dominate G since v_{1} and v_{6} are not dominated. Adding the three vertices v_{2}, v_{4}, v_{6} we have a dominating set (not necessarily minimum). We check first if there exists s a neighbor of both v_{1} and v_{6} that dominates the rest of the graph. If such vertex s is nowhere to be found, checking for all the pairs s_{1}, s_{6} where s_{i} is a neighbor of $v_{i}, i \in\{1,6\}$, one can verify if there is a γ-set with only two more vertices (note that there are at most $O\left(n^{2}\right)$ such pairs).

Clearly the construction of the γ-set is polynomial.

Corollary 5.4 The Minimum Dominating Set problem is polynomial for (claw, P_{7})free graphs.

Lemma 5.5 Let G be a connected (claw, $C_{6}, C_{7}, C_{8}, P_{8}$)-free graph. If $C_{5} \subseteq_{i} G$ then computing a minimum dominating set is polynomial.

Proof: Let $C=v_{1}-v_{2}-v_{3}-v_{4}-v_{5}-v_{1}=C_{5} \subseteq_{i} G$. Let $W=V \backslash N[C]$. From Property 2.3 if $W=\emptyset$ computing a minimum dominating set is polynomial. From now on $W \neq \emptyset$.
Let $S=\left\{v \in V \backslash C\right.$ such that $\left.2 \leq\left|N(v) \cap C_{5}\right| \leq 5\right\}, S_{i} \subseteq S$ being the set of vertices v such that $\left|N(v) \cap C_{5}\right|=i$. Let $H_{i}=\left\{v \in S_{2}: N(v) \cap C_{5}=\left\{v_{i}, v_{i+1}\right\}\right\}$, $1 \leq i \leq 5$ (for convenience v_{5+1} stands for v_{1}). Since G is claw-free, each H_{i} is complete. Moreover, if there is an edge $r_{i} r_{i+1}$ with $r_{i} \in H_{i}, r_{i+1} \in H_{i+1}$ then $r_{i}-v_{i}-v_{i-1}-\cdots-v_{i+2}-r_{i+1}-r_{i}=C_{6}$. Hence H_{i} is anticomplete to H_{i+1}. We define R_{i} as the set of vertices of H_{i} having a neighbor in $W, R_{i}=\left\{v \in H_{i}\right.$: $\left.N_{W}(v) \neq \emptyset\right\}, 1 \leq i \leq 5, R=R_{1} \cup \cdots \cup R_{5}$.

Since $W \neq \emptyset$, we assume that there exists $w_{1} \in W$ such that w_{1} has a neighbor $r_{1} \in R_{1}$. Suppose that $R_{2} \neq \emptyset$. There exists $w_{2} \in W$ with a neighbor $r_{2} \in R_{2}$. If $w_{1}=w_{2}$ then $w_{1}-r_{2}-v_{3}-v_{4}-v_{5}-v_{1}-r_{1}-w_{1}=C_{7}$. So $w_{1} \neq w_{2}$. If $w_{1} w_{2} \in E$ then $w_{1}-w_{2}-r_{2}-v_{3}-v_{4}-v_{5}-v_{1}-r_{1}-w_{1}=C_{8}$ else $w_{1}-r_{1}-v_{1}-v_{5}-v_{4}-v_{3}-r_{2}-w_{2}-w_{1}=P_{8}$. So, if $R_{i} \neq \emptyset$ then $R_{i-1}=R_{i+1}=\emptyset$. Hence $R_{2}=R_{5}=\emptyset$.

Let $r \in R_{i}, r^{\prime} \in R_{i}, r \neq r^{\prime}, i \in\{1,3,4\}$ be such that r, respectively r^{\prime}, has a neighbor $w \in W$, respectively $w^{\prime} \in W$. We show that $N_{S}(r)=N_{S}\left(r^{\prime}\right)$.
By contradiction we assume that there exists $s \in S$ such that $r s \in E, r^{\prime} s \notin E$. From above $s \notin H_{i} \cup H_{i-1} \cup H_{i+1}$. Let $i=1$. If $s \in H_{3} \cup H_{4}$ then $G\left[\left\{r, v_{1}, w, s\right\}\right]$ is a claw. Thus $s \in S_{3} \cup S_{4} \cup S_{5}$. When $N_{C}(s)=\left\{v_{1}, v_{2}, v_{3}\right\}$ (the case $N_{C}(s)=$ $\left\{v_{1}, v_{2}, v_{5}\right\}$ is symmetric) then $G\left[\left\{r^{\prime}, v_{5}, w, s\right\}\right]$ is a claw. When $N_{C}(s)=\left\{v_{2}, v_{3}, v_{4}\right\}$ (the case $N_{C}(s)=\left\{v_{1}, v_{4}, v_{5}\right\}$ is symmetric) then $G\left[\left\{r, v_{1}, w, s\right\}\right]$ is a claw. When $N_{C}(s)=\left\{v_{3}, v_{4}, v_{5}\right\}$ then $G\left[\left\{r, v_{3}, v_{5}, s\right\}\right]$ is a claw. So $s \in S_{4} \cup S_{5}$. When $N_{C}(s)=$ $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ (the case $N_{C}(s)=\left\{v_{1}, v_{2}, v_{4}, v_{5}\right\}$ is symmetric) then $G\left[\left\{r^{\prime}, v_{1}, v_{5}, s\right\}\right]$ is a claw. When $N_{C}(s)=\left\{v_{1}, v_{3}, v_{4}, v_{5}\right\}$ or $N_{C}(s)=\left\{v_{2}, v_{3}, v_{4}, v_{5}\right\}$ or $N_{C}(s)=$ $\left\{v_{1}, v_{2}, v_{3}, v_{5}\right\}$ or $s \in S_{5}$ then $G\left[\left\{r, v_{3}, v_{5}, s\right\}\right]$ is a claw. For $i=3$ and $i=4$ the arguments are the same. Thus $N_{S}(r)=N_{S}\left(r^{\prime}\right)$.

Let $r_{1} \in R_{1}, r_{1}^{\prime} \in R_{1}, r_{1} \neq r_{1}^{\prime}$ be such that r_{1}, respectively r_{1}^{\prime}, has a neighbor $w \in W$, respectively $w^{\prime} \in W$. Let $r_{3} \in R_{3}, r_{3}^{\prime} \in R_{3}, r_{3} \neq r_{3}^{\prime}$ be such that r_{3}, respectively r_{3}^{\prime}, has w, respectively w^{\prime}, as neighbor. We show that $N_{S \backslash H_{3}}\left(r_{1}\right)=N_{S \backslash H_{3}}\left(r_{1}^{\prime}\right)$, respectively $N_{S \backslash H_{1}}\left(r_{3}\right)=N_{S \backslash H_{1}}\left(r_{3}^{\prime}\right)$.
Let $i=1$. By contradiction we assume that there exists $s \in S \backslash R_{3}$ such that $r_{1} s \in$ $E, r_{1}^{\prime} s \notin E$. From above $s \notin H_{1} \cup H_{2} \cup H_{5}$. If $s \in H_{4}$ then $G\left[\left\{r_{1}, v_{1}, w, s\right\}\right]$ is a claw. So $s \in S_{3} \cup S_{4} \cup S_{5}$. When $N_{C}(s)=\left\{v_{1}, v_{2}, v_{3}\right\}$ (the case $N_{C}(s)=\left\{v_{1}, v_{2}, v_{5}\right\}$ is symmetric) then $G\left[\left\{r_{1}^{\prime}, v_{1}, v_{5}, s\right\}\right]$ is a claw. When $N_{C}(s)=\left\{v_{2}, v_{3}, v_{4}\right\}$ (the case $N_{C}(s)=$ $\left\{v_{1}, v_{4}, v_{5}\right\}$ is symmetric) then $G\left[\left\{r_{1}, v_{1}, w, s\right\}\right]$ is a claw. When $N_{C}(s)=\left\{v_{3}, v_{4}, v_{5}\right\}$ then $G\left[\left\{r_{1}, v_{3}, v_{5}, s\right\}\right]$ is a claw. So $s \in S_{4} \cup S_{5}$. When $N_{C}(s)=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ (the case $N_{C}(s)=\left\{v_{1}, v_{2}, v_{4}, v_{5}\right\}$ is symmetric) then $G\left[\left\{r_{1}^{\prime}, v_{1}, v_{5}, s\right\}\right]$ is a claw. When $N_{C}(s)=\left\{v_{1}, v_{3}, v_{4}, v_{5}\right\}$ or $N_{C}(s)=\left\{v_{2}, v_{3}, v_{4}, v_{5}\right\}$ or $N_{C}(s)=\left\{v_{1}, v_{2}, v_{3}, v_{5}\right\}$ or $s \in S_{5}$ then $G\left[\left\{r_{1}, v_{3}, v_{5}, s\right\}\right]$ is a claw. By symmetry the arguments are the same
for $i=3$. Hence $N_{S \backslash H_{3}}\left(r_{1}\right)=N_{S \backslash H_{3}}\left(r_{1}^{\prime}\right)$ and $N_{S \backslash H_{1}}\left(r_{3}\right)=N_{S \backslash H_{1}}\left(r_{3}^{\prime}\right)$.
We study the case where w_{1} has a neighbor $r_{i}, r_{i} \in R_{i}, i \in\{3,4\}$. Since both cases are symmetric, let $r_{3}, r_{3} \in R_{3}$, be a neighbor of w_{1}. If $r_{1} r_{3} \notin E$ then $w_{1}-r_{1}-v_{1}-$ $v_{5}-v_{4}-r_{3}-w_{1}=C_{6}$. Hence $N_{R_{1}}\left(w_{1}\right)$ is complete to $N_{R_{3}}\left(w_{1}\right)$. Since $R_{3} \neq \emptyset$, we have $R_{4}=\emptyset$ and $N_{R}\left(w_{1}\right) \subseteq R_{1} \cup R_{3}$. Hence, we define the following subsets of W :

- $Z=\left\{w \in W: N_{R}(w) \neq \emptyset\right\}$;
- $Z_{i}=\left\{z \in Z: N_{R_{i}}(z) \neq \emptyset, N_{R_{j}}(z)=\emptyset, 1 \leq i \leq 5, i \neq j\right\}$;
- $Z_{i j}=\left\{z \in Z: N_{R_{i}}(z) \neq \emptyset, N_{R_{j}}(z) \neq \emptyset, 1 \leq i<j \leq 5\right\} ;$
- $Y=W \backslash Z$.

First, we show that Z_{i} and $Z_{i j}$ are anticomplete, then we show that Z_{i} consists of leaves. We conclude that $Z_{i j} \neq \emptyset$ implies $Z=Z_{i j}$. We set $w_{1} \in Z_{13}$, and since all cases are symmetric, we focus on $Z_{1} \neq \emptyset$.

Let $w_{1}^{\prime} \in Z_{1}$ with a neighbor $r_{1}^{\prime}, r_{1}^{\prime} \in R_{1}, r_{1}^{\prime} \neq r_{1}$. Note that $r_{1}^{\prime} r_{3} \notin E$ else G contains a claw. If $w_{1} w_{1}^{\prime} \in E$, then $r_{1}^{\prime} w_{1} \in E$, else $w_{1}-w_{1}^{\prime}-r_{1}^{\prime}-v_{1}-v_{5}-v_{4}-r_{3}-w_{1}=C_{7}$, but $w_{1}-r_{1}^{\prime}-v_{1}-v_{5}-v_{4}-r_{3}-w_{1}=C_{6}$. Hence, $w_{1} w_{1}^{\prime} \notin E$ (by symmetry, for any $\left.w_{3} \in Z_{3}, w_{1} w_{3} \notin E\right)$. Thus Z_{1} and Z_{3} are anticomplete to Z_{13}.

Now, we show that the vertices of Z_{1} are leaves. Assume that there exists $v \in$ $N\left(w_{1}^{\prime}\right), v \neq r_{1}^{\prime}$ such that $N[v] \neq N\left[w_{1}^{\prime}\right]$. If $v \in Z_{3}$ then $v-w_{1}^{\prime}-r_{1}^{\prime}-v_{1}-v_{5}-$ $v_{4}-r_{3}-w_{1}=P_{8}$. If $v \in Y$ then either $v-w_{1}^{\prime}-r_{1}^{\prime}-v_{1}-v_{5}-v_{4}-r_{3}-w_{1}=P_{8}$ or $v-w_{1}^{\prime}-r_{1}^{\prime}-v_{1}-v_{5}-v_{4}-r_{3}-w_{1}-v=C_{8}$. If $v \in Z_{1}$ and $r_{1}^{\prime} v \notin E$ then $v-w_{1}^{\prime}-r_{1}^{\prime}-v_{1}-v_{5}-v_{4}-r_{3}-w_{1}=P_{8}$. Hence $N_{R_{1}}\left(w_{1}^{\prime}\right)=N_{R_{1}}(v)$. Since $N[v] \neq N\left[w_{1}^{\prime}\right]$ we can assume that there exists $v^{\prime} \in W$ such that $v v^{\prime} \in E$ but $v^{\prime} w_{1}^{\prime} \notin E$. Yet with the same arguments as before we have $N_{R_{1}}(v)=N_{R_{1}}\left(v^{\prime}\right)$ and since $w_{1}^{\prime} v^{\prime} \notin E$ then $G\left[\left\{r_{1}^{\prime}, v^{\prime}, v_{1}, w_{1}^{\prime}\right\}\right]$ is a claw. Thus Z_{1} consists of leaves. Now, from Property 2.2 we can suppose that $Z_{1}=\emptyset$. By symmetry $Z_{3}=\emptyset$. So $Z=Z_{13}$.

We show that any two vertices $v, v^{\prime} \in Z_{13}$ with $v v^{\prime} \in E$ satisfy $N_{R_{1} \cup R_{3}}(v)=$ $N_{R_{1} \cup R_{3}}\left(v^{\prime}\right)$. Let $w_{1}^{\prime} \in Z_{13}$ be a neighbor of w_{1}. Suppose that there exists $r_{1}^{\prime} \in$ $N_{R_{1}}\left(w_{1}^{\prime}\right)$ such that $r_{1}^{\prime} w_{1} \notin E$. If $r_{1}^{\prime} r_{3} \in E$ then $G\left[\left\{r_{1}^{\prime}, r_{3}, v_{3}, w_{1}\right\}\right]$ is a claw. If $r_{3} w_{1}^{\prime} \notin$ E then $w_{1}-r_{3}-v_{4}-v_{5}-v_{1}-r_{1}^{\prime}-w_{1}^{\prime}-w_{1}=C_{7}$, else $w_{1}^{\prime}-r_{1}^{\prime}-v_{1}-v_{5}-v_{4}-r_{3}-w_{1}^{\prime}=C_{6}$. Hence, $N_{R_{1}}\left(w_{1}\right)=N_{R_{1}}\left(w_{1}^{\prime}\right)$ and by symmetry $N_{R_{3}}\left(w_{1}\right)=N_{R_{3}}\left(w_{1}^{\prime}\right)$.

Suppose that $Y \neq \emptyset$. Let $y \in Y$ be a neighbor of w_{1}. We show that Z_{13} is a clique. Let $w_{1}^{\prime} \in Z_{13}$ such that $w_{1} w_{1}^{\prime} \notin E$. We have $N_{R_{1} \cup R_{3}}\left(w_{1}\right) \cap N_{R_{1} \cup R_{3}}\left(w_{1}^{\prime}\right)=\emptyset$ else G contains a claw. Yet, there exists r_{1}^{\prime} a neighbor of w_{1}^{\prime} in R_{1} such that either $y-w_{1}-r_{3}-v_{4}-v_{5}-v_{1}-r_{1}^{\prime}-w_{1}^{\prime}=P_{8}$ or $y-w_{1}-r_{3}-v_{4}-v_{5}-v_{1}-r_{1}^{\prime}-w_{1}^{\prime}-y=C_{8}$ (note that $r_{1}^{\prime} r_{3} \notin E$ else G contains a claw). Hence Z_{13} is a clique.

We show that the vertices of Y are leaves. Suppose that y has a neighbor $y^{\prime} \in Y$. If $y^{\prime} w_{1} \notin E$ then $y^{\prime}-y-w_{1}-r_{1}-v_{1}-v_{5}-v_{4}-v_{3}=P_{8}$. Hence $N_{Z}(y)=N_{Z}\left(y^{\prime}\right)$. Since we assume that $N[y] \neq N\left[y^{\prime}\right]$, there exists $v, v \in Y$, such that $v y \in E, v y^{\prime} \notin E$.

From above $w_{1} v \in E$ but $G\left[\left\{r_{1}, w_{1}, y^{\prime}, v\right\}\right]$ is a claw. Thus, Y is an independent set. Now, $N(y) \subseteq Z_{13}$ is a clique. Since for any two vertices $w_{1}, w_{1}^{\prime} \in Z_{13}$ we have $N_{R_{1} \cup R_{3}}\left(w_{1}\right)=N_{R_{1} \cup R_{3}}\left(w_{1}^{\prime}\right)$ we can assume that $N(y)$ can be contracted into an unique vertex. Thus, Y consists of leaves. Hence from property 2.2, we can assume that $Y=\emptyset$.

From now on $Y=\emptyset$. As shown before any two neighbors of Z_{13} have the same neighbors in R, so they can be contracted and we can assume that Z_{13} is an independent set. Moreover, since G is claw-free, for any two distinct $z, z^{\prime} \in Z_{13}, N[z] \cap N\left[z^{\prime}\right]=\emptyset$. Also, recall that the neighbors of each $z, z \in Z_{13}$ induce a clique.

We show how to build a γ-set of G. Recall that $W=Z_{13}$. From Property 2.4 we can assume that $|W| \geq 2$. So there are $w_{1}, w_{1}^{\prime} \in Z_{13}$ with neighbors $r_{1}, r_{1}^{\prime} \in R_{1}$ and $r_{3}, r_{3}^{\prime} \in R_{3}$, respectively. Let $q=\left|Z_{13}\right|$. Clearly, to dominate Z_{13} we must take q vertices. We take r_{1} and r_{3}^{\prime}. Recall that the vertices of R_{1} and R_{3} have the same neighbors in $S \cup C$. Then, we take the $q-2$ vertices of $w \in Z_{13}, w \neq w_{1}, w_{1}^{\prime}$. These q vertices dominate $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\} \cup H_{1} \cup H_{3} \cup Z_{13}$. It remains to dominate some vertices of $H_{2} \cup H_{4} \cup H_{5} \cup S_{3} \cup S_{4} \cup\left\{v_{5}\right\}$. If there exists a vertex $v, v \in S \cup\left\{v_{5}\right\}$, which is universal to these non dominated vertices we take v, else we take the vertices $\left\{v_{2}, v_{5}\right\}$.

Now, we assume that $Z_{i j}=\emptyset$. Hence let $w_{1} \in Z_{1}$. We study the case $R_{3} \neq \emptyset$. Recall then $R_{2}=R_{4}=R_{5}=\emptyset$. Let $w_{3} \in W$ such that w_{3} has a neighbor $r_{3} \in R_{3}$. If $w_{1} w_{3} \in E$ then $w_{1}-w_{3}-r_{3}-v_{4}-v_{5}-v_{1}-r_{1}-w_{1}=C_{7}\left(r_{1} r_{3} \notin E\right.$ else G contains a claw). So Z_{1} is anticomplete to Z_{3}. We assume that w_{1} has a neighbor $v \in Y$. If $v w_{3} \in E$ then $v-w_{3}-r_{3}-v_{4}-v_{5}-v_{1}-r_{1}-w_{1}-v=C_{8}$ else $v-w_{1}-r_{1}-v_{1}-v_{5}-v_{4}-r_{3}-w_{3}=P_{8}$. Hence any neighbor $w_{1}^{\prime}, w_{1}^{\prime} \in W$, of w_{1} is in Z_{1}. From Property [2.1 we can suppose $N\left[w_{1}\right] \neq N\left[w_{1}^{\prime}\right]$. If $w_{1}^{\prime} r_{1} \notin E$ then $w_{1}^{\prime}-w_{1}-r_{1}-v_{1}-v_{5}-v_{4}-r_{3}-w_{3}=P_{8}$. Hence $N_{R}\left(w_{1}\right)=N_{R}\left(w_{1}^{\prime}\right)$. Since G is claw-free, for any $r \in R, N_{W}(r)$ is a clique, thus $N\left[w_{1}\right]=N\left[w_{1}^{\prime}\right]$. So Z_{1} is an independent set. Now, recall that for any pair of vertices $r, r^{\prime} \in R_{i}, 1 \leq i \leq 5$, $N_{S}(r)=N_{S}\left(r^{\prime}\right)$. Hence, when $r, r^{\prime} \in R_{1}$ have a common neighbor in Z_{1}, we have $N[r]=N\left[r^{\prime}\right]$, and so r, r^{\prime} can be contracted. Hence Z_{1} consists of leaves. Also, by symmetry, $W=Z_{1} \cup Z_{3}$ consists of leaves and then from Property 2.2 we have $W=\emptyset$, a contradiction.

Now we focus on $R_{3}=R_{4}=\emptyset$ (note that $Z=Z_{1}$).
We study the case where $H_{2} \neq \emptyset$ or $H_{5} \neq \emptyset$. Let $v \in H_{2}$ (the case $v \in H_{5}$ is symmetric). We have $Y=\emptyset$, else there are $y \in Y, z \in Z_{1}, r \in R_{1}$ such that $v-v_{3}-v_{4}-v_{5}-v_{1}-r-z-y=P_{8}$ (recall $v r \notin E$). So $W=Z=Z_{1}$. Let $w_{1}, w_{2} \in W$. We assume that $w_{1} w_{2} \in E$. From Property 2.1 we can suppose that $N\left[w_{1}\right] \neq N\left[w_{2}\right]$. Let $w_{1} r_{1}, w_{2} r_{2} \in E, r_{1} \neq r_{2}$, such that $w_{1} r_{2} \notin E$. We have $v-v_{3}-v_{4}-v_{5}-v_{1}-r_{2}-w_{2}-w_{1}=P_{8}$. Recall that for any $r \in R, N_{W}(r)$ is a clique, thus $N\left[w_{1}\right]=N\left[w_{2}\right]$. Hence W is an independent set. Moreover, for any $w \in W$ and $r, r^{\prime} \in N(w)$ we know that r and r^{\prime} share the same neighbors in $C \cup S$. Hence W is composed exclusively of leaves. So $W=\emptyset$, a contradiction.

Now we can assume that $H_{2}=H_{5}=\emptyset$. Let $Z_{A} \subset Z, Z_{A}=\left\{w \in W: N_{Y}(w)=\emptyset\right\}$.

We show that each connected component A_{i} of $G\left[Z_{A}\right]$ contains a universal vertex relatively to A_{i}. For contradiction we suppose that there exists $A_{i}, A_{i} \subseteq Z_{A}$ with no universal vertex in it. Assume that $z_{1}-z_{2}-z_{3}-z_{4}=P_{4} \subseteq_{i} A_{i}$. Let $r, r \in R_{1}$, be a neighbor of z_{1} (note that there is a P_{5} from v_{3} to r).
Since G is claw-free $r z_{3}, r z_{4} \notin E$. If $r z_{2} \in E$ then there is a P_{8} from v_{3} to z_{4} else there is a P_{8} from v_{3} to z_{3}. Now, we assume that $z_{1}-z_{2}-z_{3}-z_{4}-z_{1}=C_{4} \subseteq_{i} A_{i}$. Let $r, r \in R_{1}$, be a neighbor of z_{1}. Since G is claw-free we have $r z_{3} \notin E$. If $r z_{2} \in E$ then $r z_{4} \notin E$ else G contains a claw, but $v_{3}-v_{4}-v_{5}-v_{1}-r-z_{2}-z_{3}-z_{4}=P_{8}$. If $r z_{2} \notin E$ then $v_{3}-v_{4}-v_{5}-v_{1}-r-z_{1}-z_{2}-z_{3}=P_{8}$. So A_{i} is $\left(C_{4}, P_{4}\right)$-free. It follows that there are $z_{1}-z_{2}-z_{3}=P_{3} \subseteq_{i} A_{i}$ and $z_{4} \in A_{i}$ such that $z_{4} z_{1}, z_{4} z_{2}, z_{4} z_{3} \notin E$. Also there exists $z \in A_{i}$ such that $z_{2}-z-z_{4}$ and $z z_{1}, z z_{3} \in E$ but $A_{i}\left[\left\{z, z_{1}, z_{3}, z_{4}\right\}\right]$ is a claw, a contradiction. So each A_{i} has a universal vertex. Clearly, for two distinct components A_{i}, A_{j} we have $N_{R_{1}}\left(A_{i}\right) \cap N_{R_{1}}\left(A_{j}\right)=\emptyset$ else there is a claw.

Suppose that $Y \neq \emptyset$. We show that Y is an independent set. Suppose that there are $y, y^{\prime} \in Y$ with $y y^{\prime} \in E$. From Property[2.1] we assume that $N[y] \neq N\left[y^{\prime}\right]$. If $N_{Z_{1}}(y) \neq$ $N_{Z_{1}}\left(y^{\prime}\right)$ then, w.l.o.g, $y w_{1} \in E, y^{\prime} w_{1} \notin E$, but $v_{3}-v_{4}-v_{5}-v_{1}-r_{1}-w_{1}-y-y^{\prime}=P_{8}$. So $N_{Z_{1}}(y)=N_{Z_{1}}\left(y^{\prime}\right)$. There is no vertex $y^{\prime \prime} \in Y$ such that $y y^{\prime \prime} \in E, y^{\prime} y^{\prime \prime} \notin E$, else G contains a claw. Hence Y is an independent set and for any pair of vertices $y, y^{\prime} \in Y$ we have $N(y) \cap N\left(y^{\prime}\right)=\emptyset$.
We show that for any $y \in Y$ its neighborhood $N(y)$ is a clique. For contradiction we assume that y has two neighbors $z_{1}, z_{2} \in Z, z_{1} z_{2} \notin E$. Since G is claw-free z_{1} and z_{2} cannot have a common neighbor in R_{1}. Let $r, r \in R_{1}$, be a neighbor of z_{1}. Then $v_{3}-v_{4}-v_{5}-v_{1}-r-z_{1}-y-z_{2}=P_{8}$. Hence, Y is an independent set, for each $y, y \in Y, N(y)$ is a clique. So we suppose $|N(y)| \geq 2$, else y is a leaf.

We show that we can assume that each connected component A_{i} of $G\left[Z_{A}\right]$ is anticomplete to $N(Y)$. Since Y has no leaves, let $y \in Y$ with two neighbors $z, z^{\prime} \in Z_{1}$ such that $N[z] \neq N\left[z^{\prime}\right]$. Suppose that there exists $u \in Z_{A}$ a neighbor of z. First, we assume that $N_{R}(z) \neq N_{R}\left(z^{\prime}\right)$. W.l.o.g. let $r, r^{\prime} \in R_{1}$ be respectively the neighbors of z, z^{\prime} such that $r^{\prime} z, r z^{\prime} \notin E$. If $u z^{\prime} \notin E$ then $u r^{\prime} \notin E$ else G contains a claw, but then $u-z-z^{\prime}-r^{\prime}-v_{1}-v_{5}-v_{4}-v_{3}=P_{8}$. Hence $u z^{\prime}, r^{\prime} u \in E$ but $y-z-u-r^{\prime}-v_{1}-v_{5}-v_{4}-v_{3}=P_{8}$. So $N_{R}(z)=N_{R}\left(z^{\prime}\right)$. Second, we assume that $N_{Z}[z] \neq N_{Z}\left[z^{\prime}\right]$. W.l.o.g. $u z^{\prime} \notin E$. Let $r \in R_{1}$ a neighbor of both z, z^{\prime}. Clearly $r u \notin E$ else G contains a claw, but $G[\{r, u, y, z\}]$ is a claw. So we can assume that each A_{i} is anticomplete to $N(Y)$.

We construct a γ-set as follows:
Let $q=|Y|$ and k be the number of connected components of Z_{A}. Clearly, q vertices are necessary to dominate Y. So for each $y_{i} \in Y$ we will take one of its neighbor as follows. Let us denote $R_{1}\left(y_{i}\right)=N_{R_{1}}\left(N\left(y_{i}\right)\right)$. If y_{i} has a neighbor z_{i} which is complete to $R_{1}\left(y_{i}\right)$ then we take z_{i}, else we take any arbitrary neighbor of y_{i} (recall that in both cases these y_{i} have the same neighbors in Z). These q vertices dominate $Y \cup\left(Z \backslash Z_{A}\right)$ and some of the vertices in $R_{1}(Y)$.
Now k vertices are necessary to dominate Z_{A}. For each component $A_{i} \subset Z_{A}$ we do as follows. If there exists $r \in R_{1}$ which is complete to A_{i} we take r into the γ-set (case a), else we take one universal vertex of A_{i} (case b) (recall that in both cases
these r have the same neighbors in S).
These k vertices dominate $Z_{A} \cup H_{1} \cup\left\{v_{1}, v_{2}\right\}$ if at least one vertex is chosen in the case a, else they dominate Z_{A}.

Case where at least one vertex is chosen with the case $a: v_{3}, v_{4}, v_{5}$ are not dominated with the $q+k$ already chosen vertices (H_{1} is complete thus $r \in R_{1}$ dominates $H_{1} \cup\left\{v_{1}, v_{2}\right\}$). So a dominating set of G has size at least $q+k+1$. Adding the two vertices v_{3} and v_{5}, we have a dominating set (not necessarily minimum). Checking if there exists a vertex $v \in C \cup S$, that is universal to the remaining non-dominated vertices, can be done in polynomial-time.

Case where all the vertices are chosen with the case b : it remains to dominate C_{5} and some vertices of $S_{2} \cup S_{3} \cup S_{4}$. So a dominating set of G has a size at least $q+k+1$. Adding the three vertices v_{1}, v_{3}, v_{5}, we have a dominating set (not necessarily minimum). If there exists a vertex $v \in S_{5}$ that is universal to the remaining non-dominated vertices we take it. If no such vertex exists, checking for all the pairs $\left\{v, v^{\prime}\right\} \subset N\left[C_{5}\right]$, one can verify if there exists a γ-set with $q+k+2$ vertices (note that there are at most $O\left(n^{2}\right)$ of such pairs).

Lemma 5.6 Let G be a connected (claw, $C_{5}, C_{6}, C_{7}, C_{8}, P_{8}$)-free graph. Computing a minimum dominating set is polynomial-time solvable.

Proof: From Lemma 5.4 we can assume that $P_{7} \subseteq_{i} G$. Let $P=v_{1}-v_{2}-v_{3}-v_{4}-$ $v_{5}-v_{6}-v_{7}$.
Let $W=V \backslash N[P]$. From Property 2.3 if $W=\emptyset$ computing a minimum dominating set is polynomial. From now on $W \neq \emptyset$.
Let $S=\{v \in V \backslash P$ such that $2 \leq|N(v) \cap P| \leq 4\}, S_{i} \subseteq S$ being the set of vertices v such that $|N(v) \cap P|=i$.
Let $H_{i}=\left\{v \in S_{2}: N(v) \cap P=\left\{v_{i}, v_{i+1}\right\}, 1 \leq i \leq 6\right\}$. Since G is claw-free each H_{i} is complete. If there is an edge $r_{i} r_{i+1}$ with $r_{i} \in H_{i}, r_{i+1} \in H_{i+1}$ then $P=v_{1}-\cdots-v_{i}-r_{i}-r_{i+1}-v_{i+2}-\cdots-v_{7}=P_{8}$. If there is an edge $r_{i} r_{j}$ with $r_{i} \in H_{i}, r_{j} \in H_{j}$ and $j \geq i+3$ then $C_{p} \subseteq_{i} G, p \geq 5$. So H_{1} is anticomplete to $H_{2}, H_{4}, H_{5}, H_{6}$, and H_{2} is anticomplete to H_{3}, H_{5}, H_{6}, and H_{3} is anticomplete to H_{4}, H_{6}.

We define R_{i} as the set of vertices of H_{i} having a neighbor in $W, R_{i}=\left\{v \in H_{i}\right.$: $N(v) \cap W \neq \emptyset\}, 1 \leq i \leq 6$. Since G is P_{8}-free $R_{1}=R_{6}=\emptyset$.

Let $w \in W$. We show that there cannot exist three indices $1 \leq i<j<k \leq 6$ such that w has three neighbors $r_{i} \in R_{i}, r_{j} \in R_{j}, r_{k} \in R_{k}$. Suppose for contradiction that these three neighbors of w exist. Since $R_{1}=R_{6}=\emptyset$ then $2 \leq i<j<k \leq 5$. Since G is claw-free and H_{p} is anticomplete to H_{p+1}, these three indices cannot be successive. So w.l.o.g. we can assume that $i=2, j=4, k=5$. Now H_{2} is anticomplete to H_{5}, but $v_{3}-r_{2}-w-r_{5}-v_{5}-v_{4}-v_{3}=C_{6}$. Hence for any $w \in W$ there is at most two neighbors r_{i}, r_{j} such that $r_{i} \in R_{i}, r_{j} \in R_{j}, i \neq j$.
If w has two neighbors $r_{i} \in R_{i}, r_{j} \in R_{j}, i<j$, then either $r_{i} \in R_{2}, r_{j} \in R_{4}$ or $r_{i} \in$ $R_{3}, r_{j} \in R_{5}$ (recall that H_{i} is anticomplete to $H_{i+1}, H_{p}, p \geq i+3$ and $R_{1}=R_{6}=\emptyset$).

If w has two neighbors $r_{i} \in R_{2}, r_{j} \in R_{4}$, respectively $r_{i} \in R_{3}, r_{j} \in R_{5}$, then $r_{i} r_{j} \in E$, else $w-r_{j}-v_{4}-v_{3}-r_{i}-w=C_{5} \subseteq_{i} G$, respectively $w-r_{j}-v_{5}-v_{4}-r_{i}-w=C_{5} \subseteq_{i} G$. Let $Z_{24}=\left\{w \in W: w\right.$ has two neighbors $\left.r_{2} \in R_{2}, r_{4} \in R_{4}\right\}$ and $Z_{35}=\{w \in W$: w has two neighbors $\left.r_{3} \in R_{3}, r_{5} \in R_{5}\right\}$.
We show that Z_{24} is anticomplete to Z_{35}. For contradiction we suppose that there are $w_{1} \in Z_{24}, w_{2} \in Z_{35}$ with $w_{1} w_{2} \in E$. Let $r_{1} \in R_{2}$ be a neighbor of w_{1} and $r_{2} \in R_{5}$ be a neighbor of w_{2}. Since $r_{1} r_{2} \notin E$ we have $w_{1}-r_{1}-v_{3}-v_{4}-v_{5}-v_{6}-r_{2}-w_{2}-w_{1}=C_{8}$. We show that we can assume that Z_{24} and Z_{35} are two independent sets. The two sets being symmetric we show that Z_{24} is an independent set. For contradiction we assume that there are $w_{1}, w_{2} \in Z_{24}$ such that $w_{1} w_{2} \in E$. We prove that $N_{R_{2}}\left(w_{1}\right)=$ $N_{R_{2}}\left(w_{2}\right)$. If $N_{R_{2}}\left(w_{1}\right) \neq N_{R_{2}}\left(w_{2}\right)$ then there exist $r_{2} \in R_{2}$ which is a neighbor of w_{1} but not a neighbor of w_{2}. Then $w_{2}-w_{1}-r_{2}-v_{3}-\cdots-v_{7}=P_{8}$. We prove that $N_{R_{4}}\left(w_{1}\right)=N_{R_{4}}\left(w_{2}\right)$. If $N_{R_{4}}\left(w_{1}\right) \neq N_{R_{4}}\left(w_{2}\right)$ then there exists $r_{4} \in R_{4}$ which is a neighbor of w_{1} but not a neighbor of w_{2}. There exists $r_{2} \in R_{2}$ a neighbor of w_{1} and w_{2}. We know that $r_{2} r_{4} \in E$. It follows that $G\left[\left\{v_{2}, r_{2}, r_{4}, w_{2}\right\}\right]$ is a claw. Hence $N_{R_{2}}\left(w_{1}\right)=N_{R_{2}}\left(w_{2}\right)$ and $N_{R_{4}}\left(w_{1}\right)=N_{R_{4}}\left(w_{2}\right)$. From Property 2.1 we can assume that there exists $s \notin R_{2} \cup R_{4}$ such that s is a neighbor of w_{1} but not a neighbor of w_{2}. Let $r_{2} \in R_{2}$ a neighbor of w_{1} and w_{2}. If $s r_{2} \notin E$ then $s-w_{1}-r_{2}-v_{3}-\cdots-v_{7}=P_{8}$. When $s r_{2} \in E$ then $G\left[\left\{v_{2}, r_{2}, s, w_{2}\right\}\right]$ is a claw. Hence Z_{24} is an independent and by symmetry Z_{35} is also independent.
Moreover, since G is claw-free for any two distinct $w, w^{\prime} \in Z_{24} \cup Z_{35}$ we have $N(w) \cap$ $N\left(w^{\prime}\right)=\emptyset$.
For any two distinct $w, w^{\prime} \in Z_{24}$, respectively $w, w^{\prime} \in Z_{35}$ we have that $N_{R_{2}}(w)$ is anticomplete to $N_{R_{4}}\left(w^{\prime}\right)$ and $N_{R_{4}}(w)$ is anticomplete to $N_{R_{2}}\left(w^{\prime}\right)$, respectively $N_{R_{3}}(w)$ is anticomplete to $N_{R_{5}}\left(w^{\prime}\right)$ and $N_{R_{5}}(w)$ is anticomplete to $N_{R_{3}}\left(w^{\prime}\right)$. For contradiction we assume that w has a neighbor $r_{2} \in R_{2}$, w^{\prime} has a neighbor $r_{4} \in R_{4}$, and $r_{2} r_{4} \in E$. Then $G\left[\left\{v_{2}, r_{2}, w, r_{4}\right\}\right]$ is a claw.

Let $Z_{i}=\left\{w \in W: w\right.$ has a neighbor in $R_{i} \backslash\left(N_{R_{i}}\left(Z_{24} \cup Z_{35}\right)\right\}, 2 \leq i \leq 5$.
We show that $Z_{2}, Z_{3}, Z_{4}, Z_{5}$ are pairwise anticomplete. If there is an edge $w_{2} w_{4}, w_{2} \in$ $Z_{2}, w_{4} \in Z_{4}$, with $r_{2}^{\prime} \in R_{2}, r_{4}^{\prime} \in R_{4}$ the neighbors of w_{2}, w_{4} respectively, then $w_{2}-r_{2}^{\prime}-v_{3}-v_{4}-r_{4}^{\prime}-w_{4}-w_{2}=C_{6}\left(r_{2}^{\prime} r_{4}^{\prime} \notin E\right.$ else $G\left[\left\{v_{2}, r_{2}^{\prime}, w_{2}, r_{4}^{\prime}\right\}\right]$ is a claw $)$. By symmetry there is no edges between Z_{3}, Z_{5}. If there is an edge $w_{2} w_{5}, w_{2} \in$ $Z_{2}, w_{5} \in Z_{5}$, with $r_{2}^{\prime} \in R_{2}, r_{5}^{\prime} \in R_{5}$ the neighbors of w_{2}, w_{5} respectively, then $w_{2}-r_{2}^{\prime}-v_{3}-v_{4}-v_{5}-r_{5}^{\prime}-w_{5}-w_{2}=C_{7}$ (remember $\left.r_{2}^{\prime} r_{5}^{\prime} \notin E\right)$. If there is an edge $w_{4} w_{5}, w_{4} \in Z_{4}, w_{5} \in Z_{5}$, with $r_{4}^{\prime} \in R_{4}, r_{5}^{\prime} \in R_{5}$ the neighbors of w_{4}, w_{5} respectively, then $w_{4}-r_{4}^{\prime}-v_{5}-r_{5}^{\prime}-w_{5}-w_{4}=C_{5}$ (recall $r_{4}^{\prime} r_{5}^{\prime} \notin E$). By symmetry there is no edges between Z_{2}, Z_{3}.

Let $Y=W \backslash\left(Z_{2} \cup Z_{3} \cup Z_{4} \cup Z_{5} \cup Z_{24} \cup Z_{35}\right)$. One can observe that for any $w \in Y$ we have $N_{Z_{2}}(w)=N_{Z_{5}}(w)=N_{Z_{24}}(w)=N_{Z_{35}}(w)=\emptyset$ else $P_{8} \subseteq_{i} G$. Now, if $w \in Y$ has two neighbors $w_{3} \in Z_{3}, w_{4} \in Z_{4}$ then $C_{6} \subseteq_{i} G$.
Hence $Y=Y_{3} \cup Y_{4}$ with $Y_{3} \cap Y_{4}=\emptyset, Y_{3}=\left\{w \in Y: w\right.$ has a neighbor in $\left.Z_{3}\right\}, Y_{4}=$ $\left\{w \in Y: w\right.$ has a neighbor in $\left.Z_{4}\right\}$. Moreover Y_{3} is anticomplete to Y_{4} else $C_{7} \subseteq_{i} G$.

We show that we can assume that $Z_{2}, Z_{5}, Y_{3}, Y_{4}$ are four independent sets. The arguments are the same for the four sets, so we show that Z_{2} is an independent set.

For contradiction we assume that there are $w_{1}, w_{2} \in Z_{2}$ such that $w_{1} w_{2} \in E$. We prove that $N_{R_{2}}\left(w_{1}\right)=N_{R_{2}}\left(w_{2}\right)$. If $N_{R_{2}}\left(w_{1}\right) \neq N_{R_{2}}\left(w_{2}\right)$ then there exists $r_{2} \in R_{2}$ which is a neighbor of w_{1} but not a neighbor of w_{2}. Then $w_{2}-w_{1}-r_{2}-v_{3}-\cdots-v_{7}=$ P_{8}. Since $N\left(w_{1}\right), N\left(w_{2}\right) \subseteq Z_{2} \cup R_{2}$ the result is obtained from Property [2.1. Hence $Z_{2}, Z_{5}, Y_{3}, Y_{4}$ are independent.
Since G is claw-free then for any two distinct vertices $w_{1}, w_{2} \in Z_{2} \cup Z_{5} \cup Y_{3} \cup Y_{4}$ we have $N\left(w_{1}\right) \cap N\left(w_{2}\right)=\emptyset$.
We prove that for any $w \in Y_{3} \cup Y_{4}, N(w)$ is a clique. The two cases being symmetric, let $w \in Y_{4}$. Suppose there are s, s^{\prime} two non adjacent vertices in $N(w)$. Since G is claw-free s, s^{\prime} cannot have a common neighbor in R_{4}. Let $r \in R_{4}$ be a neighbor of s. Then $s^{\prime}-w-s-r-v_{4}-v_{3}-v_{2}-v_{1}=P_{8}$.

Since G is claw-free, if there are a vertex $r \in R_{i}$ with a neighbor $z \in Z_{i}$ and a vertex $s \in S$ such as $s z \notin E$ and $v_{i} \notin N(s)$ then G contains a claw (note that $v_{i+1} \notin N(s)$ is symmetric). Hence $N\left(Z_{i}\right)$ is anticomplete to $H_{j}, j \neq i$.

We show that we can assume that $Z_{2}=Z_{5}=\emptyset$. The arguments are the same in the two cases, so we consider Z_{2}. Let $r, r^{\prime} \in R_{2}$ be two neighbors of $w \in Z_{2}$. From previous arguments, $N(w)$ is complete to H_{2} but anticomplete to $H_{1}, H_{3}, H_{4}, H_{5}, H_{6}$. Hence, it remains the case where $N_{S_{3} \cup S_{4}}(r) \neq N_{S_{3} \cup S_{4}}\left(r^{\prime}\right)$. Suppose that $N_{S_{3} \cup S_{4}}(r) \neq$ $N_{S_{3} \cup S_{4}}\left(r^{\prime}\right)$. Let $s \in S_{3} \cup S_{4}$ such as $r s \in E$ but $r^{\prime} s \notin E$. If $\left\{v_{2}, v_{3}\right\} \not \subset N_{P}(s)$ then $G\left[\left\{r, s, v_{2}, w\right\}\right]$ or $G\left[\left\{r, s, v_{3}, w\right\}\right]$ is a claw. So $\left\{v_{2}, v_{3}\right\} \subset N_{P}(s)$. If $v_{1} \notin N_{P}(s)$, respectively $v_{4} \notin N_{P}(s)$, then $G\left[\left\{r^{\prime}, s, v_{1}, v_{2}\right\}\right]$, respectively $G\left[\left\{r^{\prime}, s, v_{3}, v_{4}\right\}\right]$, is a claw. Hence $N_{P}(s)=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ but $G\left[\left\{r, s, v_{1}, v_{4}\right\}\right]$ is a claw. Hence, $N[r]=N\left[r^{\prime}\right]$. From Property 2.1 we can contract $r r^{\prime}$. Then w is a leaf and by Property 2.2, w can be deleted from G.

Now we study the structures of Z_{3} and Z_{4}. The two cases being symmetric we deal with Z_{4}. For any distinct vertices $w_{1}, w_{2} \in Z_{4}$ such that $w_{1} w_{2} \in E$, then there cannot exist two distinct vertices $w_{1}^{\prime}, w_{2}^{\prime} \in Z_{4}$ such that $w_{1}^{\prime} w_{1} \in E, w_{1}^{\prime} w_{2} \notin E$ and $w_{2}^{\prime} w_{2} \in E, w_{2}^{\prime} w_{1} \notin E$. For contradiction we suppose that such two vertices exist. Firstly, we suppose that w_{1}, w_{2} have two distinct neighbors $r_{1}, r_{2} \in R_{4}$, respectively. If $w_{1}^{\prime} r_{2} \notin E$ then $v_{1}-v_{2}-v_{3}-v_{4}-r_{2}-w_{2}-w_{1}-w_{1}^{\prime}=P_{8}$. If $w_{1}^{\prime} r_{2} \in E$ then $G\left[\left\{v_{4}, r_{2}, w_{2}, w_{1}^{\prime}\right\}\right]$ is a claw. Secondly, w.l.o.g., $r_{1} \in R_{4}$ is a common neighbor of w_{1}, w_{2} and $r_{2} \in R_{4}$ is a neighbor of w_{2} but not w_{1}. If $w_{1}^{\prime} r_{2} \notin E$ then $v_{1}-v_{2}-v_{3}-v_{4}-r_{2}-w_{2}-w_{1}-w_{1}^{\prime}=P_{8}$ else $G\left[\left\{v_{4}, r_{2}, w_{2}, w_{1}^{\prime}\right\}\right]$ is a claw. Finally, $r_{1}, r_{2} \in R_{4}$ are two common neighbors of w_{1}, w_{2} (r_{1}, r_{2} are not necessarily distinct). If, w.l.o.g., $w_{1}^{\prime} r_{1} \in E$ then $G\left[\left\{v_{4}, r_{1}, w_{2}, w_{1}^{\prime}\right\}\right]$ is a claw. In the case where $w_{1}^{\prime} r_{1}, w_{1}^{\prime} r_{2} \notin$ E then w_{1}^{\prime} has a neighbor $r_{1}^{\prime} \in R_{4}, r_{1}^{\prime} \neq r_{1}, r_{2}$. If $r_{1}^{\prime} w_{2} \in E$ then $G\left[\left\{v_{4}, r_{1}^{\prime}, w_{2}, w_{1}^{\prime}\right\}\right]$ is a claw. So $r_{1}^{\prime} w_{2} \notin E$. If $r_{1}^{\prime} w_{1} \notin E$ then $v_{1}-v_{2}-v_{3}-v_{4}-r_{1}^{\prime}-w_{1}^{\prime}-w_{1}-w_{2}=P_{8}$. Thus $r_{1}^{\prime} w_{1} \in E$. If $r_{1}^{\prime} w_{2}^{\prime} \notin E$ then $v_{1}-v_{2}-v_{3}-v_{4}-r_{1}^{\prime}-w_{1}-w_{2}-w_{2}^{\prime}=P_{8}$. So $r_{1}^{\prime} w_{2}^{\prime} \in E$ but $G\left[\left\{v_{4}, r_{1}^{\prime}, w_{1}, w_{2}^{\prime}\right\}\right]$ is a claw.
As a consequence each connected component A_{i} of $Z_{3} \cup Z_{4}$ has a universal vertex. Also, G being claw-free two distinct components cannot share a neighbor in $R_{3} \cup R_{4}$. Moreover, from Property 2.2 we have assumed that each $w_{4} \in Z_{3} \cup Z_{4}$ is not a leaf.

We show that $w \in Y_{3} \cup Y_{4}$ is connected to a universal vertex of a connected compo-
nent A_{i} of $Z_{3} \cup Z_{4}$. The two cases being symmetric, we deal with Z_{4}. Let $w \in Z_{4}$. We assume that the neighbors of w are not universal in A_{i}. Let $s \in A_{i}$ be a neighbor of w, let $u, u \neq s$, be a universal vertex of A_{i}. Since s is not universal there exists $v, v \in A_{i}$ such that $s v \notin E$ and $u v \in E$. Since $N(w)$ is complete $w v \notin E$. Let $r \in R_{4}$ be a neighbor of s. Since G is claw-free then $r v \notin E$. Let $r^{\prime}, r^{\prime} \in R_{4}, r^{\prime} \neq r$, be a neighbor of v. As just above $r^{\prime} s \notin E$. If $r^{\prime} u \notin E$ then $v_{1}-v_{2}-v_{3}-v_{4}-r^{\prime}-v-u-s=P_{8}$ else $v_{1}-v_{2}-v_{3}-v_{4}-r^{\prime}-u-s-w=P_{8}$.

We are ready to show how to build a γ-set in polynomial time.
First, we treat the case where $Z_{24} \neq \emptyset$ (the case $Z_{35} \neq \emptyset$ is the same). Let $r_{2} \in$ $R_{2}, r_{4} \in R_{4}$ be the two neighbors of $w, w \in Z_{24}$. Recall that $N\left(Z_{24}\right) \subseteq R_{2} \cup R_{4}$.
We show that $R_{3}=\emptyset$. Assume that there exists $w^{\prime} \in W$ with a neighbor $r_{3} \in H_{3}$ (that is $R_{3} \neq \emptyset$). w w^{\prime} cannot be a neighbor of r_{2} or r_{4}. Then $w^{\prime}-r_{3}-v_{3}-r_{2}-r_{4}-$ $v_{5}-v_{6}-v_{7}=P_{8}$.
An immediate consequence is that $Z_{35}=\emptyset$.
There is no vertex $w^{\prime}, w^{\prime} \in W$, with r_{2} as a neighbor: else $G\left[\left\{v_{2}, r_{2}, r_{4}, w^{\prime}\right\}\right]$ is a claw. By symmetry, there is no vertex $w^{\prime}, w^{\prime} \in W$, with r_{4} as a neighbor.

Let $r_{2} \in R_{2}, r_{2}^{\prime} \in R_{2}, r_{2} \neq r_{2}^{\prime}$ be such that r_{2}, respectively r_{2}^{\prime}, has a neighbor $w \in Z_{24}$, respectively $w^{\prime} \in Z_{24}$. Let $r_{4} \in R_{4}, r_{4}^{\prime} \in R_{4}, r_{4} \neq r_{4}^{\prime}$ be such that r_{4}, respectively r_{4}^{\prime}, has w, respectively w^{\prime}, as neighbor. We show that $N_{S \backslash H_{4}}\left(r_{2}\right)=N_{S \backslash H_{4}}\left(r_{2}^{\prime}\right)$, respectively $N_{S \backslash H_{2}}\left(r_{4}\right)=N_{S \backslash H_{2}}\left(r_{4}^{\prime}\right)$.
Let $i=2$ (the case $i=4$ is symmetric). By contradiction, we assume that there exists $s \in S \backslash H_{4}$ such that $r_{2} s \in E, r_{2}^{\prime} s \notin E$. From above $s \notin S_{2}$. So $s \in S_{3} \cup S_{4}$. If $N_{P}(s)=\left\{v_{1}, v_{2}, v_{3}\right\}$ then $G\left[\left\{r_{2}^{\prime}, v_{3}, v_{4}, s\right\}\right]$ is a claw. When $N_{P}(s)=$ $\left\{v_{2}, v_{3}, v_{4}\right\}$ then $G\left[\left\{r_{2}^{\prime}, v_{1}, v_{2}, s\right\}\right]$ is a claw. When $N_{P}(s)=\left\{v_{j}, v_{j+1}, v_{j+2}\right\}, j \geq 3$, then $G\left[\left\{r_{2}, w, v_{2}, s\right\}\right]$ is a claw. Thus $s \in S_{4}$. When $N_{P}(s)=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ then $G\left[\left\{r_{2}, v_{1}, v_{4}, s\right\}\right]$ is a claw. When $N_{P}(s)=\left\{v_{1}, v_{2}, v_{j}, v_{j+1}\right\}, j \geq 4$, then $G\left[\left\{r_{2}, v_{1}, v_{j}, s\right\}\right]$ is a claw. When $N_{P}(s)=\left\{v_{2}, v_{3}, v_{j}, v_{j+1}\right\}, j \geq 4$, then $G\left[\left\{r_{2}^{\prime}, v_{1}, v_{2}, s\right\}\right]$ is a claw. When $N_{P}(s)=\left\{v_{j}, v_{j+1}, v_{j^{\prime}}, v_{j^{\prime}+1}\right\}, j \geq 3, j^{\prime} \geq j+2$ then $G\left[\left\{r_{2}, w, v_{2}, s\right\}\right]$ is a claw. Hence $N_{S \backslash H_{4}}\left(r_{2}\right)=N_{S \backslash H_{4}}\left(r_{2}^{\prime}\right)$ and $N_{S \backslash H_{2}}\left(r_{4}\right)=N_{S \backslash H_{2}}\left(r_{4}^{\prime}\right)$.

Let $r_{4} \in R_{4}, r_{4}^{\prime} \in R_{4}, r_{4} \neq r_{4}^{\prime}$ be such that r_{4}, respectively r_{4}^{\prime}, has a neighbor $w \in Z_{4}$, respectively $w^{\prime} \in Z_{4}$. We show that $N_{S}\left(r_{4}\right)=N_{S}\left(r_{4}^{\prime}\right)$.
By contradiction, we assume that there exists $s \in S$ such that $r_{4} s \in E, r_{4}^{\prime} s \notin E$. From above $s \notin H_{1} \cup H_{3} \cup H_{4} \cup H_{5}$. So $s \in H_{2} \cup H_{6} \cup S_{3} \cup S_{4}$. If $s \in H_{2}$ or $s \in H_{6}$ then $G\left[\left\{v_{4}, w, r_{4}, s\right\}\right]$ is a claw. So $s \in S_{3} \cup S_{4}$. If $N_{P}(s)=\left\{v_{1}, v_{2}, v_{3}\right\}$ then $G\left[\left\{v_{1}, v_{3}, r_{4}, s\right\}\right]$ is a claw. If $N_{P}(s)=\left\{v_{2}, v_{3}, v_{4}\right\}$ then $G\left[\left\{v_{5}, w, r_{4}, s\right\}\right]$ is a claw. If $N_{P}(s)=\left\{v_{3}, v_{4}, v_{5}\right\}$ then $G\left[\left\{v_{5}, v_{6}, r_{4}^{\prime}, s\right\}\right]$ is a claw. If $N_{P}(s)=\left\{v_{4}, v_{5}, v_{6}\right\}$ then $G\left[\left\{v_{3}, v_{4}, r_{4}^{\prime}, s\right\}\right]$ is a claw. When $N_{P}(s)=\left\{v_{5}, v_{6}, v_{7}\right\}$ then $G\left[\left\{v_{4}, w, r_{4}, s\right\}\right]$ is a claw. Thus $s \in S_{4}$. When $N_{P}(s)=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ then $G\left[\left\{r_{4}, v_{1}, v_{3}, s\right\}\right]$ is a claw. When $N_{P}(s)=\left\{v_{2}, v_{3}, v_{4}, v_{5}\right\}$ then $G\left[\left\{r_{4}^{\prime}, v_{5}, v_{6}, s\right\}\right]$ is a claw. When $N_{P}(s)=$ $\left\{v_{3}, v_{4}, v_{5}, v_{6}\right\}$ then $G\left[\left\{r_{4}, v_{3}, v_{6}, s\right\}\right]$ is a claw. When $N_{P}(s)=\left\{v_{4}, v_{5}, v_{6}, v_{7}\right\}$ then $G\left[\left\{r_{4}^{\prime}, v_{3}, v_{4}, s\right\}\right]$ is a claw. When $N_{P}(s)=\left\{v_{1}, v_{2}, v_{6}, v_{7}\right\}$ or $N_{P}(s)=\left\{v_{2}, v_{3}, v_{6}, v_{7}\right\}$ then $G\left[\left\{r_{4}, v_{2}, v_{6}, s\right\}\right]$ is a claw. When $N_{P}(s)=\left\{v_{3}, v_{4}, v_{6}, v_{7}\right\}$ then $G\left[\left\{r_{4}, v_{3}, v_{6}, s\right\}\right]$ is a claw. When $N_{P}(s)=\left\{v_{1}, v_{2}, v_{5}, v_{6}\right\}$ or $N_{P}(s)=\left\{v_{2}, v_{3}, v_{5}, v_{6}\right\}$ then $G\left[\left\{r_{4}, v_{2}, v_{6}, s\right\}\right]$ is a claw. When $N_{P}(s)=\left\{v_{1}, v_{2}, v_{4}, v_{5}\right\}$ then $G\left[\left\{r_{4}^{\prime}, v_{5}, v_{6}, s\right\}\right]$ is a claw. Hence
$N_{S}\left(r_{4}\right)=N_{S}\left(r_{4}^{\prime}\right)$. By symmetry, for $r_{2} \in R_{2}, r_{2}^{\prime} \in R_{2}, r_{2} \neq r_{2}^{\prime}$ such that r_{2}, respectively r_{2}^{\prime}, has a neighbor $w \in Z_{2}$, respectively $w^{\prime} \in Z_{2}$ we have $N_{S}\left(r_{2}\right)=N_{S}\left(r_{2}^{\prime}\right)$.

The γ-set is build as follows:

- $\left|Z_{24}\right| \geq 2$. We take $r_{2} \in R_{2}$ a neighbor of w, and for each other $w^{\prime} \in Z_{24}$ we take one adjacent vertex $r_{4}^{\prime} \in R_{4}$. For each $w^{\prime} \in Y_{4}$ we take one universal vertex in the connected component A_{i} of Z_{4} connected to w^{\prime}. For each connected component A_{i} of Z_{4} that is not connected with Y_{4}, we take one universal vertex of A_{i}. These vertices dominate $Z_{24} \cup Y_{4} \cup Z_{4} \cup H_{2} \cup H_{4} \cup\left\{v_{2}, v_{3}, v_{4}, v_{5}\right\}$. Since v_{1}, v_{7} have no common neighbor at least two more vertices are needed. Adding the three vertices v_{2}, v_{4}, v_{6} we have a dominating set (not necessarily minimum). Checking for all the pairs s_{1}, s_{7} where s_{i} is a neighbor of $v_{i}, i \in$ $\{1,7\}$, one can verify if there is a γ-set with only two more vertices (note that there are at most $O\left(n^{2}\right)$ such pairs).
- $\left|Z_{24}\right|=1$. For each $w^{\prime} \in Y_{4}$ we take one universal vertex in the connected component A_{i} of Z_{4} connected to w^{\prime}. If there exists a vertex $r \in R_{4}$ complete to a component A_{i} of Z_{4} that is not connected to Y_{4} then we take r. For each remaining component A_{i} of Z_{4} that is not connected to Y_{4}, we take one universal vertex of A_{i}. These vertices dominate $Y_{4} \cup Z_{4}$ (note that H_{2}, H_{4} are not necessarily dominated). Since v_{1}, v_{7}, w have no common neighbor at least three more vertices are needed. Adding the four vertices v_{2}, v_{4}, v_{6}, w we have a dominating set (not necessarily minimum). Checking for all the pairs s_{1}, s_{7} where s_{i} is a neighbor of $v_{i}, i \in\{1,7\}$, if there is a dominating set by adding s_{1}, s_{7}, r_{4} or s_{1}, s_{7}, r_{2}, one can verify if there is a γ-set with only three more vertices (note that there are at most $O\left(n^{2}\right)$ such pairs).

In the case of $Z_{24}=Z_{35}=\emptyset$, we build the γ-set as follows:

- $Y_{3}, Y_{4} \neq \emptyset$. For each $w \in Y_{3} \cup Y_{4}$ we take one universal vertex in the connected component A_{i} of $Z_{3} \cup Z_{4}$ connected to w. If there exists $r_{4} \in R_{4}$ which is complete to a component A_{i} of Z_{4} that is not connected to $Y_{3} \cup Y_{4}$ then, we take r_{4}. We do the same for the component of Z_{3} with no neighbors in Y_{3}. For each remaining connected component A_{i} of $Z_{3} \cup Z_{4}$ that is not connected to $Y_{3} \cup Y_{4}$, we take one universal vertex of A_{i}. These vertices dominate $Y_{3} \cup Z_{3} \cup Y_{4} \cup Z_{4}$ (note that H_{2}, H_{4} are not necessarily dominated). Since v_{1}, v_{7} have no common neighbor at least two more vertices are needed. Adding the three vertices v_{2}, v_{4}, v_{6} we have a dominating set (not necessarily minimum). Checking for all the pairs s_{1}, s_{7} where s_{i} is a neighbor of $v_{i}, i \in\{1,7\}$, one can verify if there is a γ-set with only two more vertices (note that there are at most $O\left(n^{2}\right)$ such pairs).
- $Y_{3} \neq \emptyset, Y_{4}=\emptyset$ or $Y_{4} \neq \emptyset, Y_{3}=\emptyset$. The two cases being symmetric, let $Y_{4}=\emptyset$.
$-Z_{4} \neq \emptyset$. For each $w \in Y_{3}$ we take one universal vertex in the connected component A_{i} of Z_{3} connected to w. If there exists $r_{4} \in R_{4}$ which is complete to A_{i}, a connected component of Z_{4}, then we take r_{4}. If there exists $r_{3} \in R_{3}$ which is complete to a connected component A_{j} of Z_{3} with
no neighbors in Y_{3}, then we take r_{3}. Now, we take one universal vertex for each other component $A_{l}, A_{l} \neq A_{i}, A_{j}$, of $Z_{3} \cup Z_{4}$. These vertices dominate $Y_{3} \cup Z_{3} \cup Z_{4}$. Since v_{1}, v_{7} have no common neighbor at least two more vertices are needed. Adding the three vertices v_{2}, v_{4}, v_{6} we have a dominating set (not necessarily minimum). Checking for all the pairs s_{1}, s_{7} where s_{i} is a neighbor of $v_{i}, i \in\{1,7\}$, one can verify if there is a γ-set with only two more vertices (note that there are at most $O\left(n^{2}\right)$ such pairs).
$-Z_{4}=\emptyset$. For each $w \in Y_{3}$ we take one universal vertex in the connected component A_{i} of Z_{3} connected to w. If there exists $r_{3} \in R_{3}$ which is complete to a connected component A_{i} of Z_{3} with no neighbors in Y_{3}, then we take r_{3}. Now, we take one universal vertex for each other component A_{i} of Z_{3}. Adding the vertices v_{2}, v_{4}, v_{6} we have a dominating set (not necessarily minimum). Checking for all the pairs s_{1}, s_{7} where s_{i} is a neighbor of $v_{i}, i \in\{1,7\}$, one can verify if there is a γ-set with only two more vertices.
- $Y_{3}, Y_{4}=\emptyset$.
$-Z_{3}, Z_{4} \neq \emptyset$. If there exists $r_{4} \in R_{4}$, respectively $r_{3} \in R_{3}$, which is complete to A_{i}, a connected component of Z_{4}, respectively Z_{3}, then we take r_{4}, respectively r_{3}. For each remaining component of $Z_{3} \cup Z_{4}$ we take one universal vertex. Adding the vertices v_{2}, v_{4}, v_{6} we have a dominating set (not necessarily minimum). Checking for all the pairs s_{1}, s_{7} where s_{i} is a neighbor of $v_{i}, i \in\{1,7\}$, one can verify if there is a γ-set with only two more vertices.
$-Z_{3} \neq \emptyset, Z_{4}=\emptyset$ or $Z_{4} \neq \emptyset, Z_{3}=\emptyset$. Let $Z_{3} \neq \emptyset$. If there exists $r_{3} \in R_{3}$ which is complete to a connected component of Z_{3}, then we take r_{3}. We add one universal vertex for each remaining component of Z_{3}. Now, adding the vertices v_{2}, v_{4}, v_{6} we have a dominating set (not necessarily minimum). Checking for all the pairs s_{1}, s_{7} where s_{i} is a neighbor of $v_{i}, i \in\{1,7\}$, one can verify if there is a γ-set with only two more vertices.
$-Z_{3}=Z_{4}=\emptyset$. Then $V=N[C]$ and from Property [2.3 computing a minimum dominating set is polynomial.

From Lemmas 3.1, 3.2, 4.3, 5.5, 5.6 we have the following.
Theorem 5.7 The Minimum Dominating Set problem is polynomial for $\left(\right.$ claw, $\left.P_{8}\right)$ free graphs.

6 Conclusion

We have shown that the Minimum Dominating Set problem is polynomial for (claw, P_{8})free graphs. We left open the following problem: is there a positive integer $k, k \geq 9$,
such that the Minimum Dominating Set problem is $N P$-complete for the class of $\left(c l a w, P_{k}\right)$-free graphs? If the the answer is positive, a challenge should be to show a dichotomy: find the minimum integer k such that the Minimum Dominating Set problem is $N P$-complete for (claw, P_{k})-free graphs and polynomial for (claw, P_{k-1})free graphs.

References

[1] B. Allan, R. Laskar (1978), On domination and independent domination numbers of a graph, Discrete Mathematics 23, 73-76.
[2] A. Bertossi (1984), Dominating sets for split and bipartite graphs, Information Processing Letters 19, 37-40.
[3] J.A. Bondy, U. S. R. Murty, Graph Theory, Springer, (2008).
[4] D. Bauer, F. Harary, J. Nieminen, and C. L. Suffel (1983), Domination alteration sets in graphs. Discrete Mathematics, 47:153-161.
[5] E. Cockayne, S. Goodman, S. Hedetniemi (1975), A linear algorithm for the domination number of a tree, Information Processing Letters 4 (2), 41-44.
[6] M. Farber (1982), Independent domination in chordal graphs, Operations Research Letters 1, 134-138.
[7] Teresa W. Haynes, Stephen T. Hedetniemi, Peter J. Slater Fundamentals of Domination in Graphs, Marcel Dekker Inc., (1998).
[8] D. Malyshev (2016), A complexity dichotomy and a new boundary class for the dominating set problem, J. Comb. Optim. 32, 226-243.
[9] M. Yannakakis, F. Gavril (1980) Edge dominating sets in graphs, SIAM J. Appl. Math. 38 (3), 364-372.

[^0]: ${ }^{1}$ Conservatoire National des Arts et Métiers, CEDRIC laboratory, Paris (France). Email: valentin.bouquet@lecnam.net, christophe.picouleau@cnam.fr

