
HAL Id: hal-02448028
https://hal.science/hal-02448028v4

Preprint submitted on 15 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mathematical Formulation for the Network Slice Design
Problem

Wesley da Silva Coelho, Amal Benhamiche, Nancy Perrot, Stefano Secci

To cite this version:
Wesley da Silva Coelho, Amal Benhamiche, Nancy Perrot, Stefano Secci. Mathematical Formulation
for the Network Slice Design Problem. 2020. �hal-02448028�

https://hal.science/hal-02448028v4
https://hal.archives-ouvertes.fr


Mathematical Formulation for the Network Slice
Design Problem

Wesley da Silva Coelho
CNAM, Orange Labs, France

wesley.dasilvacoelho@orange.com

Amal Benhamiche
Orange Labs, France

amal.benhamiche@orange.com

Nancy Perrot
Orange Labs, France

nancy.perrot@orange.com

Stefano Secci
CNAM, France

stefano.secci@cnam.fr

Abstract—In this document, we provide a Mixed Integer
Linear Program to the Network Slice Design problem, which
includes novel mapping decision points rising with new 5G radio
and core function placement policies. The model in particular
encompasses flexible functional splitting, with possibly different
splitting for different slices, and sub-slice and network function
decomposition.

I. PROBLEM DEFINITION

We provide a 5G network model and design problem
statement, taking into account the presented requirements.
Table I summarize the used notations.

A. Physical layer model

We associate with the physical layer a directed graph
Gp = (Vp, Ap) where Vp is the set of nodes and Ap the set
of arcs. Vp is composed of disjoint sub-sets, V dup , V acp , and
V app , containing the distributed unities, aggregation and core
servers, and application nodes, respectively, in such a way
that V dup ∪ V acp ∪ V app = Vp and V dup ∩ V acp = V dup ∩ V app =
V acp ∩V app = ∅ hold. Every node u ∈ Vp is associated a number
of available CPU cu. Moreover, an arc a = (u, v) ∈ Ap
corresponds to a physical link connecting nodes u and v ∈ Vp.
We denote by δ+(u) (resp. δ−(u)) the sub-set of arcs going
from (resp. to) node u ∈ Vp. Finally, each arc a ∈ Ap has
a bandwidth capacity denoted ba, and a latency value da
expressing the time needed by a flow to traverse a.

B. Virtual layer model

The virtual layer is modeled as a set of directed graphs
corresponding to network slices. Every NS is composed of
one or more network slice subnets with different network
functions, which, in turn, are composed of a specific set of
NFSs. In this work, we define an NSS as any sub-set of
network functions shared among the same group of network
slices.

1) Network Function Services: We denote by F the set
of different NFS types. F is composed of the sub-set F d

of data-plane NFSs, the sub-set F c of control-plane NFSs,
and an auxiliary dummy function f0, in such a way that
F d ∪ F c ∪ {f0} = F and F d ∩ F c ∩ {f0} = ∅ hold1.
Regarding the uplink direction, F d is an ordered set composed
of data-plane NFSs from both access and core networks. Every

1Note we do not consider any service function (e.g. Firewall and Proxy),
which can be easily added in model extensions.

TABLE I: Main notation: sets

Set
Vp Set of all nodes.
V du
p Set of all access nodes.
V ac
p Set of all non-access nodes.
V ap
p Set of all applications server nodes.
Ap Set of all arcs.
δ+(u) Set of all arcs going from node u.
δ−(u) Set of all arcs going to node u.
F Set of all NFS types.
F d Set of all data-plane NFS types.
F c Set of all control-plane NFS types.
S Set of all network slice requests.

F (s) Set of all CP NFS pairs that must be connected in slice s.
G(s) Set of all pairs of NFSs from different type sets that must

be connected to each other in slice s.
K(s) Set of all demands of slice request s.
O(s) Set of origin nodes of all traffic demand from slice s.
N Set of all NFs.

Parameter
cu number of available CPUs on node u.
ba bandwidth value on arc a.
da delay value on arc a.
cf number of CPU required by NFS f .

cap(f) traffic processing capacity of NFS f .
bfg total amount of traffic generated between NFSs f and g by

an UE.
bf expected data rate of NFS f given one UE.
dfg the maximum accepted delay between NFSs f and g.
λf compression coefficient of NFS f .
αs
f equals to 1 if a NFS type f must be present in slice s; 0

otherwise.
qstfg equals to 1 if slice request s admits sharing a NFS of type

f with a NFS of type g of slice t; 0 otherwise.
ηs expected number of UEs connected to slice s
ds maximum accepted delay on data plane of slice s.
ok origin node of demand k
tk target node of demand k
bk expected volume of data between sent by origin node of

demand k.

network function service f ∈ F requires the minimum number
of CPUs cf needed to be packed into a NF. Also, every
NFS f ∈ F is associated with a traffic processing capacity
cap(f), expressed in Mbps, and an expected data rate bf
within a physical node given one UE connected to the related
slice. We denote by bfg > 0 the total amount of traffic
generated between NFSs f and g given one UE connected
to the related NS. Additionally, we denote by dfg > 0 the
maximum accepted delay2 between NFSs f and g. Finally, for

2This is important when flexible functional splitting is applied on the
radio access; the selected split must respect the maximum fronthaul latency
proposed by standard organizations.



every f ∈ F d, we denote by λf the compression coefficient
on the data-plane traffic flow related to the initial volume sent
by any traffic request’s origin node. Lastly, all aforementioned
parameters related to the auxiliary dummy function f0 are set
to 0, except the compression coefficient λf0 , which is equal
to 1.

2) Network Functions: We denote by N the set of network
functions available to pack NFS copies. An NF n ∈ N might
gather several NFS copies3, potentially of different types. In
our model, network functions are uncapacitated entities with
no resource requirements other than those demanded by the
hosted NFSs.

3) Network Slice Requests: The set of network slice re-
quests is denoted by S. Each request s ∈ S is associated with
a binary parameter αsf that takes value 1 (resp. 0) if an NFS
type f ∈ F is (resp. is not) required to be present in the final
associated virtual network. We denote by Gs = (Vs, As) the
final directed graph associated with s ∈ S, with Vs being the
set of virtual nodes representing the sub-set of NFs (and the
hosted NFSs) serving the given slice, and As being a set of
arcs connecting two nodes from Vs. For the control plane, we
denote by F (s) ⊆ As the set of arcs between CP NFSs such
that for any pair (f, g) ∈ F (s), (f ∈ F c) ∧ (g ∈ F c) holds.
Additionally, we denote by G(s) ⊆ As the set of arcs between
NFSs from different sub-sets of NFS types such that for any
pair (f, g) ∈ G(s), (f ∈ F c) ⊕ (g ∈ F c) holds. To represent
the isolation requirements on the virtual layer, we denote by
qstfg the binary parameter that takes value 1 (resp. 0) if slice
request s ∈ S admits (resp. does not admit) packing an NFS
of type f ∈ F with an NFS g from slice request t ∈ S in the
same NF. Finally, βst is binary parameter that is equal to 1
(rep. 0) if slice requests s and t are (rep. are not) NS subnets
of a higher-level network slice.n addition, every request s ∈ S
is also associated with a set K(s) of traffic demands to be
routed in the physical layer. Each demand k ∈ K(s) is defined
by a pair (ok, tk), being the origin and the destination nodes
of k. For any k, ok ∈ V dup and tk ∈ V app . We denote by
O(s) the set of origin nodes of all traffic demande from K(s).
Also, we denote by bk the initial data rate sent by node ok, in
Mbps, and ds the maximum end-to-end latency for all traffic
demands in K(s). We assume that uplink and downlink flows
follow the same physical path and are treated by the same
DP NFSs, in a reverse order related to each other. Due to this
assumption and for the sake of simplicity, in our model we
take into consideration only the uplink direction on the data-
plane flow. Finally, we denote by ns the expected number of
UEs that are to be connected to slice s.

C. Problem Statement

We define our Network Slice Design Problem (NSDP) as
follows. Given a directed graph Gp representing the physical
network, a set of slice requests S, a directed graph Gs, a set of
traffic demands K(s) associated with each request s ∈ S, and

3We assume that every NF already contains an intelligent entity responsible
for directing the incoming flow to the right hosted NFS.

TABLE II: Decision variables

Variable Type
zsf 1, if functions f is centralized; 0 otherwise. Binary
xsfnu 1, if NFS f installed on node u is packed into NF n

serving slice s; 0 otherwise.
Binary

wsf
nu amount of NFS f serving slice s packed in NF n

and installed on node u.
Real

yfnu total number NFSs of type f packed into NF n and
installed on node u.

Integer

γkafg 1, if arc a is used to route the flow between data-
plane NFSs f and g from traffic demand k; 0
otherwise.

Binary

a set of available NFS types denoted F , the NSDP consists
in determining the number of NFSs to install on the nodes of
Gs for each s ∈ S and the size of NF hosting them, so that:

• K(s) demands can be routed in Gs using these NFs,
• the NFs installed on Gs can be packed into the NFs,

while satisfying the isolation constraints,
• a path in Gp is associated with each pair of NFs installed,
• the total cost is minimum,
• all technical constraints imposed by both physical and

virtual layers are respected.

The objective is to minimize the total cost of deploying the
network slice request while ensuring all technical constraints
imposed both physical and virtual layers.

II. MATHEMATICAL PROGRAMMING FORMULATION

This section is dedicated to introduce the mathematical
model to address the Network Design Problem.

A. Decision variables

The binary variable zsf takes value 1 if NFS f is centralized,
and 0 otherwise. xsfnu is a binary variable that takes value 1
if NFS f , installed on node u, is packed into NF n serving
slice s, and 0 otherwise. The variable wsfnu is the amount of
NFS f serving slice s packed in NF n and installed on node u.
The variable yfnu is the total number of NFSs of type f packed
into NF n and installed on node u. γkafg is a binary variable that
takes value 1 if arc a is used to route the flow between NFSs f
and g for demand k, and 0 otherwise. Table II summarizes all
decision variables used in this model.

B. Constraints

1) Split Selection: Inequalities (1) decide whether a NFS f
serving a slice s is installed locally or centrally. Since the
RAN NFSs are chained in a specific order, all NFSs on the
same side of the selected split must be installed in the same
way, that is, either locally or centrally. This ordering constraint
is also represented by inequalities (1). Note that we consider
the uplink direction of the flow, (i.e., from DUs to application
servers).

zsf ≤ zsf+1 ,∀s ∈ S, ∀f ∈ F d\{f|Fd|} (1)



2) NFS Placement: Given a set K(s), constraints (2) ensure
that all distributed NFSs will be installed on all related origin
nodes; we assume that NFSs from CP cannot be installed
in a distributed manner. Constraints (3), in turn, ensure that
all copies of centralized NFSs will be installed in the same
physical node.∑
n∈N

xsfnu =

{
1− zsf , if f ∈ F d, u ∈ O(s);

0 , otherwise.

, s ∈ S,∀f ∈ F, u ∈ V dup (2)∑
n∈N

∑
u∈Vp\V du

p

xsfnu =

{
zsf , if f ∈ F d;
αsf , otherwise.

s ∈ S, ∀f ∈ F (3)

3) NF dimensioning: (4) calculate the exact amount of dis-
tributed centralized NFSs for each NS request. It is important
to mention that, to minimize the residual virtual resources from
each NFS, this amount might be a fractional value; regarding
the sharing possibilities, these values are rounding up with
inequalities related to packing and capacity constraints.

cap(f)wsfnu =


λf−1b

kxsfnu , if f ∈ F d, u ∈ V dup
nsbfx

sf
nu , if f ∈ F c;∑

k∈K(s)

λf−1bkx
sf
nu , otherwise.

,∀s ∈ S,∀f ∈ F,∀n ∈ N, ∀u ∈ Vp (4)

4) NFS Packing: (5) represent the isolation constraints on
the virtual layer. These constraints are responsible for applying
different sharing policies imposed by each NS demand type.
Constraints (6), in turn, ensure that a NF will not be present
in more than one physical node.

xsfnu + xtgnu ≤ 1 + qstfgq
ts
gf ,∀s, t ∈ S, u ∈ Vp, n ∈ N, f, g ∈ F

(5)

xsfnu + xtgnv ≤ 1,∀s, t ∈ S, f, g ∈ F, n ∈ N, u, v ∈ Vp : v 6= u
(6)∑

s∈S
wsfnu ≤ yfnu ,∀n ∈ N, ∀v ∈ Vp,∀f ∈ F (7)

Let us explain in detail the inequalities (7) with some
examples. Suppose that NFSs of type f from s and t cannot be
packed together (∀n ∈ N, xsfnu⊕ xtfnu). Hence, all copies of f
installed on node u and serving s are not shared with t. In this
way, if (4) set wsfmu to 4.60 and wtfnu to 1.25, for example, we
must install at least seven (d4.60e + d1.25e) NFSs of type f
on the node u using two different NFs. Now, let s and t be
two slices with no isolation constraints and using the same NF
for a given NFS f (xsfnu∧xtfnu). Suppose that (4) have set wsfbu
and wtfnu equal to 4.60 and 1.25, respectively. Since both s
and t accept NFS sharing with each other (qstff∧qtsff ), we need
to install only six (d4.60 + 1.25e) NFSs of type f on node u
instead of seven of them. Using this approach on residual
capacities, this saving can be even greater if we have a bigger
sub-set of slices having qstfg = 1 for a given tuple (s, t, f, g).

5) Physical node capacity: (8) ensure that there will not
be more installed NFs than a node can support.∑

n∈N

∑
f∈F

cfy
f
nu ≤ cu ,∀u ∈ Vp (8)

6) Routing: Constraints (9) represent the conservation flow
constraints on control-plane traffic. Note that, since there can
be only one virtual control-plane for each slice request, γ
variables related to the set F (s) can be indexed to only one
k; we chose the first traffic demand to represent the whole
control-plane on each slice. These constraints also represent
the conservation flow constraints on the data-plane for each
traffic demand k; they provide a path between each pair NFSs
from DP, from the origin node of each traffic demand k to the
first related data-plane NFS, and between the last data-plane
NFS and the target node for each traffic demand k. Note that
we use the dummy function f0 in order to find a physical path
between it and the data-plane chain if and only if its first NFS
is installed centrally.∑
a∈δ+(u)

γkafg −
∑

a∈δ−(u)

γkafg =



∑
n∈N

xsfnu − xsgnu , if (f, g) ∈ F (s), k = k1∑
n∈N

xsfnu − xsgnu , if u ∈ V acp , (f, g) ∈ G(s),

zsf − 1 , if (f, g) ∈ G(s), f ∈ F c, u = ok,

1− zsf , if (f, g) ∈ G(s), f ∈ F d, u = ok,

−
∑
n∈N

xsgnu , if u ∈ Vp\V dup , f = f0, g = f1|g ∈ F d

zsg , if u = ok, f = f0, g = f1|g ∈ F d
1− zsf , if u = ok, f = f|Fd|g = f0
−1 , if u = tk, f = f|Fd|, g = f0∑
n∈N

xsfnu , if u ∈ Vp\V dup , f = f|Fd|, g = f0∑
n∈N

xsfnu − xsgnu , if u ∈ Vp\V dup ,∀f, g ∈ F d|g = f + 1

zsg − zsf , if u = ok,∀f, g ∈ F d|g = f + 1

0 , otherwise.

∀k ∈ K(s) : s ∈ S,∀f, g ∈ F,∀u ∈ Vp (9)

Latency: Inequalities (10) ensure that the maximum end-to-
end latency imposed by each slice request s will be respected
on the path between ok and tk for every commodity k. Note
that these technical constraints are applied only on the data-
plane and only on the uplink direction as discussed before;
we assume an arc has the same latency value da on both
directions. Inequalities (11) ensure that the maximum latency
between NFSs f and g will be respected on both data and
control planes.∑
a∈Ap

da(γkaf|Fd|f0
+

∑
f∈{f0}∪Fd\{f|Fd|}

γkaff+1) ≤ ds

,∀k ∈ K(s) : s ∈ S (10)∑
a∈Ap

daγ
ka
fg ≤ dfg ,∀k ∈ K(s) : s ∈ S, ∀f, g ∈ F (11)



Physical link capacity Inequalities (12) ensure that a arc will
not carry more data than it can support. Note that comprehen-
sion coefficients are considered in these constraints.

∑
s∈S

∑
k∈K(s)

bk(λf|Fd|
γkaf|Fd|f0

+
∑

f∈{f0}∪Fd\{f|Fd|}

λfγ
ka
ff+1)]

+
∑
s∈S

ns(
∑

(f,g)∈F (s)

bfgγ
ksa
fg +

∑
(f,g)∈G(s)

∑
k∈K(s)

bfgγ
ka
fg

|K(s)|
) ≤ ba

,∀a ∈ Ap (12)

C. Formulation

We minimize the total cost of deploying all network slice
requests. To this end, the objective is to share as many NFSs
as possible while respecting physical capacity constraints and
assuring QoS imposed by each slice request. Being Ω the
scaling coefficient related to link utilization, the NSDP is then
equivalent to the following formulation:

min
∑
f∈F

∑
n∈N

∑
u∈Vp

yfnu + Ω
∑
a∈Ap

∑
s∈S

∑
k∈K(s)

∑
f,g∈F

γkafg (13)

s.t. (1)-(12) and

yfnu ≥ 0 ∈ Z ,∀f ∈ F,∀n ∈,∀u ∈ Vp (14)

xsfnu ∈ {0, 1} ,∀s ∈ S, ∀f ∈ F,∀n ∈,∀u ∈ Vp (15)
zsf , ∈ {0, 1} ,∀s ∈ S, ∀f ∈ F (16)

γkafg ∈ {0, 1} ,∀k ∈ K(s) : s ∈ S,∀f, g ∈ F (17)

wsuf ≥ 0 ∈ R ,∀s ∈ S, ∀f ∈ F,∀n ∈,∀u ∈ Vp (18)

While the first term in 13 is related to the number of
installed functions, the second one refers to the number of
active links. By simply changing the coefficient Omega (which
multiplies one of the terms), slice providers can modify the ob-
jective function to a more suitable one (e.g., to emphasize the
number of NFSs over the number of links in the optimization
process)


