French Institute of Science and Technology for Transport, Development and Networks

23rd TAP Conference Thessaloniki 2019

Euro 3 and Euro 5 Diesel vehicles' particles evolution in ageing chamber

Boris Vansevenant

Wednesday, May the 15th

Yao Liu, Corinne Ferronato, Ludovic Fine, Patrick Tassel, Cédric Louis, Michel André boris.vansevenant@ifsttar.fr yao.liu@ifsttar.fr

→ Understanding contribution of transports on atmospheric particle formation and ageing through physical phenomena

Objectives

- Diesel vehicles = 67% of the French PC fleet
 - Pre-Euro Euro 3 \rightarrow 20 %
 - Euro 5 6 \rightarrow 53 %
- SOA formation and ageing with physical processes
 - Impact of the exhaust aftertreatment technologies
 - Impact of the driving conditions

Vehicles and driving conditions

Experimental setup

Experimental conditions

Vehicle	Cycle	Injection time (min)	Global dilution ratio	Repetitions
Diesel Euro 5	Urban cold start	16	97	2
	Motorway	25	65	2
Diesel Euro 3	Urban cold start	16	97	2
	Motorway	25	65	3

Chamber characterization Total [PM] correction

Physical processes

p.7

Chamber characterization [PN] correction

Deposition coefficient (Crump and Seinfeld, 1981, Journal of Aerosol Science)

$$\beta(D_p) = \frac{1}{L} \times \left[\frac{8 \times \sqrt{k_e D(D_p)}}{\pi} + \nu(D_p) \times \operatorname{coth} \left(\frac{\pi \nu(D_p)}{4\sqrt{k_e D(D_p)}} \right) \right]$$

L

 k_e

 $D(D_p)$

 $\nu(D_p)$

Dilution and leakage:

$$\alpha = \dot{V}/V$$

- Side of the chamber Eddy diffusivity
 - Brownian diffusivity
 - Terminal particle settling velocity

Total [PM] evolution

Results: Euro 3 MW and UC

 \rightarrow Nucleation and coagulation

 \rightarrow Nucleation and coagulation

 \rightarrow Nucleation and coagulation

Particle precursor emission factors

Particle precursor emission factors

Conclusions and prospects

- Investigation on particle evolutions for Euro 3 and Euro 5 diesel vehicles
- Physical processes in a dark chamber
- Euro 3 less present than Euro 5
- Euro 3 emits more
 - PM (200x UC and 1000x MW)
 - Precursors (IVOCs 1.6x UC and 6.2x MW)
- Euro 3 forms SOA
 - +125±35% (UC)
 - +29±10% (MW)

- Prospects
 - Euro 5 emits more
 VOCs than Euro 3
 - Effect of light on SOA formation??

Thank you for your attention!

IFSTTAR

14-20 Bld. Newton Cité Descartes Champs sur Marne 77447 Marne-la-Vallée Cedex 2 France Ph +33 (0)1 81 66 80 00 www.ifsttar.fr communication@ifsttar.fr

To correspond: boris.vansevenant@ifsttar.fr yao.liu@ifsttar.fr

Boris Vansevenant

Thanks to:

This work was funded by the French Environment and Energy Management Agency (ADEME)

Appendix 1: Leakage characterization

Leakage flow as function of the relative pressure

Black carbon decay in the reactivity chamber

Leak flow 1L/min at relative pressure +1Pa

Leak rate < 1 %vol.h⁻¹

Particulate wall loss deposition in progress

Appendix 2: Crump and Seinfeld 1981

$$\beta = \frac{1}{L} \times \left\{ \frac{8 \times \sqrt{k_e D}}{\pi} + \nu \times \operatorname{coth} \left(\frac{\pi \nu}{4 \times \sqrt{k_e D}} \right) \right\}$$

With expressions found in (Seinfeld and Pandis, 2016):

$$\begin{split} D &= \frac{kTC_c}{3\pi\mu D_p} \text{ the Brownian diffusivity (9.73)} \\ \nu &= \frac{D_p^2 \rho_p g C_c}{18\mu} \text{ the terminal particle settling velocity (9.42)} \\ C_c &= 1 + \frac{2\lambda}{D_p} \Big[1.257 + 0.4 \exp\left(-\frac{1.1 \times D_p}{2\lambda}\right) \Big] \text{ the Cunningham slip-correction} \\ \text{factor (9.34)} \end{split}$$

The following constants are given in (Seinfeld and Pandis, 2016): $g = 9.81 \text{ m. s}^{-2}$; $\lambda_{air}(298 \text{ K}, 1 \text{ atm}) = 0.0651 \text{ }\mu\text{m}$; $\mu_{air} = 1.8 \times 10^{-5} \text{ kg. m}^{-1} \text{s}^{-1}$

Appendix 3: Beta(D_p) for several k_e

Appendix 4: Euro 3 MW PM distribution

Appendix 5: Euro 3 UC

Appendix 6: Euro 5 MW

