
HAL Id: hal-02448064
https://hal.science/hal-02448064v1

Submitted on 16 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

From FOAF to English: Linguistic Contribution to Web
Semantics

Max Silberztein

To cite this version:
Max Silberztein. From FOAF to English: Linguistic Contribution to Web Semantics. INLG 2017,
Sep 2017, Santiago de Compostela, Spain. pp.1 - 9, �10.18653/v1/W17-3801�. �hal-02448064�

https://hal.science/hal-02448064v1
https://hal.archives-ouvertes.fr

1
Proceedings of the Linguistic Resources for Automatic Natural Language Generation Workshop, pages 1–9,

Santiago de Compostela, Spain, September 4, 2017. © 2017 Association for Computational Linguistics

From FOAF to English: Linguistic Contribution to Web Semantics

Max Silberztein

Université de Franche-Comté

max.silberztein@univ-fcomte.fr

Abstract

This paper presents a linguistic module capable

of generating a set of English sentences that

correspond to a Resource Description

Framework (RDF) statement; I discuss how a

generator can control the linguistic module, as

well as the various limitations of a pure

linguistic framework.

1 Introduction

Automatic Natural Language Generation Software

aims to express information stored in a knowledge

database as a Natural Language text. The

information at the source typically consists of a

series of simple atomic statements, such as “John

owns a house”, “Mary lives in Manchester”, “Peter

is Ann’s cousin”. These statements are usually

stored in a knowledge database or ontology in a

formal notation such as Prolog (e.g.

“Own(John,House)”) or XML.

Translating each elementary statement into an

isolated English sentence is straightforward; the

difficulty arises when one tries to process a complex

set of statements to generate a text that feels

“natural”: an entity that is mentioned several times

might then have to be referred to by a pronoun, a

possessive determiner (e.g. He is her cousin), or an

anaphoric term (e.g. The student is her cousin); a

complement might need to be brought into focus

(e.g. It is Peter who is Ann’s cousin); subsequent

sentences might need to agree in tense and aspect,

etc. For each original individual statement, there

might be thousands of potential English sentences

that can express it: the generator must then decide

1 See Silberztein (2016a). NooJ is a free, open-source linguis-

tic development environment supported by the European

Metashare program.

which sentence to produce. This article presents the

linguistic component of such a system.

2 The linguistic framework

Based on the principles of linguistic approaches to

generation laid out by Danlos (1987), I have used

the NooJ1 platform to construct a set of linguistic

resources that parses a sequence of RDF statements

and produces a corresponding set of English

sentences. NooJ allows linguists to construct

structured sets of linguistic resources (“modules”)

in the form of dictionaries and grammars2 to

formalize a large gamut of linguistic phenomena:

orthography and spelling, inflectional, derivational

and agglutinative morphology, local and structural

syntax, transformational syntax, lexical and

predicative semantics. All linguistic analyses are

performed sequentially by adding and/or removing

linguistic annotations to/from a Text Annotation

Structure (TAS); at each level of the analysis, each

parser uses the annotations that were added to the

TAS by preceding parsers, and then adds new

annotations to the TAS, or deletes annotations that

have been proven to be incorrect. This architecture

allows the system to perform complex linguistic

operations that require information coming from all

levels of analyses, even when total disambiguation

was not possible at earlier stages of the analysis,

thus avoiding the problems at the heart of criticisms

against pure linguistic approaches.3

For instance, to generate the sentence “She is

Joe’s love” from the elementary statement “Joe

loves Lea”, a linguistic system needs to access the

following information:

2 Regular Grammars, Context-Free Grammars, Context-Sensi-

tive Grammars and Unrestricted Grammars can be entered ei-

ther in a textual or in a graphical form. The grammars shown

in this article are graphical Context-Sensitive Grammars.
3 See for instance the “generation gap” discussed by Gardent

Perez-Beltrachini (2017).

2

 the word “loves” can be a conjugated form of

lexical entry to love;4

 the verb to love can be nominalized into the

Human Noun a love;5

 the structure N0 V N1 can be restructured as N1

is N0’s V-n;

 the Noun Lea is feminine therefore it can be

replaced with pronoun she when it is in a

subject position.

One important characteristic of NooJ resources is

that they are “application-neutral”: they can be used

both by parsers and by generators. This allows a

single software application to both:

 parse sentences, e.g., from sentence “It is not

Lea that he loves”, produce the analysis “Joe

loves Lea +Focus1 +Neg +Pron1”,

 or, the other way around, given the elementary

sentence “Joe loves Lea” and the series of

operators “+Pro0 +Preterit +AspCont

+Intens2”, generate the complex sentence “He

continued to love Lea for a long time”.

Given the elementary sentence Joe loves Lea,

Silberztein (2016b) showed that by combining

linguistic operations such as negation (e.g. Joe does

not love Lea), focus (e.g. It is Joe who loves Lea),

tense (e.g. Joe loved Lea), aspect (e.g. Joe has

stopped loving Lea), modality (e.g. Joe should love

Lea), intensity (e.g. Joe loves Lea passionately),

pronominalization (e.g. He loves her),

nominalization (e.g. Joe is in love with Lea), etc., a

system can generate over a million declarative

sentences (e.g. It is not her that he stopped loving),

about 500,000 nominal phrases (e.g. Joe’s

passionate love for her) and over 3 million

questions (e.g. When did Joe start loving her?).

Each generated sentence is associated with the

series of transformations (e.g. +Passive, +Focus1)

used to produce it.

In this article, I show how this system can be

adapted so that an NLG system can control what

exact English sentence(s) need to be generated.

4 There are other possible analyses such as in loves = Plural of

Noun a love.
5 There is a second nominalization that is not in play here :

Joe’s love for Lea, where love is an abstract noun.

3 FOAF Predicates

The Semantic Web6 constitutes a gigantic network

of ontologies that contain elementary pieces of

information, written in the RDF syntax. A typical

RDF statement is a triple that contains one subject

entity, one predicate and one object entity; the

predicate states the type of relationship between the

two entities. All three elements are identified by a

URI. For instance, the following RDF triple states

that the person “Mark_Twain” is the author of the

book “Huckleberry_Fin”:7
 <http://example.org/Mark_Twain>

 <http://example.org/author>

 <http://example.org/Huckleberry_Fin>.

In this article, I focus on the Friend Of A Friend

(FOAF) ontology (FOAF Vocabulary Specification

2010), which contains a set of classes for entities:

Agent, Document, Group, Image, Organization,

Person, Project...

and a set of properties (i.e. predicates), e.g.:

account, age, based near, birthday,

currentProject, familyName, gender,

givenName, interest, knows, name, title…

4 From RDF to English

A linguistic module capable of parsing RDF

statements and producing the corresponding

potential English sentences needs the following

resources:

 a set of lexical and morphological resources to

link all words and expressions to their actual

inflected and derived forms (I am using NooJ’s

default English module);

 a syntactic grammar to parse an RDF statement

and extract from it the value of its entities and

predicate;

 one syntactic grammar for each FOAF

property, in order to describe the set of English

sentences that can be used to express it.

The grammar for FOAF property currentProject

shown in Figure 1 contains four parts:

 Turtle: this grammar describes RDF

statements expressed in the simple Turtle

notation;

6 See Berners-Lee et al. (2001).
7 I am using the Terse RDF Triple Language (Turtle) syntax,

see RDF1.1. Turtle (2014).

http://example.org/Mark_Twain
http://example.org/author

3

 declarative, this grammar describes

declarative sentences, e.g. Tim Berners-Lee is

currently working on the World Wide Web

project

 noun phrase describes noun phrases, e.g. Tim

Berners-Lee’s World Wide Web current project

 question describes questions, e.g. Is Tim

Berners-Lee involved in the World Wide Web

project?

Figure 1: Parse RDF and generate sentences

Note that the same grammar can be used to parse

an RDF statement and produce the corresponding

English equivalent (sentences, phrases and

questions), or reciprocally, to parse any English

sentence, phrase or question and produce the

corresponding RDF statement. In this article, I

assume that the system receives an RDF statement

as its input; it will then produce the corresponding

English declarative sentences, phrases and

questions.

4.1 Parsing an RDF statement

Parsing an RDF statement written in the simplified

Turtle notation is straightforward: a statement is a

sequence of three XML tags followed by a period;

each tag contains an URI that represents an entity or

a predicate. For instance, consider the following

triple:
<http://dbpedia.org/Tim_Berners-Lee>

<http://xmlns.com/foaf/0.1/currentProject>

<http://dbpedia.org/World_Wide_Web>.

Grammar XML, shown in Figure 2, extracts the

suffix of each tag’s URI and stores it in variable

$Suf. Note that the suffix may contain any number

of letters, digits, periods, dashes and underscore

characters.8

The main grammar Turtle shown in Figure 3

contains three references to the XML graph: it

parses a sequence of three consecutive XML tags

8 <WF> matches any sequence of letters; <NB> matches any

sequence of digits.
9 Variables with prefix “@” have a global scope. This allows

the system to link a given entity to all its references (e.g.

“Lea” with Pronoun “her”) across a grammar that may contain

and computes the value of each variable $Suf. Each

subsequent value of $Suf is then copied to the

corresponding global variables @Subject,

@Predicate and @Object.9

Figure 2: Parse XML tags

After parsing the previous RDF statement,

variable @Subject is set to “Tim_Berners-Lee”,

variable @Predicate is set to “currentProject” and

variable @Object is set to “World_Wide_Web”.

Figure 3: Parsing Turtle RDF Statements

4.2 Generating English Sentences

Each property from the FOAF ontology

corresponds to a set of English sentences that can be

used to express it. In this approach, one must

construct one grammar to generate all the English

sentences that correspond to each of the FOAF

properties name, firstName, givenName and

familyName (e.g. His first name is Tim, Berners-

Lee’s given name is Tim), a grammar that

corresponds to the FOAF property age (e.g. John is

18-month old; Mary is 12; Joe is still a teenager;

Lea is a senior citizen), a grammar that expresses

the fact that a person knows another person (e.g.

John is acquainted with Mary, Lea has met Joe

already), a grammar that expresses the fact that a

person is currently working on a project, another for

dozens of graphs. Here, we want to link @Predicate to all its

English corresponding terms, whether they are Verbs (e.g.

works on), Adjectives (is involved in) or even Nouns (e.g.

head of).

4

Figure 4: Declarative Sentences

property pastProject, another for property enemyOf,

etc.

Being able to automatically produce questions

would be useful for a few specialized applications

such as literature or language teaching (whereas a

software automatically generates questions from a

study text that students are expected to answer) or

question answering, whereas sentences recognized

by the declarative grammar are potential answers

for any question recognized by the question

grammar.10 In this article, I present the declarative

and noun phrase grammars.

4.3 Declarative Sentences

The entrance point for the grammar that represents

(i.e. can parse and/or generate) the declarative

sentences for property currentProject is shown in

Figure 4.

The grammar uses the value of the variables

@Subject and @Object (in red in the graph) that

were set by the parsing of the currentProject RDF

statement. This graph contains references to

embedded graphs (in yellow in the graph) such as

current, project, the project, etc. For instance, the

embedded grammar current represents the

following Adjectives:

10 The question grammar generates over one million ques-

tions, such as Who is working on the World Wide Web pro-

ject? What is Tim Berners-Lee’s current project? Is Tim Bern-

ers-Lee involved in the World Wide Web project?

 current = current | in progress | ongoing |

present | present-day;

The grammar project contains the following nouns:

 project = activity | affair | adventure |

assignment | business | creation | enterprise |

job | project | scheme | task | venture;

The graph for the project is displayed in Figure 5.

Figure 5: Graph for “the project”

Note that this graph can produce anaphoric terms

as well as pronouns, e.g.:

Tim Berners-Lee is currently working on that

enterprise. It is under Tim Berners-Lee’s

control.

The declarative grammar for property

currentProject contains over 30 graphs and

represents (i.e. can both parse or generate) over

50,000 declarative sentences.

5

4.4 Noun Phrases

The entrance point for the grammar that represents

the noun phrases that might be used to express

property currentProject can be seen in Figure 6.

Figure 6: Noun Phrases

This grammar represents (i.e. parses or

generates) two types of noun phrases: phrases that

focus on the currentProject entity, e.g.:

Tim Berner-Lee’s World Wide Web, his

ongoing project, etc.

and phrases that focus on the person entity, e.g.:

The World Wide Web project’s current director,

the present head of that enterprise, its director,

etc.

This grammar does not describe phrases that

focus on the date (e.g. the moment when Tim

Berners-Lee’s project is the World Wide Web), even

though the information that the project is “current”

is a crucial part of the information represented by

the RDF statement. Generating phrases from RDF

statements that explicitly refer to a project’s initial

and/or ending dates will require other grammars for

dates, such as the default one available in the NooJ’s

English module.

5 Pronouns and anaphora

The grammar currentProject produces certain

sentences and phrases that should not be generated

in isolation, e.g.:

He is currently involved in that project.

His project.

If the goal is to produce one isolated sentence or

phrase, that sentence or phrase should not contain

any pronoun, possessive determiner or anaphoric

term, otherwise the original information would be

lost. However, most NLG applications aim at

11 See Lloret Pastor (2011) on how the COMPENDIUM auto-

matic summary system manages redundancy and information

producing texts that are sequences of related

sentences and phrases: in order to keep the resulting

text natural, it is then important to be able to use

pronouns, possessive determiners, anaphoric terms,

as well as every linguistic operator the language

offers: aspect, derivation, focus, intensity, modality,

tense, etc.11

6 Aspect and Tense

The currentProject property limits the possible

aspect and tense of the generated English sentences

to present or present progressive: the linguistic

module generates sentences such as the following

ones:

Tim Berners-Lee (works | is working | is

currently working) on the World Wide Web

project; Tim Berners-Lee (is involved | is

currently involved) in the World Wide Web

project; Tim Berners-Lee’s (current | in

progress | on going | present | present-day)

project is the World Wide Web project, etc.

but it may also generate sentences such as the

following ones:

[+Tense]: Tim Berners-Lee (was working | has

worked | will be working) on the World Wide

Web project.

[+Aspect]: Tim Berners-Lee started working

on the World Wide Web project (in 1989); Tim

Berners-Lee has been working on the World

Wide Web (for 20 years); Tim Berners-Lee will

stop working on the World Wide Web (next

year).

[+Modality]: Tim Berners-Lee should work on

the World Wide Web project; Tim Berners-Lee

can work on the World Wide Web; Tim

Berners-Lee might work on the World Wide

Web.

as well as sentences that contain any combination of

Tense / Aspect / Modality variants:

Tim Berners-Lee could have started to work on

the WWW project (one year earlier). Steve

Jobs has worked on the iPhone project (for a

long time). Jürgen E. Schrempp initiated the

Chrysler-Daimler merger task (last year). Has

Larry Page been involved in the Alphabet Inc.

fusion. The WebNLG Challenge also aims at producing a se-

quence of sentences that might contain elisions, anaphora or

pronouns.

6

Figure 7: Operator-controlled generation

Company adventure (from the very

beginning)?

Based on the sole currentProject property, it

might not be appropriate to generate these

sentences; however, text generators are always used

to express more than one piece of information; these

sentences will be useful if the generator needs to

produce sentences that express properties such as

pastProject, or if the generator has access to date

information such as: when did Tim Berners-Lee

start to work on the WWW, when does Jürgen E.

Schremp plan to stop working on the merger, how

long has Larry Page been working on the creation

of the Alphabet Inc. Company? etc.

The linguistic module cannot perform extra-

linguistic computations, such as producing

complements such as for 28 years by subtracting the

initial project’s date from the current date, by itself.

It can, however, perform simple equality tests by

using constraints such as <$gender="Male"> (to

pronominalize Tim Berners-Lee as he), and

<$pastProject=$currentProject> (to produce

sentences such as Tim Berners-Lee is still working

on the World Wide Web).

7 Controlling the linguistic module

To control what sentence is to be generated, the

generator that pilots the linguistic system must send

a set of operators that act as parameters. Following

are examples of sentences generated, given a set of

operators:

 [+AspTilNow+Pro0+Focus1]:

It is on the World Wide Web venture that he has

been working until now.

 [+When+Preterit+Pro0+Pro1]:

When did he work on that enterprise?

 [+Neg+Future+AspStop]:

Tim Berners-Lee will no longer work on the

World Wide Web adventure.

Operators can be sent to the linguistic module

with a “+” or a “-” prefix, to control whether the

generator wants to activate, or filter out, the

corresponding sentences and phrases. For instance,

the generator may filter out sentences that contain a

negation or a pronoun with the following sequence

of operators: [-Neg-Pro0-Pro1]. Figure 7 shows that

this exact sequence of operators makes the linguistic

system produce over 11,000 declarative sentences,

none of which include a negation or a pronoun.

7.1 Incorrect information

One problem with the pure linguistic approach is

that, if not properly controlled, the linguistic module

will also generate sentences that misrepresent the

initial FOAF information, e.g.:

7

 [+Neg]:

Tim Berners-Lee is not currently working on

the World Wide Web project

 [+Future+AspCont+Intens2]:

Tim Berners-Lee will keep on working on the

World Wide Web project forever

However, even though the previous sentences are

not appropriate, some combinations of these

operators may produce correct statements, e.g.:

 [+Neg+Future+AspCont+Intens2]:

Tim Berners-Lee will not keep on working on

the World Wide Web project forever

In other words, linguistic operators such as +Neg

or +Future are not “bad” intrinsically: they must be

controlled by the generator, just like any other

linguistic operator: it is the responsibility of the

calling application (here, the generator) to control

the linguistic module by setting the correct

parameters in order to enable or disable the

production of each sentence and phrase.

8 Limitations

There are a few problems with the prototype as it is

now.

8.1 Missing information

The single FOAF statement that constitutes the

input of the linguistic prototype presented in this

article does not mention the entities’ names.

Therefore, the sentences generated by the prototype

actually resemble the following:

Tim_Berners-Lee is currently working on the

World_Wide_Web project.

In a finalized software application, the generator

should retrieve the value of the person’s name

property, available as an FOAF property:
<foaf:name xml:lang=”en”> Tim

Berners-Lee </foaf:name>

Using the value of the FOAF givenName,

firstName and familyName properties for person

entities would allow the linguistic component to

generate abbreviated variants such as “Berners-

Lee”, or even “Tim” (in a casual context, for

instance). In the same manner, the linguistic module

12 gender is an FOAF property attached to class Agent rather

than its subclass Person. The generator will therefore need to

make entity Tim_Berners-Lee inherit its gender property to

make it explicit to the linguistic module.

would need to access a list of variants and

abbreviations for each project entity, such as “the

Web” or “WWW” for entity World_Wide_Web.

Another important piece of information is the

gender of each person entity: for Tim_Berners-Lee,

the generator needs to combine operator +Pro0 with

operator +Mas to stop the linguistic module from

generating incorrect feminine or neutral pronouns

or possessive determiners such as in: The World

Wide Web is (her | its) current project.12 As this

information is available in FOAF:
<foaf:gender

xml:lang=”en”>Male</foaf:gender>

Another possibility is to add this FOAF statement

to the linguistic module to its input, store the value

of the gender in a variable (e.g. $gender), and add a

constraint on the variable in the grammar

everywhere we need to produce a pronoun, such as

in Figure 8.

Figure 8: Adding gender information

8.2 What is a project?

Because the Web Semantics’ entities are meant to

represent elements of meanings independent from

the languages, they tend to be more generic than

actual English terms, which makes it difficult to

compute back the sets of English terms they

represent.13

For instance, the FOAF project class regroups

entities that are not always easily referred to by the

English term “project”: it makes sense to qualify the

World Wide Web as a project, an enterprise or even

a program, but it is much more difficult to use the

following terms:

Tim Berners-Lee is currently working on the

World Wide Web (activity | affair | assignment

| business | creation | job | management

| scheme | task | venture)

13 The vagueness and inconsistency of the Semantic Web are

its two most common criticisms.

8

The World Wide Web has existed too long to be

qualified as an affair; it is too big to be qualified as

a task; it is not an assignment, nor a business, Tim

Berners-Lee does not “manage” it, etc.

However, these terms would be more appropriate

for other currentProject entities, e.g.:

Larry Page is responsible for the Alphabet Inc.

Company (adventure | affair | business |

creation | task | venture)

Other FOAF classes such as Group and

Organization might be relevant for describing what

the World Wide Web or the Alphabet Inc. Company

are: having the information that the World Wide

Web is both a project and an organization will allow

the linguistic module to produce much better

sentences.

8.3 What does the person do exactly?

A similar problem concerns the person entity: when

a project is described in FOAF as someone’s current

project, it is not clear what this person does, exactly:

Is Tim Berners-Lee the originator, or the creator,

or the inventor of the Web? Is Steve Jobs the

designer, or the mastermind, or the leader of the

iPhone project? Is Larry Page the founder, or the

originator, or the father of the Alphabet Inc.

Company? Is Jürgen E. Schrempp the artisan, or the

architect, or the facilitator of the Mercedes-

Chrysler merger? Even though both the person and

the project entities are well defined, at this point we

do not have the capability to select which exact

terms can be used naturally: therefore, at this point,

the linguistic prototype produces a large number of

not-so-natural phrases such as “the World Wide

Web task” or “the iPhone affair”.

8.4 How current is a currentProject?

When a project is described in FOAF as a

currentProject, it is not clear whether it is possible

or not to replace the prototypic adverb currently

with expressions such as: for the moment, right now,

these days, etc., and if tenses other than present or

present progressive (such as present perfect or

future) are adequate or not:

 [+PresentPerfect]:

Tim Berners-Lee has worked on the World

Wide Web project (OK)

 [+PresentPerfect+AspCont+Intens1]:

Tim Berners-Lee has been working on the

World Wide Web project for a long time (OK)

 [+Future]:

Tim Berners-Lee will work on the World Wide

Web project (not OK)

 [+Future+AspCont+Intens1]:

Tim Berners-Lee will continue to work on the

World Wide Web project for a long time (not

OK)

It will be necessary to explore the FOAF

ontology to check if the currentProject is also listed

as a pastProject; if so, the generator can send the

operators +AspCont and +PresentPerfect to the

linguistic module. The more information the

generator has access to, the more it will be able to

generate sentences produced by the linguistic

module. As of now, unfortunately, we need to

restrict the generation capability of the linguistic

module drastically: the system is far from producing

most of the English sentences that occur on the

Web, such as the following ones:

Under Jobs’ exacting leadership, Apple

pioneered many things with the iPhone. Tim

Berners-Lee is the director of the World Wide

Web Consortium. Larry Page: I am really

excited to be running Alphabet as CEO with

help from my capable partner, Sergey, as

President.

However, grammars developed with NooJ are

meant to be used not only for the generation, but

also for the parsing of any text, including the

previous sentences: the fact that a large number of

sentences generated by the linguistic module are not

yet useable by the generator is a consequence of the

extreme simplicity of the FOAF ontology, rather

than of a shortcoming of linguistics.

9 Conclusion

It is possible to construct a system capable of

translating RDF statements into a rich set of English

sentences. As a generator taps into the power of

expression of the English language, it needs to

control it: this can be performed via the use of

linguistic operators.

Some operators, such as +Focus0 or +Pro1, are

“information neutral”, in the sense that they do not

produce English sentences that might betray the

information of the original RDF statement: they are

9

typically used for rhetorical purposes, to make the

resulting text more natural.

Other linguistic operators, such as +Neg, +Future

or +AspCont, are more “dangerous” to use, but

should be easy to control, for instance by exploring

the FOAF ontology to obtain missing information,

such as the person’s gender or the project’s initial

date. Exploring the Semantic Web to get more and

more relevant information will be crucial in any

case, as a system needs to access enough

information about projects (dates, duration,

organization involved, type of business, etc.) to

state something “interesting”.

However, the information stored in ontologies

such as FOAF will never be as rich as necessary for

an automatic generator to be able to produce all the

English sentences that might express it. One

solution for fixing the “vagueness” of the Semantic

Web would be to enrich ontologies so that they

contain information as precise as what the English

language can express; in practice, this would require

us to add to generic properties such as

currentProject properties such as projectType,

involvementType, projectOrganizationType,

durationScale, involvementType, etc. to pinpoint

what exact term is relevant for the project, what

exact type of function and involvement the person

has in the project (author a book, build a company,

merge two companies, head an organization, design

a product, oversight a business deal, chair a

conference, etc.).

Reciprocally, producing RDF statements by

parsing even complex English sentences has been

proven to be feasible.14 It seems to me that it would

be therefore more sensible to develop linguistic

resources to formalize more and more detailed

information from the texts that already exist on the

Web, rather than to store a simplified and redundant

version of the information already available in

English form on the Web in ontologies, and then try

afterwards to compute back its equivalent English

sentences.

References

Tim Berners-Lee, James Hendler and Ora Lassila. 2001.

The Semantic Web. In Scientific American, pp 29-37.

Annibale Elia, Simonetta Vietri, Alberto Postiglione,

Mario Monteleone and Federica Marano. 2010. Data

14 NooJ has been used since 2002 to parse texts in a dozen lan-

guages and produce Semantic annotations in XML or Prolog

Mining Modular Software System. In: SWWS2010 -

Proceedings of the 2010 International Conference on

Semantic Web & Web Services. Las Vegas, Nevada,

USA 12-15 luglio 2010 CSREA Press, pp 127-133.

FOAF Vocabulary Specification 0.98. 2010. Namespace

Document 9 August 2010. Marco Polo Eds. Available

at:http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.476.8247&rep=rep1&t

ype=pdf

RDF 1.1 Turtle – Terse RDF Triple LanguageTurtle.

World Wide Web Consortium (W3C). 2014. Available

at: https://www.w3.org/TR/turtle

Laurence Danlos. 1987. The linguistic basis of Text

Generation. Studies in Natural Language Processing.

Cambridge University Press Eds.

Maria Pia di Buono. 2017. Endpoint for Semantic

Knowledge. In Automatic Processing of Natural-

Language Electronic Texts with NooJ. Selected Papers

from the 10th International NooJ Conference. (eds.

Barone, Monteleone, Silberztein) CCIS Springer:

Communication in Computer and Information Science

#667, pp 223-233.

Héla Fehri, Kais Haddar and Abdelmajid Ben Hamadou.

2010. Automatic Recognition and Semantic Analysis

of Arabic Named Entities. In Applications of Finite-

State Language Processing: Selected Papers from the

NooJ 2008 International Conference (Budapest, Hun-

garia) (eds. K. Judit, M. Silberztein, T. Varadi). Cam-

bridge Scholars Publishing, Newcastle., UK, pp 101-

113.

Claire Gardent and Perez-Beltrachini. 2017. A Statistical,

Grammar-Based Approach to Mico-Planning. In

Computational Linguistics 43:1. The MIT Press Eds,

pp 1-30.

Kristina Kocijan and Marko Požega. 2015. Building

Family Trees With NooJ. In Formalising Natural Lan-

guages with NooJ 2014: Selected papers from the

NooJ 2014 International Conference, (eds. J. Monti,

M. Silberztein, M. Monteleone, M. P. di

Buono), Newcastle upon Tyne: Cambridge Scholars

Publishing, pp 198-210.

Elena Lloret Pastor. 2011. Text Summarization based on

Human Language Technologies and its Application.

Tesis Doctorales. Universitad de Alicante Eds.

Max Silberztein. 2016a. Formalizing Natural

Languages: the NooJ approach. ISTE-Wiley E

Max Silberztein. 2016b. Joe loves Lea: Transformational

Analysis of Direct Transitive Sentences in Automatic

Processing of Natural-Language Electronic Texts with

NooJ. NooJ 2015 (eds. T. Okrut, Y. Hetsevich, M. Sil-

berztein, H. Stanislavenka). Communications in Com-

puter and Information Science, vol 607. Springer,

Cham, pp 55-65.

notation, cf. for instance Fehri et al. (2010), Elia et al. (2010),

Kocijan and Požega (2015), di Buono (2017).

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.476.8247&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.476.8247&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.476.8247&rep=rep1&type=pdf
https://www.w3.org/TR/turtle/

